COUNTABLY CATEGORICAL EXPANSIONS OF
PROJECTIVE SPACES

Simon Thomas!

1. INTRODUCTION

A numiber of important problems in model theory ask what extra
structure can be imposed upon a model M, while preserving various model-
theoretic properties of M. For example, it has been conjectured that if extra
structure is imposed upon an algebraically closed field F, then the resulting
model F+ no longer has finite Morley rank. In this paper, we shall discuss
various open problems concerning -categorical structures of the form
M = <PG(w,q),R>. Here PG(w,q) denotes an infinite dimensional projective
space over the finite field GF(q) and R is some extra relation. Our starting
point is the observation that structures of this form provide an interesting test
case for Lachlan's conjecture that a stable ®-categorical structure is @-stable.

Theorem 1.1
Suppose that M = <PG(w,q),R> is w-stable and w-categorical. If

G =Aut M acts primitively on M, then M is strictly minimal.

Proof

By [8], M can be expressed as a union of finite algebraically closed
subsets, M = U M,, such that

iew 1

(1) Gj=Aut M;j acts primitively on M; ;

(i) Gj has the same number ny of orbits on the lines of Mj as G has
on the lines of M. Let M; = <P; ,R;>, where P; is a subspace of dimension
dj. (Throughout this paper, we will be using vector space dimension; so that
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points are 1-dimensional, lines are 2-dimensional, etc.) We can suppose that
do > 6. By Hering [10], for each i either n; =1 and PSL(d;,q) < G;, or else
ny =2, PSp(di,q) <G and G; preserves a nondegenerate symplectic polarity
of Pj. (A statement of Hering's theorem can be found in Section 4). If the
former occurs for all i € ®, then M is clearly strictly minimal. On the other
hand, if PSp (dj,q) <G;j forall i e o, then it is easily seen that G preserves
a nondegenerate symplectic polarity of PG(®,q), which contradicts the
assumption that M is stable. O

Exercise 1.2

Find an elementary proof of this result, using the coordinatization
theorem. (The proof of Hering's theorem makes use of the classification of the
finite simple groups).

This paper is organized as follows. In Section 2, we shall discuss
various conditions which imply that a 2-transitive stable ®-categorical structure
has the form <PG(w,q),R>. Sections 3 and 4 consider algebraic closure in
such structures. Finally in section 5, we discuss projective space versions of
results of Cameron [5], [6]. In particular, we will give a characterization of
infinite dimensional symplectic spaces over finite fields.

If (G,Q2) is a permutation group and X & Q, then G(x},G(x) denote
the setwise and pointwise stabilizers of X in G. The stabilizer of a point
aeQ iswritten as G .

A linear space is a structure S =(Q,0), where O & P(Q), such that

(i) every pair of points a, B e Q lie in a unique element of O,
Gi) if 2,2 € then 2] =|2]> 2.
The elements of O are called lines.

If P is a projective space, then P&) denotes the set of k-dimensional
subspaces of P. PGa(,q) is the linear space (PG(®,q), PGP)(w,q)). We
use a similar notation for affine spaces.
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2. TRIANGLE TRANSITIVE LINEAR SPACES
The results in this section give conditions under which a 2-transitive stable -
categorical structure has the form <PG(w,q),R>or <AG(w,q),R>.

Theorem 2.1
Let M be a stable m-categorical structure and let G = Aut M.

Suppose that

(i) G acts 2-transitively on M;

(i) if a#Be M, then |acl(a,p)| >2;

(i) Ggqp acts transitively on M\acl(c,B).
Let £ = {acl(c.,B) IOH&BG M}. Then (M,L) isomorphic to PGa(w,q) for
q2 2 or AGy(w,q) for g=3.

