HIGH POINTS IN THE HISTORY OF
VALUE DISTRIBUTION THEORY OF
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Wilhelm Stoll

Inaugural Lecture

Timothy O’Meara and Frank Castellino thank your for your kind
introduction. I am deeply moved by your words and by the appoint-
ment to the chair. Foremost I thank the donors Vincent J. Duncan and
Annamarie Micus Duncan for their generosity. My colleagues and I
are most grateful for this recognition of our work by the donors and
the administration of the University.

Ladies and gentlemen, colleagues, speakers and participants!
This inaugural address opens the Symposium on Value Distribution
Theory in Several Complex Variables sponsored by the University
of Notre Dame. Welcome to all of you. An inaugural address, an
Antrittsvorlesung, so late in life seems to be out of place and perhaps
should be called an Abschiedsvorlesung. Yet, hopefully, this is pre-
mature and I can be around a few more years. Taking the hint, I will
look backwards and recall some of the high points in the development
of the theory. Time permits only a few topics.

Looking backwards, out of the mist of time there emerges not an
abstract theory but the lively memory of those who taught me math-
ematics: Siegfried Kerridge, Wilhelm Germann, Wilhelm Schweizer
and later at the University Hellmuth Kneser, Konrad Knopp, Erich
Kamke, G. G. Lorentz and Max Miiller. Also there appear those who
inspired me but who were not directly my teachers: Heinz Hopf, Her-
mann Weyl, Rolf Nevanlinna and one who is right here with us:
Shiing-shen Chern, we all welcome you. Thirty years ago you re-
cruited me for Notre Dame. You supported the growth of this de-
partment in many ways. Your work on value distribution in several
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2 High Points in the History of Value Distribution Theory

complex variables counts as one of your many marvelous contributions
to mathematics. Thank you for coming.

The giants of the 19th century created the theory of entire func-
tions. In this century, in 1925, with a stroke of genius, Rolf Nevanlinna
extended this theory to a value distribution theory of meromorphic
functions. His two Main Theorems are the foundation upon which
Nevanlinna theory rests.

In 1933, Henri Cartan [8] proved Nevanlinna’s Second Main
Theorem for the case of holomorphic curves. If we view curves be-
longing to the theory of several dependent variables, then Cartan’s
paper provides the first theorem in the theory of value distribution in
several complex variables. Thus let me outline his result. However, 1
shall use today’s terminology and advancement.

For each 0 < r € R define the discs and circle

¢)) Clrl={z€C | |2|<r} C(r)={z€C | |z| <7}
2) C<r>={z€eC||2|]=7r} C,=C-{0}

An integral valued function v : C — Z is said to be a divisor if
(€)) S = suppr = clos{z € C | v(z) # 0}

is a closed set of isolated points in C. For all » > 0 the counting
Junction n, of v is defined by the finite sum

@ n(r) = ) v(2).
2€Clr]

For 0 < s < r € R, the valence function N, of v is defined by

,
dt
) N, (r,s) = / n(H)%.
]
If h # 0 is an entire function, let u,(2) be the zero-multiplicity

of h at z. Then pp, : C — Z is a non-negative divisor called the zero
divisor of h.
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The exterior derivative d = & + 0 on differential forms twists to
7 =

6) &= 7-(8-9)

on complex manifolds. Define 7, : C — R by 7,(2) = |2|? for z € C.
Define

@) o = d°log Ty,

If » > 0, then

®) / o=1.
C<r>

If h # 0 is an entire function and if r > o, the Jensen Formula

9) Ny (r,s) = / log ho — / log ho

C<r> C<s>

is a forerunner of Nevanlinna’s First Main Theorem.

Let V be a normed, complex vector space of finite dimension
n+1> 1. Put V, =V — {0}. Then the multiplicative group C, acts
on V,. The quotient space P(V) = V,/C, is the associated projective
space. The quotient map PP : V, — P(V) is open and holomorphic.
If M CV,put P(M) =P(MNYV,). If W is a linear subspace of
V' with dimension p + 1, then P(W) is called a p-plane of P(V).
If p=mn—1, then P(W) is called a hyperplane. The dual complex
vector space V* of V consists of all C-linear functions a : V — C.
Here ||a| is the smallest real number such that |a(g)| < ||al| |jz|| for
allg € V. Then || || is a norm on V*. Also write <x,a> = a(g). Here
<g,a> = <a,r> indicates (V*)* = V. If a = P(a) € P(V*), then
E[a] = P(ker a) is a hyperplane in P(V'). The assignment a — E[a]
parameterizes the set of hyperplanes bijectively. The distance from
z = P(x) € P(V) to E[a] is measured by

[<go>| o

(10) 0<0z,a="—"""—<
izl el
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Let f : C — P(V) be a holomorphic map. A holomorphic map
b : C — V, is called a reduced representation of f if Pob = f,
A reduced representation exists. Then fv : C — V, is a reduced
representation of f if and only if there is a holomorphic function
h : C — C, without zeroes such that o = hb, For0 < s <r € R
the characteristic function of f is defined by

1) Ty (r,s) = / log [[b]lo — / log |0][o-

C<r> C<s>

By (9), Ty(r, s) does not depend on the choice of b, Since log ||b|| is
subharmonic, Ty > 0, If f is constant, b can be taken as a constant.
Hence Ty(r,s) = 0. If f is not constant, then T}(r,s) > 0 and
Ty(r,s) — oo for r — oco. If || || and ||| ||| are two norms on V,
there are constants Cy > C; > 0 such that Ci||[g]|| < |lz]| < Col|lt]]|
forally € V. Put C =1logCy/Cy > 0.If 0 < s < r, then

(12) 1Ty (ry 8 [l 1) = Ty (ry s, (I D] < C

Let f: C — P(V) and g : C — P(V*) be holomorphic maps.
They are called free if f(z) ¢ E[g(2)] for some z € C. Take reduced
representations b of f and v of g, then (f,g) is free if and only if
<b, 0> = h # 0. If so, the intersection divisor- s, = pp > 0 does
not depend on the choices of b and iv. Its.counting function and its
valence function are abbreviated by ny, and Nj, respectively. The
pair (f,g) is free if and only if Of, g,0 s 0. If so, for 7 > 0 the
compensation function mg g of (f, g) is defined by

1
(13) my,q(r) = / log 07, 90° >0,

C<r>

For 0 < s < r, the identities (9), (11) and (13) imply the First Main
Theorem

(14)  Ty(r,s) + Ty(r,8) = Nyg(r, ) + mye(r) — mye(s).

