Chapter 3

A TEST FOR ALGEBRAIC OR
TRANSCENDENTAL NUMBERS

Suppose a field K has been extended to its completion Kw with respect
to some valuation or pseudo-valuation w(a). The element @ of Ky is then
said to be algebraic over K if it satisfies an equation

acxD +ayxP-l 4+ ... +ap=0 (a,#0,n=1)

with coefficients in K, and it is otherwise called transcendental over K.
The corresponding extension field K(a) is likewise algebraic, or transcen-
dental, respectively.

Much of the following investigations are concerned with the problem
whether a given real, p-adic, g-adic, or g*-adic number a is algebraic or
transcendental over the rational field I'. There is one, relatively elemen-
tary, approach to this problem where one studies the values of variable
polynomials F(x) with rational integral coefficients at the point x = a; it
will be studied in the present chapter. A much deeper method, due to Thue,
Siegel, and Roth, uses properties of the rational approximailions of a. For
the explicit construction of such approximations a simple algorithm will be
given in the next chapter. It is based on the continued fraction algorithm for
real numbers and forms its natural extension to p-adic, g-adic, and g*-adic
numbers. The deep theorem of Roth shows that these approximations cannot
be too good in the case of an algebraic number a. The theorem is best-
possible and has many interesting consequences. The long and involved proof
fills all the remaining chapters.

Before starting with these investigations, it has perhaps some interest
to collect certain general properties that are basic for the theory of Diophan-
tine approximations.

One such property was already mentioned in the first chapter. This was
the

r
Fundamental Inequality: |a| jl_'I1 lalpj =1

where a + 0 is any rational integer, and p1,..., pr are finitely many distinct
primes. Thus, in particular,

lal> lal) > o7
al=1 and ap/|a|'

The second property makes a statement on the density of the rational
integers on the real axis:

If o and B are real numbers such that o < B, then there are exacitly

[8] - [a] 7ational integers g such that a < g <B. In particular, the

interval 0 < g < B contains exactly [B] + 1, and the interval -B<g < B

exactly 2[B] + 1 rational integers.
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42 LECTURES ON DIOPHANTINE APPRO)HMATIONS

Here [a] denotes as usual the integral part of o, i.e., the greatest rational
integer that does not exceed a.
The third property is the famous

Principle of Dirichlet (Schubfachprinzip): If n+l elements are dis-
tributed among n sets, then at least one set coniains more than one ele-
ment.

As we shall find, all three properties will again and again be applied on
the following pages.

1. Notation.
Let aeP, aocPp, AcPg, and A*ePg* be any real, p-adic, g-adic, and
g*-adic number, respectively, and let
lal, lalp, lalg, and lalg

be the corresponding valuations or pseudo-valuations. When properties in
common to all four kinds of numbers are being discussed, we shall use the
letter a for any one of them; and the symbol w(a) will then stand for the
corresponding valuation or pseudo-valuation.

By integer, without any qualifying term, we always mean a rational in-
teger. All polynomials that occur in this chapter lie in the polynomial ring
T'[x], thus have rational coefficients. If

g@) =box? + bx™ 4 ... + by
is such a polynomial, the maximum
[g&)] = max(lbol, [bs ..., Ibg)
is called the keight of g(x). Throughout this chapter,
F(x) = Acx™ + Arxm-1 4+ + Apy

is an arbitrary polynomial with integral coefficients, of a degree not exceed-
ing m and of height A = [F(x)].

2. The minimum polynomial of an algebraic number.

Let a be a fixed number (real, p-adic, g-adic, or g*-adic) which is
algebraic over I'. There exists thus at least one polynomial g(x) 0 in I'[x]
such that gla) = 0. Among all polynomials with this property we select one of
lowest degree, the polynomial

f(x) = acx® + a,x0-1 + . + ap, whereao+ 0,n>1,

say.
If g(x) vanishes for x=a, then g(x) is divisible by £(x). For g(x) may
be divided by £(x) and then takes the form

gi) = {&®hE) + k(x),
where h(x) and k(x) are again in I'[x], and k(x) is of lower degree than
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f(x) or vanishes identically. Since k(a) = g(a) - f(a) h (a) =0, k(x) is
divisible by f(x), whence k(x) = 0.

