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1. INTRODUCTION
A number of important problems in model theory ask what extra

structure can be imposed upon a model M, while preserving various model-

theoretic properties of M. For example, it has been conjectured that if extra

structure is imposed upon an algebraically closed field F, then the resulting

model F+ no longer has finite Morley rank. In this paper, we shall discuss
various open problems concerning co-categorical structures of the form

M = <PG(œ,q),R>. Here PG(co,q) denotes an infinite dimensional projective

space over the finite field GF(q) and R is some extra relation. Our starting

point is the observation that structures of this form provide an interesting test
case for Lachlan's conjecture that a stable co-categorical structure is co-stable.

Theorem 1.1
Suppose that M = <PG(co,q),R> is co-stable and co-categorical. If

G = Aut M acts primitively on M, then M is strictly minimal.

Proof

By [8], M can be expressed as a union of finite algebraically closed
subsets, M = U M., such that

1ECD *

(i) Gi = Aut Mi acts primitively on MI;

(ii) GI has the same number n2 of orbits on the lines of MI as G has

on the lines of M. Let MI = <Pi ,Ri>, where PI is a subspace of dimension

di. (Throughout this paper, we will be using vector space dimension; so that

iResearch partially supported by NSF grant DMS-8703229



Simon Thomas 69

points aie 1-dimensional, lines are 2-dimensional, etc.) We can suppose that

do > 6. By Hering [10], for each i either n2 = 1 and PSL(di,q) < GI, or else

n2 = 2, PSp(di,q) < GI and GI pieseives a nondegenerate symplectic polarity

of PI. (A statement of Hering's theorem can be found in Section 4). If the
former occurs for all ieco, then M is clearly strictly minimal. On the other

hand, if PSp (di,q) < Gi for all i € GO , then it is easily seen that G preserves

a nondegenerate symplectic polarity of PG(co,q), which contradicts the

assumption that M is stable. D

Exercise 1.2
Find an elementary proof of this result, using the coordinatization

theorem. (The proof of Hering's theorem makes use of the classification of the

finite simple groups).
This paper is organized as follows. In Section 2, we shall discuss

various conditions which imply that a 2-transitive stable co-categorical structure

has the form <PG(co,q),R>. Sections 3 and 4 consider algebraic closure in

such structures. Finally in section 5, we discuss projective space versions of

results of Cameron [5], [6]. In particular, we will give a characterization of

infinite dimensional symplectic spaces over finite fields.

If (G,Q) is a permutation group and X^.Q, thenG{x),G(x) denote
the setwise and pointwise stabilizers of X in G. The stabilizer of a point
a e Q is written as G a-

A linear space is a structure S = (Q,J0), where J9 c: P(Q), such that
(i) every pair of points a, p e Û lie in a unique element of «JO,

(ii) if i,y € JD then Ul = U'| > 2.

The elements of J9 are called lines.

If P is a projective space, then P00 denotes the set of k-dimensional
subspaces of P. PG2(co,q) is the linear space (PG(œ,q), PG(2)(œ,q)). We

use a similar notation for affine spaces.
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2. TRIANGLE TRANSITIVE LINEAR SPACES
The results in this section give conditions under which a 2-transitive stable co-
categorical structure has the form <PG(co,q),R> or <AG(œ,q),R>.

Theorem 2.1
Let M be a stable co-categorical structure and let G = Aut M.

Suppose that
(i) G acts 2-transitively on M;
(ii) if a * p e M, then | acl(a,p) I > 2;
(iii) Ga,p acts transitively on M\acl(a,P).

Let J9 = {acl(a,p) |a*pe M}. Then (M,J9) isomorphic to PG2(a>,q) for
q > 2 or AG2(co,q) for q > 3.

