Chapter 9
APPLICATIONS

1. The theorems of Roth and Ridout.

The two Approximation Theorems proved in Chapters 7 and 8 contain as
special cases the theorems of Roth and of Ridout. These results were
already mentioned in the introduction to Part 2, and we then gave the refer-
ences to the literature.

Roth’s theorem may be considered as either the special case d=1, A=1,
u=1 of Theorem (1,I) or as the special case r=r'=r''=0 of Theorem (2,I). It
states:

If £ is a real algebraic number; if p and c1 are positive corlt{stants; and
if there exist infinitely many distinct simplified fractions %'(E)' such

that
)

(k) -p
- & [F,
Qlk)

= c;'Q

then p < 2,

This theorem is obvious if £ is rational; thus, e.g. the case when & =0

k
may be excluded. Now ﬂ tends to £ as k tends to infinity. Hence, by

Q
& + 0, the integers P(k), Q‘k), and H(k) have the same order of magnitude.
It follows that, for all k,

cle(k) P <c H(k)"o

where c'; is a further positive constant. Hence the assertion is an immediate
consequence of either Approximation Theorem.
We next show that Ridout’s theorems may be deduced from Theorem (2,I).
His first theorem is as follows. Let again £+ 0 be a real algebraic
number; let p, ci, ¢s, and ¢4 be positive constants; and let A and u be con-
stants such that

Osasl, O=spus=l, x)
Assume that there exist infinitely many simplified fractions %(13

with the following properiies:

)

- &
Q®

(): < al® [P

()

(1i): The numerators P(k) and the denominators Q" are distincl from zevo
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and can be written in the form

2T » XY
p®) _ pl* o8 QW™ q p;’
=1 ! j=r'+1
where Piyees, Ppts Pyt 415000 Priax’t ave finitely many distinct primes,

Ue)* Ql*

€1eeey €p!y €p'il;eesy Eplyptt GYE Mon-negative integers, and P
are integers such that

0 < 1P%*) < ol P, 0 < 109" | < cal@® [ ®
Then
P SA+p.

For the three integers P(k) Q( ) and H(k) have again the same order of
magnitude. It follows that there exist three positive constants cj, c:;, and cg
such that, for all k,

cil@®]7P < ¢ gl)-»

and
W <am®l T ), < !
j=1 j=r'+1
The latter inequalities hold because, e.g.
:]'1'1. ef _ _(“j;* S 1 lp(k)|1 A ElgH(kn-x_
Therefore, from the hypothesis,
—?—‘; (| 129, :fil Q1 < et B2,

and so the assertion is contained in the special case r=0 of Theorem (2,I).

Ridout’s second theorem generalises that of Roth in a different direction.
It is essentially equivalent to the case r'=r''=0 of Theorem (2,I), and it may
be stated as follows.

Let &, £1,,,, £y be a real, a p1~adic,...,a py-adic algebraic number, re-
spectively. Let T and ¢ be positive constants. Assume there exist in-
finitely many distinct simplified fractions such that

pk)

(k)-7
_(_) :

II IP( )-£jQ(k)| By < cH
j=1

Then T < 2.

As we see, this theorem does not require that
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E+0, 1 %+0,...,Ep *0,

a restriction imposed by both Approximation Theorems. However, this pre-
sents no difficulty. For choose a rational integer n > 0 such that the r+1
algebraic numbers

£ =£t+n, g; =& + Dy, E:r=€r +n
are all distinct from zero, and put

pl' _pl) QM)
Then
%' < g®, (n+1), where  H®' = max(|p® ) ™| )
and it is evident that
o
Q® o®
and
lp(k)'_ Ej.Q(k), ;j - lp(k)_ EjQ(k),;j G =1,2,.0., 7).
Further
(k)"
P ' _1a®E) 1 k) v (&)
Q_(ET - ';'j pj = lQ 'Pj [P - EjQ ij
and hence
plk) SO < L p) g *
AR IR R A K
because

IQ(k) 'Pj <1.

