
Chapter 5

ROTH'S LEMMA

1. Introduction

Roth bases the proof of his theorem on a general property of polynomials
which is to be proved in this chapter. This property is roughly as follows.

Let

A(Xl,...,xm)= 2
ii=0 im=0

be a polynomial in m variables, with integral coefficients which are not "too
large" in absolute values. Assume that

is a "very small" positive number. Further let

_ PI Pm
Qi ' *"' Qm

be m rational numbers written in their simplified forms for which both the
maxima

Hi =max(|Pi|,|Qi|),..., Hm = max(|Pml, iQml)

and the quotients

logH2 logH3 logHm
log Hi' logH2''"' logHm-1

are "very large". Then A(XI,..., xm) cannot vanish to a "very high" order
at xi = KI ,..., xm=Km. (An exact formulation of Roth's Lemma will be given at
the end of this chapter).

The main idea of the proof consists in an induction for m, the number of
variables, the case m=l being trivial. This induction uses a test for linear
independence of polynomials in terms of the so-called generalised Wronski
determinants.

2. Linear dependence and independence.

Let

fy = fj/(xi,..., xm) (v = 1,2,..., n)

be n rational functions of m variables, with coefficients in a field K. The
functions are said to be linearly dependent (or for short, dependent) over K
if there are elements ci,..., cn of K not all zero such that
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78 LECTURES ON DIOPHANTINE APPROXIMATIONS

Cifi+... + cnfn 5 0

identically in Xi ,,.., xm. If no such elements exist, then the functions are
called linearly independent (or for short, independent) over K. Evidently,
if fi ,..., fn are independent, none of these junctions can vanish identically.

Assume, in particular, that the coefficients of fi ,..., fn lie in the rational
field F , and that these functions are dependent over the real field P. Then
the functions are also dependent over r. For the identity cifi +...+cnfn = 0 is
equivalent to a finite system of linear equations

ci^ior + ... + cntoia = 0 (a = 1,2,..., s)

for GI,..., cn with rational coefficients $va. By the hypothesis the rank of
the matrix of this system of equations is smaller than n. The system has
therefore also a solution ci,..., cn in rational numbers not all zero, whence
the assertion.

Conversely, if fi,..., fn have rational coefficients and are independent
over F, then they are also independent over P.

3. Generalised Wronski determinants.

The letter D, with or without suffixes, will be used to denote differential
operators of the form

8Ji + ... + Jm

where ]i,..., jm are non-negative integers. The sum ji+...+jm of these inte-
gers is called the order of D. Thus the unit operator 1 has the order 0 be-
cause ji=...=jm=0«

Let

i,-.., xm) (v = 1,2,..., n)

be n rational functions with real coefficients, and let Di,..., Dn* be n dif-
ferential operators such that

the order of Dv does not exceed v-l (v = 1,2,..., n).

The determinant

Difi Dif2 ... D^
/
\ fi ... D2fa ... D2fn

Dnfi Dnf2 ... Dnfn

is called a generalised Wronski determinant or a Wronskian.
This Wronskian evidently vanishes identically when the operators

Di,..., Dn are not all distinct. It also vanishes identically if fi,..., fn are
linearly dependent over the real field. For an identity

cifi +...+ cnfn = 0

implies the n identities
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... + cnDyfn E 0 (v = 1,2,..., n)... ,,..., .

If now ci ,..., en are not all zero, then the determinant of this system of linear
equations for Ci ,..., cn vanishes, and this determinant is the Wronskian we

considering.
Let these two trivial cases be excluded. It will then be proved that at
t one Wronskian of the given functions is not identically zero, at least

fi ,..., fn are polynomials.
least
when

4. The case of functions of one variable.

Let

fi, = Mx) (v = 1,2,..., n)

be n rational functions in one variable x which have real coefficients and
are independent over the real field; thus, in particular,

fn(x) * 0.

There is only one Wronskian of these functions that does not vanish trivially,
viz. that Wronskian which belongs to the operators

d d2 dn-1

We show by induction for n that this Wronskian is in fact distinct from zero.
This is obvious for n=l since then

to.

Let therefore n ^ 2, and assume that the assertion has already been proved
for n-1 functions.