Proof
Since M is 2-transitive and co-categorical, any two points a * p e M

lie in a unique element of J9 and each element of J9 has the same finite
cardinality. Thus (M,J9) is a linear space. By (iii), G acts transitively on the
triangles of M. Let {ai,(X2,(X3} be a triangle, and let P be the plane
generated by {oci,a2,(X3}. If {pi,p2»Ps} is a second triangle of P, then

there exists ne G such that p. = a. for 1 £ i < 3. Since {ara2,a3}

ç: P n P*, we have that P* = P. Hence H = Aut P acts transitively on the
triangles of P. ByKantor [11], P must be one of the following linear spaces:

(a) PG(2,q) for some q>2;
(b) AG(2,q) for some q £ 3;
(c) theunital U associated with PSU(3,4).
To eliminate (c), we make use of the stability of M. Since M is

2-transitive, the unique type p e Si(0) is stationary. By (iii), tp(ala,P)
doesn't fork over 0 for all ae M\acl(a,p). Hence tp(alacl (a,p)) doesn't
fork over 0. It follows that if i. e J9,then G(j) acts transitively on M\/?.

Arguing as in the first paragraph, for each line H of P, H^) acts transitively
onP\^. Now consider the unital U associated with PSU(3,4). ByO'Nan
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[14], H = Aut U = PITJ(3,4). It is easily checked that H acts sharply
transitively on the triangles of U. Since H^p acts nontrivially on the line J!
containing a * P e U, H(^) isn't transitive on U \ JÎ.

It is well known that if each plane P of (M, J9) is isomorphic to
PG(2,q),then (M,J9)~ PG2(œ,q). ByBuekenhout [2], if each plane is

isomorphic to AG(2,q) for some q>4, then (M,J9)~ AG2(œ,q). The

analogue of Buekenhout's theorem is false for q = 3. (For example, see
Young [20]). However, by [19], if (M,J9) is a triangle transitive linear space
in which each plane is isomorphic to AG(2,3), then (M,J9)~ AG2(œ,3). D

There aie two ways in which Theorem 2.1 should be strengthened.

Problem 2.2
Show that the conclusion still holds without the assumption that M is

stable. In other words, prove that there is no co-categorical triangle transitive

linear space in which each plane is isomorphic to the unital U associated with
PSU(3,4).

Problem 2.3
Show that the conclusion still holds without hypothesis (iii).

The next result shows that to solve problem 2.3, it is enough to show
that each plane is projective or affine.

Theorem 2.4
Let S = (Q,J9) be a 2-transitive stable co-categorical linear space. If

each plane of S is isomorphic to a finite projective or affine plane, then either
S ~ PG2(œ,q) for q > 2 or S ~ AG2(œ,q) for q > 3.

Proof
By Teirlinck [16], either all planes of S are projective or all planes of

S are affine. The only difficulty occurs when each plane P of S is an affine
plane in which the lines have cardinality 3. (The results which we used in the
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proof of Theorem 2.1 do not assume that the planes are Desarguesian). In this

case, P~ AG(2,3). It is possible to coordinatise S by a commutative

Moufang loop of exponent 3 [20]. First we make S into a quasigroup by

defining a binary operation o as follows:

xox = x
xoy = z for x* y if {x,y,z} is a line.

Now fix a point e e S. Then the loop of S based at e, Q, is defined by

xy = (eox) o (eoy).

Q is a commutative loop of exponent 3 with identity element e. Furthermore,

Q satisfies the Moufang condition

(xy) (zx) = (x(yz))x.
Now S~ AG(o>,3) if and only if Q is a group, i.e., the associative law also

holds. Suppose then that Q isnotagfoup. Notice that any automorphism of

S which fixes e induces an automorphism of Q. Hence Aut Q acts

transitively on Q\e.
A subloop H of Q is said to be normal if for all x,y E Q

xH = Hx, (Hx)y = H(xy), y(xH) = (yx)H.

