Chapter 5
ROTH'S LEMMA

1. Introduction

Roth bases the proof of his theorem on a general property of polynomials
which isto be proved in this chapter. This property is roughly as follows.

Let
FE R i
ARLyeeey Xm) = D) e )y By eeeipy X1 eee XD $0
i1=0 im=0

be a polynomial in m variables, with integral coefficients which are not ‘‘too
large’’ in absolute values. Assume that

I's Is 'm
max(=—=, —,...,
ry’ Ira r'm-1

is a ‘‘very small’’ positive number. Further let

be m rational numbers written in their simplified forms for which both the
maxima

Hy = max(|P:[,|Q:),..., Hm = max(|Pm/,|Qm/)
and the quotients

logH: logHs log Hm
log Hy’ logHz’*"*"? log Hm-1

are ‘‘very large’’. Then A(X:,..., Xm) cannot vanish to a ‘““very high’’ order
at X1=K,..., Xm=km. (An exact formulation of Roth’s Lemma will be given at

the end of this chapter).

The main idea of the proof consists in an induction for m, the number of
variables, the case m=1 being trivial. This induclion uses a test for linear
independence of polynomials in terms of the so-called generalised Wronski

determinanis.

2. Linear dependence and independence.

Let
fy, = fy(%1,eee; Xm) (v=1,2,..., n)

be n rational functions of m variables, with coefficients in a field K. The
functions are said to be linearly dependent (or for short, dependent) over K
if there are elements ci,..., cn of K not all zero such that

K
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cify+... +cnfn =0

identically in xi,,.., Xm. If no such elements exist, then the functions are

called linearly independent (or for short, independent) over K. Evidently,

#f f1,..., In are independent, none of these functions can vanish identically.
Assume, in particular, that the coefficients of fi,..., fn lie in the rational

field I', and that these functions are dependent over the real field P. Then

the functions are also dependent over T'. For the identity cifi +...+cpfn =0 is

equivalent to a finite system of linear equations

C1P1g + «ee + Cnnog =0 (c=1,2,..,8)

for ci,..., cn with rational coefficients ¢,5;. By the hypothesis the rank of
the matrix of this system of equations is smaller than n. The system has
therefore also a solution ci,..., ¢n in rational numbers not all zero, whence
the assertion.

Conversely, if f1,..., fn have rational coefficients and are independent
over T, then they are also independent over P.

3. Generalised Wronski determinants.

The letter D, with or without suffixes, will be used to denote differential
operators of the form

i + .. +im
3X1h... axmjm

where j1,..., jm are non-negative integers. The sum ji +...+jm of these inte-
gers is called the order of D. Thus the unit operator 1 has the order 0 be-
cause ji=...=jm=0.

Let

fy = fy(X1,e.., Xm) (v=1,2,...,n)
be n rational functions with real coefficients, and let Di,..., Dn be n dif-
ferential operators such that
the order of Dy does not exceed v-1 (v = 1,2,..., n).
The determinant

_ Dify Difs ...Dify
(‘“‘ “) = |Dafy Dafy ...Dgfp

f1 . fn

Duf: Dofa ... Dnfn

is called a generalised Wronski deteyminant or a Wronskian.

This Wronskian evidently vanishes identically when the operators
Di,..., Dn are not all distinct. It also vanishes identically if fi,..., fn are
linearly dependent over the real field. For an identity

cify +...+cpfn=0
implies the n identities
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ciDpfi+ ... +cpDyfn = 0 (v =1,2,..., n).

If now ec;,..., cn are not all zero, then the determinant of this system of linear
equations for ci,..., cn vanishes, and this determinant is the Wronskian we
are considering.

Let these two trivial cases be excluded. It will then be proved that at
least one Wronskian of the given functions is not identically zero, at least
when fi,..., fn are polynomials.

4. The case of functions of one variable.

Let
ty = fy(x) (v=1.2,..,n)

be n rational functions in one variable x which have real coefficients and
are independent over the real field; thus, in particular,

fn(x) * 0.

There is only one Wronskian of these functions that does not vanish trivially,
viz. that Wronskian which belongs to the operators

d a dn-1
D, =1,D; =— , Ds =E~,...,Dn=d—xn—_r .

We show by induction for n that this Wronskian is in fact distinet from zero.
This is obvious for n=1 since then

(?*) =1 (x) ¥ 0.
1

Let therefore n =2, and assume that the assertion has already been proved
for n-1 functions.
Put

Fy(x) =§? (g%) (v =1,2,...,n-1) .