We call £(x) the minimum polynomial, and £(x) = 0 the minimum equa-
tion, for a. Except for a constant factor distinct from zero, the minimum
polynomial evidently is unique, and hence so is its degree n. The number a
is then likewise said to have the degree n.

If the algebraic number a is real or p-adic, then the minimum poly-
nomial 1(x) is irreducible over T, but this need not be true if a is a
g-adic or g*-adic number.

First let a belong to either P or Pp; thus a is element of a field.
Further suppose that £(x) = g(x)h(x) where g(x) and h(x) are nonconstant
polynomials in I'[x] and therefore are of lower degrees than f(x). It follows
that g(a) # 0 and h(a) + 0, hence that also the product g(a)h(a) = £(a) is
distinct from zero, which is false.

Secondly assume that a lies in Pg or Pg*. Then the last proof is no
longer valid since there are zero divisors in both rings. By way of example,
the g-adic number A-=~-(1, 0,..., 0) has the minimum polynomial £(x) = x(x-1)
which is reducible over I'[x].

A g-adic or g*-adic number is algebraic if and only if all ils components
are algebraic.

The proof is the same in both cases; it suffices therefore to deal with
the case of a g-adic number A~-(0i,..., ar). If A is algebraic, let f(x) be
its minimum polynomial. Then

f(A)—[f(a1),..., f(@p)] = 0, hence f(ai) = ... =1f(ar) =0,

It follows that all components a3,..., @y are algebraic, and that their mini-
mum polynomials are divisors of f(x). Conversely, let ai,..., @r be alge-
braic, with the minimum polynomials f (x),..., fr(x), respectively, and let
f(x) be the least common multiple of these polynomials. Then

f(a1) = ... = f(or) = 0 and hence £(4)~~[f(au),..., fl@r)] =0

and so A is likewise algebraic. It is clear from this proof that the minimum
polynomial of A is equal to the least common multiple of the minimum poly-
nomials of its components. The same is true for algebraic g*-adic numbers
A*,
The minimum polynomial of an algebraic number o has no multiple
2eros, hence is relatively prime lo its derivative.

The assertion certainly holds when a = @ or a= ao because then £(x)
is irreducible over I', a field of characteristic 0. It slill remains valid when
a = A or a = A¥ because the least common multiple of finitely many poly-
nomials irreducible over I" cannot have multiple zeros.

3. An algebraic Identity.

Let a be again an algebraic number. We may assume that its minimum
polynomial
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f(x) = apxP + a:x8~1 + .., +an, where a0 +0,n =1,
has integral coefficients, and we write
' a=[f&)].
Denote by
F(x) = Aox™ + A, xm-1 4 4 Ay
a second polynomial with integral coefficients, of height
A=[F&].
We assume, for the present, that

(): Ao # 0, so that F(x) has the exact degree m; and
(ii): F&) is relatively prime to £(x).

These restrictions will later be relaxed.
As is proved in algebra, these two conditions imply that the resultant

ag a1 ag ... an-1 an 0o ... 0
0 ag 4y ... an-2 ap-1 ap ... 0
. . - . . . . . m rows
0 0 0o ... ag aj ag ... an
R=
Ag Ay Ay ... Ay Aym O
0 Ag A ... Ay g Apg Am
. . .. . . . . . n rows
0 0 0 ... A AL Ay oes Am

of f(x) and F(x) is distinct from zero. Denote by g(x) and G{(x) the two
determinants that are obtained from the determinant for R by leaving the
first m-+n-1 columns unchanged, while replacing the last column by a new one
consisting of the successive terms

xm-1 ym-2. 10,0, ...,0
and
0,0,..,0,x0-1, x0-2 1
respectively. Then the following identity holds:
(1): R = f(x)g(x) + Fx)G(x).
For multiply the 1st, 2nd,..., (m+n-1)st column of R by the factors
xm+ﬂ‘1, xm+n-2,“_, x