ByBruck 11.1 [1], Q is not simple. Since Aut Q acts transitively on Q\e,

this implies that Q has no minimal nontrivial normal subloops. (See Brack 8.1
[1]). Let a e Q\e and let N(a) be the smallest normal subloop containing
a. Since Q is co-categorical, N(a) is a -definable. Let e & M < N(a) be a

normal subloop. Then if b€ M\e, we have that N(b)< N(a). Since a,b

lie in the same Aut Q-orbit, this means that Q is unstable. Hence S is

unstable. D

3. ALGEBRAIC CLOSURE
Throughout this section, we will suppose that M = <PG(œ,q), R>

satisfies the following conditions.

3.1 G = Aut M acts 2-transitively on M.
3.2 M is stable co-categorical, but not co-stable.
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We begin by collecting together some elementary lemmas. If A ci M, then
<A> denotes the subspace of PG(co,q) generated by A.

Lemma 3.1
The unique type p e Si0 is stationary. D

Lemma 3.2
Let {at 1 1 < i < n} be a Morley sequence for p e Si (0) and let

X = <ai | 1£ i <n>. ThenPSL(X) <G{X}/G(x).

Proof
Let a n*pe <ai,.r.,an>\<ai,...,an-i>. Then the line <P,an>

intersects the hyperplane <ai,...,an-i> in a point a. Suppose that

tp(p | <ai,...,an-i>) forks over a. Then, by Shelah El 6.7 [15],

tp(an I <ai,...,an-i>) forks over a, a contradiction. As G is 2-transitive and

tp(p| <ai,...,an-i>) doesn't fork over a, it follows that tp(P | <ai,...,an-i>)

doesn't fork over 0.

Let H = G{x}/G(x). For each 1< i < n, let YI = <{ai,...,an}\{ai}>.
By the previous paragraph, H^ acts transitively on X\ Y., i.e., X\Y. is a

Jordan subset for H. It follows that
.u (x\Y.) =x\.n Y. = x\{ai}

is a Jordan subset. (For example, see Neumann [13]). Similarly X\{a2) is

a Jordan subset, and so H acts 2-transitively on X. Clearly we can suppose

that n > 5. The result now follows by Cameron and Kantor [7]. D

Hence, by passing to a suitable quotient geometry, we can suppose that

M also satisfies the following condition.

3.3 G has more than one orbit on the set PG(3)(co,q) of planes of M.

For a * p e M, define

cp(M;a,p) = {y e Mltp(yla,p) forks over 0}.

Then <a,p>C cp(M; a,p).

RM(-) denotes Morley rank.
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Lemma 3.3
RM(cp(M; a,p)) = ~.

Proof
Suppose not. First suppose that cp(M; a,p) is finite. Then

cp(M; a,p) = acl(a,P) ? <a,p>, and G^p acts transitively on
M\acl(a,p). Let «19 = (acl(a,p) I a* PG M}. By Theorem 2.1, (M,J9)
is isomorphic to PG2(oo,r) or AG2(co,r) for some prime power r =£ q. If X

is a finite algebraically closed subset of M, then X must be a subspace of
both PG(co,q) and (M,J0). Suppose that (M,J9) ~ PG2(œ,r). If X e J9,

then
IJH = r + 1 = qn + q11"1 + ... + q + 1

for some n > 2. But this means that r = qn +...+ q is not a prime power, a
contradiction. Hence (M,J9) ~ AG2(co,r). Soif J! e «£), then

| £ | = r = qn+l - 1/q-l for some n > 2. Let X be a finite algebraically
closed subset of M, chosen so that

IXI = rd = qm+1 _ l/q_l

for some m + 1 > max{n+l,6}. ByZsigmondy [21], there exists a prime
p such that plqm+l - 1 but p does not divide q* - 1 for any 1 < i < m.
Again this contradicts the fact that r is a prime power.

