
INTRODUCING QUATERNIONIC GERBES.

FINLAY THOMPSON

Abstract. The notion of a quaternionic gerbe is presented as

a new way of bundling algebraic structures over a four manifold.

The structure groupoid of this �bration is described in some detail.

The Euclidean conformal group R+SO(4) appears naturally as a

(non-commutative) monoidal structure on this groupoid. Using

this monoidal structure we indicate the existence of a canonical

quaternionic gerbe associated to a conformal structure on a four

manifold.

It is natural to think that quaternionic algebra and four dimensional
geometry should be closely linked. Certainly complex algebra and anal-
ysis provide indispensable tools for exploring two dimensional Riema-
niann geometry.
However, despite many attempts, quaternionic algebra has not been

usefully applied to the di�erential geometry of four manifolds.1 The
most commonly held view is that quaternionic algebra is too rigid to
be useful in studying four manifolds. It is generally assumed that the
natural setting for quaternionic di�erential geometry is hyperK�ahler or
hypercomplex. [10]
The purpose of this talk/article is to present the notion of a quater-

nionic gerbe, and to demonstrate that they appear naturally as a
quaternionic algebraic structure on four manifolds. This work appears
as part of an e�ort to realize the goal of \doing four dimensional ge-
ometry and topology with quaternionic algebra."
Although quaternionic structures are de�ned [8] for all 4n dimen-

sional manifolds, the basic structures and di�culties are already present
in only four dimensions. The notion of \quaternionic curve" has been
equated with that of a \self dual conformal" structure.[2] Note that
even this class of manifolds is strictly larger than the hyperK�ahler man-
ifolds. Here we restrict our attention to smooth oriented four manifolds,
including hyperK�ahler and self dual conformal manifolds.
It is proposed that a \quaternionic structure" on a four manifold is

essentially a Euclidean conformal structure. This compares favourably

1Except perhaps Atiyah's notes on solutions to the Yang-Mills equations on the

four sphere, [1]
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with the two dimensional case where �xing a complex structure is equiv-
alent to �xing a conformal structure.

1. The Problem.

The most obvious de�nition of a quaternionic structure on a four
manifold M requires the existence of three integrable complex struc-
tures, I; J;K 2 End(TM), such that,

I2 = J2 = K2 = IJK = �1:

In terms of holonomy, this implies a reduction of the frame bundle's
structure group to H � , the group of unit quaternions. Note that H � =
GL(1; H ), which generalises the complex case in an obvious way.
The problem comes when we consider Berger's list [2] of holonomy

groups for Riemannian manifolds:

real O(n); SO(n);

complex U(n); SU(n);

quaternionic Sp(n) � Sp(1); Sp(n)

exceptional G2; Spin(7)

The quaternionic-K�ahler series Sp(n) � Sp(1) is clearly related
to quaternionic algebraic structures, however it is not contained in
GL(n; H ). Does this mean that quaternionic-K�ahler manifolds are not
quaternionic? In reaction to this apparent contradiction, S. Salamon
de�ned quaternionic manifolds (see [8]) as having a holonomy reduction
to GL(n; H ) � Sp(1). Then quaternionic-K�ahler implies quaternionic,
as you might expect.
There are two interesting low dimensional coincidences in Berger's

list. The �rst U(1) = SO(2) tells us the complex K�ahler curves are sim-
ply Riemannian surfaces. Moreover, because �xing a conformal struc-
ture on a Riemannian surface corresponds to a holonomy reduction to
R
+SO(2), and R

+SO(2) = C
� = GL(1; C ), geometrically speaking,

�xing a conformal structure is equivalent to �xing a complex structure
on two dimensional manifolds.
The second coincidence Sp(1) � Sp(1) = SO(4) seems similar, with

\complex" replaced by \quaternionic". We also have,

GL(1; H ) � Sp(1) = H
� � Sp(1) = R

+Sp(1) � Sp(1) = R
+SO(4):