Put

These n-1 functions are still independent. For any equation

ClF1+...+Cn-lFn-l -

, with real coefficients implies, on integrating, that

cifi+...+cn-lfn-l B

where cn is a further real number, whence ci = ...=cn-l=Cn=0 because
fi ,..., fn are independent by hypothesis.

It follows then from the induction hypothesis that

(?;:::£:!) *0

Next one easily shows that, for any rational function g, identically

)•&*(
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Here choose g=fn~1. Then in the Wronskian on the left-hand side all but the
first element of the n-th column vanish, and this determinant reduces to

* 0.
\jug... ins/ \*i-« An-i/

Hence, finally,

/^Di... Dm _ I DI ... DH-!\f~tt ± n
V fi ... fny \Fi... Fn-iy '

whence the assertion.

5. The general case.

From now on let

ri rm / \
fp(xi,..., xm) = L ••• Li *ii—im Xll-« xm (^ = 1,2,..., n)

ii=0 im=0

be n polynomials in xi,..., xm that have real coefficients and are independent
over the real field. We want to show that at lea'st one of the Wronskians in
these functions is not identically zero. In the special case m=l this asser-
tion has just been proved, even for the more general class of rational functions.
To reduce the general case to this special one, denote by x a new variable,
by g a positive integer exceeding all the degrees ri,..., rm, and put

YI ffn

U=0 im=0 1

(v = 1,2,..., n).

The exponents ii+iag+i3g?+...+imgm""1.of x maybe considered as
representations to the basis g, with ii, i2,..., im as the digits; for by the
choice of g these numbers may assume only the values 0, 1, 2,..., g-1. Since
there is only one representation of any integer to the basis g, it follows that
no two terms in the multiple sum for ^(x) are constant multiples of the same
power of x.

This implies that <£i (x),..., <fri(x) likewise are independent over the real
field. For let ci,..., cm be real numbers such that Ci0i+...+cn0n= 0. By
what has just been shown, this identity requires that

But then cifi+...+cnfn E 0> whence ci=...=cn=0 by the assumed independence
of fi,..., fn«

The result of §4 may then be applied to fa,..., <fa, giving

d2

*n '*'•
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Denote now by 6 the linear operator

5 -
and by the sign ( ) * the operation of substituting

x, xS, xS*,..., xS111"1 for xi, X2, xs,..., xm, respectively.

In this notation, evidently

and

It follows that repeated differentiation of <£j,(x) leads to a relation

1, . . . ,xm)}*.

Here N^ is a positive integer depending on f-m/^1,..., i/'/zNn a1"6 polynomials
in x; and Dpii,..., d^Nn arp differential operators at most of order p in the
variables xi ,..., xm. The polynomials and the operators depend on ju, but
not on the functions fy or fo/.

Replace now in the determinant W(x) the terms -=-» ^(x) by their ex-

pressions in the derivatives of fj/(x). Then each term in the determinant
becomes a sum, and W(x) takes the form

Ni Nn-1

Since W(x)^ 0, at least one of the terms on the right-hand side likewise is not
identically zero, so that, say,

\

But then also

(J D^ ^ ... Dn lkn.A ^0
\ii i2 is ... In /

We have thus the following result1

Lemma 1: Let fi,..., fn be n polynomials in m variables that have real
coefficients and are independent over the real field. Then there is at

least one Wronskian ( * *" - n ) that does not vanish identically. The\ii... in /
same assertion holds if the polynomials have rational coefficients and
are independent over the rational field.

The second assertion of the lemma holds, of course, because, as we saw
in §2, the polynomials are also independent over the real field.

1. For a detailed study of the generalised Wronskian see, in particular, A. Ostrow-
ski, Math. Z. 4 (1919), 223-230.
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6. An Identity.

By means of Lemma 1 we shall prove a general identity which is basic
for the later induction.

