
Chapter 9

APPLICATIONS

1. The theorems of Roth and Ridout.

The two Approximation Theorems proved in Chapters 7 and 8 contain as
special cases the theorems of Roth and of Ridout. These results were
already mentioned in the introduction to Part 2, and we then gave the refer-
ences to the literature.

Roth's theorem may be considered as either the special case d=l, X=l,
/i=l of Theorem (1,1) or as the special case r=rf=r"=0 of Theorem (2,1). It
states:

If £ is a real algebraic number; if p and ci are positive constants; and

if there exist infinitely many distinct simplified fractions T such

that

pv

Q
then p ^ 2.

•c,iQwrp,

This theorem is obvious if £ is rational; thus, e.g. the case when £ =0
p(k)

may be excluded. Now —— tends to £ as k tends to infinity. Hence, by
Q

5 + 0, the integers P , Q Wf and H^) have the same order of magnitude.
It follows that, for all k,

where Ci is a further positive constant. Hence the assertion is an immediate
consequence of either Approximation Theorem.

We next show that Ridout's theorems may be deduced from Theorem (2,1).
His first theorem is as follows. Let again £ * 0 be a real algebraic

number; let p, ci, cs, and c4 be positive constants; and let X and ju, be con-
stants such that

' " M " p(k)
Assume that there exist infinitely many simplified fractions —TT-V

with the following properties:

»
(i):

(ii): The numerators P ' and the denominators Q are distinct from zero
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148 LECTURES ON DIOPHANTINE APPROXIMATIONS

and can be written in the form

]=1 J ]=rf+l J

where pi,...,pr», Prf+l>-.,Prf+rtf are finitely many distinct primes,
(k)* (k)*ei,...,er», er»+i,...,eri+ru are non-negative integers, and Px , Qv

integers such that

Tfeen

For the three integers P , Q , and IT ' have again the same order of
magnitude. It follows that there exist three positive constants ci, c'3, and ci
such that, for all k,

and

n |pW|p, . c'aH^-1, T'lQ^U
j=l J J=r'+l J

The latter inequalities hold because, e.g.

3=1 Pj PW* Cs " ' C*

Therefore, from the hypothesis,

p(k)
n |P(k)

J

and so the assertion is contained in the special case r=0 of Theorem (2,1).
Ridout's second theorem generalises that of Roth in a different direction.

It is essentially equivalent to the case rf=r"=0 of Theorem (2,1), and it may
be stated as follows.

Let $, $i,,,,£r be a real, a pi-otftc,...,a pT-adic algebraic number, re-
spectively. Let T andc be positive constants. Assume there exist in-
finitely many distinct simplified fractions such that

*H (P(k)-|]Q(k)lJj *

Then r ^ 2.
As we see, this theorem does not require that

M-T
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a restriction imposed by both Approximation Theorems. However, this pre-
sents no difficulty. For choose a rational integer n > 0 such that the r+1
algebraic numbers

{' = £ + n, |j[ = £1 + n,..., £r = %-p + n

are all distinct from zero, and put

P<k>'=P (k )
+nQ (k>.

Then

H(k)' * H(k). (nn-1), where H(k>' = max( |P(k>'|, |Q« |),

and it is evident that

p(k)T _ f * _

Q^ Q

and

. inw_ |
PJ ' -

Further

and hence

because

The hypothesis implies therefore that

r
n

where Ki denotes the constant

& = c(n+l)T sup 5 iQ^lp1

K J=I

where the supremum exists because

(P«Q(k)) = land «;*0.
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On applying now Theorem (2,1) to this inequality, with rT=rtT=0 and with
1*9 ££>•••> £~ as the algebraic numbers, the assertion r * 2 follows at once.

(k)f r

For P can be zero for only finitely many k.

2. The continued fraction of a real algebraic number.

One simple application of Ridout's first theorem is of interest in itself.
Let | be a real irrational algebraic number. Then | can be written as

an infinite continued fraction

£ = [ao, ai, aa,...]

where the incomplete denominators ao, ai, a^,... are integers, all but perhaps

ao being positive. Denote by -^ the n-th convergent of this continued frac-

tion. As was proved in Chapter 4,

We can now show the following result.