The implication is that �xing a quaternionic structure is equivalent to
�xing a conformal structure on four manifolds. But what exactly do
we mean by a \quaternionic structure"?
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1.1. The Impasse. The algebra of quaternions appears naturally as
the generator of the Brauer group of the reals, Br(R) = fR; H g. The
group structure is given by the tensor product, moduli \matrix" alge-
bra. It is not necessary to go into the details of the Brauer group here,
instead we simply note that H generates Br(R) because of the following
algebra isomorphism,

� : H 
R H ' EndR(H );

where �(p 
 q) : v 7! p � v � q for any p; q; v 2 H . Note that we have
used both the left and the right module structures in de�ning �.
The Euclidean conformal group R+SO(4) has a natural quaternionic

presentation using the isomorphism �. Let i : H � H ! H 
 H be
the canonical map associated to the tensor product. The image of
the multiplicative group H

� � H
� under these maps is precisely the

conformal group. We have the following exact sequence of groups,

1 ���! R
� ���! H

� � H
�

��i���! R
+SO(4) ���! 1

where R� ! H
� � H

� acts as r 7! (r; r�1).

Proposition . The Euclidean conformal group in four dimensions ap-
pears in a natural and quaternionic way as,

R
+SO(4) = fp
 q = i(p; q) j p; q 2 H

�g:

Proof: The Euclidean norm of x 2 H is jxj2 = x � �x. Let p 
 q =
i(p; q). Then,

jp
 q(x)j = jp � x � qj =
p
p � x � q � �q � �x � �p

= jpjjqjjxj = �jxj
�

The above presentation of the conformal group, using the isomor-
phism � : H 
 H ! End(H ), places equal emphasis on the left and
right module structures of H on itself. Indeed, the isomorphism � is
the H -bimodule structure on H ! It is then natural to consider the full
bimodule structure as the important structure that we want to inte-
grate over four manifolds. However this way is blocked.

Proposition . The automorphisms of H considered as a H -bimodule
are all scale multiples of the identity,

Aut
H-bimodule(H ) = R

+ � Id :

Proof: This is simply a consequence of Shur's lemma applied to
the representations of M4(R).

�
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Thus a four manifold with an integrable H -bimodule structure de-
�ned on the tangent bundle has holonomy contained in R+ � Id, which
forces the manifold to be a�ne.
So we reach an impasse:

� The Euclidean conformal group has a natural quaternionic pre-
sentation using the H -bimodule structure on H .

� The automorphisms of H as a H -bimodule are simply scale mul-
tiples of the identity.

We show that quaternionic gerbes provide a way of going past this
impasse.

1.2. The Suggested Solution. The central idea is to use a more
sophisticated way of \gluing" local data together.
Although H has very few automorphisms when considered as an H -

bimodule, it does have an interesting group of automorphisms as an
R-algebra,

Aut(H ) = Inn(H ) = SO(3):

Note that all the automorphisms are inner. The suggestion is to con-
sider the set of linear maps in End(H ) that commute with the H -
bimodule structure, up to inner automorphisms. Such a map: f : H !
H is required to satisfy the equation,

f(p � v � q) = �(p)f(v)�(q);

where �; � are inner automorphisms associated to f . It turns out that
the set of all such generalised automorphisms is precisely the Euclidean
conformal group, i(H � � H

�) = R
+SO(4).

The idea of allowing the two actions to commute up to an automor-
phism is natural in category theory. A gerbe is a special kind of sheaf
of categories and provides a rich enough language to handle the inner
automorphisms coherently.
An excellent presentation of the theory of Abelian gerbes has been

presented by Jean-Luc Brylinski in \Loop Spaces, Characteristic Classes
and Geometric Quantisation." [5].
Nigel Hitchen, studying special Lagrangian sub-manifolds in dimen-

sion three, has also made use of Abelian gerbes. Hitchen's approach
[6] stresses the idea that Abelian gerbes certain cohomology classes.
Michael Murray has presented [7] Abelian gerbes in a di�erent light

as bundle gerbes.
However the theory we are looking for is non-Abelian. L. Breen has

de�ned non-Abelian gerbes [3, 4] for arbitrary Lie groups and has
developed the theory of 2-gerbes. Breen's work applies quite well to
our present situation.
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2. The Structure Groupoid

Just as there is a structure group associated to a principal bundle, a
gerbe has an associated groupoid. In this section we will describe the
structure groupoid associated to a quaternionic gerbe.
Following Breen [3], we can associate to any crossed module a groupoid.