The hypothesis implies therefore that

() r | k)
P * P ' |* (k)r-7
- & I -t |y, <K H ,
Q® ] O
where K denotes the constant
(k)' 1

T r
Ki =cm+l) sup I |Q
=1

k Pj

where the supremum exists because

(P(k),Q(k)) =1 and g‘j $0.
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On applying now Theorem (2,I) to this inequality, with r'=r''=0 and with

3 1 PP Er as the algebraic numbers, the assertion 7 < 2 follows at once.
For P k' can be zero for only finitely many k.

2. The continued fraction of a real algebraic number.

One simple application of Ridout’s first theorem is of interest in itself.
Let £ Dbe a real irrational algebraic number. Then £ can be written as
an infinite continued fraction

= [0, 21, 2aje..]

where the incomplete denomina.tors 29, 21, Aay... are integers, all but perhaps
ao being positive. Denote by —— the n-th convergent of this continued frac-

Q
tion. As was proved in Chapter 4,

Pn -2
- &<
We can now show the following result.

Bolth the greatest prime factor of Pp and that of Qp tend to infinity with
n.

For assume, say, that there exists an infinite sequence of suffixes,
N = {ni, ng, ns,...}, where n; < nz < ng < ...,

such that, for neN, Pn allows only the finitely many prime factors pu,...,py-
We can then apply the first theorem of Ridout with

p=2,A=0,u=1,

and evidently obtain a contradiction. The assertion for Qp is proved in the
same manner.

3. The powers of a rational number.

The case A = u=0 of Ridout’s first theorem implies the following result.

Let £ %0 be a real algebraic number; let pi,..., g be finitely many
distinct primes; and let ¢ be an arbitrarily small positive constant.
There exist at most finitely many systems of s integers,

{e} = {el.’ €300y eS}s
such that

lpfl-n p:s - E I < e-EE
where

=P, legl .
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For put
eg _P
p1 .or p Q

where P and Q are positive integers which are relatively prime. To each
system {e} there belongs then such a fraction % such that
P -e¢E
g -&l<e
It is obvious that

Q <pSt

where po denotes the largest of the primes p;,...,pg. Hence

Ig-§|< Q-p, where p= >0.

8 logpo

The prime factors of both P and Q are bounded. Therefore the first theorem
of Ridout may be applied with

p>0, A=pu=0, sothat p>Ar+y,
and it follows that the number of solutions g , or, what is the same, that of

systems {e}, is finite.
This result may now be generalised, as follows.

Theorem 1: Let & * 0 be a real algebraic number; let p1,...,Ps be
finitely many distinct primes; and let € be an arbitrarily small positive
constant. There exist at most finitely many systems of s+l integers

{e} = {eo,e1,..., €g}
with eo + 0 such that

0< lpfl...pgs - eok |<e'GE
wheve

" e

Proof: We assume that the assertion is false, hence that there are in-
finitely many different solutions

{e(k)} {(k) ... . €g (k) } k=1,23,..)
of the inequality

S

(k)
) 0 < Ipt* ... pgs gl < e ¢

where

E(k) - Ie(k) l.

max
j=1,2,...,8
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For each solution {e(®)} put
, (k) egk) _ P(k)

pf' «ee Pg = jS)-

with positive integers P(k) and Q(k) which are relatively prime.
We divide now the solutions into equivalence classes by putting two solu-

tions {e(k)} and {e(l)} into the same class, in symbols

{e®h ~ oM,

p 50
ORGP

whenever

Each such class evidently contains a unique element, {e(m) } say, for which

the positive integer |e‘(,m) | is a minimum. This solution {e(m)} is said to
be the minimum solution of its class.