Cartan [8] considered the case of constant g = a € P(V*) only
which yields
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(15) Tf (7', S) = Nf,ﬂ("" S) + mf,ﬂ(r) - mfaa(s)

which Cartan [8] mentions only implicitely. If n = 1, Rolf Nevanlinna
proved (15) in [32] (1925).

If f or g or both are not constant and if (f, g) is free the defect
is defined by

. my g("')
< = t
0<élha)=lm Z Sy T,

_ Ny (rs)
1 =1-T1 0\
(10 T () + Ty(rya) -

The map g is said to grow slower than f, if Ty(r,s)/T¢(r,s) — 0
for r — oo. By (12), the defect does not depend on the choice of
the norm on V. Also the defect is independent of s. Observe that
Bis = Pgfinfg = Ngf Nig = Nojpymypg = mgs and 6(f,g) =
6(g, f). Since most investigators concentrate on constant g or on the
case where g grows slower than f, this symmetry is little known.

Since the choice of the norm on V' does not matter, we can choose
a hermitian norm which comes from a positive definite hermitian form
(:]): VxV — C with ||g]|> = (¢|g) for t € V. Define 7: V — C
by 7(g) = ||g||*> for £ € V. Then 7 is of class C*®. There is one and
only one positive form € of bidegree(1,1) on P(V'), called the Fubini
Study form such that dd°logT = P*(Q) on Vi. Let b : C — Vi be a
reduced representation of f. Then f =[P o b implies

a7 dd*log [|v]|* = v*(P*(2)) = f*(Q).

If Stokes theorem and fiber integration are applied to (11) we obtain
the Ahlfors-Shimizu definition of the characteristic function of f

(18) Ty(r,s) = // f*(Q)d—t- for0<s<r.

t
s Clt]

Here As(t) = /f*(Q) > 0 increases. Put Af(o0) = tlim Ap(t) <

C[t]
oo. Then
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. Tg(r,s)
(19) Jim Tlogr Aj(0).
Now f is constant if and only if A¢(co) = 0 and f is rational if and
only if A¢(o0) < o0.

Let A = {a;},cq be a family of points a; € P(V*) representat-
ing hyperplanes. If P C @, define Ap = {a;};cp. For each j € Q
pick a; € V;* with a; = P(a;). Our definitions will not depend on the
choice of a;. Put ¢ = #@. Then ¥ is said to be linearly independent
if there is a bijective map A : N[1,q] — @ such that ay),...,aq
are linearly independent. If so, then ¢ < n + 1. Moreover ¥ is said to
be basic if U is linearly independent and q¢ = n + 1. Moreover ¥ is
said to be in general position if Up is linearly independent for each
PCQ@with0<#P <n+1.If N is an integer and if ¢ > N > n,
then U is said to be in N-subgeneral position (Chen [9]) if for every
subset S of Q) with #S = N + 1, there is a subset P of .S such that
Ap is basic.

Let f : C — P(V) be a holomorphic map. Then there is a
unique linear subspace W of smallest dimension &£+ 1 of V' such that
f(C) C P(W). Then f is said to be k-flat. If k = n, then W =V
and f is said to be linearly non-degenerated.

Take 0 < s € R. Let G : R[s,+00) — R and H : R[s, +00) be
functions. Then GSH means that there is a subset E of finite measure
of R, = R[0, +00) such that G(r) < H(r) forall r € R[s, +00) — E.

Second Main Theorem (Cartan [8] 1933)

Let V' be a hermitian vector space of dimension n+ 1 > 1. Let
f : C — P(V) be a linearly non-degenerated, holomorphic map.
Let A = {a;};cq be a finite family of “hyperplanes” a; € P(V*) in
general position withn +1 < ¢ = #Q < 0o. Take s > 0 and € > 0.
Then

(20) Y myg(r) < (n+1)Ty(r, s)
JjeQ

1
+ En(n +1)(1 +€) log T¢(r, s) + elogr.
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As a consequence, we obtain trivially

Defect Relation (Cartan [8] 1933)

Under the assumptions of the Second Main Theorem we have

030 > 6(f,a5) <n+1.
jeqQ
If f:C — P(V) is only k-flat, and if ¥ is in general position
such that (f,a;) is free for each j € Q, Henri Cartan conjectured in
1933 that

(22) > 8(fie) S2n—k+1,

j€Q
which was proven by Nochka [35] in 1982. Thus if #Q > 2n+1 and
f(C)NE[a;] =0 forall j € Q, then 2n+ 1 < 2n — k + 1. Therefore
k =0 and f is constant. Hence

(23) P(V) - | Elay]

JjeqQ
is Brody-hyperbolic. In fact by a theorem of Chen [9] (22) can be
improved:

