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What I will describe here is a formal analogy between value dis-
tribution theory and various diophantine questions in number theory.
In particular, there is a dictionary which can be used to translate, e.
g., the First and Second Main Theorems of Nevanlinna theory into
the number field case. For example, we shall see that the number
theoretic counterpart to the Second Main Theorem combines Roth's
theorem and Mordell's conjecture (proved by Faltings in 1983).

This analogy is only formal, though: it can only be used to trans-
late the statements of main results, and the proofs of some of their
corollaries. The proofs of the main results, though, cannot be trans-
lated due to a lack of a number theoretic analogue of the derivative
of a meromorphic function, among other reasons. All that I can say at
this point is that negative curvature plays a role in the proofs in both
cases.

Thus, until recently the analogy was good only for producing
conjectures, by translating statements of theorems in value distribution
theory into number theory. But in 1989 it has played a role in finding
a new proof of the Mordell conjecture, via the suggestion that the
Mordell conjecture and Roth's theorem should have a common proof,
as is the case with the Second Main Theorem.

We begin by briefly describing this analogy, but only briefly as
it has been described elsewhere in [V 1] and [V 2], as well as in the
book [V 3]. Likewise, more recent results will be described in [V 6];
therefore we refer the reader to [V 3] and [V 6] for details.

Let / : C —> C be a holomorphic curve in a compact Riemann
surface (which we may assume is connected). Let D be an effective
reduced divisor on C\ i.e., a finite set of points, and let dist(jD, P) be
some function measuring the distance from P to a fixed divisor D.
Then we have the usual definition
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2?r

m(D,r} = j -

Assuming that /(O) ^ SuppZ?, the definition of the counting
function can be rewritten as

\w\

Finally, let the characteristic function be given by the more clas-
sical definition:

Note in particular that in the above definitions, we only needed
the restriction of / to the closed disc Dr, of radius r. Thus we are
actually regarding / as an infinite family of maps fr : Or —> (7,
obtained by restriction from /. In the analogy with number theory, let
each fr correspond to one of (countably many) rational points, so that
a holomorphic function / : C —> C corresponds to an infinite set of
rational points on C. For example there are no infinite sets of (distinct)
rational points on a curve of genus > 1 (Mordell's conjecture), just
as there are no nontrivial holomorphic maps from C to a Riemann
surface of genus > 1. Both these facts follow from the appropriate
version of the Second Main Theorem, as defined below.

To make the number theoretic counterparts to the standard defi-
nitions as above, let C be a smooth connected projective curve, and
let I? be a reduced effective divisor on C. Assume that both C and D
are defined over a number field k. For each place v of k (i.e., for each
complex embedding a : k —> C and for each non-archimedean abso-
lute value corresponding to a prime ideal in the ring of integers of fc),
let distv(.D, P) again be the distance from P to a fixed divisor D in
the v-adic topology. These distances should be chosen consistently, as
in ([L 2], Ch. 10, Sect. 2). For example, if C = P1 and D = [a], then
the various distw([a], P) functions can be written as min(l, \x — a\v).
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Then the proximity function is defined as

m(

where the notation v\oo means the sum is taken over the (finitely
many) archimedean places of k. Thus, we are comparing the abso-
lute values of / on the boundary of Or, with the absolute values "at
infinity" of a number field.

The formula for the counting function is similar:

This is more clearly a counterpart to the definition in the Nevanlinna
case if we write it as

N(D, P) = ^- ]T ord^(P)

where g is a function which locally defines the divisor D, and p is the
prime ideal corresponding to the valuation v. Thus the points inside
Dr, correspond to non-archimedean places, and the summands (for
fixed w £ Dr or fixed v) take on discrete sets of values.

Finally, we again let

= m(D,P)+N(D,P)

= hD(P)9

which is a well-known definition in number theory known as the Weil
height.

As before, we can define the defect S(D) = liminf m(D, P)/
]ID(P). The assumption that D is defined over k implies that S(D) <
1.

Then the following theorem holds with either set of definitions
above, replacing "?" by r or P, as appropriate.
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Theorem (Second Main Theorem). Let D be a reduced effective divi-
sor on a curve C. Let A be an ample divisor on C, let K be a canonical
divisor on C, and let e > 0 be given. Then for almost all "?",

Of course, in the Nevanlinna case, this is true with (1 + e)
log TA(T) in place of eTd(r), but this is only conjectured in the number
field case.