Consider now an arbitrary solution {e(k)} for which the greatest common
divisor

(esk), P(k)), =a® say,

is greater than 1, and put
(k) (k)
(2): P(k)* = E(E) ’ elgk)* = ‘e_(_) ’
d d
so that
o plel*y _ g,
Then
(ic)* (ic)* (ic)*
%U:T =pp*  ..Dg8
(c)* ()*
wltl; lgew integers ei " ,...,eg " . From the construction, it is clear that, for
i=1, yesey B,
0= e(k)l'l < e(k) if e(k) =0 e(k)l.l = e(k) if e(k) <o0.
i i i Y i i
Therefore

(k)* _ (k)*
B =g ey

satisfies the inequality
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W% _ g0

0<E
It follows then from (1) and (2) that
(k)
(kc)* (k)* " -€¢E o plk)*
0< Ipfl ...jp:B -egk) §'<e—(l-{7<e6E ’

la
and hence {e(k)*} is likewise a solution. Evidently
Mm@ g < o],

We have thus proved that every minimum solution {e(m)} satisfies the equa-
tion

(3): (o) pmy _ gy

Next consider any solution {e(k)} which is in the same class as the
minimum solution {e(m)}; ie.,
pk) i p(m)
Jg®) = Tm) o fm)

Then, by (1),

(m) (k) —g®
0< |y - & |= | oew < o
e 'Q e Q ) |

Hence there can only be finitely many solutions {e(k)} ~ {e(m)} because
otherwise the right-hand side would tend to zero.
It follows that it may be assumed, without loss of generality, that all

solutions {e(k)} are, in fact, minimum solutions; for we may, if necessary,
omit all solutions which are not.
Next, we are allowed to renumber the primes p,..., Pg, and to replace

the infinite sequence of minimum solutions {e k)} by any infinite subsequence.
There is then no restriction of generality in imposing the following further
assumption. There are two non-negative integers r' and r'* with r'+r'' > 0

such that, for every solution {e(k)},
ej(k)ao if j=1,2,...,1"; e§k) <0if j=r+1,r'+2,..,r'+1",
This implies that, for every k, P(k)

P1seees Pty and Q(k) cannot have prime factors distinct from put.q seees Pptopt
Finally put

QU _ gl ()

cannot have prime factors distinct from

®, 1g%").

= max(P
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It 1s clear that B

tends to infinity with k, and that
pk) e € gk

TE <|Zk;l

*

(4):

(k)

By the construction, P* and Q( ) are relatively prime; it follows then from

(3) that also
(5): (P(k),Q(k)*) = 1.
By what has just been said about the prime factors of P and @,
r+r"
129 1 lp(k)l 1, Q¥ lQ®1y, =

i
j=1 j=r'+ 1
It is further-obvious that
r'+r"
o< 1 ey <1.
j=r'+1
Therefore
r'+r'
o< Q¥ m 1Q®*|_ <1
j=r'+1
whence
(k) (k)
rf+r" * _eE -EE
6): 0< El. ]I ,P(k)l I IQ(k) | < e e
lkf* ! jerat AR MR /N

(k)
Now &+ 0, and it follows from (4) that the fractions B(—)-* tend to £.

Therefare P(k) and Q( » have the same order of magnitude as H(k) . There
exists then a positive constant ¢ such that, for all k,
lp(k)Q(k)*, > cg&2

%
On the other hand, the definitions of P, Q®* anda B%) imply that
(k)
(k) < pEE
where again po denotes the largest of the primes pi,...,pg. Hence

<9 < L0-p

where ¢

p= slogpo
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whence, by (6),

(k) r 't .
P + k) (k) (k)- 7
0<7—-g.nlp lpr O Q% ]y < KiH .
Q k)* =1 & J=r'+l "

Here, for shortness,
K= %, T =24p>2.

On applying now Theorem (2,I) with r=0, we obtain a contradiction. This
concludes the proof.

