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Abstract. The description of electron current through a splitting

is a mathematical problem of electron transport in quantum net-

works [5, 1]. For quantum networks constructed on the interface

of narrow-gap semiconductors [29, 2] the relevant scattering prob-

lem for the multi-dimensional Sch�odinger equation may be substi-

tuted by the corresponding problem on a one-dimensional linear

graph with proper selfadjoint boundary conditions at the nodes

[11, 10, 25, 24, 16, 19, 4, 28, 20, 18, 6, 5, 1]. However, realistic

boundary conditions for splittings have not yet been derived.

Here we consider some compact domain attached to a few semi-

in�nite lines as a model for a quantum network. An asymptotic

formula for the scattering matrix for this object is derived in terms

of the properties of the compact domain. This allows us to pro-

pose designs for devices for manipulating quantum current through

a splitting [3, 15, 22, 9, 21].

Introduction: current manipulation in the resonance

case

In this paper we discuss the scattering problem on a compact do-
main with a few semi-in�nite wires attached. This is motivated by the
design of quantum electronic devices for triadic logic. In the papers
[3, 15] a special design of the one-dimensional graph which permits
manipulation of the current through an elementary ring-like splitting
is suggested. This permits, in principle, manipulation of quantum cur-
rent in the resonance case to form a quantum switch. Another device
for manipulating quantum current through splittings is discussed in
[22, 9]. In [21] the special design of the splitting formed as a circular
domain with four one-dimensional wires attached is used to produce a
triadic relay.
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In order to illustrate the basic principle of operation consider the self-
adjoint Schr�odinger operator�

L � ��+ q(x)
@	

@n

��
@


= 0:

on some compact domain 
. In this paper we will only consider the
case 
 � R

3 [22] (for other cases see also [3, 15, 21]). Roughly speaking
the solution of the Cauchy problem�

@	
i@t

= L	
	(x; 0) = 	0(x)

(1)

is given in terms of eigenfunctions 'n

	(x; t) =
X
n

�ne
i�nt'n(x):

Picking a speci�c mode '0 with energy �0 we suppose that '0 disap-
pears on some subset l0 � 
. Connecting `thin channels' at various

Ω 0
λ

0
λ

l
0

�gure 1. Resonance switch

points on the boundary of 
 and introducing an excitation of energy
�0 along the channels we can hope to create a switching e�ect. Essen-
tialy this is achieved by varying q(x) so that l0 \ @
 coincides with the
connection point of a `thin channel'.
Implicit in our construction is the assumption that the energy of the
electrons in the device is equal to some resonance eigenvalue of the
Schr�odinger operator on 
. We refer to this as the resonance case1.

1This has interesting implications when we consider the e�ect of decreasing the

length scale|or equivalently scaling up the energy|viz. the e�ect of non-zero

temperature becomes negligable for su�ciently small length scales, see [14].
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Another assumption which we have made above is that �0 is a simple

eigenvalue of L. We will show that the case of multiple eigenvalues is
a simple generalisation of the case for simple eigenvalues, see [3, 15].
In the �rst section we give a brief description of the connection of the
thin channels (here they are modelled by one-dimensional semi-lines)
to the compact domain, for more details see [22]. In the second section
we derive an asymptotic formula for the scattering matrix in terms
of the eigenfunctions on the compact domain. In the last section we
brie
y discuss some simple models of a quantum switch constructed on
the basis of this asymptotic formula.

1. Connection of compact domain to thin channels

As we mentioned above the thin channels are modelled by one-
dimensional semi-lines. This is justi�ed by an appropriate choice of ma-
terials (narrow-band semiconductors) and energies, see [29, 2, 21]. We
assume that these channels are attached at the points fa1; a2; :::; aNg �
@
 (perturbation of the operator L at inner points faN+1; aN+2; : : :
; aN+Mgmay be considered using the same techniques as for fa1; a2; :::; aNg
[2, 3, 21] although we do not consider this here).
We refer to L, de�ned above, as the unperturbed Schr�odinger operator.
L is restricted to the symmetric operator L0 de�ned on the class D0

of smooth functions with Neumann boundary conditions which vanish
near the points a1; a2; : : : ; aN . The de�ciency subspaces, N�i, of the
restricted symmetric operator L0,

[L?
0
� i] es�i = 0

for complex values of the spectral parameter � coincide with Greens
functions G�(x; as) of L which are elements of L2(
) but do not be-
long to the Sobolev class W 1

2
(
). In the case when 
 is a compact

one-dimensional manifold (a compact graph) these Greens functions
are continuous and can be written in terms of a convergent spectral
series [3]. However, when 
 � R

2 ;R3 the de�ciency elements will have
singularities and we must use an iterated Hilbert identity to regularise
the values of the Greens function at the poles.
It is well known, for 
 � R