These n-1 functions are still independent. For any equation
2 ) +...+cn-1fn-1)= 0

d [c

ci Fi+...+cn-1Fn-1 - ( n
. with real coefficients implies, on integrating, that

cifi+...+cp-1fn-1 = -cnfn,

where cp is a further real number, whence c1 = ...=cn-1=cp=0 because
f1,..., fn are independent by hypothesis.
It follows then from the induction hypothesis that

Di... Dp-1 dv-1
(Fl--- Fy. ) $0 where Dy = =51 -
Next one easily shows that, for any rational function g, identically

(Dl... Dn 2 D;...

f1g... Ing f1 ...
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Here choose g=fn™'. Then in the Wronskian on the left-hand side all but the
first element of the n-th column vanish, and this determinant reduces to

D;.. D'll-

<f18 ing ( . fn-1 ) *0.
Di... -

(R = @) e

whence the assertion.

Hence, finally,

5. The general case.

From now on let

O w,on d
fy(X], EARAS) Xm) = Z oo Z fi], ...1m XI’. - xnl'P (V = 1,2’"-’ n)
1=0 im=0

be n polynomials in xi,..., Xy that have real coefficients and are independent
over the real field. We want to show that at least one of the Wronskians in
these functions is not identically zero. In the special case m=1 this asser-
tion has just been proved, even for the more general class of rational functions.
To reduce the general case to this special one, denote by x a new variable,

by g a rositive integer exceeding all the degrees ri,..., rp,, and put

1
- s s m_l
o) = fy(x,xg,...,xgm =Y. Z f (v) o +Hag+isg® +...Hme
11 =0

.

(v =1,2,...,n).

The exponents ii+iag +isg? +...+imgm"1,of X may be considered as
representations to the basis g, with i, is,..., im as the digits; for by the
choice of g these numbers may assume only the values 0, 1, 2,..., g-1. Since
there is only one representation of any integer to the basis g, it follows that
no two terms in the multiple sum for ¢,(x) are constant multiples of the same
power of x.

This implies that ¢: (x),..., ¢n(x) likewise are independent over the real
field. For let c1,..., ¢y be real numbers such that c¢i¢:+...+cn¢n= 0. By
what has just been shown, this identity requires that

Ci1 tl]_(-]:?i +.. +cnfi( ) m =0 fOI' all Sufﬁxes i], gesey 1m.
But then cify +...+cnfp = 0, whence ci=...=cp=0 by the assumed independence
of fi,..., fn.

The result of §4 may then be applied to ¢1,..., ¢pn, giving
d & an-l
1 ™= & -1

W& =\g, 9 05 ... dn

$0.
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Denote now by 6 the linear operator

=2 -1.0 g-1.0 m-1ggm-1_ 4 9
8 = o tExET o +g'x i e laxm ,

and by the sign ( )* the operation of substituting
x, %€, x& ..., 81 for x, xa, Xs,..., X, respectively.
In this notation, evidently
0000 = (Bl yooey X)P* B1A S Gy08) = {801 .y Xipg)

It follows that repeated differentiation of ¢,(x) leads to a relation
dxu ¢V(X) {(Wu1(®)Dp1 + Yuo(x)Dyg +.. o+ ‘PuN”(x)DuN#)IV(Xn oo Xm)l¥,

Here N,,, isa positive integer depending on ppppuy,..., YuN,, are polynomials
in x; and Dygy,..., duN,, are differential operators at most of order p in the
variables X1 yousy xm ‘f‘he polynomials and the operators depend on pu, but
not on the functions f, or ¢,.

Replace now in the determinant W(x) the terms “ éy(x) by their ex-

pressions in the derivatives of f,(x). Then each term in the determinant
becomes a sum, and W(x) takes the form

N, Nn-1
1 Dik, Dak, ... Dp- *
We= 3 e ) Vi@ et @ (g P D Pretiact)”,
= - 2 8 e In
k1~1 kn_]_—l

Since W(x)* 0, at least one of the terms on the right-hand side likewise is not
identically zero, so that, say,

1 lel D2k2 .ee Dn_lk -
(ﬁ f2 fs ... n * 0.

But then also

1 Dik, Dzka ... Dn_]_k -1
(f1 fo I3 .. net) #0.

We have thus the following result!

Lemma 1: Let fi,..., fn be n polynomials in m variables that have veal
coefficients and are independent over the veal field. Then there is at

least one Wronskian (]f)i gln) that does not vanish identically. The

same assertion holds if the polynomials have rational coefficienis and
are independent over the rational field.

The second assertion of the lemma holds, of course, because, as we saw
in §2, the polynomials are also independeni over the real field.