Assume that m ̂ 2, and denote by

ri rm .
A(XI ,...,xm) = Z — S aii ...im xl1 — x^ * 0

ii=0 im=0

a polynomial with integral coefficient. Since

A(X1 ..... xm) =
im=0\ii=0 im_i=0

it is always possible to write the polynomial in at least one way as a sum

n
A(XI ,...,xm) = £ -Pi/xi i— >xm-i)Sj,(xm)

v=l

where Pi,...,Pn are polynomials in xi,...,xm-i and Si ,...,2^ are polynom-
ials in xm, all with rational coefficients. From now on choose one such
representation for which the number n of terms is a minimum; then

Let us call this the minimum representation of A.
In the minimum representation, both the n polynomials

Pi (xi ,...,xm-l),.-., Pn(xi ,...,
and the n polynomials

are independent over the rational and hence also over the real field (§2). For
assume, say, that there are rational numbers ci ,..., cn not all zero such that
ciPx +...+cnPns°J let e-g-> cn+0. On solving for Pn,

PnsyiPi+—+yn-lPn-l
where yi,...,yn-l are rational numbers. Hence we obtain a new representa-
tion of A,

n-1 ^ #

A(xl9...,xm) = 2) Pl/-l(x1,...,xm-i)S (xm) where S (xm) = 2v(xm) + rvZn(xm.
v=l ,

with at most n-1 terms, contrary to the definition of the minimum representa-
tion. The independence of 1^ ,...,£n is proved in the same way.

By Lemma 1 there exist then two Wronskians

that do not vanish identically. Here, in the Wronskian U*,
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*

with certain non-negative integers jpi,..., Jym-l

On the other hand, in the Wronskian V**,
Ji/m

D* = i where km^-l G> = 1,2,..., n).

Denote by D^ and A^j, the new operators
* **

9 ll 3
- xm-l m

and

Further put
D12A ... DmA

D2iA D22A ... D2nA

... DnnA

••• AmA

A21A A22A ... A2nA

An2A ... AnnA

Thus

W(xi ,...,xm) = C W*(xi ,...,xm)

where C=K) is a certain rational number.
On differentiating the minimum representation of A, we obtain the sys-

tem of identities
n

Therefore, by the multiplication law for determinants,

W*(xi,...,xm) = U*(xi,...,xm-i)V**(xm)

and hence also

= CU*(xi,...,xm_i)V**(xm).

It is obvious that all three determinants U*, V**, and W are polynomials
with rational coefficients in some or all of the variables xi,..., xm. Moreover,
the stronger result holds that W has integral coefficients. For if ji,..., jm
are arbitrary non-negative integers, the partial derivative
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has the explicit form

ii -ji im-Jm11 ... xm

and hence is a polynomial with integral coefficients. On the other hand, the
general element in the determinant W is exactly

hence is such a polynomial, and so the same is true for W.
Now a well-known theorem due to Gauss states that if f and g are poly-

nomials in any number of variables with rational coefficients such that the
product fg has integral coefficients, then there exists a rational number
c±0 such that both cf and c"1g have integral coefficients. On applying this
theorem to the two polynomials CU* and V**, we find that there are two
rational numbers jx+0 and w¥Q such that

U(xi,...,xm-i) = uU*(xi,...,xm-i) and V(xm) = vV**(xm)

have integral coefficients, and that further

W(xi,...,xm) = U(xi,...,xm-i)V(xm).
The following result has thus been obtained.

Lemma 2: Let
ri r5f

ii=0 im=0
be a polynomial with integral coefficients. There exist a positive in-
teger n not greater than rm+1 and a system of n2 operators

A ] L B / = -

where j^i,..., jpim-l* Ji/m are non-negative integers such that

and that the following properties hold. The determinant

AH, A Ai2A ... Am A

A2iA A22A ... A 2n A

AmA ^A ... AnnA

does not vanish identically, is a polynomial with integral coefficients, and
can be written as a product

= U(xi,...,xm-i)V(xm)
where U and V are likewise polynomials with integral coefficients.
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7. Majorants for U,V and W.

If

^ 1v?1

A(xi,...,xm) = E ... E ai
ii=0 im=0

and

ri rm
B(Xl,...,xm)= E - E ^

ii=0 im=0

are two polynomials with real coefficients such that

'aii ...im I * bii ...im for all suffixes ii ,..., im,

then B is said to be a majorant or majoriser of A, and we write

A«B.

It is obvious that this relation has the following properties.

// A « B and B «C, then A «C.
If A « Band C «D, then A*C «B +D and AC «BD.
If A < < B, and c is any real number, then cA« |c |B.
The relation A«B may be differentiated arbitrarily often with respect
to any of the variables.