In the number field case, when g = 0 this is Roth's theorem,
which is the following.

Theorem (Roth, 1955). Let kbea number field; for each archimedean
place vofk let av E Q be given. Also let e > 0. Then for all but finitely
many x E fc,

Here H(x) = Y[vmax:(l, |x|v), so that ho(i)(x) =
logJT(x).

To see how this theorem follows from the Second Main Theorem,
let A be a divisor corresponding to (9(1), let D be the union of all
conjugates over k of all av, and take — log of both sides. For details,
see ([V 3], 3.2).

When g(C) > 1, the Second Main Theorem is equivalent to
Mordell's conjecture. Indeed, take D = 0, so that m(D,P) = 0, and
we can take A = K since K is ample. Then let e < 1; this gives
a bound for /ijr(P), which is unbounded for infinite sets of rational
points. This gives a contradiction. Conversely, if there are only finitely
many rational points, then any statement will hold up to O(l).

If the genus of C equals 1, then the Second Main Theorem
corresponds to an approximation statement on elliptic curves proved
by Lang.

Note that in number theory the Second Main Theorem is viewed
as an upper bound on ra(D, P) instead of a lower bound on N(D, P)
as is the case in value distribution theory.
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The fact that the Second Main Theorem of Nevanlinna theory
has just one proof valid for all values of g(C) suggests that the same
should hold for number fields. This led to a new proof of the Mordell
conjecture ([V 4] and [V 5]), using methods closer to Roth's. Work
on obtaining a truly combined proof is progressing. This new proof
led Faltings [F] to generalize the methods to give two new theorems:

Theorem (Faltings). Let X be an affine variety, defined over a number
fieid k, whose projective closure is an abelian variety. Then the set of
integral points on X (relative to the ring of integers in k) is finite.

Theorem (Faltings). Let X be a closed subvariety of an abelian vari-
ety A. Assume that both are defined over k, and that X does not contain
any translates of any nontrivial abelian subvarieties of A. Then the set
X(k] of k-rational points on X is finite.

This is still an incomplete answer, because if X does contain a
nontrivial translated abelian subvariety of A, then this theorem pro-
vides no information. Instead, the following conjecture should hold:

Conjecture (Lang, [L 1]). Let X be a closed subvariety of an abelian
variety A. Then X(k) is contained in the union of finitely many trans-
lated abelian subvarieties of A contained in X.

Before discussing this further, let us recall some facts about the
geometry of this situation. For all that follows, assume that X is a
closed subvariety of an abelian variety A.

Theorem (Ueno, ([Ii], Ch. 10, Thm. 10.13)). There exists an abelian
subvariety B of A such that the map TT : A —> A/B has the properties
that X = 7r~1(7r(X)) and K(X) is a variety of general type.

The map TT| X is calied the Ueno fibration. It is called trivial if
B is a point.

Theorem (Kawamata Structure Theorem, [K]). There exists a finite set
Zi,..., Zn of subvarieties ofX, each having nontrivial Ueno fibration,
such that any nontrivial translated abelian subvariety of A contained
in X is contained in one of the Z{.

The set Z\ U • • • U Zn is called the Kawamata locus of X.
Then Lang's conjecture is the analogue of the following state-

ment, proved by Kawamata [K], using work of Ochiai [O]:
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Theorem. Let f : C —> X be a nontrivial holomorphic curve. Then
the image of f is contained in the Kawamata locus of X.

By the Kawamata Structure Theorem, this statement is equivalent
to Bloch's conjecture, which asserts that the image of / is not Zariski-
dense in X unless X itself is a translated abelian subvariety of A.
(Bloch's conjecture was also proved, independently, by Green and
Griffiths [G-G], also using Ochiai's work). Similarly, to prove Lang's
conjecture, it would suffice to prove that X(k) is not Zariski-dense
unless X is a translated abelian subvariety of A.

For further details on these ideas, see ([L 3], Ch. 1 §6 and Ch. 8
§1). For more details on the connection with diophantine questions, see
[V 3], especially Section 5.ABC for connections with the asymptotic
Fermat conjecture.
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