1. For a detailed study of the generalised Wronskian see, in particular, A, Ostrow-
ski, Math. Z, 4 (1919), 223-230.
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6. An identity.

By means of Lemma 1 we shall prove a general identity which is basic
for the later induction.
Assume that m =2, and denote by

Tr1

'm <
i
ARy Xm) = ) e ) By..ipy xR 0
120 1p=0

a polynomial with integral coefficient. Since

'm /T m-1
im-
ARy yeeeZm) = 2, [ )) oee f ail...im_lx}‘...xlg_ll .xgn,
im=0\ir=0 ip_1=0

it is always possible to write the polynomial in at least one way as a sum

n
A(X]. ,...,Xm) = ZIPV(XI ,...,xm_1)EV(Xm)
v=

where Pi,...,Pp are polynomials in xi,...,Xm-1 and Z,,...,Z, are polynom-
ials in xm, all with rational coefficients. From now on choose one such
representation for which the number n of terms is a minimum; then

1<nsrpy+l.

Let us call this the minimum representation of A.
In the minimum representation, both the n polynomials

P (x1 ,.-.,Xm-l),..., Pn(x ,...,Xm-]_)
and the n polynomials

Z1 (®m);+ee; Zn(Em)

are independent over the rational and hence also over the real field (§2). For
assume, say, that there are rational numbers c;,..., cp not all zero such that
c1 Py +...+cnPp=0; let e.g., cn¥0. On solving for Py,

Pnp S y1Pi+..+Yn-1Pp-1

where y1,...,¥n-1 are rational numbers. Hence we obtain a new representa-
tion of A,

n-1
* *
ARyyeee,Xm) = VZ',I Py-1(&1,..Xm-1)Z (xm) Where 2 (xm) = Z,,(xpy) + 7, Zn(Xm
- 1
with at most n-1 terms, contrary to the definition of the minimum representa-
tion. The independence of Z,...,Zn is proved in the same way.
By Lemma 1 there exist then two Wronskians

* * ek £

D;... D D**...D

* = “n *ok = 1 n
U*Gxt 5o Xm-1) (P;...Pn)’ V**(xm) (za e Zn

that do not vanish identically. Here, in the Wronskian U¥,
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+ _ olvlte.tiym-1
= —_
a}hj v, axiﬁﬂ- 1
with certain non-negative integers j,1,..., jym-1 such that
vltetiym-1sv-1 (v =1,2,..., n).
On the other hand, in the Wronskian V*¥*,
o divm
D}, = Expivm where jym=v-1 (v=1,2,...,n).
Denote by Dy, and Ay the new operators
9dpl +.otiym-1+jym
Dy, =D'D%* =
WY T xi#1,, 9 Jum-19 jym
= Xm-1 m

and
1

Jp1pee-dum-11ipm!1

Ay Dy

Further put

Du_A DmA eee DmA
x DuA DzaA .es DnnA
W(X!. ,-..,Xm) = ’

DniA DpzA ... DnnA

ApA ApA ... AmA

Ag A AgpA ... AynA
W(XI ,-..,Xm) =

® o2 00000000 e

AniA ApzA ... AnnA

Thus
W1 yeeesXm) = CW*(x1 ,ee0,Xm)

where C#0 is a certain rational number.
On differentiating the minimum representation of A, we obtain the sys-
tem of identities

n
Da\pAlyeXm) = ), DXPy(iee;Xm-1). D;:* Z,&m)  (p=12,..,n).
y=1

Therefore, by the multiplication law for determinants,
WH(x1 ,ee0,Xm) = U*X1 000, Xm-1)V**(xm)
and hence also
W(X1 ,eeesXm) = CU*(X1 .00y Xm-1)V**&xpm).

It is obvious that all three determinants U¥*, V**, and W are polynomials
with rational coefficients in some or all of the variables xi,..., xm. Moreover,
the stronger result holds that W has integral coefficienis. For if ji,..., im
are arbitrary non-negative integers, the partial derivative



84 LECTURES ON DIOPHANTINE APPROXIMATIONS

ajl +n.+ij(x e )
Ay eXm) = ST axfix..f’é‘:'mjm

has the explicit form

A (%1 ,eee,Xm) = % rin o o (h) (im) x}x -j xim-jm
jl ---jm geee il =0---1m=0 1". m j], coe jm e Xy

and hence is a polynomial with integral coefficients. On the other hand, the
general element in the determinant W is exactly

Ap,yA(xl.,u., Xm) = Ajul...j“m_ljym(xls'"’ Xm):
hence is such a polynomial, and so the same is true for W.