Defect Relation of Cartan-Nochka-Chen

Let V' be a hermitian vector space of dimension n+ 1 > 1. Let
f: C — P(V) be a k-flat, holomorphic map. Let A = {a;};eq be a
finite family of “hyperplanes” a; € P(V*) in N-subgeneral position
with N > nand N + 1 < #Q = q < oo. Assume that (f, a;) is free
for each j € Q. Then

(24) ) 6(f,a) <2N —k+ 1.
JjeqQ

An alternative proof of the defect relation (21) was given by
Ahlfors [1] in 1941. Also he proves a defect relation for associated
maps. His proof is very powerful and works in more general situations.
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Hermann and Joachim Weyl [90] lifted Ahlfors’s proof to Riemann
surfaces. It was simplified by H. Wu [92] in 1970, Cowen and Griffiths
[17] in 1976 and Pit-Mann Wong [93] in 1976. I extended this Ahlfors-
Weyl theory to non-compact Kaehler manifolds [65]. However first we
have to inquire how value distribution was extended to functions and
maps of several independent complex variables.

Hellmuth Kneser created such an extension in two fundamental
papers [23] in 1936 and [24] in 1938. Although these papers are little
remembered today, they still influence the present research in value
distribution of several independent complex variables. Therefore let
me explain his fundamental ideas. Again I will cast them in modern
terminology and perspective.

Let M be a connected, complex manifold of dimension m. Let
f # 0 be a holomorphic function on M.Take p € M.Leta:U' - U
be a biholomorphic map of an open ball U’ in C™ centered at 0 onto
an open subset U of M with a(0) = p. Then for each integer A > 0
there is a unique homogeneous polynomial P, of degree A such that

(25) foa= Z P,
A=0

where the convergence is uniform on every compact subset of U’.
Since f|U # 0, there is a unique number y = pg(p) > 0 depending
on f and p only such that P, # 0 and Py, = 0 for all A\ € Z with
0 < A < p. The number p¢(p) is called the zero-multiplicity of f at
p and the function py : M — Z is called the zero-divisor of f.

An integral valued function v : M — Z is said to be a divisor
on M if and only if for every point p € M there is an open, connected
neighborhood U of p with holomorphic functions g # 0 and A # 0
on U such that

(26) v|U = pg — pin-

Let S be the support of v. Then S = () if and only if v =0.If S # 0,
then S is a pure (m—1)-dimensional analytic subset of M. Let R(S)
be the set of regular points of S and let Y (S) = S — R(S) be the
set of singular points of S. Then v|R(S) is locally constant.
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Let 7 : M — R, be an unbounded, non-negative function of
class C* on M. If B C M and 0 < r € R, abbreviate

(27  B[r] ={z € B|r(z) <’} B(r) = {z € B|r(z) < r’}
(28) B<r> ={z € B|r(z) =r?} B, ={z € B|r(z) > 0}

Here 7 is called an exhaustion of M if and only if M|r] is compact
for each r > 0. Abbreviate

(29) v=dd°T w=dd’logT o=d’logT Aw™!
Then do = w™. The function 7 is said to be parabolic if and only if
(30) w>0 w™=0 v"#0.

If so, then v > 0. More over T is said to be strictly parabolic if and
only if 7 is parabolic and v > 0 on M. If 7 is an exhaustion and
parabolic, then (M, 7) is said to be a parabolic manifold. If so, there
is a constant ¢ > 0 such that

(31) / ™ = grim

Mr]

for all » > 0. Then for almost all » > 0 we have

(32) / o=c.

M<r>

In 1973 Griffiths and King [19] introduced parabolic manifolds.
The concept was expanded in [75]. If 7 is an exhaustion and strictly
parabolic function, (M, 7) is said to be a strictly parabolic manifold.
In [77] 1980 I showed that (M, T) is strictly parabolic if and only if
there is a hermitian vector space W of dimension m and a biholo-
morphic map h : M — W such that 7 = ||h||%2. We assume that
(M, 1) is strictly parabolic and we identify M = W such that h be-
comes the identity. In this case ¢ = 1 and M is a hermitian vector
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space, which was Kneser’s starting point. We assume that m > 1. If
u : M<1> — C is a function such that uo is integrable over the unit
sphere M <1>, the mean value of u is defined by

(33) M(u) = / uo

M<1>

Let V' be a hermitian vector space of dimension n + 1 > 1.
Let f: M — P(V) and g : M — P(V*) be meromorphic maps.
Let Iy and I, be the indeterminacies of f and g respectively. Then
(f,g) is said to be free if there exists z € M — Iy U I, such that
f(z) ¢ E[g(z)]. For each “unit” vector b € M<1> an isometric
embedding js : C — M is defined by js(2) = zb for z € C. If
Js(C) € If U I, the pull back holomorphic maps fy = ji(f) : C —
P(V) and gr = ji(g9) : C — P(V*) exist and (f5, gp) is free for
almost all b € M<1>. If 0 < s < r the First Main Theorem holds

(34) Tf{, (r,8)+ Tgb (r,8) = fo,,gb (rys)+ m fy.9y (r) - M fy.90 (3)

Now Kneser [24] applied the operator I termwise in (34) to obtain the
respective value distribution functions and the First Main Theorem

(35)  Ty(r,s) +T4(r,8) = Nypg(r, s) + myg(r) — myg(s)

Of course Kneser considered the case n = 1 only. Then f is a mero-
morphic function. Also he assumed that g = a € P; is constant. Had
he stopped with the above derivation of (35), his result would have
been worthless. He proceeded and expressed the value distribution
functions in meaningful analytic and geometric terms. This made the
paper successful.