We also use the notation,

and call [A] the height of A. This agrees with the definition of the height of
a polynomial in a single variable given in Chapter 3.

We consider now again the polynomial

ri rm .
A(xi,...,xm) = Z ••• E aii...im

Xl1— *r&
ii=0 im=0

of Lemma 2 and denote its height by

a= |Al.

By the binomial theorem,

Hence A has the majorant

A(xi ,...,

On differentiating this formula repeatedly, we find that
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Here

so that

In particular, it follows that

AMy A<<2ri+"'+rma(l+xi)ri... (l+xm)rm (&v = 1,2,..., n).

Now, by its definition as a determinant,

where the summation extends over all n! systems of suffixes Mi>JU2,. . .
that are permutations of 1,2, ...,n. Therefore, on replacing the factors
AJUJ/A by their major ants,

)ri ... (l+xm)rm}n.

Since

U + x) n r =Z
k=0

this formula may be simplified to

W(x1,...,xm)«22n(ri+-+rm)ann

«2nr(l+x+...+xnr),

The majorant for W so obtained implies analogous majorants

,...,̂ .!) «22n(ri+-+rm)ann!

V(xm) «22n(ri+-+rm)ann!

for U and V. For, by construction, W=UV where U depends only on the
variables xi,...,xm_i and V only on the remaining variable xm; further-
more, all these polynomials have integral coefficients. Thus the product of
any coefficient of U with any coefficient of V is a coefficient of W. Since the
non- vanishing coefficients have at least the absolute value 1, it follows that

max(ITjl, [Vl) < Iwl,

whence the asserted majorants for U and V. In this way the following result
has been proved.

Lemma 3: Let A, U, V, W, and n be as in Lemma 2, and let

a=22n(n+...+rm)n, [^n. ^ nr1,...,pm.i=nrm-i,pm = nrm.
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Then

max([ul, [Vl, [W|)«a,

and the degrees of U in xi,...,xm_i do not exceed pi,...,pm-l> &&
degree of V in xm does not exceed pm, and the degrees of W in
xi,...,xm do not exceed pi,...,pm> respectively.

8. The index of a polynomial.

For any m£l, let

be m rational numbers written in their reduced forms so that

(P1,Q1) = ... = (Pm,Qm) = l.
The positive integers

Hi =max(|Pil,|Qi|),...,Hm = max(|Pm|,|Qm|)

are then called the heights of KI,..., Km, respectively. Let further pi,...,pm
be m arbitrary positive numbers, and let again

^ rm i iA(xi,...,xm)= Jj — E ai imxi1...xn
m*0

ii=0 im=0

be a polynomial in xi ,...,xm with integral coefficients which is not identically
zero. Hence the derivatives

x ) 3il+-+3mA(x1 ..... xm)
»-->xm' ~ * 4

jil... Jm!9x3i1...3xm
m

cannot all vanish at the point Xi = KI ,...,xm= /cm. Denote by

J(A) = J(A; pi,...9pm;Kiy...9Km)

the smallest value of

JL^..+JaL
Pi Pm

for all systems of suffixes ji ,..., jm for which
AJi— Jm^1'—'^ +°»

and put J(A)=« in the excluded case of the polynomial A = 0. The function
J(A) of A so defined is called the index of A at the point (/Ci,...,«m) relative
to pi,,">Pm-

This index may also be obtained as follows. By Taylor's formula,
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r i r m + _ + -
= E - Z Ajl...jm(/c1,...,Km)xpl Pmxijl...xm

3m,
ji=0 jm=0

where x is a further variable. Hence J(A), for A^O, is the exponent of the
lowest power of x in this development with a non-zero factor

A3i —Jm^1 »•••
From this, it follows at once that if B(xi,...,xm) is a second polynomial

of the same kind, then

(A): J(ATB) £ min{j(A), J(B)},

(B): J(AB) = J(A) + J(B),

where the indices are taken at (KI ,..., /cm) relative to pi ,...,pm< K is further

obvious that

either J(A) £ 0 or J(A) = «>,

and thai?

J(A) = 0 if and only if A(/d ,...,Km) * 0.