and add to the last column. This operation does not change the value of the
determinant, but transforms it into a new determinant where the last column
now consists of the terms

xW-1(x), xM-2f(x),..., 1), x1-1Fx), x0-2F (x),..., 1-F(x).
On splitting this column into the two columns
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xm-1f(x), xM-2f(x), ..., 1-£(x), 0, 0,... 0,
and
0,0, ... 0, x1-1F(x), x0-2F(x), ... , 1-F(x),
the assertion follows at once.
From its definition as a determinant of order m+n, R is a sum of at
most (m+n)! terms where each term is a positive or negative product of m
factors ay and n factors Ay . It follows that R satisfies the inequality

2): 1< |R|< (m+n)! amAD,

Here the lower bound holds because R is an integer distinct from zero.
Similarly, g(x) and G(x) may be written as polynomials of the form

g(x) = boxM-1 4 b xm-2 4 +bm-1
and
G(x) = Box2-1 + B;xn-2 4 + Bp-1,

where the coefficients by, and By are the cofactors of the last column of R,
hence are determinants of order m+n-1. They are thus integers, and an
estimate just as for R leads to the inequalities

(3): [e&)] < (m+n-1)1 am-1 An,
(4): [G&)]|< (m+n-1)! amAR-1

4. Inequalities for algebraic numbers.

On putting x = a in the identity (1), it follows that
R =F(a)G(a)
and hence that

(5): w{F(a)}= w(a%-)) .
In order to deduce lower bounds for w{F(a)} from this equation, it becomes
necessary to dislinguish between the four different kinds of numbers.
Case 1: a=a is a real algebraic number.
Since G(x) is at most of degree n-1, the inequality (4) implies that
[Gla)] = [GK)] (la|™1 4 @224 .. 4 [ak1) <
< (mn-1)1amAR-1([|P"1 4 @[22 4 4 |a]+1).
On the other hand, by (2),
IR|=1.
i follows therefore from (5) that
1,1): |F(a)| > c1 (m) A-(0-1)
where ihe factor
c1(m) = {(mn-1)1am(Ja/P 14 [a|?2 4.+ |al + 1)} -1

depends on @ and m, but is independent of A.
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Case 2: a = oy is a p-adic algebraic number.

Since the polynomial G(x) has integral coefficients and is at most of de-
gree n-1,

|Glao) |p < max (Iaolg'l, lao[B72,..., laoly, 1) = max(]aol37, 1).
On the other hand, by (2) and the fundamental inequality,
IRIp > {(m+n)! am AR} -1,
Hence it follows from (5) that
(1,2): [F(ao) |p = ca (m)A™
where the factor
cz2 (m) = {(m+n)! a™ max(|ao Ig"l, 1)t

depends on ao and m, but is independent of A.
So far, the inequalities (I,1) and (I,2) have only been proved if F(x) sat-
isfies the conditions (i) and (ii) of § 3,

(1): F(x) has the exact degree m, and
(ii): F(x) is relatively prime to £(x).

However, both inequalities remain valid if only the following weaker condi-
tions are imposed,

(i'): F(x) is at most of degree m, and
@ii'): F(a) 0. T

For let m' be the exact degree of F(x). Then m' < m, hence
ci(m') Ze1(m), ca(m') =ca(m).

The inequalities (I,1) and (I,2) corresponding to the degree m' are thus at
least as strong as those corresponding to the degree m and imply the latter.

Next, in both cases a = @ and a = ao the hypothesis F(a) + 0 implies
that F(x) is relatively prime to f(x). For the polynomial f(x) is now ir-
reducible over I, and so F(x) and £(x) cannot have a nonconstant common
factor unless F(x) is divisible by £(x).