Both the greatest prime factor of Pn and that of Qn tend to infinity with
n.

For assume, say, that there exists an infinite sequence of suffixes,

N = {m, na, n3,...}, where n4 < ifc < ns < ...,

such that, for neN, Pn allows only the finitely many prime factors pi,...,prf.
We can then apply the first theorem of Ridout with

p = 2, X = 0, p, = 1,

and evidently obtain a contradiction. The assertion for Qn is proved in the
same manner.

3. The powers of a rational number.

The case X = ju = 0 of Ridout's first theorem implies the following result.

Let £ 4 = 0 be a real algebraic number; let pi,...,Ps be finitely many
distinct primes; and let e be an arbitrarily small positive constant.
There exist at most finitely many systems of s integers,

{e}={ei, ea,.«, es},
such that

Ip^.pJ'-tKe-*
where
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For put

**...<•-!
where P and Q are positive integers which are relatively prime. To each

system {e} there belongs then such a fraction - such that

II-*!<•-"
It is obvious that

where p0 denotes the largest of the primes pi ,...,Ps- Hence

I? - £ | < Q"p, where p •*— ̂  «

The prime factors of both P and Q are bounded. Therefore the first theorem
of Hidout may be applied with

p > 0, X = jit = 0, so that p > X + p,,
p

and it follows that the number of solutions £ , or, what is the same, that of

systems {e}, is finite.
This result may now be generalised, as follows.

Theorem 1: Let % * 0 be a real algebraic number; let pi,...,p& be
finitely many distinct primes; and let e be an arbitrarily small positive
constant. There exist at most finitely many systems of s+1 integers

{e}={e0,ei,..., eg}

with e0 * 0 such that

0< lpiei...p|s-e0«l<e"€E

where

E = . max |eJ .
j=l,2,...,s J

Proof: We assume that the assertion is false, hence that there are in-
finitely many different solutions

fjf-' PV. ' rf^' 1 rir - 1 9 q ^\6o , 6l ;•••> "g J \K — l,o,O,.../

of the inequality

Jk) e(k) w ,E(k)
(1): 0< Ipf1 ...p^s -ertKe"6"1

where
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For each solution {e&)} put

00 e<k>
•

with positive integers P and Q which are relatively prime.
We divide now the solutions into equivalence classes by putting two solu-

tions {e } and {e T- into the same class, in symbols

whenever

p(k)

JW0(k) =
e0 Q e0

/ \
Each such class evidently contains a unique element, {e } say, for which

the positive integer |eo I is a minimum. This solution {e^mfy is said to
be the minimum solution of its class.

Consider now an arbitrary solution {e } for which the greatest common
divisor

is greater than 1, and put

so that

Then

(k)* (k)*with new integers ei ,..., Cg . From the construction, it is clear that, for
1 = 1,2,..., s,

ft ^ (k)* ̂  (k) • (k) ̂  n (k)* (k) 34! (k) . n0 < e.7 < ej 7 if e. ^0, ej = e. 'if e: < 0 .

Therefore

iuttA ir(k)*-
J-lX^-»B '

satisfies the inequality

(-,«*. p«Vi.

W* _<W* efe)*

-# "
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(k)0 « . * E

It follows then from (1) and (2) that

, e(k)* e(k)* (k)* , e-^^ eBW*0 < |pfl ... p!s - eik) % | < 2-rr- < e'£E ,
|dw|

and hence {e } is likewise a solution. Evidently

{.«V{.«J and |e<k>*|< k«|.

We have thus proved that every minimum solution {e^m'} satisfies the equa-
tion

(3): (e<m), P(m>) = 1,

Next consider any solution {e } which is in the same class as the

minimum solution {e }; i.e.,

Then, by (1),
,,=.&)

0<
p(m)

eTV517

Hence there can only be finitely many solutions {e } ~ {e } because
otherwise the right-hand side would tend to zero.

It follows that it may be assumed, without loss of generality, that all

solutions {e } are, in fact, minimum solutions; for we may, if necessary,
omit all solutions which are not.