Thus 0 < RM(cp(M; a,p)) < ~. Let L(a,p) = cp(M;a,P). By Shelah
V 7.8 [15], U L(y,8) also has Morley rank less than <», and so

y^EUa,p)
L(a,p) = U L(y,8). In particular, if y^5e L(a,p), then

L(y,8) ^. L(a,p). Since M is 2-transitive, we must have that L(y,8) =
L(a,p). Let £) = {L(a,p)la^pe M}. Then (M,J9) is a linear space, in
which each line is infinite. Let a, P, y be a noncollinear triple of (M,J9).
Define a sequence of {oc,P,y} -definable subsets of M inductively by

S0 = L(a,p)UL(p,y)UL(y,a)

Vi - U
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There exists n such that Sn = Sn+i. Clearly RM(Sn) < «>. But now it is
easily checked that (Sn,{L(a,b) l a ^ b e Sn}) is a pseudoplane, contradicting

[8]. n
We can now easily prove

Theorem 3.4
There exists a finite dimensional subspace X c. M such that

X ç acl (X).

My reason for recording this result is that it is conceivable that this
already leads to a contradiction for the following problem still seems to be open.

Problem 3.5
Does there exist a (not necessarily stable) 2-transitive (D-categorical

expansion of PG(œ,q) in which X <5 acl (X) for some finite dimensional

subspace X?

Proof of Theorem 3.4
Let A be the Booleanly closed set of formulas generated by

(cp(x;a,P) I a * p € M}. Choose TC(X; c) € A such that

(i) RM(ic(x;c)) = oo;
(ii) R(p(7c(x; c)) = k is minimal subject to (i) and degq>(7c(x;c)) = 1.

ByLachlan [12], we can also suppose that
(iii) rc(x; z) is normal with respect to cp(x;y).

By Lemma 3.3, rc(M;c)*M. Let £ be the set of conjugates of rc(M;c).
Then if A * B e £, RM(A H B) ««.

Suppose that there exist A,B e 31 such that 0 < RM(A fl B) < <».

Then we can replace £> by the set of conjugates of a normal strongly minimal

subset of M.
Hence we can assume that if A * B e 33, then A n B is finite. Let

n e N be such that if A * B E Z, then IÂ fl Bl < n. Since G acts
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primitively on M, there exist A * B e £ with A n B * 0. Let y e A fl

B. Define inductively ai e A, l< i<n , so that oq + ie < ai,...,Oi, y>.

Then y £ < <Xi,...,an >- Continuing in this fashion, we can find pi e B, 1 < i
< n, such that y £ X = < (Xi, pi 11 < i < n>. But clearly y e acl(X).

n
The situation described in the second paragraph of the above proof

seems extremely unlikely. More generally, the following problem may be
manageable.

Problem 3.6
Prove that if M is a primitive stable co-categorical structure with an

infinite definable œ-stable subset, then M is co-stable.
We can suppose that for each Ae E, G{A} acts transitively on A.

Let S <^ A be a subset of maximal cardinality, subject to the condition that S
lies in infinitely many elements of E. (It is easily seen that each oce M lies in
infinitely many elements of £). Let Q = {Splice G} and define an

incidence relation I by
T I B <=> T e B

for T e Q and B e E. Then (U,£) is a pseudoplane. Thus Theorem

3.4 is just the observation that it is possible to define a pseudoplane geometry
in MR which interacts nontrivially with the projective geometry on M.

Given the nature of our hypotheses on M, it seems best to continue
working directly with (M,E). At this point, we would like to have that if
A € E, then <A> is a proper subspace of M. (Of course, this is true if

A is strongly minimal). Unfortunately this does not follow immediately from
general facts about forking.

Problem 3.7
Let E be a uniformly definable family of infinite almost disjoint

subsets of the (not necessarily stable) 2-transitive co-categorical structure
M = <PG(œ,q),R>. Is <A> a proper subspace of M for A e I?
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Suppose that <A> is indeed a proper subspace of M. By the stable

descending chain condition for uniformly definable subspaces of M, there

exists a definable subspace S <<A> such that the set S of conjugates of S

is almost disjoint Showing that such a family S cannot exist is a very
interesting geometric problem. The special case when (PG(co,q),S) is actually

a linear space seems particularly attractive, although still very difficult

4. DESIGNS OVER FINITE FIELDS
Again M = <PG(œ,q),R> satisfies conditions 3.1 to 3.3.

It seems useful to split the analysis of M into 3 cases, depending on the
action of Ga on Pa = PG(œ,q)/«x>. The possibilities are:

(A) Ga preserves a nontrivial equivalence relation on IPa which has finite

classes;
(B) Ga acts primitively on Pa;

(C) Ga preserves a nontrivial equivalence relation on Pa which has

infinite classes.