We start from the crossed module de�ned by,

� : H � ! SO(3):

where � is the natural map onto the inner automorphisms, �(p) =
p
 p�1, and SO(3) acts on H

� as automorphisms.
Recently R. Brown and collaborators have been relating groupoids

and crossed modules to algebraic topology. (see [12])

De�nition . The quaternionic structure groupoid H is de�ned:

� objects of H are elements of SO(3),
� any element p 2 H

� is considered a morphism p 2 H(�; �)

p : �! �

whenever �(p) � � = �.
� For any two morphisms p : �! � and q : � ! 
, the composition
is given by the map,

q � p = qp : �! 
 = �(qp)� = �(q)�(p)�:

It is easy to check that all of the axioms of a small category are
satis�ed. In addition, because H is a division algebra, all the morphisms
are invertible so that H is a groupoid.
Note that the set of all morphisms inH consists of pairs (p; �) 2 H

��
SO(3). We will abuse notation a little and say that H = H

� � SO(3)
as sets.
Although we have used the left SO(3)-action on itself, we have not

used the group structure on SO(3).

2.1. Tensor product on H. The small category H has a monoidal
structure coming from the group structure on SO(3),


 : H�H ! H:

We use the tensor product symbol because the central example of a
monoidal structure on a category is that of the tensor product in vec-
tor spaces. This tensor product is not commutative, however it is
associative.
For any �; � 2 SO(3),

�
 � = ��
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For any two maps p : � ! �(p)� and q : � ! �(q)� we de�ne p
 q
as,

p
 q = p�[q] : �� ! �(p�[q])��:

To see that 
 is well de�ned we should check that tensor product of
the ranges is the range of the tensor product of the maps,

�(p�[q])�� = �(p)�(�[q])�� = �(p)��(q)��1��

= (�(p)�)
 (�(q)�)

Note that 
 is simply the semi-direct group structure coming from
the action of SO(3) on H � via inner automorphisms,

(H;
) = H
�
o SO(3):

where (p; �)
 (q; �) = (p�[q]; ��).
Moreover, this semi-direct product is isomorphic to the Euclidean

conformal group,

H
�
o SO(3) ' R

+SO(4):

2.2. H -bimodules. We can also represent the groupoid H as a cate-
gory of quaternionic bimodules in such a way that the tensor product is
really a tensor product. In order to do this we need to de�ne carefully
what we mean by an H -bimodule.

De�nition . An H -bimodule is a vector space V with two commuting
actions of the quaternions. Or equivalently, a bilinear map,

� : H � H ! End(V ):

Given an H -bimodule (V; �) we can present the action as,

� : H 
 H ! End(V );

by using the universal property of the tensor product. In this form
we see that the H -bimodules are simply the modules over End(H ) =
M4(R), the algebra of four by four matrices. Therefore the only sim-
ple module is R4 . For our purposes we restrict ourselves to real four
dimensional H -bimodules. The objects of H will be identi�ed with the
four dimensional H -bimodules.
Although all such objects are structurally identical, we will distin-

guish between di�erent quaternionic structures on the same underlying
vector space.

Proposition . Let V be a H -bimodule in H. Then there is an H -
bimodule isomorphism � : H ! V .
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Proof: V is a simple module over H , in two di�erent ways. Com-
paring these actions we de�ne for each v 2 V , v 6= 0, a map H ! H :
p 7! pv by the rule,

p � v = v � pv:

The map p 7! pv is an R-algebra automorphism for all v,

v � (pq)v = (pq) � v = p � (q � v) = p � (v � qv)
= (p � v) � qv = v � (pvqv)