Let 2 be the Fubini Study form on P(V'). For ¢ > 0 define Af

by

1
(36) A1) = s / £ Av™1 > 0.
M

He showed that A; increases. Hence the limits
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0< %ir%Af(t) = Af(O) < 00

(87) 0.< Jim A7(t) = Ay(00) < o0

exist. Kneser obtained the identity
(38) As(t) = / £1(9) Aw™ L + 44(0)
Mt]

for ¢ > 0. Here f is constant if and only if Af(co) = 0 and f is
rational if and only if Ay(co0) < co. Kneser proved

T
dt
39 Ty(r,9) = [ 450)5
8
for 0 < s < r. Moreover we have
. Ty(r,s) _
(“40) Hm logr A(e0)-

A holomorphic map b : M — V is said to be a reduced represen-
tation of f if and only if dim b=1(0) < m — 2 and f(2) = P(b(2))
for all z € M — I; with b(z) # 0. In fact Iy = b~(0). Reduced
representations exist since M is a vector space. If b is a reduced
representation of f, any other reduced representation is given by hb,
where h : M — C, is an entire function without zeroes. If 0 < s < 7,
then

@1 Ty(r,s) = / log |6l — / log [b]]o.

M<r> M<s>

Since (f, g) is free, Of, g0 # 0, and for r > 0 the compensation
function my 4 of f, g is defined

1
(42) mf,g('f') = / log wd > 0.

M<r>

Let v : M — Z be a divisor with support S. Fot ¢ > 0 the
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counting function n,, of v is defined by

@) )= g [ = / ™+ 1y (0),

S[t] 5[]

where the limit n,(0) = lim; o n,(t) exists. Actually since M is a
vector space, n,(0) = v(0) (see Stoll [62]). For each b € M<1>
with j5(C) € S, the pullback divisor v = ji(v) exists. If ¢ > 0 then

(44) n(t) = / i (£)r(B).

beM<1>

Thus for 0 < s < r the valence function n,, of v is given by

45)  Nyr,s)= / Mmgam:/m@%
beM<1> 8

Take reduced resprentations b : M — P(V) of f and 0 : M —
P(V*) of g. Since (f, g) is free, h = <b, 0> # 0. Then psy = pa
depends on f and g only. Put § = h71(0). If b € M<1> with
3s(C) € S, then pgy 5 = ji(141,4). Hence

@) Ny = [ Nig(rs)a®) =N, (r9)
beM<1>

Thus each term in (35) is explicitely expressed.

Actually, Kneser [24] provided a more general version of (42).
For t > 0 the counting function of a pure p-dimensional analytic set
S in M is defined by

@) m@=%/ﬂ=/w+m@,

Sl S[t]

where

(48) ns(0) = %1_1)% ngs(t)
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exists and is called the Lelong Number of S at 0. Kneser assumed that
0 ¢ S, then ng(0) = 0. Pierre Lelong permitted 0 € S and proved (46)
in 1957 [26] by the use of currents. Paul Thie [87] (1967) moved that
the Lelong number is an integer. This result constituted Paul Thie’s
theses at Notre Dame and by coincidence Pierre Lelong was present
at the defense of the theses. Of course, if 0 € S then ng(0) > 0. Paul
Thie’s result proved to be most helpful in estimating volumes from
below. Of course the Lelong number of S can be defined for every
z € M and shall be denoted by Lg(z). Yum-Tong Siu [56] (1974)
proved that the sets {z € M|Lg(x) > ¢} is analytic for every ¢ € N.
The proof was simplified by Lelong [28]
Since ng increases, the limit

“) ns(o0) = Jimns(t) < o0

exists. As an application of value distribution theory on complex
spaces, I was able to show that S is affine algebraic if and only if
ng(00) < oo ([63]).

This result was localized by Errett Bishop [5] (1964) to extend
analytic sets over higher dimensional analytic sets. His result was
refined by Shiffman [47], [48], [49].

Hellmuth Kneser did not proceed to a Second Main Theorem and
a Defect Relation. Also he did not consider the possible extension of
his theory to parabolic manifolds or Kihler manifolds. However, he
investigated another problem: the theory of functions of finite order.
He solved the two dimensional case and provided the basic ideas in
m-dimensions. Later he assigned the completion of these investigations
to me as my thesis topic [62], [63].

Again let (M, 7) a strictly parabolic manifold of dimensions
m > 1. Thus M is a hermitian vector space of dimension m > 1
and 7 is the square of the norm. If x € M, € M, then (g|h) is -
the hermitian product of ¢ and ). If u : R, — R, is an increasing
function, its order is defined by

log u(r) <oo

50) 0 < Ordu = lim sup

r—00 ogr

If v > 0 is a non-negative divisor, define Ordv = Ordn,. Then
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Ordv = Ord N,(-,8). If f : M — P(V) is a meromorphic map,
define Ord f = Ord T (-, s).

If ¢ is a non-negative integer, the Weierstrass prime factor is
defined for all z € C by

q

1
(51) E(z,q9)=(1- z)exp(z —2F).
=1 p
For all z € C(1) the Kneser Kernel is defined by
52 1t & migp
( ) em(za q) - (m _ 1)! dzm_]_ (Z Og (zi q))’

where log E(0, q) =

Let f : M — C be an entire function of finite order with f(0) =
1. Let S be the support of the zero divisor v = pus of f. Trivially
S = f71(0). Assume that S # 0. Then there exists a largest real
number s > 0 such that S(s) = 0. Since f has finite order, there is a
smallest, non-negative integer q such that

(53) / LiUT) PR

rat+2

8
Then g < Ord f < g+ 1. Also there exists a holomorphic function F
on M(s) such that F(0) = 0 and f|W(s) = e¥. By the First Main
Theorem the following integral converges uniformly on every compact
subset of M (s) and defines a holomorphic function H on M(s) with

pr(0) > g+1by

(54) 1@ = [ vien(E D

Hes

(3ly)

T’ Q)™ (y)

for 3 € M(s). Kneser [24] shows that there is a unique polynomial P
of at most degree ¢ with P(0) = 0 such that
(55) F=PW(s)+H  flW(s) =e*¥

Hence h = e Ff is an entire function with y, = v = py and
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h|W (s) = ef!. Thus h depends on v only.