The cases are listed in what I believe to be the order of difficulty. In

this section, case A will be discussed. This corresponds to the situation when
l Ç acl (2) for i, e PG(2)(co,q). Let «0 = {acl (Jt) 11 e PG(2) (co,q)}.

Then (M,J9) is a linear space. Let dim Q = m > 2 f o r Q e J9.

Definition 4.1
Given a finite field F = GF(q), a t-(n,m,A,) design over F is an

incidence structure J9 = (P,J9) which satisfies the following conditions:

(a) P is an n-dimensional projective space over F.
(b) J9 c. P(m).

(c) Each S e P(0 lies in exactly X elements of JO.

If J9 = P(m), then the design J9 is said to be trivial. We define
Aut JO = { n e PrL(n,q)IJ9* = J0}.

Let X be a finite algebraically closed subspace of M with dim X =
n > m, and let J9x = {Qe «0 IQC^X}. Then (X,J9x) is an example of a

nontrivial 2-(n,m,l) design over GF(q). Despite the efforts of a number of
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finite combinatorialists, no such designs have been found. In fact, the only
known examples of nontrivial 2-designs over finite fields are those in the
infinite family described in [17]. For each of these designs, A, = 7.

Lemma 4.2
Let (P,J9) be a 2-(n,m,l) design over GF(q).

(i) Each point oce P lies in r = qn-1 _i/qm-l _i elements of J9.

Hence m-lln-1.

(ii) LSI = b = (qn-l)(qn-1-l)/(qm-l)(qm-1-l). D

While no examples of nontrivial 2-(n,m,l) designs are known, it has
not been shown that no such designs exist for any pair of integers n,m for
which r,b € N. My guess is that many such designs exist, but that their

automorphism groups are extremely small. (This would account for the
difficulty in finding examples. The usual method of constructing a design is to
specify a small number of blocks {Bi,...,Bs}, one from each orbit of the
automorphism group F. Then J9 = {B. I 1 < i < s, n e F}).

Problem 4.3
Show that for each finite field F = GF(q), there exists an integer

N(q) such that: whenever J9 = (P,J0) is a nontrivial 2-(n,m,l) design over
F and G =AutJ9, if Xç: p satisfies G{x} / G(x) 21. Syn(X), then

IXI < N(q).

Of course, this would eliminate case A. A special case of this

conjecture can be deduced from Bering's theorem.

Theorem 4.4
Suppose that J9 = (P,J9) is a nontrivial 2-(n,m,l) design over a

finite field F. If G = Aut JD acts transitively on P, then G is soluble.
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Bering's theorem classifies the groups G which act transitively on the

set of nonzero vectors of a finite vector space V. We can suppose that V is an

n-dimensional vector space over the prime field GF(p), so that G < GL(n,p).

Let L be a subset of Hom(V,V) maximal with respect to the condition that L

is normalized by G, L contains the identity and L is a field with respect to the

addition and multiplication in Hom(V,V). (By Lemma 5.2 [9], L is unique

unless n = 2, p = 3 and G isisomorphic to a quarterion group of order 8).

There exist integers m and n* such that n = mn*, ILI =pm and n* is the
dimension of the vector space (V,L). Then G <rL(V,L) must be one of the

following types.
I. SL(V,L) <G£FL(V,L).

II. There exists a nondegenerate skew-symmetric scalar product on (V,L)

and G contains as a normal subgroup the group consisting of all isometrics of

the corresponding symplectic space.

III. n* = 6, p = 2 and G contains a normal subgroup isomorphic to

G2(2
m).