We need one further simple property of the index. Let li ,..., 1m be
arbitrary non-negative integers, and let

Evidently

B.

where

m . m .A m
*ji*=ji+U,... ,Jm = im+lm and therefore Z 7^ = Z J| - Z ^-

h=lph h=lph h=lph

Since the index cannot be negative, we obtain then the inequality

(C): J(Ai ...i ) ^ max(0, J(A) - Z ^ )•
1 m h=l ph

From now on the index J(A) will nearly always be taken relative to

. . («!,..., «m) =H1 )...(?m) A.* .*(Ki,..0Km)
Ji--0m \Ji/ \3m/ ji—Jm

2. Put w(A) a e"J<A) if A ^0, andW(O) = 0. The properties of J(A) just stated show
that w(A) is a non-archimedean valuation on the ring of polynomials.
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9. The upper bound a m(a; Hi,..., Hm; riM.., rm)

If Hi,...,Hm are m positive integers, we denote by Q(Hi,...,Hm) the
set of all systems of m rational numbers

Pi _ Pm"

written in their simplified forms,

(Pi,Qi) = (P2,Qa) = ... = (Pm>Qm) = 1,
of heights

Hh=max( |Phl , lQhl ) (h = 1,2,..., m).
If further a^l is a real number and ri ,..., rm are positive integers, we de-
note by R(a; n ,..., rm) the set of all polynomials

ri rm .
A(Xl,...,xm)= E -. E ^..^...x^O

ii=0 im=0

with integral coefficients which are of height

lAl ^ a.

Roth's lemma deals with a number 9m defined as follows.

Definition: Let a^l, and let ri,...,rm, Hi,...,Hm be 2m positive integers.
The symbol

denotes the least upper bound of J(A; ri ,..., rm;Ki ,..., Km) extended over
all polynomials AeR(A; ri ,..., rm) and over all systems of m rational
numbers (Ki,...,Km)eQ(Hi,...,Hm)-
Several simple properties of '8m follow at once from this definition.

First, both sets R(a;ri,...,rm) and Q(Hi,...,Hm) are finite. Hence the least
upper bound in the definition of 8m is attained, and there exist a polynomial
AeR and a set of fractions Ui ,...,/cm)eQ such that

6m(a> ri...,rm; Hi,...,Hm) = J(A; ri^.^rmj^i j.-.^m)-
Secondly, the set R(a;ri,...,rm) does not lose elements when a increases;
hence 6m is a non-decreasing Junction of a. Third, as we are considering
now indices relative to ri ,...,rm> J(A) is equal to a sum

m .
E -J* where 0 ^ ji ̂  n ,..., 0 < jm < rm,

h=l rh

and it follows at once that 0 < J(A) ^ m and hence that
0 * ® * m-
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10. An upper bound for @i (a; r; H).

We begin with the study of <9i . Let

A(x)= £ aixi*0
i=0

be a polynomial in one variable, with integral coefficients such that
[A! = max(|aol,|ail,..., |arl) < a.

Let the rational number K = -^ be written in its simplest form, thus (P,Q)=1,

and assume that

Hence /c*0 and P*0, Q*0.
Suppose J(A; r; K)> 0. Then K is a zero of A(x), say of the exact order

j>0, and A(x) is divisible by (x-/e)J. By Gauss's lemma from §6, A(x) can
then be written as

A(x) = (Qx-P)te(x)

where B(x) is a certain polynomial with integral coefficients. Hence the
lowest and the highest non-zero coefficients of A(x) are divisible by PJ and
Q3, respectively. It follows that

H3 ^ lAl ^ a,

hence that

a result valid also when J(A; r; K) = 0. Therefore always

(0i): 0l(a'r'H)^Tlift if H * 2 '

11. The property r̂ .

The induction proof of Roth's lemma in the next sections becomes sim-
pler if the following notation is used.

Denote by t a constant such that

0< t*s 1.