Given a divisor ¥ > 0 on M of finite order with S = supp v # 0,
there is a largest real number s > 0 such that S(s) = 0 and a smallest,
non-negative integer g such that

[o0]

d
(56) [ rutt) s < o

8

Then ¢ < Ordv < g + 1. The integral (53) converges uniformly on
every compact subset of W (s) and defines a holomorphic function H
on M(s) with H(0) = 0 and pg(0) > g+ 1 by (53). Does there exist
an entire function h on M such that h|W(s) = e, such that u, = v
and such that Ord h = Ord v? In his earlier paper, Kneser [23] (1936)
proved the existance of such a canonical function if m = 2. It was my
thesis problem to solve the case m > 2. His method required to show
that a certain closed form was exact. If m = 2, this lead to a solvable
ordinary differential equation. If m > 2, it took me two weeks to write
out the system of partial differential equations to be solved, which I
could not do. I asked him for advice. He said he had gone through
the same terrible calculation and had been unable to solve the system.
Then he threw away his notes. I followed his advice, but I found an-
other proof ([62], [63]). Independently, Pierre Lelong ([25] 1953, [27]
1964) proved the existence of the canonical function A by another in-
tegral representation. Both solutions coincide by a uniquenen theorem
of Rankin [42] (1968), who provided a third integral representation.
In [64] 1953 I showed that the canonical function A of a 2m-periodic
divisor is a theta function for this divisor and that any 2m-periodic
meromorphic function is a quotient of two theta functions (Appell [2]
1891 if m = 2 and Poincaré [40] 1898 if m > 2). In 1975, Henri
Skoda [58] and Gennadi Henkin [20] showed independently, that a
non-negative divisor v on a strictly pseudoconvex domain D in M
with bounded valence N, is the zero divisor v = p of a holomor-
phic function A on D with bounded characteristic. Later Henkin [21]
(1978) showed, if Ord v < oo then there is a holomorphic function
h on D with v = p; and Ordv = Ord h. Recently, Polyakov [41]
(1987) extended this result to the polydisc. Skoda [60] (1972) solved
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the problem for analytic sets of higher codimension in a complex
vector space. For more details see [73].

The integral means method of Kneser fails on complex mani-
folds. Also he did not attempt to prove a Second Main Theorem and
a Defect Relation. From the theory of holomorphic curves there are
available the method of Cartan [8] and the method of Ahlfors [1]
which was extended to Riemann surfaces by Hermann and Joachim
Weyl [90], improved later by H. Wu [92].

In 1953/54 1 extended the theory of Ahlfors-Weyl to meromor-
phic maps f : M — P(V), where M is a m-dimensional, connected,
complex manifold of dimension m > 1 endowed with a positive form
x of bidegree (m — 1, m+ 1) such that dy = 0. Here V is a hermitian
vector space of dimension n + 1. Again the targets are the hyper-
planes in P(V') and f is linearly non-degenerated. Let % = {a;};eq
be a family of hyperplanes a; € P(V*) in general position. Then,
under suitable assumptions a defect relation

(57) Y 6(fe5) <n+1
jeQ

was obtained. Also a defect relation for associated maps was proved
[65]. I cannot go into details here. The extension to m > 1 is based
on two ideas:

(1) Let & be a set of open, relative compact subsets G of M with
C™-boundary such that § € G for all G € &, where g is open with
a C°-boundary. Assume that for each compact subset K of M there
is G € & with G D K. There the Dirichlet problem dd*¥ A x = 0 is
solved for G — g with ¥|0G = 0 and ¥|0g = 1.

(2) The associated maps are defined by the use of a holomorphic
differential form B of bidegree (m — 1, 0) such that

(58) 0<min1BAB<Y(@)x onG

where Y'(G) is the smallest possible constant.

On parabolic manifolds the proof has been greatly simplified
by Cowen-Griffiths [17] (1976), Pit-Mann Wong [93] (1976), Stoll
[80] (1983), [82] (1985), [86] (1992). The definitions and identities
(34)—(46) also hold on parabolic manifolds except, of course, for the



Wilhelm Stoll 17

slicing jp and the equality n,(0) = »(0) and (41) may be vacuous,
since f may not have a global, reduced representation on M. The
defect of (f,g) is defined as in (16). For an exact statement of the
defect relation I refer to the papers mentioned before, but I will state
the defect relation in a special case with a new variation:

Let M be a connected, complex manifold of dimension m > 1.
Let W be a hermitian vector space of dimension m. Let 7 : M —
W be a surjective, proper, holomorphic map. Then 7 = ||7||? is a
parabolic exhaustion of M and (M, ) is called a parabolic covering
space of W. Take any holomorphic form ( of bidegree (m,0) on
W without zeroes. Then the zero divisor 8 > 0 of 7*(¢) does not
depend on the choice of { and is called the branching divisor of .
Put B = suppf. Then 7 is locally biholomorphic at z € M if and
only if 2 € M — B. Since  is proper and holomorphic, B' = 7(B)
and B = 7~1(B’) are analytic and 7 : M — B = W — B’ is a covering
space in the sense of topology. Its sheet number ¢ is given by (31).