By way of example, let £ + 0 be a real algebraic number; let u and v
be two integers such that

u>vz2 (4yv)=1,

and let € > 0 be an arbitrarily small positive constant. From Theorem 1 it
follows immediately that there can be at most finitely many pairs of integers
{eo, 1} with ep# 0, ex =1 such that

u\e1 -€ey
(v) - eo£|< e .
The special case £=1 means that the fractional parts of the integral powers

of % cannot be too small. This result is useful in the theory of Waring’s

problem. For it allows to prove, for all sufficiently large positive integers n,
that every positive integer is the sum of not more than

Q)] -

on, 10 on 30
1

where certain positive integers do, in fact, require this number of n-th powers’.

0<

n~-th powers

4. The equation Pkl alklrKk) -0,
This section deals with a general theorem on triplets of integers.
Theorem 2: Let ¢ and v be lwo positive constants, and let

P1yeee; Pr; Pryloeees Prar's Pr+r'+1,.0 Prir' 41

be finitely many distinct primes. Denoite by Z an infinite sequence of
distinct triplets

o) Q) glkh k=1,23,...)

where P(k), Q(k), and R(k) are integers as follows,

1. See Hardy and Wright, Theory of Numbers (Oxford 1954, 3rd ed.), 335-337; K.
Mahler, Mathematika 4 (1957), 122-124.
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28 4 0,@® 40, R0 40, 28 , Q) , r®) -,
%) o) - (P(k), rE) . (Q(k), rE) - 1.

H(k) (k) I, IQ(k) L, iR(k) D,

= max(P

and wrile P(k), Q(k), and R(k) as products of integers,
pl) _ p)pl) o) _o@o® ) | ppl)

(k)

no prime factors distinct from Prip' +1seees Dp4r' 4" N4 ng) has no
prime factors distinct from py,..., pp. If

where Py ' has no prime factors distinct from: ppilsee; Prir's Q(xk) has

lpz(k)ng)Rg(k) l < cH(k)y (k = 1,2 3,- ’)’

then v = 1.
Proof: For each k, either

@): p®] 5 1o® > [r®)],

or one of the five inequalities obtained from (7) by permuting P( ), Q( ) (k)
is satisfied. Since we may replace Z by any infinite subsequence, and since
we are allowed to rename these three letters and, at the same time, the cor-
responding sets of primes, there is no loss of generality in assuming that, in
fact, the inequality (7) holds for all elements of .

Put now
(k)
x(k)=g® and E = =..=fp=-l.
and, just as in the last chapter, write
r T+ "
Q(K(k)) = |K(k)-f l*' II IK(k) §] 'p] l'I IP(k) lp e I lQ(k) lp .
j=1 j=r+1 j=r+r'+1 I

Then, by (7),

IK(k)-E '* - R(k) *_ R(k)
Q®| ¥
Further also
()
|,¢(k).. £ ';j = %EY ; = IR(k)ij G=1,2,..,r).
For either pj is a divisor of Q(k), and then it is prime to R(k) and so
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(k) r® |+

R (k)
>1, = [RY |, = 1;
Q(k) Pj Q( k) Pi pj
or pj is prime to Q(k), and then
( )
= IR (k)  * lpj 'R(k)l
Q

Therefore

r r
I llc(k)- £jl;j= I lR(k)'

=1 =1 B

and it follows that

(k) T4 T4 4"
&), _|R (k) (k) ()
®(K") = -HIR l n [P™Mp. T @ l
Q® | o1 Vicrst P jepirt 41
Next, the hypothesis implies that, e.g.
(k) ()] |l T (k) w@r1_ [r¥
nIRI—H(IRI IR |pg) < T Ry | = IR [ = ,
j=1 =1 by’ pj =1 pj = M R

and, in the same way,

r+r' (k) r4r' 41" (k)
.'i=III'+1'P(k)'pjs II:’E(E) ’ j=rl}-r'+1 ’Q(k)lpjs X
Therefore
(k) (k) (k) (k) gl
o) < e | oty | <o
Q P"'Q"'R P Q

Finally, by (7),
K) - 1p0) |2 1% 4 rE) | < W)y |RE) | < 21Q®),
so that

IQ(k)I > % g® ,

and hence
@(x(k)) < 4c H(k)u-:i .
It follows then from Theorem (2,I) that
3-v =2, v=21,

whence the assertion.
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It is again not difficult to construct examples which show that the asser-

tion v =1 of the theorem is best-possible.