Proof

Since M is 2-transitive and @-categorical, any two points . # € M
lie in a unique element of £ and each element of O has the same finite
cardinality. Thus (M,£) is a linear space. By (iii), G acts transitively on the
triangles of M. Let {oy4,000,03} be a triangle, and let P be the plane
generated by {o,000,03). If {B1,B2.83) is a second triangle of P, then
there exists ®e G such that [51; =a, for 1<i< 3. Since {a,,0,,0,}

< P N Pr, we have that PF=P. Hence H = Aut P acts transitively on the
triangles of P. By Kantor [11], P must be one of the following linear spaces:

(a) PG(2,q) for some q=2;

(b) AG(2,q9) forsome q=3;

(c) the unital U associated with PSU(3,4).

To eliminate (c), we make use of the stability of M. Since M is
2-transitive, the unique type p € S1(J) is stationary. By (iii), tp(clc,B)
doesn't fork over @ forall o € M\acl(a,B). Hence tp(olacl (a,B)) doesn't
fork over &. It follows thatif 2 e L, then G(p) acts transitively on M\ 2.
Arguing as in the first paragraph, for each line 2 of P, H(yp) acts transitively
on P\ 2. Now consider the unital U associated with PSU(3,4). By O'Nan
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[14], H= Aut U =PI'U(3,4). Itis easily checked that H acts sharply
transitively on the triangles of U. Since Hgg acts nontrivially on the line 2
containing o # B € U, Hyp) isn't transitive on U\ 2.

It is well known that if each plane P of (M,L) is isomorphic to
PG(2,q), then (M,0) ~ PGa(®,q). By Buekenhout [2], if each plane is
isomorphic to AG(2,q) for some q =4, then (M,0)~ AGy(w,q). The
analogue of Buekenhout's theorem is false for q = 3. (For example, see
Young [20]). However, by [19], if (M,£) is a triangle transitive linear space
in which each plane is isomorphic to AG(2,3), then (M, D) ~ AGy(®,3). O

There are two ways in which Theorem 2.1 should be strengthened.

Problem 2.2

Show that the conclusion still holds without the assumption that M is
stable. In other words, prove that there is no @-categorical triangle transitive
linear space in which each plane is isomorphic to the unital U associated with
PSU(3,4).

Problem 2.3

Show that the conclusion still holds without hypothesis (iii).

The next result shows that to solve problem 2.3, it is enough to show
that each plane is projective or affine.

Theorem 2.4
Let S = (Q,) be a 2-transitive stable w-categorical linear space. If

each plane of S is isomorphic to a finite projective or affine plane, then either
S ~ PGa(w,q) for =2 or S~ AGa(w,q) for q=3.

Proof

By Teirlinck [16], either all planes of S are projective or all planes of
S are affine. The only difficulty occurs when each plane P of S is an affine
plane in which the lines have cardinality 3. (The results which we used in the
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proof of Theorem 2.1 do not assume that the planes are Desarguesian). In this
case, P~ AG(2,3). Itis possible to coordinatise S by a commutative
Moufang loop of exponent 3 [20]. First we make S into a quasigroup by
defining a binary operation o as follows:

X0X=Xx

X0y=z for x#y if {x,y,z} isaline.
Now fix a point e € S. Then the loop of S based at e, Q, is defined by

xy=(€o0x) o (eoy).
Q is a commutative loop of exponent 3 with identity element e. Furthermore,
Q satisfies the Moufang condition

(xy) (zx) = (x(yz))x.
Now S ~ AG(w,3) if and only if Q is a group, i.e., the associative law also
holds. Suppose then that Q is not a group. Notice that any automorphism of
S which fixes e induces an automorphism of Q. Hence Aut Q acts
transitively on Q\e.

A subloop H of Q is said to be normal if forall x,ye Q

xH = Hx, (Hx)y = H(xy), y(xH) = (yx)H.