Let V' be a hermitian vector space of dimension n + 1 > 1.
Let f : M — P(V) be a linearly non-degenerated meromorphic map
of transcendental growth (i.e. Af(co) = 00). Assume that the Ricci
defect

(59) Ry = lim 222~

Let ¥ = {a;};eq a finite family of hyperplanes a; € P(V*) in general
position. Then we have the Defect Relation

(60) Y 6(f,a;) <n+1+ %n(n-f— 1)R;
jeQ

A meromorphic map h : M — P(V) is said to separate the
fibers of , if there is a point z € W — B’ such that 7~ (z) A I}, = 0
and such that h|r~!(z) is injective. If so, and if s > 0, there is a
constant C(s) > 0 such that

(61) Np(r, 8) < 2(s — 1)Th(r,s) + C(s)
for all » > 0 (Noguchi [38], Stoll [83]). Define
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62) H= U{h|h : M — P\, meromorphic, separates fibers of 7}
keN

Then the separation index of f is defined by

. . T (7'7 s)
(63) . 7= inf limsup ———.
hel) oo Ti(ry8)

If f separates the fibers of m, then v < 1. We obtain the Defect
Relation

(64) > 8(f,a;) Sn+1+n(n+1)(s—1)y
i€Q

If n = 1, that is, if f is a meromorphic function with transcendental
growth separating the fibers of m, then

(65) > 6(f,a) <2
jeq

which, in the case m = 1, was already proved by H. Cartan [8] (1933).

In 1977 Al Vitter [89] proved the Lemma of the logarithmic
derivative for meromorphic functions on a hermitian vector space W
and derived the defect relation for meromorphic maps f : W — P(V)
by Cartan’s original method. For a detailed account see also Stoll [79],
1982. E. Bardis [3] (1990) extended the result to parabolic covering
spaces of W.

In 1973-74, Carlson and Griffiths [16] and Griffiths and King
[19] invented a new method to prove the defect relation. In keeping
within [19], the result shall be stated only in the case of a parabolic
covering space (M, 7) of a hermitian vector space of dimension m >
1. The advantage of the new method is, that it applies to holomorphic
maps f: M — N, where N is a connected, n-dimensional, compact,
complex manifold. A positive holomorphic line bundle L spanned by
its holomorphic sections is given on N. Then N is projective algebraic.
The disadvantage of the new method is, that we have to assume that
the map f is dominant which means that rank f = n. The vector space
Y™ of all holomorphic sections of L have finite dimension k¥ +1 > 1.
If 0 # a € Y*, the zero set Er[a] = {x € N|a(z) = 0} depends on
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a = P(a) € P(Y*) only. Let Y = (Y*)* be the dual vector space of
Y. If z € N, the linear subspace ®(z) = {a € V*|a(z) = 0} has
dimension k. Thus one and only one ¢(z) € P(Y) exists such that
E[p(z)] = P(®(z)). The holomorphic map ¢ : N — P(Y) is called
the dual classification map of L. The value distribution functions of
f are defined as those of ¢ o f. First Main Theorem holds but the
defect relation so obtained is not optimal. As before we assume that
f has transcendental growth and that there is given a finite family
A = {a;};eq of points a; € P(Y*). However we have to consider the
geometry of {Er[a;]};eq and not the geometry of {E|a;]};eq. Define

(66) B[] = Erfay]

jeQ
For each j € @ take a; € V* with a; = P(qa;). Take z € EL[¥].
Then

67) P ={jeQlze Eya]}={j € Qlaj(z) =0} #0

Put p = #P. Take a bijective map A : N[1, p] — P. There is an open,
connected neighborhood U of z and a holomorphic section b : U — L
such that b(z) # 0 for all z € U. For each j € N[1, p], there is one
and only one holomorphic function h; on U such that a,;)|U = h;b.
Then ¥ is said to have strictly normal crossings at z if and only if

(68) dhi(z) A ... A dhp(z) # 0.

The definition is independent of the choices which were made. ¥ is
said to have strictly normal crossings if 9 has strictly normal crossings
at every z € Er[¥], which we assume now.

Let K be the canonical bundle of N Let K* be the dual bundle
to K. Define

*

(69) [KT] = inf{%h) e N,w e N, L’ ® K" positive }.

Define Ry by (59) and by (63). With these assumptions and defini-
tions, the



20 High Points in the History of Value Distribution Theory

Defect Relation of Griffiths-King

(70) Z‘s(faaj) < [ J + Ry
jeQ

(71) > 6(f,a5) < [ }+2(<—1)7
jeQ

holds. In [75] (1977) the theory was refined and extended to general
parabolic manifolds.

A difficult, major, unsolved problem is the question if “domi-
nant” can be replaced by another assumption which does not imply
m > n. For instance does (70) hold if f(M) is not contained in any
proper analytic subset of N? As Biancofiore [4] has shown the as-
sumption f(M) € Ey[a] for all a € P(Y*) does not suffice. Can the
condition “strictly normal crossings” be relaxed?

Let V be a hermitian vector space of dimension n+1 > 1. Apply
the previous theory to N = P(V'). Let H be the hyperplane section
bundle on P(V'). Take p € N and choose L = H?. Then K = H™™!
and L’ ® K¥ = HP~("*), Thus [£°] = %1 Thus (70) and (71)
reads

(72) > 6(f,a5) < "—“ + Ry
jeq

(73) > 6(f,a5) < ——+2(§— 1)y.
jeq

If p = 1, this is sharper than (60) which is due to the dominance of
f.

Until now, target families of codimension 1 only where con-
sidered. Does there exist a value distribution theory for codimension
£ > 1. In 1958, H. Levine [30] proved an unintegrated First Main
Theorem for projective planes of codimension £ > 1 in P(V'). At the
1958 Summer School at the University of Chicago, S. S. Chern asked
me to find the integrated version. When I left, I told him that there is
no such thing. I was much surprised when he published an integrated
version [10] (1960) shortly afterwards. I failed, since I insisted on an
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old version to be obtained and because I had forgotten one of Max
Planck’s admonitions in one of his textbooks: “The energy principle
is not a law of nature, but of man. Each time it fails in nature, man
invents a new type of energy to restore the principle.” The First Main
Theorem is such a principle. In order to retain it, S. S. Chern had to
admit a new, nasty term, later called the deficit, into the equation.