Now a well-known theorem due to Gauss states that if f and g are poly-
nomials in any number of variables with rational coefficients such that the
product fg has integral coefficients, then there exists a rational number
c+0 such that both cf and c™'g have integral coefficients. On applying this
theorem to the two polynomials CU* and V**, we find that there are two
rational numbers p+0 and »+0 such that

U(X1 yeee, Xm-1) = UU*(X1 ..., Xm-1) and V(xm) = vV**(xm)
have integral coefficients, and that further
Wx1,...,Xm) = U1 yeeey Xm-1)V(Em).
The following result has thus been obtained.

Lemma 2: Let

T i i
A(X1,yeeeyXm) = Z Z ah...xmx,‘...xn%}‘*o
=0 im=0

be a polynomial with integral coefficients. There exist a positive in-
teger n not greater than rm+l and a system of n* operators

. ajp.l + oo +jym-1+ivm
Jut b Jum-11dym! axlil . ax,, jum-1 aplym
where ju1eee; jum-1, jym are non-negative inlegers such that
Jp1 +ee-tipm-1 <p-1, jym=v-1 (w,v =1,2,..., n),
and that the following properties hold. The deteyminant
ApnA ApA ... AmA
W1 ,eeeyXm) = AnA AnA .. ApA

A

w

AmA AmA e AnnA

does not vanish identically, is a polynomial with integral coefficients, and
can be wrilten as a product

W1 000y Xm) = Ui yeeey Xm-1)V (Em)
where U and V are likewise polynomials with integral coefficients.
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7. Majorants for U,V and W.

i
Ty 'm i i
Ay, Xm) = ), e ) 84 .dpXit e XgR
=0 1i,=0
and
I I'm i i
B(%1,ee0,Xm) = Z e Z bj, ,,_1mx1‘ ...xnlln
i]_ =0 im=0

are two polynomials with real coefficients such that
Iah ...iml < bi,...iy for all suffixes ii,...,im,

then B is said to be a majorant or majoriser of A, and we write
A<<B.
It is obvious that this relation has the following properties.

If AK<B and B<<C, then A <<C.

If A<< Band C <<D, then A¥C <<B +D and AC <<BD,

If A<<B, and c is any real number, then cA<<|c|B.

The relation AK<B may be differentiated arbitrarily often with vespect
to any of the variables.

We also use the notation,

m=|A(X1,---,Xm) =i1=0n,1]?f..,r1 ,a'h...im"

1m=0,1,.-.,rm

and call [A] the height of A. This agrees with the definition of the height of
a polynomial in a single variable given in Chapter 3.
We consider now again the polynomial

I I'm

i i
A(X1,eee,Xm) = Z Z aj, mimml...xnrln
i1=0 im=0
of Lemma 2 and denote its height by
a=[A].

By the binomial theorem,
14X +... +x7<< (1 +%)T,
Hence A has the majorant
Ay yeee, X)) <<a(l+x1)T2.. (1 +xp)TM,

On differentiating this formula repeatedly, we find that
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Ay, .. jm&1 seees Xm) <<a(;':) ;'::‘) (L) 0 (L) I,

Here
G)s é;o G) < 2T and (1=x)T-I<<(14x)T,

so that
Ajy . §m &1 5ee, xm) << 2FtHeet T, (40 T2 L (Lin) T 10
In particular, it follows that
Apy ALK T T (1)L (Lixm) ™ (gy = 1,2,...,1).
Now, by its definition as a determinant,
WK1 ,eer,Xm) = 2, F Ayl AA2 AAy A

where the summation extends over all n! systems of suffixes i ,uz;e..,in
that are permutations of 1,2,...,n. Therefore, on replacing the factors
Ay A by their majorants,

Wi yoe, xm) <<l {251 TM 00 0 )T (Laxp) P

Since

nr
(1+x)nr= Z '1‘: xk<<2nr(1+x+...+xnr),
k=0

this formula may be simplified to ¢

W(Ki yeeep X)) << gL et TI0) By (g DT )ee(L4Xr ... 450 ).
The majorant for W so obtained implies analogous majorants

1) << g20(rstetrm) oy (14X +eu et KL

U(x’. geeey Xm- nrm-l),

t )...(1+xm_1+...+xm__1

Vi(xm) << 22n(r1 *ewtt'm) afn! (L4Xm+...+Xpy )

for U and V. For, by construction, W=UV where U depends only on the
variables Xi,...,Xmp-1 and V only on the remaining variable xy,; further-
more, all these polynomials have integral coefficients. Thus the product of
any coefficient of U with any coefficient of V is a coefficient of W. Since the
non-vanishing coefficients have at least the absolute value 1, it follows that

max(m, M) =< rW‘s

whence the asserted majorants for U and V. In this way the following result
has been proved.