3 , that the Greens function admitts the
representation inside 


G0

�(x; y) =
ei
p
�jx�yj

4�jx� yj
+ g(x; y; �)(2)
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where g(x; y; �) is continuous. The potential-theory approach gives the
asymptotics of the Green function near the boundary point as 2 @


G0

�(x; as) �
1

2�jx� asj
+ Ls(x) +Bs(x; �);(3)

where Ls is a logarithmic term depending only on @
 and Bs is a
bounded term containing spectral information [8].
In order to choose regularised boundary values we use the following
lemma [22] (here we assume L > �1 is semi-bounded from below):

Lemma 1. For any regular point � from the complement of the spec-

trum �(L) of L and any a 2 fasg
N+M

s=1 the following representation is

true:

G�(x; a) = G�1(x; a) + (�+ 1)G�1 �G�(x; a);

where the second addend is a continuous function of x and the spectral

series of it in terms of eigenfunctions 'l of the nonperturbed operator

L

(�+ 1)G�1 �G�(x; a) = (�+ 1)
X
l

'l(x)'l(a)

(�l + 1)(�l � �)

is absolutely and uniformly convergent in 
.

The proof of this lemma is based on the classical Mercer theorem
along with the Hilbert identity [22].
It is well known that the domain of L?

0
can be written as the direct

sum

D?
0
= D0 +Ni +N�i(4)

so for any u 2 D?
0

u = u0 +
X
s

A+

s Gi(x; as) +
X
s

A�s G�i(x; as):

We de�ne u 2 D?
0
in terms of the coordinates

As � A+

s + A�s ;

Bs � lim
x!as

"
u(x)�

X
t

At<Gi(x; at)

#
;

the singular and regular amplitudes respectively since it is clear from
the above lemma that As is the coe�cient of the singular part and Bs

the coe�cient of the regular part of u 2 D?
0
. The boundary form of L?

0

may be written in terms of As Bs as a hermitian symplectic form

hL
?
0
u; vi � hu;L?

0
vi =

X
Bu
s
�Av
s � Au

s
�Bv
s :(5)
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1.1. Self-adjoint extensions. We recall that to each boundary point
as, s = 1; : : : ; N , there is attached a semi-in�nite ray. On the s-th ray
we de�ne the symmetric operator

ls;0 = �
d2

dxs
+ qs(xs);

on functions which vanish at xs = 0 (which is identi�ed with as 2 
).
Let us consider the symmetric operator L0� l1;0� l2;0� :::� lN;0. The
connection between the compact domain and the rays is given by (a
particular) self-adjoint extension of this operator. The boundary form
of the adjoint L?

0
� l?

1;0 � l?
2;0 � :::� l?N;0 is easily seen to be

NX
s

�
Bu
sA

v
s � Au

sB
v
s

�
+

NX
s

�
u0s(0)vs(0)� us(0)v0s(0)

�
:(6)

It is well known that the self-adjoint extensions of L0� l1;0� l2;0� :::�
lN;0 correspond to Lagrange planes in the Hermitian symplectic space
of boundary values equipped with the above boundary form [26]. In
general, if A, B are (vectors of) boundary values for some symmetric
operator then any self-adjoint extension can be described by

i

2
(U � I)A+

1

2
(U + I)B = 0

for some unitary matrix U [14, 13].
We choose the particular family of self-adjoint extensions which corre-
spond to the following boundary conditions at the N points of contact
of the rays �

As

us(0)

�
=

�
0 �
� 0

��
Bs

u0s(0)

�
;(7)

for s = 1; : : : ; N and � > 0. The resulting self-adjoint extension we
denote by L�. The parameter � is a measure of the strength of the
connection between the rays and the compact domain|in the limit
� ! 0 the resolvent of L� converges uniformly to the resolvent of L on
each compact subset of the resolvent set of L [22].

2. Asymptotics of the scattering matrix

For the remainder we assume that the potential on the rays qs(xs) �
0 is zero.
We use the ansatz

us = fs(xs;�k)�s1 + fs(xs; k)Ss1;(8)
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for the scattered wave generated by the incoming wave from the ray
attached to the point a1. Here fs(xs;�k) are the Jost solutions [27], in
this case (qs(xs) � 0) just the exponentials

fs(xs;�k) = e�ikxs;

and � = k2 is the spectral parameter.
From the boundary conditions (7) we get N equations

As = �f 0s(0;�ik)�s1 + �f 0s(0; ik)Ss1
�Bs = fs(0;�ik)�s1 + fs(0; ik)Ss1:(9)

Inside 
 the eigenfunction u(x; k) may be written as a sum of Greens
functions at the spectral parameter � = k2

u(x; k) =

NX
s

CsG�(x; as):