By Bruck 11.1 [1], Q is not simple. Since Aut Q acts transitively on Q\e,
this implies that Q has no minimal nontrivial normal subloops. (See Bruck 8.1
[1]). Let a € Q\e and let N(a) be the smallest normal subloop containing
a. Since Q is w-categorical, N(a) is a -definable. Let e #M s N() bea
normal subloop. Then if be M\e, we have that N(b) s N(a). Since a,b

lie in the same Aut Q-orbit, this means that Q is unstable. Hence S is
unstable. u

3. ALGEBRAIC CLOSURE

Throughout this section, we will suppose that M = <PG(w,q), R>
satisfies the following conditions.

31 G=Aut M acts 2-transitively on M.

3.2 M isstable w-categorical, but not w-stable.
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We begin by collecting together some elementary lemmas. If A € M, then
<A> denotes the subspace of PG(w,q) generated by A.
Lemma 3.1

The unique type p € S19 is stationary. O

Lemma 3.2
Let {ai| 1< i <n} be a Morley sequence for p e S; (&) and let
X = <3 | 1<i <n>. Then PSL(X) <G(x}/Gx).

Proof

Let ap # P € <ay,..,ap>\<ay,...,an-1>. Then the line <P,ap>
intersects the hyperplane <aj,...,ap-1> in a point o. Suppose that
tp(B‘<a1,...,an-1>) forks over a. Then, by Shelah ITIT 6.7 [15],
tp(an| <ap,...,ap-1>) forks over o, acontradiction. As G is 2-transitive and
tp(B| <ay,....an.1>) doesn't fork over a, it follows that tp(B | <aj,....an.1>)
doesn't fork over @.

Let H=G(x)/G(x). Foreach1< i < n, let Yj=<{ay,...,an}\{aj}>.
By the previous paragraph, Hy ,acts transitively on X\Y,,ie., X\Y; isa

Jordan subset for H. It follows that

U X\Y) =X\NY. =X\{a,}

i#l 1 i®wl 1 1
is a Jordan subset. (For example, see Neumann [13]). Similarly X\ {ap} is
a Jordan subset, and so H acts 2-transitively on X. Clearly we can suppose
that n = 5. The result now follows by Cameron and Kantor [7]. O

Hence, by passing to a suitable quotient geometry, we can suppose that
M also satisfies the following condition.

3.3 G has more than one orbit on the set PGG)(w,q) of planes of M.
For o # B e M, define
oM; a,B) = {y € MItp(yla,p) forks over &}.
Then <o,f>G oM; o.p).
RM(-) denotes Morley rank.
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Lemma 3.3
RM(pM; o.,B)) = oo.

Proof
Suppose not. First suppose that @(M; o,B) is finite. Then
oM; a,B) = acl(a,B) 2 <a,B>, and G acts transitively on
M\ acl(a,B). Let O ={acl(ca,p) | o# B e M}. By Theorem 2.1, (M,0)
is isomorphic to PGa(®,r) or AGy(w,r) for some prime power r # q. If X
is a finite algebraically closed subset of M, then X must be a subspace of
both PG(w,q) and (M,L). Suppose that (M,HO) ~ PGa(w,r). If Le D,
then
12l =r+1=qt+q™l+..+q+1

for some n > 2. But this means that r = gq@ +...+ q is not a prime power, a
contradiction. Hence (M,£) ~ AGy(w,r). Soif 2 e O, then
I21 =1 =g+l — 1/g-1 forsome n > 2. Let X be a finite algebraically
closed subset of M, chosen so that

Xl = fd = g+l — 1/g-1
for some m + 1 > max{n+1,6}. By Zsigmondy [21], there exists a prime
p such that plgm+! —1 but p does notdivideql —1 forany 1< i <m.
Again this contradicts the fact that r is a prime power.