In 1965, Bott and Chern [6] extended the First Main Theorem to
the equidistribution of the zeroes of holomorphic sections in hermitian
vector bundles. Thus differential geometry was brought into value dis-
tribution theory. Later the theory was expanded to include all Schubert
varieties associated to holomorphic vector bundles. With the work of
H. Wu [91] (1968-70), F. Hirschfelder [22] (1969), L. Dektjarev [18]
(1970), Michael Cowen [16] (1973), Chia-Chi Tung [88] (1973), and
myself [67] (1967) [68] (1969) [69] (1970) and [76] (1978) a wide
range of First Main Theorems for codimension £ > 1 was established.

Mostly, they can be brought under the following scheme

f
Q - S
(74) ; N o / )

f
M » N

Where M, N and E are connected, complex manifolds of dimensions
m,n and k respectively. Here E is a compact Kahler manifold and S
is an analytic subset of N x E. The projections g and 7 are surjective,
open and of pure fiber dimensions ¢ and p respectively with n —p =
£>1and m — £ > 0. The map p is locally a product at every point
of S. Since E is compact, g is proper. Thus

(75) dimS=p+k=n+gq k—g=n—p=2=~_
The diagram is completed as a pull back by the holomorphic map f:
(76) Q ={(=z,2) | f(z) = e(2)}
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an Z)(m,z) =z .?(m’ Z) =1 .?(977 z) = 7('(2)
(78)  gof=fop F=fom

The map o has pure fiber dimensions g and is locally a product at
every point of (). Hence () has pure dimension m + q.

For each y € E, the analytic subset S, = o(w~!(y)) is a pure
p-dimensional analytic subset of N. The family © = {S,},cr is
the target family for the holomorphic map f. We assume that E, =
F71(S,) is either empty or has generically the dimension m — £. Let
& > 0 be the Kihler volume for of E with

(79) /5:1
E

Let g. be the fiber integration operator. Then Q = g,x*(€) is a non-
negative closed form of bidegree (¢, £) and class C* on N. Here (2 is
the Poincaré dual of the homology class defined by ©. Take y € E,
by Hodge theory or construction (H. Wu [91], Stoll [69]) there is a
non-negative form A, > 0 on E — {y} of bidegree (k — 1,k — 1) with
residue 1 at y such that

(80) ddAy = £ on E — {y}

Then A, = g.*()\y) > 0 is a form of bidegree (£ — 1,£ — 1) on
N — S, with

(81) dd°Ay = Q on N — S,

Let ¢ be a form of bidegree (m — £,m — £) and of class C*
with compact support in M. With proper multiplicities v, the Stokes
Theorem, the Residue Theorem and fiber integration imply

@  [rayndre=- [drm)nde
M M

= [dpnesa,)
M
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:—/yytp+/90/\ddcf*(Ay)’
M

By

if E, has pure dimension m — £. As a generalization of the Poincaré-
Lelong formula we obtain the Unintegrated First Main Theorem

6 [r@ne=[ne+ [0 rdry.
M F, M

For the integration, we assume that an exhaustion 7 : M — R, is
given with

(84) w=ddlogT >0 v=ddv >0 oy=dlogrT Aw™¥,

Then do, = w™ 41, We keep the notations (27) and (28), but do not
require that 7 is parabolic. For ¢t > 0 the spherical image function is
defined by

1
(85) Aslt) = g / F(Q) Av™ >0,
MY

For 0 < s < r the characteristic function is defined by
T
dt
(89) Ty(r, ) = / 4H)% >0

Take y € E such that E, has pure codimension £ or is empty. For all
t > 0 the counting function is defined by

1 -
(90) nsy(t) = Pom—t / yu™ >0
Eylt]
and for 0 < s < r the valence function is defined by

r dt
©1) Ny (r, ) = / ngy®)% > 0.

8
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For almost all » > 0 the compensation function is defined by

©2) miy)=5 [ £@)Ae20

M<r>

For 0 < s < r the deficit is defined by

1
©3) Dyy(r9) = / F1(Ay) AwmH,
MIr]-M]s]

If £ =1 and 7 is parabolic, then w™ = 0 which implies Dy, = 0.
However if £ > 1, then this is false even if 7 is parabolic. The same
calculation as in (82) but respecting boundary terms yields the First
Main Theorem

©4)  Ty(r,s) = Npy(r, s) + myy(r) — msy(s) — Dyy(r, 5).
A continuous form A > 0 bidegree (k — 1,k — 1) on E exists

such that z € E implies

©5) 3@ = [ A ew) 20

yeFE

The A = @, 7*(\) > 0 is a continuous form of bidegree (£ — 1,£— 1)
on N. For all x € N, fiber integration yields

(96) o) = [ M@ eew >0

yE€E

Thus we obtain

oD w)= [ 0w =3 [ rdne>o

yeE M<r>

(98) Ag(r,s) = / Dy, (r,8)é(y) = % / FARY A1 >0

y€E Mi[r]—M]s]
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©9) Ty(r,)= [ Nyylr,s)6) 20,

yeE
which implies
(100) Af(r,s) = ps(r) — ps(s).
For r > 0 define

(101) B(r)={ye E | E,N M]r] # 0}
OSbf('r):/ESl
B(r)
(102) B={yeE | E, # 0}
0<br= [£E<L
/