Next, we are allowed to renumber the primes pi,..., pg, and to replace

the infinite sequence of minimum solutions {e } by any infinite subsequence.
There is then no restriction of generality in imposing the following further
assumption. There are two non-negative integers rf and r" with r f+rM > 0

such that, for every solution {e 7,

ejk)^0 if j = 1,2,..., r'; ejk) ^ 0 if j = r' + l,r'+2,...,r'+r".

(k)This implies that, for every k, P cannot have prime factors distinct from

Pi>*->P r '> and Q cannot have prime factors distinct from Pr' + i »...,pr
T+r

Finally put
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It Is clear that H*' tends to infinity with k, and that

(4): 0 <
p(k)

Q

* e -eEfe>

By the construction, P and Q axe relatively prime; it follows then from
(3) that also

(5): (P(k),Q«*) = 1.

By what has just been said about the prime factors of P and Q ,

1=1 J

It is further-obvious that

rf+r"
o < n

j=r' + l

Therefore

0< |Q(k)

j=r'+l *J

whence

,(«
(6): 0< P

Q

p(k)
Now £ + 0, and it follows from (4) that the fractions j£7gT* tend to g.

Therefore P and Q have the same order of magnitude as H . There
exists then a positive constant c such that, for all k,

|p(k)Q(k)% cH^2.

(k) (lei* M
On the other hand, the definitions of PW,QW , and Hw imply that

where again po denotes the largest of the primes pi,...,ps. Hence

w(k)-pii

where

slogpo
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whence, by (6),

0< -f-* •*
Q

Here, for shortness,

On applying now Theorem (2,1) with r=0, we obtain a contradiction. This
concludes the proof.

By way of example, let £ £ 0 be a real algebraic number; let u and v
be two integers such that

u > v £ 2, (u,v) = 1,

and let e > 0 be an arbitrarily small positive constant. From Theorem 1 it
follows immediately that there can be at most finitely many pairs of integers
{e0, ei} with e0 * 0, ei ^ 1 such that

The special case $ = 1 means that the fractional parts of the integral powers

of - cannot be too small. This result is useful in the theory of Waring's

problem. For it allows to prove, for all sufficiently large positive integers n,
that every positive integer is the sum of not more than

n-th powers
on in on 311u , i , 4 , o ,...,

where certain positive integers do, in fact, require this number of n-th powers1.

4. The equation P+ o+R = 0.

This section deals with a general theorem on triplets of integers.

Theorem 2: Let c and v be two positive constants, and let

pi,...,Pr;Pr+l'*"> Pr+r'» Pr+r1 +!>•••» Pr+r'+r1

be finitely many distinct primes. Denote by S an infinite sequence of
distinct triplets

{p(k),Q(kU(k)} (k = 1,2,3,...)

where P^ , Q*', and IT ' are integers as follows,

1. See Hardy and Wright, Theory of Numbers (Oxford 1954, 3rd ed.)« 335-337; K.
Mahler, Mathematika 4 (1957), 122-124.
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P» + 0, Q(k) + 0, R(k) + 0, P« + Q« + R
(k) = 0,

)> Q(k)} = (p« R(k)} = (Q(k)> R(k)}

Put

and write P(k*, Q^\ and R^ as products of integers,

P« = P^fP, Q(k) - Q^OJk), R(k) = R^,

where Pi has no prime factors distinct from pT+i,...,pr+ri, Qi

no prime factors distinct from Pr+r'+l'—'Pr+r^r1*' a^ Ri has no
prime factors distinct from pi , ..., pr . #

(k= 1,2,3,...,),

z/ ^ 1.

Proof: For each k, either

(7): |P(k)IHQ(k)|* |BWI,

or one of the five inequalities obtained from (7) by permuting P , Q , R
is satisfied. Since we may replace 2 by any infinite subsequence, and since
we are allowed to rename these three letters and, at the same time, the cor-
responding sets of primes, there is no loss of generality in assuming that, in
fact, the inequality (7) holds for all elements of S.