Thus 0 < RM(e(M; a,B)) <eo. Let L(c,B) = ¢(M;0,B). By Shelah

V 7.8 [15], U L(y,0) also has Morley rank less than -, and so
y#3eL(0,B)

L(a,B) = re SEL]{(G.B) L(y,8). In particular, if y# 8 € L(a,B), then

L(y,8) < L(o,B). Since M is 2-transitive, we must have that L(},8) =
L(a,p). Let O = {L(a,p)la#pe M}. Then (M,O) is a linear space, in
which each line is infinite. Let o, B,y be a noncollinear triple of (M,X).
Define a sequence of {,P,y}-definable subsets of M inductively by

So =L(a,p) U L(B,Y) U L(y,00)

Spt = Y, L@b).
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There exists n such that Sp = Sp41. Clearly RM(Sy) < oo. Butnow itis

easily checked that (Sp,{L(a,b) la#be S;}) is a pseudoplane, contradicting

[8]. O
We can now easily prove

Theorem 3.4
There exists a finite dimensional subspace X & M such that
X G acl X).

My reason for recording this result is that it is conceivable that this
already leads to a contradiction for the following problem still seems to be open.

Problem 3.5

Does there exist a (not necessarily stable) 2-transitive @-categorical
expansion of PG(w,q) in which X < acl (X) for some finite dimensional
subspace X?

Proof of Theorem 3.4

Let A be the Booleanly closed set of formulas generated by
{o(x;0,B) o # B € M}. Choose n(x; T) € A such that

@  RM(n(x;T)) =o;

()  Rgn(x; ©))= k is minimal subject to (i) and dege(n(x;c)) = 1.
By Lachlan [12], we can also suppose that

(iii) m=(x;Z) is normal with respect to @(x;y).
By Lemma 3.3, ®(M;c)# M. Let & be the set of conjugates of w(M;C).
Then if A # B € 5, RM(AN B) <o,

Suppose that there exist A,Be L suchthat 0 < RM(A N B) < oo,
Then we canreplace L5 by the set of conjugates of a normal strongly minimal
subset of M.

Hence we can assume thatif A # B € I,then AN B is finite. Let
n € N besuchthatif A # B € I, then IAN Bl<n. Since G acts
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primitively on M, thereexist A # B € L with ANB=#J. Let Yye AN
B. Define inductively o € A, 1<i<n, sothat o4 € < 00y,....04 V>,
Then Y¢ < qy,...,0lp >. Continuing in this fashion, we can find Bje B, 1<i
<n, suchthatye X = <o, Bjl1 1 <i<n>. But clearly y € acl(X).
|

The situation described in the second paragraph of the above proof
seems extremely unlikely. More generally, the following problem may be
manageable.

Problem 3.6

Prove that if M is a primitive stable w-categorical structure with an
infinite definable -stable subset, then M is w-stable.

We can suppose that foreach A € L, G(a} acts transitively on A.
Let S © A be a subset of maximal cardinality, subject to the condition that S
lies in infinitely many elements of 5. (Itis easily seen thateach ooe M lies in
infinitely many elements of I5). Let Q = {STIrte G} and define an
incidence relation I by

TIB<=>TCB

for T € Q and B € L. Then (Q2,5) is a pseudoplane. Thus Theorem
3.4 is just the observation that it is possible to define a pseudoplane geometry
in M®d which interacts nontrivially with the projective geometry on M.

Given the nature of our hypotheses on M, it seems best to continue
working directly with (M,I). At this point, we would like to have that if
A e L, then <A > is a proper subspace of M. (Of course, this is true if
A is strongly minimal). Unfortunately this does not follow immediately from
general facts about forking.

Problem 3.7

Let I3 be a uniformly definable family of infinite almost disjoint
subsets of the (not necessarily stable) 2-transitive w-categorical structure
M = <PG(w,q),R>. Is <A> a proper subspace of M for A e I?
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Suppose that <A> is indeed a proper subspace of M. By the stable
descending chain condition for uniformly definable subspaces of M, there
exists a definable subspace S < <A> such that the set S of conjugates of S
is almost disjoint. Showing that such a family S cannot exist is a very
interesting geometric problem. The special case when (PG(®,q),S) is actually
a linear space seems particularly attractive, although still very difficult.