So we have de�ned a map V ! Aut(H ) = SO(3). To show surjectivity
we start by �xing some v and de�ne �[p] = pv. For any � in Aut(H )
the tansitivity of SO(3) implies that � = 
� for some 
 2 SO(3). All
automorphisms are inner, so there is some r 2 H such that 
 = �(r) =
r 
 r�1. Then we observe,

p � (v � r�1) = (v � pv) � r�1 = (v � r�1) � (rpvr�1)

= (v � r�1) � 
[pv] = (v � r�1) � 
�[p]
= (v � r�1) � �[p]

and we see that v � r�1 maps onto �. It is easy to see that the map
V ! SO(3) �bres through the projection V ! P (V ), where P (V ) is
the real projective space of one dimensional subspaces in V . Let e 2 V
be chosen in the preimage of the identity of SO(3). Then it is clear
that p � e = e � p for all p 2 H , and,

� : H ! V

p! p � e

is the isomorphism of H -bimodules.

�

We see from the above proof that each H -bimodule structure creates
an identi�cation of P (V ) with SO(3). Recall that as a smooth manifold
SO(3) = RP

3 = P (V ).
We can go in the other direction as well. Let V be a right H -module

and � : V ! SO(3) be a H � equivariant map,

�(xp) = �(p)�1�(x):

Then we de�ne a left H � action on V as,

px = x�(x)[p]
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The left action commutes with the right action and so V is an H -
bimodule,

p(xq) = xq�(xq)[p] = xq�(q)�1�(x)[p]

= x�(x)[p]q = (px)q

We distinguish the di�erent objects in H by using the di�erent iden-
ti�cations P (V )! SO(3) associated H -bimodule structures. Two ob-
jects di�er by an element of SO(3).
Now the tensor product can actually be represented as a tensor prod-

uct. If V and W are the H -bimodules associated to objects � and � in
H, then the H -bimodule associated to �
 � = � � � is V 
H W .
A quaternionic gerbe consists of the structure groupoid �bred over

a four manifold. To see how we do that, we need a closer look at the
theory of sheaves of categories.

3. Sheaves of Categories or Stacks.

A gerbe is a special kind of sheaf of categories. Our objective in
this section is to present enough of the general theory so that we can
understand what is the nature of gerbes, and how they can be useful.
We will not present a self contained account here, instead we refer the
reader to [5].
A presheaf of categories involves the interplay of locally de�ned \ob-

jects" and \morphisms". A stack2 requires that the objects satisfy a
descent property, up to an isomorphism. The concept is is quite 
ex-
ible, but still very precise. The isomorphisms that glue together the
object data must satisfy additional coherence identities.

3.1. Local Homeomorphisms. Instead of working with the category
of open sets on a manifold X, we work with local homeomorphisms:
continuous map f : Y ! X such that,

� any y 2 Y has an open neighbourhood U whose image f(U) is
open in X, and,

� the restriction of f to U gives a homeomorphism between U and
f(U).

De�nition . The category of spaces over X, CX , has,

� objects are local homeomorphisms to X, f : Y ! X;
� a morphism g : (f : Y ! X) ! (h : Z ! X) is a local homeo-
morphisms, g : Y ! Z such that f = h � g.

2For us the terms \stack" and \sheaf of categories" refer to the same concept.
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An important example to keep in mind is associated to an open
cover fUig of X. The canonical projection f : Y =

`
i Ui ! X from

the disjoint union onto X is a local homeomorphism.

3.2. Presheaves of Categories. In the same way that a presheaf of
sets is simply a functor from CX to the category of sets, a presheaf
of categories over X is a functor C from the category of spaces over
X, CX , to the (bi)-category of small categories, functors and natural
transformations. Or, more explicitly,

� to every local homeomorphism f : Y ! X we associate a small
category,

C(f : Y ! X)

� to every arrow of local homeomorphisms k : (Z; g) ! (Y; f) we
associate a functor,

C(k) = k�1 : C(f : Y ! X)! C(g : Z ! X);

� to every composition k � l : (W;h)! (Z; g)! (Y; f) we associate
an invertible natural transformation,

�k;l : l
�1k�1 ) (kl)�1

This data must satisfy the following coherence condition,

m�1l�1k�1
�k;l���! m�1(lk)�1

?
?
y�l;m

?
?
y�lk;m

(lm)�1k�1
�k;lm���! (lkm)�1

It would be possible to de�ne a presheaf of categories with the re-
quirement that l�1k�1 is strictly identical to (kl)�1. However that does
not take advantage of the extra 
exibility provided. We will see later
how quaternionic gerbes make use of this 
exibility.