Put now

(k) P(k)
w and $ = 5i = - = 5r = -1.

and, just as in the last chapter, write

n
j=r+l j=r+r'+l

,<w
Then, by (7),

Further also
,(k)

(k)

QM
* - Ifi^lPj - |R 'Pj

For either PJ is a divisor of Q(k*, and then it is prime to R^ and so
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(IT)
or PJ is prime to Q , and then

R(k)
Therefore

and it follows that

_ |R(k)i* _ i-Wi- IB Ipj - IB |p] .

n UW-{jlw- n lR(k)L.,
i—l 1—1 *

r /. v r+r? /.v r+r'+r" /. x
n lipw I n |T>W| TT lr*W|IR Ip4. n |P |p.. n |Q |p..
= 1 3j=r+l 3j=r+r'+l 3Q

Next, the hypothesis implies that, e.g.

r , (]r\ , r , (lr\ , , l̂r^ r Tlr^n -D^K' - IT t *D>K' 13W ^ <: TT T3^K' IIK |p. = n (\tii |p..|K2 Ipj^ n IRi Ij

and, in the same way,

(k)

r+r1

n I
]=r+l

Therefore

3(k) r+r+r"
n I

j=r+r f+l

R(k)
^« cH

Finally, by (7),

H(k) = |p«, = (Q(k)+R(k), ^ |Q(k), + |R(k),, 2 |Q(k), 9
so that

IQ I55 2H '
and hence

It follows then from Theorem (2,1) that

whence the assertion.
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It is again not difficult to construct examples which show that the asser-
tion z/^1 of the theorem is best-possible.

The Theorem 2 is a special case of the more general

Theorem 3: Let

F(x,y) = Foxf + FiX^y + ... + Ffy
f, where f ^ 1, F0 * 0, Ff * 0,

be a binary form with integral coefficients which has no multiple factors.
Let

pi,..., pr, Pr+i,—, Pr+r»> Pr+rf+l>— 9 Pr+rf+rM

be finitely many distinct primes, and let c and co be two positive con-
stants. Finally let 2 be an infinite sequence of distinct pairs of integers
{P(k), Q(k)j guch thatfforall k,

P(k) * 0, Q(k> * 0, (P(k),Q(k)) = 1, H(k) = max ( | P(k) , |Q(k) |)

and

n IP(k)l n lo(k)l <cH (k>»j. n IP iPr n IQ |D. < CH
j=r+l 3 *

Then co ^f-2.

The reader should have no difficulty in deducing Theorem 2 from the
special case F(x,y) = x+y of Theorem 3, and in proving Theorem 3 by means
of Theorem (2,n).

5. The approximation by rational integers.

The two Approximation Theorems proved in Chapters 7 and 8 have ana-
logues relating to the approximation of integral g-adic numbers by rational
integers. There are again two such theorems, each one having two equivalent
forms. These theorems are as follows.

Theorem (4,1): Let S-~-(£ i,..., |r), where |i + 0,..., £r + 0, be an algebraic
g-adic integer. Let gf ^ 2 be a positive integer 9 and let c2, c3, a, and X
be four real constants such that

c2 > 0, c3 > 0, a > 0, 0 ^ X ^ 1.

If there exists an infinite sequence S = {pW, p(2), P^,...} of distinct
positive integers such that, for all k,

then a < X.

Theorem (4,n): Let F(x) be a polynomial with integral coefficients which
does not vanish at x=0 and has no multiple factors. Let g s* 2 and g1 ̂  2
be two positive integers, and let c2 , c3 , a, and X be four real constants
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such that

ci > 0, c8 > 0, <r > 0, 0 ^ X < 1.

If Mere exists an infinite sequence S = {pW, P<2), P^,...} of distinct
positive integers such that, for all k,

then ff < X.

Theorem (5,1): Let pi,..., pr, Pr+i,...,Pr+rf be finitely many distinct
primes, and let gi * 0,..., £r * 0 be an algebraic pi-adic integer, etc.,
an algebraic pr-adic integer, respectively. Let Ki and r be two posi-
tive constants. If there exists an infinite sequence S = {P^\P(Z\P^3\...}
of distinct positive integers such that, for all k,

3=1 j=r+l

then r * 1.