4. DESIGNS OVER FINITE FIELDS
Again M = <PG(w,q),R> satisfies conditions 3.1 to 3.3.
It seems useful to split the analysis of M into 3 cases, depending on the
action of G on [Py = PG(w,q)/<o>. The possibilities are:
(A) Gy, preserves a nontrivial equivalence relation on [Py, which has finite
classes;
(B) Gy acts primitively on Py ;
(C) Gy, preserves a nontrivial equivalence relation on [Py which has
infinite classes.

The cases are listed in what I believe to be the order of difficulty. In
this section, case A will be discussed. This corresponds to the situation when
2 G acl(R) for 2 e PG@(w,q). Let O ={acl (2) |2 e PG? (w,q)}.
Then (M,L) is a linear space. Let dim Q = m> 2 for Q € O.

Definition 4.1
Given a finite field F = GF(q), a t-(n,m,A) design over F isan
incidence structure O = (P,) which satisfies the following conditions:
(a) P isan n-dimensional projective space over F.
(b) H C pm),
(c) Each S € P® liesinexactly A elements of 9.
If O = P(M), then the design £ is said to be trivial. We define
Aut O = { te PIL(n,g)IOT = 0O},
Let X be a finite algebraically closed subspace of M withdim X =
n >m, andlet Ox = {Qe HI1Q LS X}. Then (X,Ox) is an example of a
nontrivial 2-(n,m,1) design over GF(q). Despite the efforts of a number of
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finite combinatorialists, no such designs have been found. In fact, the only
known examples of nontrivial 2-designs over finite fields are those in the
infinite family described in [17]. For each of these designs, A = 7.

Lemma 4.2
Let (P,9) bea 2-(n,m,1) design over GF(q).
(i) Eachpoint cce P liesin r = g0-1-1/qm-1 -1 elements of .
Hence m—1in—1.
@) 101 = b = (qn-1) (@1 -1)/Aqm-1)(q™-1 -1). O

While no examples of nontrivial 2 — (n,m,1) designs are known, it has
not been shown that no such designs exist for any pair of integers n,m for
which r,b € N. My guess is that many such designs exist, but that their
automorphism groups are extremely small. (This would account for the
difficulty in finding examples. The usual method of constructing a design is to

specify a small number of blocks {B;.....Bs}, one from each orbit of the
automorphism group I'. Then O = {B’it l1<i<s,mteI}).

Problem 4.3

Show that for each finite field F = GF(q), there exists an integer
N(q) such that: whenever © = (P,0) isa nontrivial 2-(n,m,1) design over
F and G = Autd, if X C P satisfies Gyx)/G(x) = Syn(X), then
Xl < N(q.

Of course, this would eliminate case A. A special case of this
conjecture can be deduced from Hering's theorem.

Theorem 4.4
Suppose that O = (P,0) is a nontrivial 2—(n,m,1) design over a
finite field F. If G = Autd acts transitively on P, then G is soluble.
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Hering's theorem classifies the groups G which act transitively on the
set of nonzero vectors of a finite vector space V. We can suppose that V is an
n-dimensional vector space over the prime field GF(p), so that G <GL(n,p).
Let L be a subset of Hom(V,V) maximal with respect to the condition that L
is normalized by G, L contains the identity and L is a field with respect to the
addition and multiplication in Hom(V,V). (By Lemma 5.2 [9], L is unique
unless n = 2, p = 3 and G is isomorphic to a quarterion group of order 8).
There exist integers m and n* suchthat n = mn*, [L| =p™ and n* is the
dimension of the vector space (V,L). Then G <T'L(V,L) must be one of the
following types.

I. SL(V,L) <G <TL(V,L).

II. There exists a nondegenerate skew-symmetric scalar product on (V,L)
and G contains as a normal subgroup the group consisting of all isometries of
the corresponding symplectic space.

III. n* =6, p = 2 and G contains a normal subgroup isomorphic to
Gy(2m).

IV. There are finitely many exceptional groups. For our purposes, it is
enough to know that in each of these cases n = 2,4,6. By Lemma 4.2, the
corresponding projective spaces cannot carry nontrivial designs, and so these
groups can safely be ignored.