IV. There are finitely many exceptional groups. For our purposes, it is

enough to know that in each of these cases n = 2,4,6. By Lemma 4.2, the

corresponding projective spaces cannot carry nontrivial designs, and so these

groups can safely be ignored.
This result also yields a classification of the groups G < Pr(n,q)

which act transitively on the points of the n-dimensional projective space P
over GF(q). Let G* < FL(n,q) be the preimage of G under the

homomorphism FL(n,q) —» PFL(n,q). Regard G* as a subgroup of

GL(N,p), where q = p1 and N = nt. Let L be as above. Then GF(q) is

asubfieldof L, say L = GF(qr). If r> 1, then G preserves a geometric

r-spread £ of P. This means that L is a collection of r-subspaces which

form a partition of P satisfying:

If Ql,Q2,Q3 e E and Q3 n <Qi,Q2> * 0, then Qj < <Qi,Q2>.

Define an incidence structure P(£ )as follows. The points are the elements of

£ and the blocks are the sets of elements of £ contained in the subspaces
<Qi»Qa> for Qi^Qa € E. Then P(£) is an n/r-dimensional projective
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space over L. Furthermore, if G* is of type H, then G preserves a
symplectic polarity of P(£). A similar remark holds if G* is of type EL

Proof of Theorem 4.4
First suppose that there exists r such that n = rs and PSL(s,qr) <G

<PITXs,qr). Clearly s < n, since otherwise G acts transitively on P(m), a

contradiction. Hence G preserves a geometric r-spread £ for some r > 2.
Suppose that s > 1. Let X e £ and let i. ÇL X be a line. Suppose that Ji

ci Qe J9 and that ye Q\X. Then the orbit of y under G(x) contains at

least (qn-l/qr-l)-l points. Hence
qm-l/q-l = IQI > qn-l/qr-l.

Since r < n/2 and m < n+1/2, this is impossible. Hence each X e £ is a

subdesign, and so m-1 lr-1. Let Xi * Xie L and let Y = <Xi,X2>. If

Y is a subdesign, then m-H2r-l. But then m-ll(r-l,2r-l) = 1, a contradiction
In particular, s>3. Choose I c Qe J0 such that I c Y and Q <£Y.

Let ye Q\Y. Then the orbit of y under G(y) contains at least q21" points.

Hence
q2r <qm.i/q_i<qr_i/q_i j

which is impossible. Hence s = 1 and G is soluble.
Next suppose that there exists s > 4 such that PSp(s,qr) < G, where

n = rs. Arguing as above, we find that r > 1 and that each X E £ is a
subdesign. Let Xi,X2 e E be chosen so that Y = <Xi,X2> is a totally
isotropic line of P(£). There exists a line /E d Y such that Q & Y, where
Ji ciQE «0. Let ye Q\Y and let ye X3e£. Let Z =<Y,X3>.
Then Z is a plane of P(£) and G(y) acts transitively on {Xe £IX <^ Z\

Y}. Hence the orbit of y under G(y) contains at least q2r points, a

contradiction.
Hence we can suppose that q = 2l and 02(2°") < G, where n = 6r.

By Lemma 4.2, r > 1. Let Xe£ and let /E d X be a line. Suppose that
Q £X, where Ji c Qe J9. Let ye Q\X. By [7], the orbit of y under

G(x) contains at least qr(qr+ 1) points. Hence qm-l/q-1 >qr(qr+ 1), and
so m < 2r + 1 = n/3 + 1, i.e., n < 3(m -1). Since m - 1 I n - 1, this implies
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that n- 1 = 2(m- 1). But then n =2m-l is odd, a contradiction. Hence
each X e 33 is a subdesign. Let g be the generalized hexagon of order (<f,qf)

on P(£) which is preserved by G2(qO- Let Y = <Xi,X2> be a g-line.
Then we can suppose that there exists a line 2 ci Y such that J! n X{ * 0
for i = 1,2 and Q <£Y, for I c Qe J9. Let y e Q\Y andlet y e X3

€ 31 . Since G2(qr) acts transitively on the set of ordered ordinary hexagons
'Jv

of 9 [7], the orbit of y under G contains at least q points. Again,

this is impossible. D

Corollary 4.5
Let J93 = (P,«£>o) be the plane of (M,J9) generated by the Morley

triple {a,P,y}. Then H = AutJDj does not act transitively on P.