Using the Cayley transform between the spectral points i and � one
gets a relationship between these Greens functions and the de�ciency
elements (as de�ned above) so that [22]

lim
x!as

[G(x; as; �)� <G(x; as; i)] =

�
I+ �L

L � �I
Gi(as); Gi(as)

�
� gs(�):

Consequenttly we can show that u has the following asymptotics as
x! as

u � Cs<Gi(x; as) + Csg
s(�) +

X
t6=s

CtG�(as; at) + o(1):(10)

It follows that for the scattering wave the symplectic variables are re-
lated by

As = Cs

Bs = gs(�)Cs +
X
t6=s

CtG�(as; at);

that is B = QA where

Q(�) =

0
BB@

g1(�) G�(a1; a2) � � � G�(a1; aN)
G�(a2; a1) g2(�) � � � G�(a2; aN)

...
. . .

...
G�(aN ; a1) � � � � � � gN(�)

1
CCA :(11)

Putting this into (9) we can solve for the scattering matrix to get

S = �
I+ ik�2Q

I� ik�2Q
:(12)



124 M. HARMER, A. MIKHAILOVA AND B. S. PAVLOV

Let us choose an eigenvalue �0 of the unperturbed operator L on 
.
We suppose that �0 has a p-dimensional eigenspace, which we denote
R0, with orthonormal basis f'0;ig

p. The following important technical
statement close to Lemma 1 above is true [22]:

Theorem 1. The elements of the Q-matrix have the following asymp-

totics at the spectral point �0:

Qst(�) �

pX
i=1

'0;i(as)'0;i(at)

�0 � �
+Q0(as; at; �);

where Q0(as; at; �) is a continuous function at the point � = �0.

We will use this result to prove an asymptotic formula for the scat-
tering matrix in the limit of weak connection between the compact
domain and the rays.
Consider the mapping P : L2(
) ! C

N which gives the vector of val-
ues of a function in L2(
) at the nodes of each of the N rays. To
distinguish between functions and elements of C N we use the notation

P( ) = j i 2 C
N ;

and we denote

R0 � P(R0):

Proposition 1. It is possible to choose an orthonormal basis f�0;ig
p

for R0 which forms an orthogonal, but not necessarily normalised, basis

for R0 under P.

Proof: Given some orthonormal basis f'0;ig
p for R0 we see that

�0;i =

pX
j=1

Uij'0;j

is also an orthonormal basis where U 2 U(p).
The inner product of the image under P

h�0;ij�0;ji =

pX
r;s=1

�Uirh'0;rj'0;siUjs

shows that �nding an orthogonal basis for R0 amounts to �nding the
unitary matrix U which diagonalises Ars = h'0;rj'0;si. 2
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This allows us to write Q in `diagonal' form

Q =
1

�0 � �
[j�0;1ih�0;1j+ � � �+ j�0;mih�0;mj]

+Q0(�)

=
Dl

�0 � �
+Q0(�)(13)

where m � p is the dimension of R0.

Theorem 2. If �0 is an eigenvalue of L then for vanishing coupling

� � 0 the scattering matrix of L� has the form

S(�0) = �I+ 2P0 � 2
X
s=1

(ik0�
2P?

0
Q0P

?
0
)s

= �I+ 2P0 +O(�2)(14)

where P0 is the orthogonal projection onto R0.

Proof: Using equation (13),

S(�) = �

�
I+

ik�2D0

�0 � �
+ ik�2Q0

� �
I�

ik�2D0

�0 � �
� ik�2Q0

��1
:

Since D0 = D?
0
, the matrix E0 = I�

ik�2D0

�0�� is invertable. Consequently

the denominator can be written�
I�

ik�2D0

�0 � �
� ik�2Q0

��1
=

�
[I� ik�2Q0E

�1
0
]E0

��1
= E�1

0

�
I� ik�2Q0E

�1
0

��1
:

Again the matrix I� ik�2Q0E
�1
0

has an inverse for � � �0 since Q0 =
Q?
0
. This gives the following expression for the scattering matrix

S(�) = �
�
E?
0
E�1
0

+ ik�2Q0E
�1
0

� �
I� ik�2Q0E

�1
0

��1
= �

�
E?
0
E�1
0

+ ik�2Q0E
�1
0

�X
s=0

(ik�2Q0E
�1
0
)s:

Denoting �i �
p
h�0;ij�0;ii and diagonalising we can write,

E�1
0

= diag

�
1�

ik�2�2
1

�0 � �
; : : : ; 1�

ik�2�2m
�0 � �

; 1; : : : ; 1

��1

= diag

�
�0 � �

�0 � �� ik�2�2
1

; : : : ;
�0 � �

�0 � �� ik�2�2m
; 1; : : : ; 1

�
:

Therefore

lim
�!�0

E�1
0

= P?
0
= I� P0:(15)
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Furthermore

E?
0
E�1
0

= diag

�
�0 � �+ ik�2�2

1

�0 � �� ik�2�2
1

; : : : ;
�0 � �+ ik�2�2m
�0 � �� ik�2�2m

; 1; : : : ; 1

�
which gives us the limit

lim
�!�0

E?
0
E�1
0

= P?
0
� P0 = I� 2P0:(16)

From these limits we get

S(�0) = �
�
I� 2P0 + ik0�

2
Q0P

?
0

�X
s=0

(ik0�
2
Q0P

?
0
)s

= �I+ 2P0 � 2
X
s=1

(ik0�
2P?