This result also yields a classification of the groups G < PI'(n,q)
which act transitively on the points of the n-dimensional projective space P
over GF(q). Let G* < I'L(n,q) be the preimage of G under the
homomorphism I'L(n,q) = PI'L(n,q). Regard G* as a subgroup of
GL(N,p), where q = pt and N = nt. Let L be as above. Then GF(q) is
a subfield of L, say L = GF(q). If r> 1, then G preserves a geometric
r-spread 5 of P. This means that I5 is a collection of r-subspaces which
form a partition of P satisfying:

If Q1,Q2,Q3 € 5 and Q3N <Q1,Q2> # @, then Q3 < <Q; Q2>.
Define an incidence structure P(L )as follows. The points are the elements of
& and the blocks are the sets of elements of I contained in the subspaces
<Q1,Q> for Q; #Qy € L. Then P(L) is an n/r-dimensional projective
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space over L. Furthermore, if G* is of type II, then G preserves a
symplectic polarity of P(L). A similar remark holds if G* is of type IIL

Proof of Theorem 4.4

First suppose that there exists r such that n = rs and PSL(s,q") <G
<PI'L(s,qf). Clearly s < n, since otherwise G acts transitively on P(m), a
contradiction. Hence G preserves a geometric r-spread I3 for some r = 2.
Suppose that s> 1. Let X € I andlet 2 & X be aline. Suppose that .2
C Qe O andthat ye Q\X. Then the orbit of ¥ under G(x) contains at
least (q"—-1/qf—-1) —1 points. Hence

qn-1/g-1 = 1IQl > g -1/ - 1.
Since r < n/2 and m <n+1/2, this is impossible. Henceeach X e L isa
subdesign, and so m-1Ir-1. Let X; # Xoe L andlet Y = <X;,Xp>. If
Y is a subdesign, then m-1I2r-1. But then m-1I(r-1,2r-1) =1, a contradiction
In particular, s >3. Choose 2 € Qe O suchthat 2 < Yand Q £Y.
Let Ye Q\Y. Then the orbit of y under Gy) contains at least g2f points.
Hence

gX <qm-1/g-1<q’-1/g-1,

which is impossible. Hence s = 1 and G is soluble.

Next suppose that there exists s = 4 such that PSp(s,q") <G, where
n=rs. Arguing as above, we find that r > 1 and thateach X € I isa
subdesign. Let X1,X2 € & be chosen so that Y = <X1,Xo> is a totally
isotropic line of P(5). There existsaline 2 C Y suchthat Q & Y, where
2C Qe HO. Let ye Q\Y andlet ye X3eLl. Let Z =<Y,X3>.

Then Z is aplane of P($5) and Gey) acts transitivelyon {Xe GIX © Z\
Y}. Hence the orbit of y under Ggy) contains at least g2 points, a
contradiction.

Hence we can suppose that q =2t and G,(2¥) < G, where n =6r.
ByLemma 4.2, r > 1. Let Xel andlet 2 C X bealine. Suppose that
Q £X, where 2 © Qe 0. Let Ye Q\X. By[7], the orbit of y under
G(x) contains at least qf(qf + 1) points. Hence q™-1/q-1>qf(q*+ 1), and
som<2r+1=n/3+1,ie, n<3(m-1). Since m- 1In- 1, this implies
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that n-1 = 2(m- 1). Butthen n =2m-1 is odd, a contradiction. Hence
each X e L isa subdesign. Let g be the generalized hexagon of order (qf,q%)
on P(L) which is preserved by Ga(q"). Let Y = <X,X5> be a g-line.
Then we can suppose that there exists aline 2 €Y suchthat 2 N X; # &
fori=12and Q LY, for 2 CQe O. Let Yy € Q\Y andlet y € X3
e L. Since Gy(qF) acts transitively on the set of ordered ordinary hexagons

of g [7], the orbit of y under G contains at least q points. Again,
X,UX)

this is impossible. O

Corollary 4.5
Let O3 = (P,89¢) be the plane of (M,) generated by the Morley
triple {a,B,y}. Then H = Aut O3 does not act transitively on P.