Proof
Arguing as in Lemma 3.2, we see that if <cc,p> c: Q e JDo, then

H{Q) acts 2-transitively on Q. By [7], either Alt (7) < H{Q)/H(Q) or
PSL(m,q) < H{Qj/H(Q). Since m > 3, H is not soluble. D

It seems likely that a more detailed study of J9a will allow us to
eliminate case A. Let 31 = {Q*Ue H}, where <a,p> <=Qe «£)Q, andlet
Q = U{Q| QE 31}. The only candidates for the partial linear space (£2,3!)

appear to be (possibly disjoint unions of) the flag-transitive generalized
quadrangles, hexagons and octagons associated with various groups of Lie
type. However, even these partial geometries can be eliminated by looking at
the actions of their automorphism groups on lines. I intend to say more on this
matter in a later paper.

I end this section with an easy exercise. By Theorem 2.4 and the
proof of Lemma 3.3, we already know that some of the planes of (M, J9) are
neither projective nor affine. In fact, a stronger result holds.
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Exercise 4.6
Prove that if J9 is a nontrivial 2-(n,m,l) design over a finite field,

then J9 is neither a projective nor an affine plane.

5. EXTREMAL PROBLEMS
In this section, we consider projective space versions of theorems of

Cameron [5],[6]. Let G<PFL(co,q) have %<co orbits on the set

PGfc) (co,q) of k-subspaces of PG(co,q) for each k e N. Fix an integer k

such that nfc > 1, and let %: PG (co,q) — » {c .̂..,̂  } be a colouring which

assigns distinct colours to the different G-orbits. The next result says roughly

that G must locally preserve chains of subspaces. (Throughout, we adopt the

convention that all r colours are used in an r-colouring).

Theorem 5.1 [18]
For all r > 2 and t > k > 1, there exists an integer f(t,k,r) with the

following property. Suppose that S is a projective space of GF(q) of

dimension m > f(t,k,r). If S® is r-coloured, then there exist

(i) subspaces 0 CL A ç B ci C of S with dim C = t, dim A = i and

codimc B = j, where 0 < i + j < k, and
(ii) distinct colours Ci,C2 such that Te C^) is coloured C2 if A ci T

and dim(T H B) = k - j, and is coloured GI otherwise. D

We would like to use this local information to understand the global
structure of the co-categorical structure M = <PG(cû,q),%>. Unfortunately,

very little can be said in general. However, in certain extremal circumstances, it

is possible to use this local information to identify M.
If L G PG^*1) (co,q), then the colour scheme of L is the nrtuple

(ap...^ ), where a. is the number of elements of L which have colour c..

The colour scheme matrix A of the colouring % is the matrix whose rows are

the distinct colour schemes.
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Theorem 5.2 [18]

The colour scheme matrix A has rank n^. Furthermore, the colours

and colour schemes can be ordered in such a way that the first n^ rows of A

form a lower triangular matrix with nonzero diagonal entries. D

In particular, % ^ nfc+i. Suppose that n^ = nfc+i. Then A is a

nonsingular lower triangular matrix, and two (k+l)-subspaces lie in the same

G-orbit if and only if they have the same colour scheme. Looking at the last

row of A, we see that there exists a colour, say blue, which lies in a unique

colour scheme. So after amalgamating the other colours and applying Theorem

5.1 to the resulting 2-colouring, we obtain

Theorem 5.3 [18]
Suppose that G < PrL(œ,q) satisfies 1 < nk = nk + 1 < co. Then there

exists a G-invariant colouring 9: PGO^Cujq) — » {red,blue} and integers i,j

with 0 < i + j < k such that

(i) G acts transitively on blue k-spaces and on (k+l)-spaces which

contain a blue k-space; and
(ii) if C € PG^*1) (œ,q) contains a blue k-space then there are subspaces

0 c. A ç B C. C with dim A = i and codimç B = j such that

Te C*) is blue if and only if AC, T anddim(B H T) =k-j. D

If k is small, this condition is strong enough to enable us to identify
M = <PG(co,q),x>. For example, the following is the main result of [18].