3.3. Descent for Morphisms. Let C be a presheaf of categories. We
say that the morphisms satisfy descent if for any two objects A;B
in C(f : Y ! X), the presheaf of sets on Y de�ned by,

Hom(A;B)(k : Z ! Y ) = Hom(k�1(A); k�1(B))

is actually a sheaf on Y .
We can explain this in terms of objects and maps more directly.

Let V � X be a open neighbourhood, and let A;B be objects in
C(V ) = C(V ,! X). Now let fUig be a open cover of V . Take a
collection of morphisms �i : AjUi ! BjUi , where �i 2 C(Ui). The
morphisms satisfy descent if,

�ijUij = �jjUij 8i; j;
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implies the existence a unique morphism � : A! B in C(V ) such that
�i = �jUi for all i.
In the above we have denoted AjUi for the \restriction" of A to Ui.

Of course the restriction is really a functor C(V )! C(V \Ui), and that
functor is not necessarily trivial or obvious. However the presentation
becomes much easier to if we make use of these small abuses of the
notation.

3.4. Descent for Objects. The objects satisfy a much more com-
plicated descent property, making use of the natural transformations
appearing in the de�nition.
Let C be a presheaf of categories. Let V be any open set in X and

f : Y ! V be any surjective local homeomorphism. The descent data
for any A 2 C(Y ) consists of an isomorphism � : p�1

2 (A) ! p�1
1 (A) in

C(Y �X Y ) such that,

p�1
12 (�) � p�1

23 (�) � p�1
31 (�) = Idp�1

1
(A)

in H(Y �X Y �X Y ).
3

We say that the objects satisfy descent if every pair (A; �) as
above implies the existence of an object A0 2 C(V ) and an isomorphism
 : f�1(A0)! A in C(Y ) such that the following diagram in C(Y �X Y )
commutes,

p�1
1 f�1(A0)

�
�1

f;p2
�f;p1�����! p�1

2 f�1(A0)

 

?
?
y  

?
?
y

p�1
1 (A)

����! p�1
2 (A)

This rather complicated prescription can also be understood in terms
of open sets in the normal sense.
Let fUig be an open cover of V � X. The descent data is equivalent

to a set of local objects Ai 2 C(Ui), and isomorphisms �ij : AijUij !
AjjUij in C(Ui \ Uj). The isomorphisms are required to satisfy,

�ikjUijk = �ijjUijk � �jkjUijk ;
in the category over the triple intersection, C(Ui\Uj \Uk). Again note
that we have implicitly used the natural transformations by glossing
over the restrictions.

De�nition . A stack (or sheaf of categories) on X is a presheaf of
categories where objects and morphisms satisfy the descent conditions
above.

3The natural projections Y �X Y ! Y are denoted p1 and p2, and the three

natural projections Y �X Y �X Y ! Y �X Y are denoted by p12,p23 and p13.



232 FINLAY THOMPSON

4. Quaternionic Gerbes

Now we re�ne the notion of a stack to that of a gerbe by imposing
three more conditions:

1. gerbes take values in groupoids, the full sub-category of small
categories whose morphisms are invertible.

2. gerbes are locally non-empty. This means that there exists a
surjective local homeomorphism f : Y ! X such that C(Y ) is
non-empty. We could also state this by saying that there exists
an covering fUig of X such that the C(Ui) are all non-empty.

3. gerbes are locally connected. This means that for any two
objects A;B in C(f : Y ! X), there exists an surjective local
homeomorphism g : Z ! Y such that g�1(A) and g�1(B) are
isomorphic. In terms of covers: if A;B are objects in C(U) for
some U � X, then there exists an open covering fUig of U such
that A jUi is isomorphic to B jUi for all i.