Proof

Arguing as in Lemma 3.2, we see that if <a,f>C Qe Oy, then
H{qQ) acts 2-transitively on Q. By [7], either Alt (7) <H{q)/H(qQ) or
PSL(m,q) £ H{Q}/H(qQ). Since m=23, H is not soluble. a

It seems likely that a more detailed study of O3 will allow us to
eliminate case A. Let & = {QF | € H}, where <o,p> € Qe g, and let
Q = U{Q | Qe L5}. The only candidates for the partial linear space (2,5)
appear to be (possibly disjoint unions of) the flag-transitive generalized
quadrangles, hexagons and octagons associated with various groups of Lie
type. However, even these partial geometrics can be eliminated by looking at
the actions of their automorphism groups on lines. I intend to say more on this
matter in a later paper.

I end this section with an easy exercise. By Theorem 2.4 and the
proof of Lemma 3.3, we already know that some of the planes of (M,d) are
neither projective nor affine. In fact, a stronger result holds.
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Exercise 4.6
Prove that if 0 is a nontrivial 2-(n,m,1) design over a finite field,
then 0 is neither a projective nor an affine plane.

5. EXTREMAL PROBLEMS

In this section, we consider projective space versions of theorems of
Cameron [5],[6]. Let G <PI'L(w,q) have ngx < ® orbits on the set
PG®) (w,q) of k-subspaces of PG(®,q) foreach k € N. Fix an integer k

such that n, > 1, andlet ¥: PG(k) (0,9 — {C1’""cnk} be a colouring which

assigns distinct colours to the different G-orbits. The next result says roughly
that G must locally preserve chains of subspaces. (Throughout, we adopt the
convention that all r colours are used in an r-colouring).

Theorem 5.1 [18]

Forall r=2 and t>k 21, there exists an integer f(tk,r) with the
following property. Suppose that S is a projective space of GF(q) of
dimension m 2 f(tkr). If S® is r-coloured, then there exist

(i) subspaces 3C AGBC C of S with dim C=t,dimA = i and
codimc B =j, where 0 <i+j<k, and
(ii) distinct colours ci,co suchthat Te C® iscoloured c; if A & T

and dim(T N B) = k - j, and is coloured c; otherwise. O

We would like to use this local information to understand the global
structure of the w-categorical structure M = <PG(w,q),x>. Unfortunately,
very little can be said in general. However, in certain extremal circumstances, it
is possible to use this local information to identify M.

If L e PGk+1) (w,q), then the colour scheme of L is the ni-tuple

(al,...,a,,k), where a, is the number of elements of L(k) which have colour c,

The colour scheme matrix A of the colouring % is the matrix whose rows are

the distinct colour schemes.
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Theorem 5.2 [18]

The colour scheme matrix A has rank ng. Furthermore, the colours
and colour schemes can be ordered in such a way that the first nx rows of A
form a lower triangular matrix with nonzero diagonal entries. O

In particular, ng < nk4+3. Suppose that nx = nk43. Then A isa
nonsingular lower triangular matrix, and two (k+1)-subspaces lie in the same
G-orbit if and only if they have the same colour scheme. Looking at the last
row of A, we see that there exists a colour, say blue, which lies in a unique
colour scheme. So after amalgamating the other colours and applying Theorem
5.1 to the resulting 2-colouring, we obtain

Theorem 5.3 [18]
Suppose that G <PI'L(w,q) satisfies 1 < ngx=nk4+1 < o. Then there
exists a G-invariant colouring ¢: PG® (w,q) — {red,blue} and integers i,j
with 0<i+j<k such that
(i) G acts transitively on blue k-spaces and on (k+1)-spaces which
contain a blue k-space; and
(ii) if Ce PGk+1) (w,q) contains a blue k-space then there are subspaces
D AGBC C with dim A =i and codimc B =j such that
Te C® isblueifandonlyif AC T anddim(B NT) =k —j. O

If k is small, this condition is strong enough to enable us to identify
M = <PG(mw,q),x>. For example, the following is the main result of [18].