0
Q0P

?
0
)s

= �I+ 2P0 +O(�2): 2

This formula appears to imply that there may be non-zero trans-
mission in the case of zero connection between the rays. Actually the
transmission coe�cients are not continuous with respect to � uniformly
in � [3, 22]. The physically signi�cant parameters of the system are
obtained by averaging as functions of � over the Fermi distribution so
that there is no transmission for � = 0.

Corollary 1. If �0 is an eigenvalue of L such that P0 = I then the

above formula is independent of �, ie.

S(�0) = I

Consequently, when we have pure re
ection at an eigenvalue of the
unperturbed operator, we have pure re
ection regardless of the strength
of the interaction between the rays and the compact domain.

3. Simple models

In [21] the authors discuss the case where 
 is the unit disc in R2

and there are four one-dimensional wires attached at the points ' =
0; �;��=3. The dynamics on 
 is given, using polar coordinates (r; �),
by the dimensionless Schr�odinger equation

��	+ [V0 + "rcos(�)]	 = �	(17)

on the domain with Neumann boundary conditions at the boundary:

@	

@n

����
r=1

= 0:

The dimensionless magnitude " of the governing �eld is choosen so that
the eigenfunction corresponding to the second smallest eigenvalue has
only two zeroes on the boundary of the unit circle which divide the
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circumference in the ratio 2 : 1. It is then easy to see that by rotating
the potential V one may redirect the quantum current from the wire
attached to the point ' = 0 to any other wire with all of the other
wires blocked [21].
The analysis in this case is similar to the analysis given above except
there is now only a logarithmic singularity in the Greens function and
the Krein formula for in�nite de�ciency indices [17, 23] and in�nite-
dimensional Rouchet theorem [12] play a central rôle. A large amount
of the calculation was done using Mathematica.

In [15], using the above asymptotic formula for the scattering matrix
to choose appropriate parameters, the author discusses the case where

 is simply a one-dimensional ring and there is an angle of �=2 between
the rays|see �gure 2. a). By applying a uniform �eld to the ring, q = 0
for the open state and q = �3 for the closed state, it is easy to see that
a switching e�ect is produced where the Fermi energy is assumed to
correspond to the smallest eigenvalue of the unperturbed operator on
the ring, ie. �0 = 1. See also [7] where a similar construction is
considered.
For the purposes of comparison we also consider a device|see �gure

q  = 0
q  =-3

o
c

q  = 0
q  = 3

o
c

a) Interference b) Potential barrier
switch switch

�gure 2.

2.b), the angle between the rays is now �|with similar parameters
where now we switch the current by raising a potential barrier, q = 0
for the open state and q = 3 for the closed state, instead of using
interference e�ects. It is easy to see that, unlike the �rst case, the
e�ciency of such a switch will be limited by tunneling.
Using Maple we numericaly integrate over the Fermi distribution to
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produce plots of the averaged conductance �̂c �̂o in the closed and open
states respectively|see �gure 3. a) and b) which show the plots for
the `interference switch' and the `potential barrier switch' respectively.
Here � is a temperature parameter in the model.

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

4

0 0.2 0.4 0.6 0.8 1|β|

� = 0:0225

� = 0:045

� = 0:09

� = 0:18

�gure 3. a) log
10
(�̂c=�̂o) versus �

3.5

4

4.5

5

5.5

6

6.5

0 0.2 0.4 0.6 0.8 1|β|

� = 0:0225

� = 0:18

�gure 3. b) log
10
(�̂c=�̂o) versus �
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It appears that the open state|possibly due to tunneling e�ects|
is more di�cult to achieve. This also appears to explain why, in the
limit of small �, the properties of the switches improve: weak coupling
between the ring and rays improves the open state of the switches. On
the other hand, in the limit � ! 1, the ratio �̂c=�̂o for the second
example rapidly decreases to a bound due to tunneling which may be
calculated from the transmission coe�cient

lim
�!0

�̂c

�̂o

����
�=1

� 4:57� 103;

see �gure 3 b). The �rst switch does not have this bound and conse-
quently for su�ciently low temperature or small radius (see �rst foot-
note) we conjecture that it will have better properties.
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