De�nition . A gerbe on X is a locally non-empty and locally con-
nected sheaf of groupoids on X.

For any group G let GX be the sheaf of G-valued functions on X. A
gerbe is said to have band inG if for any object A 2 C(f : Y ! X), the
sheaf Aut(A) of automorphisms of A on Y is isomorphic to GY , and the
isomorphism � : Aut(A)! GY is unique up to an inner automorphism
of G.

De�nition . Quaternionic Gerbe is a gerbe with band in H
� .

4.1. Neutral Gerbes. A gerbe G is said to be neutral if there exists
a global object, A 2 G(X). Because the automorphism sheaf of Aut(A)
is isomorphic to the sheaf of H � -valued functions, we can identify the
groupoid G(X) with the groupoid of principal H � -bundles,

� : G(X)! Tor(Aut(A))

B 7! Isom(B ! A)

Quaternionic gerbes are locally non-empty so we can always �nd
an object AU 2 G(U) over the open set U . Using that local object
we can identify G(U) with the groupoid of H � -bundles over U . Local
non-emptiness implies that the gerbe is locally neutral.
In order to understand this local neutrality, it is helpful to consider

an analogy with the relation between a principal G-bundle and an
associated vector bundle. To any vector bundle we can associate the
principal bundle of frames. The local neutralisation associated to a
local object AU is sort of \frame" for G over U . The set of all frames
for G forms a local groupoid.
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Assuming that U is contractable, all the H
� -bundles di�er by an

automorphisms valued function � : U ! SO(3). We de�ne a H
� -

bundle associated to AU and � by letting A�U = AU as a �bre bundle.
The action of H � however is twisted by �. Let a 2 AU and let a� be
the same element considered in A�U . Then for any quaternion p 2 H

� ,

a� � p = (a � �[p])�:

If U is not contractable there can be topologically inequivalent H � -
bundles. Then we can replace the function � above with an H -bimodule
M ! U . If AU and BU are two di�erent objects in G(U), then there is
an H -bimodule M such that,

A
H M = B:

The local groupoid H(U) consists of the \frames" of G(U). Note
that because of the local neutrality axiom, all quaternionic gerbes look
the same locally.

4.2. The Local Groupoid. We describe here the local structure of
H.
An object of the local groupoid H(U) is a diagram of the form,

A
����! Aut(H )

�

?
?
y

U

where � : A ! U is a principle H � -bundle and � is an H
� -equivariant

map �(xp) = �(p)�1�(x).
As we have seen, this data can also be presented in terms of H -

bitorsors.
An H � -bitorsor is a principle right H � -bundle that is also a principle

left H � -bundle for a commuting action of H � . For any (A; �) 2 H(U),
the left H � action on A is, px = x�(x)[p].
The morphisms of H -bitorsors are simply bundle maps that commute

with both the left and right actions.

4.3. Tensor Product on H(U). In terms of bitorsors we can present
the product structure on H(U) by using the quaternionic tensor prod-
uct.
For any A;B 2 H(U),

A
H B = A
R B= �

where xp
 y � x
 py.
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Assuming U is contractable and by �xing a coordinate basis, we get
a canonical trivialisation of the tangent bundle, TU = U � H . In this
way TU can be considered as an object in H(U).
Relative to this �xed object, all the others are given by SO(3) valued

functions on U , the morphisms are given by H � valued functions.
Over U � H the local groupoid consists of sections C1(U;H). How-

ever the strength of this approach is in terms of the global structure.
A global quaternionic gerbe is given in terms of \transition functions".