The Theorem 2 is a special case of the more general
Theorem 3: Let

F(x,y) = Foxf +F f-ly + oo nyf, where £ >1, Fo #0, F; +0,

be a binary form with integral coefficients which has no multiple factors.
Let

Piseess Pps Ppigseces Prypts Prypt 4150 Prar' 41"

be finitely many distinct primes, and let ¢ and w be two positive con-
stants. Finally let T be an infinite sequence of distinct pairs of integers

2%, Q™)1 such that, for aii x,
p® 40, %40, @®,0®) = 1, 5® - max (1%, 19W))

and

+r' r+r' 41"

#e® Q- 1 1r@® M) . T 290, 1 @y, < cne,

j=1 j=r+l j=r4r'+1
Then w =£-2.
The reader should have no difficulty in deducing Theorem 2 from the

special case F(x,y) = x+y of Theorem 3, and in proving Theorem 3 by means
of Theorem (2,II).

5. The approximation by rational integers.

The two Approximation Theorems proved in Chapters 7 and 8 have ana-

logues relating to the approximation of inlegral g-adic numbers by rational
inlegers. There are again two such theorems, each one having two equivalent
forms. These theorems are as follows.

Theorem (4,I): Let E-==(&1,..., &), where E1%0,..., &y + 0, be an algebraic
g-adic integer. Let g' = 2 be a positive integer, and let ca, cs, 0, and A
be four real constants such that

c2>0,c3>0,0>0,0<A <1,

If there exists an infinite sequence = = {P®), p@) P(’),...} of distinct
positive integers such that, for all k,

|=-p® lg < ca p(k)"o’ IP(k)Ig' < ecs P(k)l-l,

then o <A,

Theorem (4,I1): Let F(X) be a polynomial with integral coefficients which
does not vanish at x=0 and has no multiple factors. Let g =22 and g' =2
be two positive integers, and let c,, cs, 0, and . be four real constants
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such that
2> 0,e3>0,0>0,0sAs1,

If there exists an infinite sequence = = {P(), PC), PC) ..} of distinct
positive integers such that, for all k,

(k)-o (k) A-1

IF(P(k))lg <cyP IP(k) lg' < caP

then o <.

Theorem (5,I): Lel pi1,..., Pry Ppalse--s Pr4x' be finitely many distinct
primes, and let £y % 0,..., &y + 0 be an algebraic pi-adic integer, eic.,
an algebraic pr-adic integer, respectively. Let K, and T, be two (posi~
tive constants. If theve exists an infinite sequence ¥ = {P(‘),P(”),P 3.}
of distinct positive integeys such that, for all k,

r r+r'
1'P(k)-£j|pj- I 'P(k)'pjsm(k)'f,

j=r+l1

]
then T < 1,

Theorem (5,II): Let pP1y.ucy Ppy Pr+lye.e; Prix' be finitely many distinct
primes, and let F1(x),..., Fp(x) be r polynomials with integral coefficients
which do not vanish al x=0 and have no multiple factors. Let Ka and T

be two positive constants. If theve exists an infinite sequence

= = {PW, pE) ), .} of distinct positive integers such that, for all k,

r T4’
I |Fj (p(k)) lpj, I |P(k) ,pj < Kap(k)-'r ’
=1 j=r+

then 1 < 1.

A discussion similar to that in Chapters 7 and 8 allows again to show that
these four theorems are equivalent, in the sense that each implies the other
three.