Lemma 3: Let A, U, V, W, and n be as in Lemma 2, and let

2n(ry +...+Tm)

a=2 n! III“; P1= NIy ,...,fm-1=N0CMm-1, Py = D'm.
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Then
max(m: ﬁ’—ls IW‘) s a,

and the degrees of U in X1,...,Xm-1 do not exceed p, ,...,pm-1, the
degree of V in xm does not exceed pm, and the degrees of W in
X1 ,.00,Xm do not exceed p1,...,pm, 7espectively.

8. The index of a polynomial.
For any m=1, let

Ky = —%,..., Km =-Q-fmn
be m rational numbers written in their reduced forms so that
(P1,Q) = ... = (Pm,Qm) = 1.
The positive integers
H = max(lP;l, lel),---,Hm = maX(IPml,lle)

are then called the keighis of ki,..., km, respectively. Let further p;,...,pm
be m arbitrary positive numbers, and let again

r 'm i i
A1,y Xmm) = z: YAy .imE e X #0
i,=0 im=0

be a polynomial in x1,...,Xm With integral coefficients which is not identically
zero. Hence the derivatives

3 14t im Alxs,..., Xm)

fil... jm ! 0xd? ... 0x 00

cannot all vanish at the point x, =K1 ,...,Xm=km. Denote by
J(A) = J(A; p1yeeesP} K1 yooeyKm)

Ajl. ...jm(xl ,---,xm) =

the smallesi value of

b im
P1 Pm

for all systems of suffixes ji,..., jm for which

Ajy e ojm(K15eeeskm) *0,
and put J(A)=e in the excluded case of the polynomial A =0. The function
J(A) of A so defined is called the index of A at the point (ki,...,km) relative

10 P1jyeesy Pme
This index may also be obtained as follows. By Taylor’s formula,

1 1

Alky +xP x4 ..., K+ x"Pxm) =
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Iy 'm L+...+j-m- .
= ) ) Ajh"jm(x;,...,xm)xpl pn&uj‘...xm]m,
1=0  jm=0

where x is a further variable. Hence J(A), for A%0, is the exponent of the
lowest power of x in this development with a non-zero factor
Ajy . jm e lcm)xj xm .

From this, it follows at once that if B(x1,...,Xm) is a second polynomial
of the same kind, then

(A): J(A*B) = min{J(A), J(B)},
(B): J(AB) = J(A) + J(B),
where the indices are taken at (x1,..., km) relative to p1,...,0m. It is further
obvious that
either J(A) = 0 or J(A) = o,
and that®
J(A) = 0 if and only if A(k1,...,km)* 0.

We need one further simple property of the index. Let l,...,1m be
arbitrary non-negative integers, and let

B(X1 .., Xm) = Ah ,.,lm(XJ, yeeey Xm)-
Evidently

B (k2 K )=(ﬂ") (j;‘ A x (k2 ’IC )
j].---jm ey M j]. ) jm jl -u:n geesyitm,

where

ih _ i E; ln
=j1+h +1m and therefore - z
h h I ;jm im+lm hz‘ll oh hZ)l oh b2 oh°

Since the index cannot be negative, we obtain then the inequality

. P lh
©): J(Ay, ...1,) > max(0, J(A) - 12;1 ot )

From now on the index J(A) will nearly always be taken relative to
r]. geeey rm.

2. Put wa) = e "® s A F0,andW(0) =0. The properties of J(A) just stated show
that w(A) is a non-archimedean valuation on the ring of polynomials.
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9. The upper bound 8 m(a; Hi,..., Hpys F1yeees )

If Hy,...,Hm are m positive integers, we denote by Q(H;,..., Hm) the
set of all systems of m rational numbers

P P

written in iheir simplified forms,
(P1,Q1) = (P2,Qs) = ... = (P,Qm) = 1,
of heights
Hp = max(|Pp /[, |Qn ) (h=1,2,...,m).

If further a=1 is a real number and ri,...,rm are positive integers, we de-
note by R(a; r1,...,rm) the set of all polynomials
.

Iy r'm

i
A(X1,...,Xm)= Z aes E ail__.imX}l...an;n %0
=0 im=0

with integral coefficients which are of height
[A] < a.
Roth’s lemma deals with a number ©@m defined as follows.

Définition: Let a>1, and let r1,...,rm, Hi,..., Hm be 2m positive integers.
The symbol

Om = Omfa; r1,...,rm; Hi,...,Hm)

denotes the least upper bound of J(A; T1,...,Tm}K1,...,Km) extended over
all polynomials AcR(A;r1,...,rm) and over all systems of m rational
numbers (k1 ,...,k m)€Q(Hi,..., Hm).