Case 3: a = A<=(o1,..., @y) is a g-adic algebraic number.
Let again F(x) be at most of degree m, and let F(4) + 0. Then
F(A)==[F(a1),..., Flar)] +0,

and so there is a suffix j with 1 < j < r such that F (aj) #0. Let fj(x), the
minimum polynomial of aj, have the degree n(i) and the height a(i). The
inequality (I,2) may be applied to the component F(aj) of F(A), giving

[F(e;) 'pj 2 ¢ (m) A-n(j),
where csi)(m) stands for

edi)m) = {(m+n D)1 2 max(|o; Ia(j)‘l, 0L

Put
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(1) (r) )
- n‘“logg n\’logg
n(4) max(exlogm > " ep logpr

and

( _logg 1o )
ca(m) = min \cikm)2H 18P o (@)(yerlogPr |
By the definition of the g-adic value,

logg logg
IF(4) g = max \[F() 153 8™,..., |F(ar) 5T 198PF |,

It follows then, finally, that
1,3): |F(4) g > calm) A4,

where the exponent n(4) is a positive number depending only on A4, and cs(m)
is a positive number that depends on 4 and m, but not on A.

Case 4: a = A* is a g*-adic algebraic number.

Let A*<+(a, A) be the decomposition of A* into its real and its g-adic
components, We assume that F(4*) 0. Since

F(A*)<~[F(a), F(4)],

at least one of the two components F(a) and F(A) is distinct from zero, If
F(a) +0, then |F(a)| satisfies an inequality of the form (I,1); if, however,
F(A4) + 0, then an inequality of the form (I,3) holds for |F(4)|g. Now, by the
definition of the g*-adic value,

|F(4*)| gu = max(|F(@), [F(4)|g). ,

It follows therefore that there exist a non-negative number n(4*) depending
only on A*, and a positive number cs(m) depending on both A* and m, but
not on A, such that

(1,4): | F(A%) lg* P u(m)A'n(A*)-

On combining the four inequalities (I,1)-(I,4), the following result is ob-
tained.

Theorem 1: Let a be an algebraic number (real, p-adic, g-adic, or
g*-adic), and let F(x) by a polynomial with integral coefficients, of de-
gree at most m and of height A. There exist a non-negative number n(a)
depending on a but not on m or A, and a positive number c(a, m) de-
pending on a and m but not on A, such that

either F(a) =0, or w{F(a)} =c(a,m) A-nla),

The importance of this theorem lies in the fact that the exponent n(a) is
entirely independent of the polynomial F(x). As we shall see, the position is
very different for transcendental numbers.

There is a second theorem involving the product of the values of the com-
ponents of F(a). Put
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f [F(a)l if a=a,
[F(ao)Ip if a= ao,
Q{F(a)} = r
¢ T ]El IF(aj)lp] if a=A-(01,..., Ap);
L IF(@)] ;1}1 [F(aj)lp;  if @a=A*<=(a,01,..., ap).

A proof just like that of Theorem 1 leads to the following result.

Theorem 1': Let the hypothesis be as in Theorem 1. Put v(d) equal to
n-1 or n, according as a has, or has not, a real component; here n
denotes the degree of d. There exists a positive number v (a, m) de-
pending on a and m but not on A such that

cither Q{F(a)}=0, or Q{F(d)} > ¥ (q, m)A-(9),

The proofs of both theorems depend very essentially on the Fundamental
Inequality. The other two general properties mentioned in the introduction
have not been used. They form the basis for the next investigations.

5. A theorem on linear forms.

From now on the number a need no longer be algebraic. Our aim is to
find polynomials F(x) for which w{F(a)} is small. The construction makes
use of Dirichlet’s principle and of the density properties of the integers which
were mentioned in the introduction. In the special case when F(x) is a
linear polynomial, a simpler and more explicit method will be given in the *
next chapter.

We begin 'with a general theorem on linear forms'

Theorem 2: Let

n
Lh) =k§1 B (h=1,2,..., n)

be n linear forms in n variables with real coefficients, and let
n
s h=11,%5:).‘..,n k§1 Iahkl >0.
If \1,..., \n are n positive numbers such that
Mo Ap > aly
there exist n integers Xi,..., Xn not all zero satisfying
|Lp&) [< AR (h=1,2,.., n).