Theorem (5,n): Let pi,...,pr, pr+l>...,Pr+rf be finitely many distinct
primes, and let Fi (x),..., Fr(x) be r polynomials with integral coefficients
which do not vanish at x=0 and have no multiple factors. Let KB and r
be two positive constants. If there exists an infinite sequence
S = {pW, pW, p(3),..-} of distinct positive integers such that, for all k,

j=r+l

then T ̂  1.

A discussion similar to that in Chapters 7 and 8 allows again to show that
these four theorems are equivalent, in the sense that each implies the other
three.

It suffices then to prove Theorem (4,1). This is done by essentially re-
peating those constructions and estimates of §§2-8 of Chapter 7 that led to the
case d=2 of the Main Lemma. One assumes that the assertion is false and
that, say,

a = X + 4e where 0 < e ^ -= .

The proof then precedes with the values

and hence with the values

= TT » Qh = 1, Hh = Ph (h = 1,2,..., m).

Here the parameters m, s, t, ri,..., rm are selected just as in §2 of Chapter
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7, and the polynomial A(xi,...,xm) is defined as in §3. In particular, the in-
equality (14) of §2 takes the form,

The proof now depends on upper and lower estimates for the integer

A(l)=lfl)=Alx...lm
('Cl'-''Cm)*0'

which has the explicit value

a< immmi (MPI1'11 Pim-lm

"" V * •" m

Here, by the upper bound for ailmmm im,

* 5(4c)mri (2ri+1-l)...(2rm+1-l) < 5(4c)mri (22ri)m = 5(16c)mri

Hence it follows that, in the notation of Chapter 7,
m

lA/,,1 « (80c)mri max &**... P^'lm * (SOc)^1 max
(Del (i)el

and therefore

The lower estimate for the case d=2 of N(j), obtained in §7 of Chapter
7, still remains valid; but since N(i)=A(i), it takes the form

On combining these two inequalities, we find that

P!E < (80ccia)
m,

where we have put

E = (l-A+orJSi-d+ejSa.

In explicit form,

E = (l-X-wr){|(m-s)-A} - (l+€)(|(m+s)-A} =

= (cr-X-e)m - (or-X+e+2)s - (or-X-e)A
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Further, just as in Chapter 7,

_ em o < A < 6m

It follows then that

E = -5.3e.m - -g(5e+2)s - 3e-A £ -sr- 015" 5 If" ^ em •

Hence, if Pi was chosen so large that
1

Pi £ (SOcda)6 ,

a contradiction arises, proving the assertion.

6. An example.

By way of example, let p=pi be an odd prime, and let a denote one of the
p-2 integers 2, 3,..., p-1. Put

p(k)=apk-l (k = 1,2,3,...) .

It follows from Euler's theorem that

and hence

P(k+1Wk)(modpk),

or, what is the same,

/o\ |-n(fc+l) n(k)| ^ ~-k(8): |P - P Ip ̂  P

In particular,

p(k) sp(k-l) s<>>sp(») spW=a(modp)

and therefore

(9) |P(k)-a|
"P p

By (8), the sequence {P ,̂ P^2', P^8',...} is a p-adic fundamental sequence;

a= lim P(k)(p)

let

be its limit. Since Pvim'= PX"/F, evidently

a = limP(k+1)=[ lim/lim
\kr>«
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so that a is a root of the equation

xP-x = x(x-l)(xp"2
+x

P"3
+...+ X+l) = 0.

Now a is distinct from 0 and 1, and by (9)

Hence a(a-l)*0, and so a satisfies the equation

Thus a is an algebraic p-adic integer distinct from zero. It has the
following further property.

If e is an arbitrarily small positive number, then there are at most
finitely many positive integers k such that

tir\\. UP^ ^ i <• 0~
6pkUO;: |a -a |p < a

For put r=l, $1= a, and denote by Pr+lwPr+r! a11 tne distinct prime
factors of a. It follows that

j=r+l

Therefore, by (10),

|p(k)-«|p T |P(k)|pj ^ P(k)-T, where r = 1« > 1,
j=r+l

and so the assertion is an immediate consequence of Theorem (5,1).