Theorem 5.4
Suppose that q # 2. If G < PI'L(w,q) acts transitively on the points
of PG(w,q) and satisfies 1 < np = n3 < ®, then one of the following
cases holds.
(i) G preserves a symplectic polarity of PG(w,q) and acts transitively on
the sets of totally isotropic lines and nonisotropic lines.
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(ii) G preserves a geometric 2-spread L of PG(w,q) and acts transitively

on the planes of the incidence structure P(L) ~ PG(®,g2). O

This is proved by working through the various possibilities for the pair
of integers (i,j), 0 <i+j <2, givenin Theorem 5.3. To give a flavor of the
type of reasoning involved, I will give the details for two of the more
interesting cases.

Suppose that i =1 and j = 0. Soif the plane Q contains a blue line,
then there exists a point 0(Q) € Q such that £ € Q2 is blue if and only if
o(Q) € 2. Let S be a finite dimensional subspace which contains a blue line,
andlet Og={2e S@ I 2 isblue}. Supposethat 2 € Og and e S\ 2.
Considering the plane Q = <2,0>, we see that there is unique point B e 2
such that <a,f> € Og. Thus the incidence structure (S,Os) ia a (possibly
degenerate) generalized quadrangle. By Buekenhout and Lefevre [3], if
dim S > 6 then there exists a point o€ S such that Og={2e S@lael}.
This implies that there is a point o € PG(w,q) such that £ € PG®) (w,q) is
blue if and only if o e 2, This contradicts the assumption that G acts
transitively on points.

Suppose that i=0 and j=2. Soif the plane Q contains a blue line,
then there exists a point 0(Q) € Q suchthat 2 € Q@) is blue if and only if
o(Q) ¢ 2. Let S be a finite dimensional subspace, and consider the
incidence structure (S,IRs), where Rg={2 € S@ | 2 isred}. Let
2 e Rg and ae S\ 2. If the plane Q=<.2,0> contains a blue line, then
o(Q) € 2 and a(Q) is the unique point of 2 which is collinear with o in
(S,Rg). Otherwise, a is collinear with every point of 2. By definition,
(S,IRg) is a Shult space. By Buekenhout and Shult [4], there exists a
(possibly degenerate) symplectic form ¢ on the underlying vector space of S
such that [Rg is the set of lines which are totally isotropic with respectto ©. It
follows that there is a symplectic form ¢ on V(®,q) such that 2 € PG(?)
(0,q) isred if and only if 2 is totally isotropic with respectto . Since G
acts transitively on points, ¢ is nondegenerate. Thus G preserves a
symplectic polarity of PG(®,q) and acts transitively on the set of nonisotropic
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lines. The reader is referred to [18] for a proof that G also acts transitively on
totally isotropic lines.

If G<PI'L(w,q) is the full automorphism group of either a symplectic
polarity or a geometric 2-spread of PG(w,q), then G satisfies nox =ngx 4+ 1
=k+ 1 foreach ke N.

Problem 5.5

Suppose that G <PI'L(w,q) acts transitively on the points of
PG(w,q) and satisfies 1 < ngx = nk+1 <® for some k € N. Does G
preserve either a symplectic polarity or a geometric 2-spread of PG(w,q)?

This problem is open even for k = 3. In this case, the hardest situation
to analyze is when each 4-subspace contains at most one blue plane. When this
occurs, if Q € PGA) (w,q) is blue and £ € Q2), then acl(2) =Q. A similar
difficulty arises for larger values of k. Thus problem 5.5 provides further
motivation for the problem of understanding expansions of PG(®,q) in which
certain subspaces are no longer algebraically closed.
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