1. This is a slightly weakened form of Minkowski’s theorem on linear forms (Geo-
metrie der Zahlen, §§ 36-37). I learned the proof as given here more than 30 years ago
from my teacher C. L. Siegel.
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Proof: Denote by N a very large positive integer, and define n further
positive integers ti,..., tn by the formulae

th [Zal;N] +1 (h=1,2,..,, n).

Since, asymptotically,

= W (2N+1)n ag N — o,

N can be chosen so large that
1...th < (2N+1)R,

The ordered system (xi,..., Xp) i8 said to be admissible if each xp
equals one of the 2N+1 integers 0,¥1,¥2,..., ¥FN between -N and +N. There
are then (2N+1)! admissible systems. For such systems,

n n
|Lp&) | = | E apixg | < N E lahklsaN,
k=1 k=1

so that

-aN < Lp(x) < +aN
Divide the interval [-aN, +aN], for each suffix h=1, 2,..., n, into th subin-
tervals of equal length _a_hN the subintervals J (h) §h),.. Eg)
on the boundary of two adjacent intervals should be counted as belonging to

only one of them. In accordance with the values assumed by the forms
Li(x),..., Ln(x), there corresponds to each admissible system (x1,..., Xp)

(1) Jg:)) of n subintervals such that Lh(x)eJﬁ:?

By the construction, the number of all such systems of n subintervals is
exactly ti....t;, hence is less than the number of admissible systems
(XI, 9oy Xn)-

It follows then, from Dirichlet’s principle, that there exist two distinct
admissible systems (xi,..., X)) and (x1,..., x}{) for which the values of
Ly (%'),...y L,z(x') and of Li(x''),..., Ln(x'') lie in the same system of sub-

intervals (Jli),..., le . Therefore

, say; points

a unique ordered system (J;

La6e) - o) < 22 (h=1.2,.., ).

Put
\] 1" 1 1 "
X1 =X1 = X1 y..0y Xpg = X}y - Xp.

Then X,..., Xn are integers not all zero for which

L@ = [Ly&) - Lhﬁt")lsz—;'ly < (h=12,... n)
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because

2aN 2aN
th [Xh]+1>—h'

6. On a system of both real and p-adic linear forms.

From Theorem 2 we shall now deduce a result on the values of systems
of linear forms that have coefficients in different completions of the rational
field.

Denote by

1(x) = @1Xq +..+ QN XM
a linear form with real coefficients not all zero for which
lag | +.c+ lapl < 1,
further by p1,..., py finitely many distinct primes, and by
L(x) = 0§y Xy +eoot Oy MEM G=1,2,..,7r)
a linear form with pj-adic coefficients satisfying
max(|aj ij,..., lalepj) <1 (j=1,2,.,.,1).

Since 1(x) has at least one non-zero coefficient, there is no loss of generality
in assuming that

ay ¥ 0;

for, if necessary, it suffices to renumber the variables.

Let Ei,..., Ep be r arbitrary positive integers. By hypothesis, the
coefficients ajy of each form lj(x) are pi-adic inlegers. Hence there exist
rational integers aj, satisfying the inequalities

o= agulpy < 6,0 < ap < pftr (4232 7)
Now put
13(x) = ayxy + ... +3jM XM (G=1,2,..., )
and
B I 030 + 0] mpyg}t =12,
Lj®x) = X, if j =r+p, p=1,2,..., M-1,

1(x) if j = M4r

The linear forms L; (x) so defined have real coefficients such that the sum of
the absolute values of the coefficients of each form is not greater than 1.

Therefore, on applying Theorem 2, with n=M+r and a=1, it follows that
there exist integers X1, Xa,..., XM+r not all zero satisfying the system of
inequalities

'L](X)I < A-j (j = 1,2,...,M+1‘),
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whenever Ai, Ag,..., AM4r are positive numbers such that
)U.A.a oo A.M.'.r > 1.
Let us now specialize this result in two different ways.