Several simple properties of ‘@ follow at once from this definition.
First, both sets R(a;ri,...,rm) and Q(H;,...,Hy,) are finite. Hence the least
upper bound in the definition of Oy, is atfained, and there exist a polynomial
AeR and a set of fractions (k1 ,...,k m)eQ such that

Om(a; r1...,rm; Hi,...,Hm) = J(A; r1,...,r'm} K1 ,eu0,K m)-

Secondly, the set R(ajr1,...,rm) does not lose elements when a increases;
hence Om is a non-decreasing function of a. Third, as we are considering
now indices relative to ri,...,rm, J(A) is equal to a sum

m .
E Jn where 0 <ji<ri,..,0<jy,<rm,
h=1 Th

and it follows at once that 0 < J(A) < m and hence that

0 6y =<m.
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10. An upper bound for 8, (a; r; H).

We begin with the study of @:. Let

! .
Alx)= ), axl %0
i=0

be a polynomial in one variable, with integral coefficients such that
[Al = max(lal,lasl,..., lar]) < a.

Let the rational number « = % be written in its simplest form, thus (P,Q)=1,
and assume that
H = max(|P/,|Q]) =2.

Hence x+0 and P+0, Q+0. °

Suppose J(A; r; k)> 0. Then k is a zero of A(x), say of the exact order
>0, and A(x) is divisible by (x-x)i. By Gauss’s lemma from $§6, A(x) can
then be written as

A(x) = Qx-P)IB(x)

where B(x) is a certain polynomial with integral coefficients. Hence the
lowest and the highest non-zero coefficients of A(x) are divisible by Pl and
QJ, respectively. It follows that

B < A < a,
hence that

cpe )=l < LOBR
I(A;r; K)-r s rlogH’

a result valid also when J(A;r;k) = 0. Therefore always

1 .
(01): 81(a;ryH) < r(;ggaH if H=>2.

11. The property I')\.

The induction proof of Roth’s lemma in the next sections becomes sim-
pler if the following notation is used.
Denote by t a constant such that

0<t=s 1.

If b=1 is a real number, and si,...,8M, K1 ,..., KM are positive integers, the
ordered system of numbers

b, 81,..., 80, Ki,..., KM
is said io have the property T\ if either, (1)
M=1,Ki>2,b <K
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or, (ii), simulianeously M=2 and

_,_ 8s 8M .
MAX(C") gor o BM-1 t;
shlog Kh =81 logKa (h=1,2,...,M);

1
K »2TM-DMEML),

1
b < K;ﬁ si1t .
Therefore the following inequalities also hold,

M
812 82> ... 28\ ), Bh < Ms1; Ki>2, K3 2,..., KM > 2.

By way of application, let m=2; let the ordered system of numbers
a,T1,...ym, H1,...,Hm
have the property I'lm; let n be an integer such that
lsnsrpy+1
and let

b= g®E et Tm) pyans b ey pas nreyee, et = APt

Then the new ordeved system of numbers
b, p1,eees Pm-1, Hi,yeoeyHp-1
has the property I'm-1.
Proof: The first inequalities

P2 Ps Pm-l)
1’p2 ’ " pm-2
pplog Hy = pylogH, (h=1,2,...,m-1)
are for m=3 immediate consequences of the assumption that

12_ !'_3_ Im .
max T’ T2’ Tmol <t
rhlog Hp =rilogH, (h =1,2,...,m).
Next, by hypothesis,

1
H > 2-t-—(m-1)m(2m+1)’
whence, trivially, also

1, azt ——(m- 2)(m—1)(2m-1)
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Finally,
n<rm+1s<ry+1=<2%, hence nl<n®<20T1 =20,

and, by assumption,

irlt
a<H™ ", ri+r+ e +rym < mrg.
Therefore, 1
. =mt -3 Pt
b < 22n mry oo .0 2(2m+1)p1 R it o 1 i
because

1 —pit 1 pit 1 pit
o, — 1
B2 m-1 /H;m - I_hm(m-l) > 2(2m+l)p; )

12. A recursive inequality for &m. I.

Let again t be a constant such that
0<t=s1.
We assume that m =2 and that the ordered system of numbers
a, 1,.0.,m, Hi ooy, Hm

has the property I'm.
It was shown in §9 that there exist a polynomial

A(x1,...,xm)€R(a; r1,...,'m)
and a set of fractions
(K1 5eeey km) € Q(Hy 5.0, Hm)
such that
Om(a;T1,eee, Tmi Hiyeooy Hy) = J(A;71,eee, Pm3 K1 yeeey Km)-

Denote by n the integer with l<nsrm+1, and by U(xi,...,xm-1), V&),
and W(x1,...,Xm) the three polynomials that correspond to A by Lemmas 2
and 3, and put again

2n(ry + oo + 1
p =20 w1 9B py = nry ..., pm-1 = BFm-1, pm = ATm.