If b^l is a real number, and SI,...,SM> KI,...,KM are Positive integers, the
ordered system of numbers

b, si,...^]^, KI,...,KM
is said to have the property TM V either, (i)

M = l,
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or, (ii), simultaneously M**2 and

Kh > Si logKi (h = 1,2,..., M);

isit
b ^ KiM

Therefore the following inequalities also hold,
M

h=l

By way of application, let m^2; let the ordered system of numbers

a, ri ,..., rm, Hi ,..., Hm
have the property Fm; let n be an integer such that

1 ^ n ^ rm + 1;

and let

b = 2 i— mn!an; Pi,= nri, P2= nr2,...,pm-i =

Then the new ordered system of numbers

b, pi,.-«»Pm-l> Hi,...,Hm_i
has the property rm_i.

Proof: The first inequalities

phlog Hh ^pilogH! (h = l,2,...,m-l

are for m^3 immediate consequences of the assumption that

(h = l,2,...,m).

Next, by hypothesis,
w ^oY-(m-l)m(2nn-l)
Hi ̂ 2 ,

whence, trivially, also
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Finally,

n « r m + l ^ r i + l « 2ri, hence n! ̂  nn ^ 2nri = 2P1,

and, by assumption,
T f

a«Hi m , ri + r 2 +•••+r m

Therefore,

92n-mri pi n (2m+l)p1D ^ z -^ «a ^ &

because

1 , 1 . 1

12. A recursive inequality for &m. I.

Let again t be a constant such that

0<t^l.

We assume that m^2 and that the ordered system of numbers

a, ri,...,rm, Hi,...,Hm

has the property rm.
It was shown in §9 that there exist a polynomial

A(X! ,..., xm) eR(a; TI ,..., rm)
and a set of fractions

(KI ,.-, Km) e Q(Hi ,..., Hm)
such that

^m(a> ri>-«-» rm>Hi,...,Hm) = J(A;ri,...,rm; Ki,...,/cm).

Denote by n the integer with Kn<rm+l> and by U(xi,...,xm-l),
and W(xi ,...,xm) the three polynomials that correspond to A by Lemmas 2
and 3, and put again

b =2 ' ' n ! a11; Pl= nn,...,pm-i = nrm_i, pm = nrm.

As has just been proved, the ordered system of numbers

b,pi,...,pm_i, Hi,...,Hm-i

has then the property rm-i.
From the construction and from Lemma 3,

1X1 < a; ful < a, IvI ^ a, (wl ^ a,

where
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Therefore the upper bounds for the degrees of U, V, and W imply that

U(xi,...,xm-i)eR(b;pi,...,pm-l), V(xm)eR(b;pm),

W(xi,.,.,xm)eR(b;pi,...,pm).

Hence, in particular, with the same fractions KI ,..., Km-l> Km as above,

J(V;pm;«m) * Si to Pm;Hm).
From the identity

W(xi,...,xm) = U(xi,...,xm-i)V(xm)

and from the multiplicative property (B) of the index, it follows that

J(W;pi,...,pm; i».. .> ffm) = J(U;pil...,pm-i;«il,..,jem-l) + J(V*;pm;«m),
or

where, for shortness,

$m = ®m-lft>;pi v*Pm-i;Hi,...,Hm-i) H- 81 (b;pm;Hm).

Instead, we may also write

because ph = nrh for all h, and so, by the definition of the index,

J(W;ri ,..., rm; KI ,..., fm) = n J(W;pi ,...,pm; «i ,-•> «m)-

Since from now on only indices of polynomials at the fixed point (KI ,...,/tm)
relative to the fixed integers ri ,..., rm will occur, we shall write for these
indices simply J(W), J(A), etc.

13. A recursive Inequality for ®m. II.

In the inequality

J(W) ^ n$m

just proved, we can give a lower bound for J(W) in terms of J(A).
For, as in §7,

A A - . - A A ,

where the systems of suffixes /*!,..., jnn run over all n! permutations of
1,2,. ..,n, while the operators Ay are of the form

and the j's are non-negative integers such that

3Ml+...+j]Lim-l « M-l, 3,/m = v-1 (lJ>,v = 1,2,. ..,n).
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Therefore

A^A = Aj/Jll...]1Lim_1jj;m,

so that property (C) of the index implies the inequality

J(A^A) > max(o, J(A) - *£ -j
\ h=l h

But

and so

\ m"1 h=l

^ maxfO, J(A) - **" - ^-

Therefore, finally, by the properties (A) and (B) of the index,

max (o, J(A)-t-^ ) .
\ rm/

This inequality can be simplified. For shortness put

N = [{ J(A)-t}rm] + 1,
where [x] denotes as usual the integral part of x. Hence

N-l«{j(A)-t}rm<N.
We shall now distinguish the two cases n< N and n>N.