First specialization: Denote by T a number greater than 1 and define a
number t> 1 by

tM-1 - g(M41)TpLt... pETT;
further put
py I (M41)™ fi=12,..,r,
A= t ifj =r+y p=1,2,.., M-1,
%‘ if j = M+r.
Then

thz aes A.M.,.r = 2,

and so we may apply the last result. It follows then from the formulae for
Lj(x) and Aj that there exist integers xi,Xa,..., XM+r not all zero satisfying
the inequalities

Ej :
(136 + pjd xmygl < 1 G=12,.,1),
lxul< t (p=1,2,..., M-1),
1
&) < -
The first r of these formulae imply that already xi, ..., Xy cannot all vanish;
for otherwise also Xp4+1 = ... = XMy = 0.
These first r inequalities are equivalent to
E. . .
13&x) +p ] Xpag = 0 G =1,2,..,r),
because the expressions on the left-hand sides are integers. Hence
= E
13(x) = 0(mod p;*J) G=12,.,71)
and therefore
-E
|1’3‘(x) [pj < pj i G =1,2,..., r).

Now

Ey

’

M
l]_](x)—l’i(X) lpj = IM‘?I (aj#-a],_,)xulp] s ”=r:{l,a2’f“,M Iaj”_ajﬂlp] = p;

s0 that also
I136e) I = 1156 + (1360)-15 Gl py < ma([160) |y, 1360015 x) [ py) < py™

G=12,.,r).
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Finally, from T >1 and t > 1 and from the last M inequalities, we deduce
that

lopg xpm = &)= (@1 x1 +..ot oy 1xM-1) | < M) |+ (an [+t lapog l)t<%+t<2t.

Since |apm| < 1, it follows that

2t
max([x; | ,..., lxm1)< o] -
Second specialisation: Put
I(X) = XM
which is evidently allowed, and choose
=1 Ghere tM- 2(M+1)* pF‘ pg:r .

t

Otherwise leave the notation just as in the first specialisation. On repeating
the last computations, it now follows that there exist integers x,,..., X not
all zero such that
-Bj :
llj(x)lp] < Py i (G=12,..,71),
max(|xl,..., lxyl) < t.
The two results just proved contain the following theorem.
Theorem 3: Let
18) = aqxq+..+ ayxy, where 0<|apl+..+layl<1,

be a linear form wilh real coefficients; let p1,..., py be finitely many
distinct primes; let

l:j(x) = @ Xy +..+ ajNEM, where max(lajllpj,...,lajM lpj) <1,
be, for j=1,2,..., r, a linear form with pj-adic coefficients; let E,,...,.Ey
be positive inlegers; and let T> 1.

(1): There exists a positive constant A1 independent of E,..., Ey, and
T, such that there are integers x1,..., Xy Jor which
el < 3, L @lp, <p™,..., ), < p77F,

1
0 < max(|xl,..., [xpql) < A Fl plE.:rT)M'1 .

(ii): There exists a positive constant Ay independent of Ei,...,Ey such
that there are integers X ,..., Xyp for which

-E -E
12 (X)lm =P 1,..., Ilr(x) lpr <Py r,

1
0 < max(lxi,..., lxml) < Az L. pxF::r)M .
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Remark: Theorem 3 may be extended to systems that contain more than
one real linear form, more than one p;~adic linear form, etc., and more than
one pr-adic linear form. The best method is to apply either Minkowski’s
theorem on linear forms or his theorem on lattice points in convex bodies.

7. Polynomials F(x) for which w {F(a)} is small.
Let a be an arbitrary algebraic or transcendental number (real, p-adic,
g-adic, or g*-adic). Theorem 3 leads io the construction of polynomials
F(x) = Acx™ + Aix-1 4 | 4+ Ay

with integral coefficients, of degree at most m and of height A > 0, for
which w{F(a)} is small. They are obtained by specialising the linear forms
1(x) and lj(x) and choosing the parameters Ei,..., Er, and T suitably. The
theorem is applied with M=m+1, and with Ao, A1,..., Ay instead of xi,...,xp
as the variables. One must again distinguish between the different kinds of
numbers.