As has just been proved, the ordered system of numbers
b, ;1 ,-.--, Pm-1, H, seees Hm-1

has then the property I'm-1.
From the construction and from Lemma 3,

Al <a; (Ul <o, Wl <a, W <a,
where

o= 22n(r1 +...+rm)nl A" < b.



ROTH’S LEMMA 93

Therefore the upper bounds for the degrees of U, V, and W imply that
U1 ..., Xm-1)eR(b;p1 ,...,pm-1), V(xm)eR(b;pm),

W1 ,e00, Xm)eR(D; p1 ..., pm) .
Hence, in particular, with the same fractions «i,..., km-1, km as above,
J(U3p1 5005 Pm-15K1 50005 Km-1) < Om-1(b301,...,0m-1; Hi,...; Hm-1),
J(V; pmskm) < 61 (0; pm; Hp).
From the identity
W1,.e, Xm) = UXyyeer, Xm-1) V(Xm)
and from the multiplicative property (B) of the index, it follows that
J(W;3p1,eee, P} 15000, Km) = F(U3p1,eee, Ppm-15 K1 5000y km-1) + T (V;om; km),
or
J(W3p1 50005 P} K1 yeoey Km) < &y,
where, for shortness,
®m= Om-1(;p1,...,pm-1;H1 .0, Hm-1) + 61 (b;0m; H).
Instead, we may also write
J(W;3T1 e, Tm} K1 yeesy Kpy) < 1 &,
because pp=nrh for all h, and so, by the definition of the index,
J(W;T1,eee, T} K1 yeees Km) =0 J(W;301 5000, P K1 5eees Km)-

Since from now on only indices of polynomials at the fixed point (« ,...,km)
relative to the fixed integers r;,...,rm will occur, we shall write for these
indices simply J(W), J(A), etc.

13. A recursive inequality for &m. Il.

In the inequality
J(W) <ndém

just proved, we can give a lower bound for J(W) in terms of J(A).
For, as in §7,

W1 yeeeyXm) = ) FAp 1 ALy g AA) 0 A,

where the systems of suffixes ,,..., 4y run over all n! permutations of
1,2,...,n, while the operators A, are of the form

plul+..+ipm-1+jym

A = j Sum-1 -, Jom
iy leedum-11 Jym! 9% WL, 0x g1 -1 oy lvm

and the j’s are non-negative integers such that

jur+etipm-1 < p-l,  jym =v-1 (uv = 1,2,...,n).
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Therefore
AuvA = Ajyy..Jyum-1iym’
so that property (C) of the index implies the inequality

3(AA) > max(0, J(4) - E —-“—h lvm
h=1

I'm
But
r12ra2..2rm;.1 2rm; p-l<sn-1<rpy strpy-q,
and so
1 %l jvm
(A A) = maxé, Tl h§1 Juh - -~

= max({0, J(A) - —“— >max< J(A)-t-——).
l‘m T'm
Therefore, finally, by the properties (A) and (B) of the index,

3> Y max(0, 3(a)-t-2=L —
v=1
This inequality can be simplified. For shortness put
N = [{J(A)-t}rm] + 1,
where [x] denotes as usual the integral part of x. Hence
N-1 <{ J(A)-tJrm < N.
We shall now distinguish the two cases n<N and n>N.
The case n<N. Evidently

n-1 < N-1 <{ J(A)-t}rm

and hence
l’r—'m% < :_;Tl < J(A)-t v =1,2,..,0).
There@ore )
PIS) {J(A)-t-—} n{ 3(A)-t} - “‘“‘1’ >
v=1
> o{J(A)-t} - 5{JA)-t} = 3 I(A)-t)},
whence

(): JA) <t +§ I(W) #fn<N.
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The case n>N. Assume, for the moment, that
J(A) 2t andthus N =1,