It suffices then to prove Theorem (4,I). This is done by essentially re-
peating those constructions and estimates of §§2-8 of Chapter 7 that led to the
case d=2 of the Main Lemma. One assumes that the assertion is false and
that, say,

o=A+4c where 0<es%.
The proof then procedes with the values

(k)
() _ % Qg g®_ p

and hence with the values
P
Kp="2, Qh=1, Hy=Pp  (h=12,..,m)

Here the parameters m, s, t, r1,...,ry; are selected just as in §2 of Chapter
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7, and the polynomial A(X;,...,Xm) is defined as in §3. In particular, the in-
equality (14) of §2 takes the form,

T Z —h k; k. (1+€)1‘112!;1 ?‘1
P]_ h__ rh < PI. ves I’]nln$ P], h=1 h .

The proof now depends on upper and lower estimates for the integer

220 a4,

which has the explicit value
r
im) pli-L im-]-m
A = g: . a m v
! wetm() - () B
( ) iy =0 1m= e 1
Here, by the upper bound for aj, ,,, i,

X i Ty I'm
) 'a'lx ok | ;:) Gm) < 5e)r et N Y gli+etim o
i1=0 1y,=0 T m 11=0, im=0

< 5™ @™y @™ g) < 5(ae)™ (22T 2 5(160)™* <(80c)™™,
Hence it follows that, in the notation of Chapter 7,
11_11 (lﬁ)r Z _h_.h.

max Py Phxln-lm < (80c)™* max P, h=1 th >
@)ex (L)eI

|Ag)| < (B0c)™

and therefore

A < @ocy™™ p{t+eimiSa

The lower estimate for the case d=2 of N(j), obtained in §7 of Chapter
7, still remains valid; but since N(j)=A(1), it takes the form

'A(l)' > c; mr;P(l 7t+0')r181

On combining these two inequalities, we find that
< (80ces)™,
where we have put

E = (1-2+0)S1- (1+€)Sz .
In explicit form,

E= (l-hw){%(m-s)- A} - (1+e){—%(m+s)-A} =

= —;-(a-)n-e)m - %(a-hﬁz)s - (o-2-€)A
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Further, just as in Chapter 7,

em €em
8=g» O0sA<%.

It follows then that

=1 1 Sm_ 3em Sem
E—-z-.se-m--2-(55+2)s-3e-A2 2 "28 "5 6 >em.

Hence, if P, was chosen so large that
1

P, > (80ccys) € ,

a contradiction arises, proving the assertion.

6. An example.

By way of example, let p=p1 be an odd prime, and let a denote one of the
p-2 integers 2, 3,..., p-1. Put

plo) _ 21 k=1,23,..).

It follows from Euler’s theorem that

a =a
and hence
P(k+1) = P(k)(mod pk) ,

or, what is the same,

(8): ) pl) | < e
In particular,
P(k) = P(k-l) Eoee = P(s) = P(l) = a(mod p)
and therefore
) %< L.

By (8), the sequence {P(’), P(’), P(’),...} is a p-adic fundamental seguence;
let
a= lim P(k) ()

k—o0

be its limit. Since &)= plklp

- (e+1) _ )\p _ P
o lii_immP lii_x.nao ) a’ (p),

, evidently
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so that a is a root of the equation

F-x = x(x-l)(xp'2+xp_3+...+ x+1) = 0.
Now a is distinct from 0 and 1, and by (9)

la-a,p = éi_lﬂolp(k)-alp < % .

Hence a(a-1)+0, and so a satisfies the equation

L Feeetx+1 =0,

Thus a is an algebraic p-adic integer distinct from zero. It has the
following further property.

If € is an arbilrarily small positive number, then there are at most
finitely many positive integers k such that

(10): | P -epk

a -alpsa .

For put r=1, £,= a, and denote by pyi1see«sPrip' all the distinct prime
factors of a. It follows that

r4r'

o [p%], - ek,
j=r+1
Therefore, by (10),
r+r'
1p%)_q lp o lP(k)lpj < P(k)-T, where T = 14> 1,
j=r+1

and so the assertion is an immediate consequence of Theorem (5,I).