Case 1: a = ais a real number.
In Theorem 3(i) choose r=0 and
16x) = k7 (g™ + Ay o™~ 4 . 4+ Ap)
where
k=la|®+ a1y | +al+1.
Further denote by s an arbitrary number greater than 1 and put
T = ks™,

Since the hypothesis of the theorem evidently is satisfied, it follows that
there exists a polynomial F(x) for which
(v,1): [Fa)| <s™™, 0< A< A

Cases 2 and 3. a is a p-adic or a g-adic number.

Let a = A~~(a,,..., @p) be a g-adic number; for r=1 this includes the
case of a p-adic number. Define non-negative integers f,..., fr by the
equations

Ym,g

pgj = max(1, Iaj lpj) (j = 1’2""! I')
and apply Theorem 3(ii) to the linear forms

1(8) = p}nfj(Aoa;n + Ay a;n-l +..+Am) (G =1,2,..,r)

the coefficients of which obviously are pj-adic éniegers. Also put
Ej = mfj + (m+1)ejt (j=1,2,...,r)

where t is an arbitrarily large positive integer and e:,..., ey are, as usual,
the exponents in

€. (2
g=pr ..psl .
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The hypothesis of the theorem is again satisfied. It follows that tkere exisis
a polynomial F(x) with the properties

(ms 1t Nl
(v,2): IF@)lg < g™, 0< A< ma [T pil) ™ vet
For we first obtain the second inequality together with the formulae

IP@ylp <0y ™ =13, ),

and these imply the first inequality by the definition of the g-adic value.
Let, in particular, a = ae be a p-adic number. We now define a single
non-negative integer f by

pf = max(1, |aop)

and apply the inequality (V,2) with g=p and r=1. It follows that if t is an
arbitrarily large positive integer, there exists a polynomial F(x) with the
properties
fm
(Iv,3): | F(ao) ’p < p-(m+1)t, 0< A < Azpm+1 'pt.
Case 4: a = A*~=(a, ou,..., 0y) is a g*-adic number.

Define «, fi,..., fy, 1&x), 11 (x),..., Ir(x) exactly as in the first two cases,
and put
T = gght; Ej = m(fj+e5t) G=1,2,.,r),

where t is again an arbitrarily large positive integer. The hypothesis of
Theorem 3(i) is then satisfied, and it follows that there exists a polynomial
F(x) for which

=]

1
(Iv,4): |F(A*)|g* < g-mt, 0< A< Axm ) p‘jfi . g2t
J
Foz the second inequality is obtained exactly in the form given, but instead
of the first inequality we obtain the r+1 relations ’

1

[F(a)] < g-mt’ |F(C!j)lpj < pj'ejmt

These, however, imply that
[F4)lg < g mt, hence that  max(|F(e)[,[F(4)lg) < g-mt,

so that the assertion follows from the definition of the g*-adic value.
In the four cases denote by u the upper bounds
1

1 r _m_ fm 1
Ak n}s, A,(jl;ll p]f]) m1-1. gt’ Aapm+1- pt, Ae™ 11_11 pgj . g2t,

respectively, that were obtained for A. The results just proved may be com-
bined to give the following theorem.

G=1,2,..,r).



A TEST FOR ALGEBRAIC OR TRANSCENDENTAL NUMBERS 55

Theorem 4: Let a be an arbitrary number (real, p-adic, g-adic, or
g*-adic), and let m be any positive integer. Put

m if a is real,
pla, m) = m+1 if a is p-adic or g-adic,
% if a is g*-adic,

There exists a positive constant 'y (a, m) depending on a and on m but
not on A, as follows. If u is any sufficiently lavge positive number,
there is a polynomial F(x) with integral coefficients, of degree at most
m and of height A, such that

w{F(a)} <y(q,m)ukEm) o< A<y,
Hence also -
w{F(a)} < v (a,m)A~#(a,m),

This theorem has again an analogue for the function £{F(a)}, defined
in § 4, which is proved just like Theorem 4.
Theorem 4': Let a and m be as in Theorem 4, and lei
m if a is real or g*-adic,
M(a,m) = {m+1 if a is p-adic or g-adic.