Then

w2 JA)-t-E2 1t 1<v<N,
max(0,J(A t-—-— =
0 if N+lsp=<n,

and it follows that

N
2 L - _M&l)
I(W) le)l{J(A) t m} = N{J(A)-t} >

> NI(8)-t) - D{3(A)- t} = 3-{3(a)-£} > 2B 5 ()1,

On solving this inequality for J(A), we find that

@): J(A) <t + ;%J(W)stq-z‘/%.r(w) if n>N,

because
Tm , _Tm .nal n_n

n<rm+1,5=> 733371

In the case J(A)<t so far excluded this estimate is siill valid.
The two inequalities (1) and (2) show that in both cases n<N and n>N

the same estimate
3(8) < t +2 max(2 J(W),‘/ Law)

holds. Since J(W)<n&py,, it follows that always
J(A) < t + 2 max(®m,VOm).
In this inequality, A was chosen such that
J(A) = J(A;ry,000, M K1 yeeey km) = Oma;re,...,rm; Hi,.o., Hm),
and ®m had the value
®m= Om-10;p1,...,m-1;H1,..., Hm-1) + 1 (b; pm; Hp).
We apply now the inequality ( 8:) of §10 which shows that

A logb
6, (b; pm; Hm) < pmlogHm *

By definition, p1=nr; and pmy = nry,, and also
rmlogHm =rilogH;, hence pmlogHm =pilogH,.

It was further shown in §11 that 1
-1 Pt

b < me

95
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Therefore

L. logb t
61 (b5 pm3 Bm) <o < w1 <*

because m>2.
The long proof of the last sections has thus lead to the following recur-
sive inequality.

Lemma 4: Let m=>2, and let
a;T1 00, T'm; H1yeooy Hy

be any ordered system of numbers with the property T'm. Then there
exists an ordered system of numbers

b;p14eee, Pm-1; H1yeooy Hm-1
with the property I'm-1 such that
Om(a; 71 eee, *m; Hy yoooy Hm) < t + 2 max(¥ py, V¥ )
where
¥m= Om-1(;p1,...,0m-1;H1 ,e.., Hm-1) +t.

14. Proof of Roth’s Lemma.

It is now easy to prove

.Roth’s Lemma: Put cy=2™"1

-3. If the ordered system of numbers
a,T1 000, Py Hiyeeoy Hm
has the property T'm, then

Om(a; T1ye00y'my H], geeey Hm) = Cmtz-(m-l).

Proof: We procede by induction for m. First let m=1, hence H;>2
and a<HF1t. The estimate ( 61) of §10 implies then that

loga
6.(a;r,; Hy) sr—llgc;‘gT; <t =cyt,

as asserted. Secondly assume that m=2, and that the assertion has already
been proved for all ordered systems of numbers

b, p1 4.0 Pm-1, H, yeeey Hm-l

with the property I'm-1; it suffices to prove that it then is true also for all
ordered systems of numbers

a,T1,eeey I'm> H, yeoey Hm
with the property I'm. By this induction hypothesis, the expression ¥y in
Lemma 4 satisfies the inequality

¥m= 6m-1b;p1,...,om-1;H,..., Hm-1) + t < cm-1t2'(m'2) +t,
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and therefore Lemma 4 implies that

Om(a; r1,.., *m; Hiyero, Hy) < t + 2max cm_1t2"(m'2)+ t, cm_ltg-(m-2)+ t).
Now 0 <t =1 and cpy-1>1. The expression

t + 2 max(em-1t2" (m-2), t,ch_ltz' (m-2), t)

of this inequality is therefore certainly not larger than

t2-(m-1)+ 2 max(cm_ltz-(m-l)+ tz'(m—l),‘/(cizn_l +2cm..1)t2'(m'2)+ tz-(m-z))_

= Qep-1+ 3)t2-(m—1) _ cmtz-(m-l),

whence the assertion.
We conclude this chapter by stating Roth’s Lemma in a slightly weaker,
but more convenient explicit form, as follows.

Theorem 1: Let 0<t<1. Let a>1 be a veal number, and let 1, ,...,Ty,
Hi,..., Hm, where m=>2, be positive integers such that

Thel < rpt (h=1,2,...,m-1),
rhlogHp =11 logH; (h=2,3,...,m),
2 (m-1)m(zm+1)
H; =2 ,
1
—nt
as Hlm

Let

=B = Pm
Ki = QT Km Qm

be rational numbers such that
(P, Qp) = 1, max(|Py|,|Qpl) = Hy (h=1,2,...,m).
Finally let A(x,...,Xm) be a polynomial of the form

I 'm

i i
AlXy ey Xm) = E vee E ail,,,imX11...xmm
11=0 im'-:o

which is not identically zero and has integral coefficients such that
'a'il.-.iml < a for all iy,..., im.

Then there exist non-negative integers ji,...,im Salisfying

m .

E Jh < 2m+1t2'(m"1)

h=1 *h

such that )

Ajl _._jm(K], goeey Km) * 0.