Theorem 5.4
Suppose that q * 2. If G < PrL(co,q) acts transitively on the points

of PG(œ,q) and satisfies 1 < n2 = ns < co, then one of the following

cases holds,
(i) G preserves a symplectic polarity of PG(co,q) and acts transitively on

the sets of totally isotropic lines and nonisotropic lines.
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(ii) G preserves a geometric 2-spread L of PG(co,q) and acts transitively

on the planes of the incidence structure P(L) ~ PG(œ,q2). D

This is proved by working through the various possibilities for the pair

of integers (i,j), 0 < i + j <2, given in Theorem 5.3. To give a flavor of the

type of reasoning involved, I will give the details for two of the more

interesting cases.

Suppose that i =1 and j = 0. So if the plane Q contains a blue line,
then there exists a point cc(Q) e Q such that J! e Q(2) is blue if and only if

oc(Q) e L Let S be a finite dimensional subspace which contains a blue line,

and let J9s = {-? e S(2) I i is blue}. Suppose that J e «0s and a G S\L

Considering the plane Q = <J!,oo, we see that there is unique point |3e J!

such that <a,P> € J9s- Thus the incidence structure (S,J9s) ia a (possibly

degenerate) generalized quadrangle. By Buekenhout and Lefevre [3], if
dim S > 6 then there exists a point a e S such that J9s = {% € S(2) I a E J!}.

This implies that there is a point a G PG(a>,q) such that i e PG(2) (oo,q) is

blue if and only if cce J!, This contradicts the assumption that G acts

transitively on points.

Suppose that i = 0 and j = 2. So if the plane Q contains a blue line,
then there exists a point a(Q) e Q such that J! E Q(2) is blue if and only if

a(Q) £ J!. Let S be a finite dimensional subspace, and consider the

incidence structure (S,IRs), where RS = {^ e S(2> I i is red}. Let

J! e ERs and oce S\J!. If the plane Q = <J!,a> contains a blue line, then

oc(Q) e J! and a(Q) is the unique point of J! which is collinear with a in

(S,IRs)- Otherwise, a is collinear with every point of 2. By definition,

(S,ERs) is a Shult space. By Buekenhout and Shult [4], there exists a
(possibly degenerate) symplectic form a on the underlying vector space of S

such that RS is the set of lines which are totally isotropic with respect to a. It

follows that there is a symplectic form a on V(co,q) such that i e PG(2)

(co,q) is red if and only if % is totally isotropic with respect to a. Since G

acts transitively on points, a is nondegenerate. Thus G preserves a

symplectic polarity of PG(co,q) and acts transitively on the set of nonisotropic
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lines. The reader is referred to [18] for a proof that G also acts transitively on

totally isotropic lines.
If G < PrL(œ,q) is the full automorphism group of either a symplectic

polarity or a geometric 2-spreadof PG(co,q), then G satisfies n2k = n2k+l

= k+ 1 for each ke N.

Problem 5.5
Suppose that G < PrL(co,q) acts transitively on the points of

PG(co,q) and satisfies l < n k = n k + i < G ) for some k e N. Does G

preserve either a symplectic polarity or a geometric 2-spread of PG(oo,q)?

This problem is open even for k = 3. In this case, the hardest situation

to analyze is when each 4-subspace contains at most one blue plane. When this
occurs, if Q e PG(3> (co,q) is blue and i. e Q(2), then acl(xE) = Q. A similar

difficulty arises for larger values of k. Thus problem 5.5 provides further
motivation for the problem of understanding expansions of PG(oo,q) in which

certain subspaces are no longer algebraically closed.
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