Then B = |J,,, B(r) and bs(r) — by for r — oo increasingly. Now
(94) implies

(103) Nyy(ry8) < Ty(r, 8) + myy(s) + Dyy(r 8)-
If y € E— B(r), then N;y(r,s) = 0 and (99) implies

Ty(r9) = [ Npr o) = [ Nya(rio)6)

yeE yeB(r)
(104) < / (Ty(r,8) +myy(s) + Dyy(r, )W)
yeB(r)

<o)+ [ mgals) + Dyl )
= by(r)T(r, s) + ps(s) + Ag(r, s).
Therefore

ps(s) + Ag(r, s)
Ty(r, s)

(105) 0< (1 —bg(r)) < ifr>s>0.
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Assume that T(r,s) — oo and Ag(r, s)/T¢(r,s) — 0 for r — oo.
Then by = 1. Thus f(M) intersects almost all targets S,. Even for
holomorphic curves on C surprising results can be obtained:

Proposition
A holomorphic map f : C — Pg is defined for all z € C by

(106) flz)= P(l,ecz,eczz, cee, e(‘“z)

where ¢ = e%. If r > T(245 + log7) ~ 129.3006, then f(Clr])
intersects at least 99% of all hyperplanes in Pg.
Proof. A reduced representation b of f is defined for all z € C

by
b(2) = (1,€%,€5%,.. ., e5%)
with b(0) = (1,---,1). Thus ||b(0)|| = +/7. We can take s = 0. Thus

Ty (r,0) = / log||b||a—%log7

C<r>

Observe that
6 . .
L=) |¢-¢ =6
j=1

By Stoll [80] Proposition 15.5 page 201 we have

L 1
< - —r< = .
0< / log ||b]|o T < 2log7
C<r>
Thus

6r — wlog7
2r

By Stoll [80] (6.66) page 140 we have ps(s) = 330,
all s > 0. If r > (m/6)log?7, then

< Tf('l‘, 0).
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49 2 49 ™
S1=-6(N < e =7 = 90 o — a7
0<1-b(r) < 5 6r —mlog7 20 6r —wlog7

Define ro = §(245 +log 7). Take r > ro Then

<1—bs(r) < — = = 100"
0= 1=bs(r) < o5 G log7 — 20 x 245 — 100

Hence bs(r) > %, q.e.d.

This calculation was made possible by a theorem of Shiffman-
Weyl. The method can be greatly improved, see Molzon, Shiffman,
and Sibony [31] (1981), and Lelong and Gruman [29] (1986).

In 1929 Rolf Nevanlinna [33] conjectured that his defect relation
remains valid, if the constant target points a; € P; are replaced by
“target” functions g; : C — [P; which move slower than the “hunter”

function f : C — [Py, that is, if
(107) Ty,(r,s)/Ts(r,8) — 0 for 1 — oo.

In 1964 Chi-Tai Chuang [14] proved the conjecture for entire functions
f : € — C and created the basis for the solution of the problem. In
1986, Norbet Steinmetz [61] proved Nevanlinna’s conjecture. In 1991,
Ru Min and I [43] [44] [85] proved the conjecture for holomorphic
curves and solved the case of the Cartan conjecture for moving targets
[46]. In 1985, Charles F. Osgood [39] claimed that these theorems are
a consequence of his results in diophantine approximation, but to me
this implication is not self evident and still has to be established.

At the end let me state a result at Notre Dame on this subject
matter, combining the work of Emmanuel Bardis [3], and Ru Min and
myself [44].

At first some concepts have to be explained. Let M be a con-
nected, complex manifold of dimension m. Let V' be a hermitian
vector space of finite dimension n+1 > 1. Let f : M — P(V) be
a meromorphic map. Take a € V* and 0 # b € V*. Put b = P(b).
Assume that (f,b) is free. Then there exists one and only one mero-
morphic function f,» on M, called a coordinate function, such that
for each point p € M there exists an open, connected neighborhood
U of p and a reduced representation b : U — V such that
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_ <b,a>
T <b,b>"

(108) flu

Here <b,b> # 0 since (f,b) is free. Let € be the set of all those
coordinate functions of f. Trivially C C €. Let I be the field of
meromorphic functions on M. Let & be a subfield of . The f is
said to be defined over & if and only if €; C &. The meromorphic
map f is said to be linearly non-degenerated over & if and only if
(f,g) is free for every meromorphic map g : M — P(V*) defined
over & Let & = {g;}jcq be a finite family of meromorphic maps
g;j : M — P(V*) with indeterminacy I;,. Define

(109) Is=JI1, Cs=J6,.
jeqQ j€Q

Let g = C(Cg) be the extension field of € in M generated
by Cg. The family & is said to be in general position if and only
if there is a point z € M — Ig such that &(z) = {g;(2)};cq is in
general position.

Theorem: Defect relation for moving target.

Let M be a connected, complex manifold of dimension M. Let
W be a hermitian vector space of dimension m. Let m : M — W be
a surjective, proper holomorphic map. Then T = ||x||? is a parabolic
exhaustion of M. Let V' be a hermitian vector space of finite dimension
n+1> 1 Let & = {g;};eq be a finite family of meromorphic maps
g : M — P(V™) in general position. Assume at least on k € Q exists
such that gy, is not constant and separates the fibers of 7. Let f : M —
P(V) be a meromorphic map which is linearly non-degenerated over
K. Assume that g; grows slower than f for each j € Q. Then

(110) > 8(f,99) Sm+1.

jeQ
During the time from 1933 to 1960 the foundation was laid. The 1960th
was the decade of the First Main Theorem. The 1970% was the decade

of the Second Main Theorem. The 1980t was the decade of the mov-
ing targets. Perhaps the 1990t will be a decade of refinement and of
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value distribution over function fields in conjunction with diophantine
approximation.
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