The case n^ N. Evidently

n-KN-1 <{j(A)-t}rm

and hence

Therefore
n

v=l

whence

(1): j ( A ) « t + J(W) i f n « N .
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The case n>N. Assume, for the moment, that

J(A)s*t and thus N £ 1.

Then

and

maxu),

it follows that

J(W)

J(A)-t-

N

rm/ 0 if

j(A)-t-^i =N{J(A)-1

>-t}-f{j(A)-t} = £
& &

On solving this inequality for J(A), we find that

(2): J(A) < t +t/— J(W) < t + 2 t/- J(W) if n > N,? r m f n

because

« ^ , 1 rm ^ rm . n ^ 1 n n

In the case J(A)<t so far excluded this estimate is still valid.
The two inequalities (1) and (2) show that in both cases n^ N and n>N

the same estimate

J(A) < t + 2 max(j J(W),yi

holds. Since J(W)^n*m, it follows that always

In this inequality, A was chosen such that

J(A) = J(A;ri,...,rm;Ki,.'vKm) = ®m(a-;ri,..
and $m had the value

®m= ®m-l(b;pi,...,Pm-i;Hi,...,Hm-i)+ ®i(b;pm;Hm).

We apply now the inequality ( @i) of §10 which shows that

By definition, pi = nri and pm = nrm, and also

r m log Hm ^ r i log HI , hence pm log Hm ^ pi log Hi.

It was further shown in §11 that ,
^TIT P^
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Therefore

because
The long proof of the last sections has thus lead to the following recur-

sive inequality.

Lemma 4: Let m^2, and let

be any ordered system of numbers tuith the property Tm. Then there
exists an ordered system of numbers

b; pi ,...,pm-l> Hi ,..., Hm-1
with the property rm-i such that

0m(a; ri ,..., rm; Hx ,..., Hm) « t

where

14. Proof of Roth's Lemma.

It is now easy to prove

Roth's Lemma: Put cm=2m -3. If the ordered system of numbers

has the property rm, then

Cmt
Proof: We procede by induction for m. First let m=l, hence Hi ̂  2

and a^HF1*. The estimate ( 0i) of §10 implies then that

as asserted. Secondly assume that m^2, and that the assertion has already
been proved for all ordered systems of numbers

b, Pi v>Pm-l» HI ,..., Hm_i
with the property rm-i; it suffices to prove that it then is true also for all
ordered systems of numbers

a,n,...,rm,Hi,...,Hm

with the property rm. By this induction hypothesis, the expression ^m in
Lemma 4 satisfies the inequality

-l(b;Pi,—,Pm-i;H1,...,Hm-i) +t < cm-it2"(m"2)
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and therefore Lemma 4 implies that

0m(a;ri,...,rm;H1,...,Hm) ^ t

Now 0 <t ^ 1 and cm_i ̂  1. The expression

t H- 2 max(cm-it3-(m-2)
+ 1, A

of this inequality is therefore certainly not larger than

-2>+ l2-(">-2> )

whence the assertion.
We conclude this chapter by stating Roth's Lemma in a slightly weaker,

but more convenient explicit form, as follows.

Theorem 1: Let 0<t^l. Let a^l be a real number, and let ri,...,rm,
Hi,...,Hm, where m^2, be positive integers such that

(h = 1,2,..., m-1),

(h = 2,3, ...,m),

Let

be rational numbers such that

OPh»Qh) = 1» max(|Ph|,|Qh|) = Hh (h = 1,2,...,m).
Finally let A(xi,...,xm) be a polynomial of the form

ri rm 1 .
A(xi,...,xm)= ^ ... £ a^...! xi1..^^

ii=0 im=0

which is not identically zero and has integral coefficients such that

laij...iml ^ a for all ii,..., im-
Then there exist non-negative integers ji,...Jm satisfying

V Jh.^2m+lt2-(m-D
" T»i^

h=l rh

such that

A!...!,...,^) =1=0.