4.4. Transition Functions or Bitorsor Cocyle. The transition func-
tions for a quaternionic gerbe are given in terms of H -bitorsors. Maybe
we should say \transition bitorsors".
Let G be a quaternionic gerbe on X and let fUig be a good cover.4

Choose Ai 2 G(Ui). Then Aut(Ai) is isomorphic to the sheaf of H � -
valued functions. Using Ai we have the following local neutralisation,

�i : G(Ui)! Tor(Aut(Ai))

B 7! Isom(B ! Ai)

On any intersection Uij = Ui \ Uj we can de�ne,

Eij = Isom(Aj jUij ; Ai jUij );

The Eij are H -bitorsors and are the transition functions. The two
H -actions are given by the composition of an isomorphism with auto-
morphisms ofAijUij and AjjU ij, which are each isomorphic to H � -valued
functions. Note that the isomorphisms H ' Aut(Ai) are unique up to
an automorphism. To be really careful we should take care of those
automorphisms as well, however that will work will be presented in a
comprehensive way later.
The H -bitorsors Eij need to be compared over triple intersections.

The natural transformations in the de�nition of a stack give us the
following morphisms as extra data:

 ijk : Eij 
H Ejk ! Eik;

These morphisms live in H(Uijk) and must satisfy the following co-
herence condition on four intersections,

Eij 
H Ejk 
H Ekl
 ijk
Id
����! Eik 
H Ekl

Id
 jkl

?
?
y

?
?
y ikl

Eij 
H Ejl
 ijl���! Eil

4All intersections Ui \ Uj are contractable.
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The pair (Eij;  ijk) is called a quaternionic bitorsor cocycle on
X.
Of course the above description of a particular quaternionic gerbe

depends on the choice of Ai 2 G(Ui). We can measure the dependence
on those choices with a coboundary.

4.5. Coboundary. Let Bi be a di�erent choice of local objects and
(Fij; �ijk) be the associated bitorsor cocyle.
Let Mi 2 H(Ui) be de�ned by,

Bi = Ai 
H Mi

The pair (Mi; �ij) is a coboundary relating (Fij; �ijk) to (Eij;  ijk)
if �ij is a map in H(Uij),

�ij : Fij !M�

i 
H Eij 
H Mj

such that as morphisms in H(Uijk),

�ik � �ijk =  ijk � (�ij 
 �jk)

We can present this equation with a commutative diagram,

Fij 
H Fjk
�ij
�jk����! M�

i 
H Eij 
H Ejk 
H Mk

�ijk

?
?
y

?
?
yId � ijk�Id

Fik ���!
�ik

M�

i 
H Eik 
H Mk

It was demonstrated in [11] that coboundaries de�ne an equivalence
relation on the set of quaternionic bitorsor cocycles. Moreover, it is
possible to construct a quaternionic gerbe from a given cocyle, and
that gerbe will be isomorphic to any gerbe constructed from a cocyle
from the same equivalence class.
Although we have used the terminology of cohomology at present

there is no actual theory of H -valued cohomology. We use the termi-
nology because it is convenient, and perhaps to be a little optimistic.

5. Conformal Four Manifolds

A conformal structure on a four manifold is a reduction of the frame
bundle to R+SO(4). As we saw at the beginning, the Euclidean con-
formal group can be presented using the groupoid H with its tensor
product acting as the group structure.
We will indicate here brie
y how to construct a quaternionic bitorsor

cocycle from a given a conformal structure on a four manifold X. The
presentation here is very sketchy and a more detailed presentation is
being prepared.
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We can choose charts f i : Ui ! H g that are compatible with the
conformal structure, i.e.,

@( i �  �1
j ) 2 i(H � � H

�);

where @(f) is the Jacobian matrix of f considered as an element of
H 
 H . Therefore there are H � -valued functions xij and yij on Uij such
that,

@( i �  �1
j ) = xij 
 yji:

Over each chart Ui the tangent bundle has a canonical H -bitorsor
structure coming from the coordinate  . The tangent gerbe cocycle
allows us to relate these various H -bitorsor structures.
The xij 
 yij can be used to de�ne Eij by twisting the left and right

H -actions by �(xij) and �(yij) respectively. In terms of an SO(3) valued
function, we can de�ne Eij relative to TUi with the function �(yijxij).
Over the triple intersections Uijk it is possible to construct isomor-

phisms �ijk : Eij 
 Ejk ! Eik.
It can also be shown that the  i are coordinate charts compatible

with the conformal structure if and only if the (Eij; �ijk) form a quater-
nionic gerbe cocyle.
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