There exists a positive constant T'(a,m) depending on a and on m but
not on A, as follows. If u is any sufficiently large positive numbeyr, there
is a polynomial F(x) withintegral coefficients, of degree at most m and
of height A, such that

2{F(a)} < I'(a,m) u_M( a,m)

Therefore also

y 0< Asu,

Q(F (a)} < I (q,m)a™M(%m),

8. A necessary and sufficient condition for transcendency.

From now on let a be a transcendental number. The polynomial £(x) of
Theorem 4 then satisfies the inequalities

0 < w{F(a)} < 'y(a,m)u.-“( a,m)’ 0<A<u,

because F(a) # 0 by the hypothesis.

Assume further that the parameter u tends to infinity, so that w{F(a)}
tends to zero. This implies that F(x) cannot remain fixed, but must run
over an infinite sequence of distinct polynomials with heights A tending to
infinity. For there are only finitely many polynomials F(x) with integral,
coefficients, of degrees not greater than m and of bounded heights; and for
such a set of polynomials w{F(u )} necessarily has a positive minimum.

Hence, if a is transcendental, there exist infinitely many distinct
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polynomials F(x) with integral coefficients, of degrees not exceeding m and
of heights tending to infinity, such that

0< w{F(a)} < 7 (a,m)A-4(a,m)

This is true whatever the value of m. We may then choose m so large that
i(a,m) is greater than any prescribed positive number A and that therefore

y (a,m)A-#(a,m) < A-A

as soon as A is sufficiently large.
This result may be combined with Theorem 1, leading to the following
test for transcendency.

Theorem 5: The number a (which may be real, p-adic, g-adic, or
g*-adic) is transcendental if and only if, given any positive number A,
there exist a positive integer m and infinitely many distinct polynomials
F(x) with integral coefficients, of degrees not exceeding m and of
heighis A tending lo infinity, such that

0 < w{F(a)} < A-A,

This test leads immediately to a special class of transcendental numbers,
the Liouville numbers?. A number a is said to be a Liouville number if there
exist, (i) an infinite sequence of distinct rational numbers

P, P, P
& oo} Wvhere (PnQu)=1, Hp = max(|Pyl,lqn),

and (ii) an infinite sequence of positive numbers
{A1, Aa, As,.}
tending to infinity, such that
0<w (a - g‘:) <H,‘,An (n=1,23,..).
Every Liouville number is transcendental.
For put
Fn(x) = Qux-Pn
so that Fn(x) is a polynomial of the first degree of height Hy. Then

w{Fn(G)} < w(Qn)w (q_g_:) < H;(An'l)

because, by the definition of w,

w(Qn) < IQD.I < Hn.

The assertion is thus contained in the special case m=1 of Theorem 5.
There is no difficulty in constructing Liouville numbers, and thus trans-
cendental numbers, of each of the four kinds. Thus the real number

2. The real Liouville numbers were discovered by Liouville in 1844; for the ref-
erence see the introduction to the second part. These numbers gave the first explicit
examples of transcendental numbers.
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© 0 ! ped g (n”)l
Z z-nl, the g-adic number E g"', and the g*-adic number Z (E"T)
1 1 '

all are Liouville numbers. This is proved easily by taking as rational ap-
proximations %‘1 the sums of the first n terms of these series.

n

However, Liouville numbers are the least interesting examples of trans-
cendental numbers. None of the more important constants of real analysis,
like e,7, and log 2, are Liouville numbers, although they are transcendental.
Actually, proofs of their transcendency may be based of Theorem b, but it
then is necessary to consider polynomials F(x) of arbitrarily high degree.

We shall later prove some theorems by means of which it is possible to
construct transcendental numbers that are not Liouville numbers. But our
aim is not to give a general theory of transcendental numbers and of proofs
of transcendency. For this important and beautiful theory the reader is re-
ferred to the following three books:

A. Gelfond, Transcendental and algebraic numbers (in Russian), Moscow 1952,
C. L. Siegel, Transcendental numbers, Princeton 1949,
Th. Schneider, Transzendente Zahlen, Berlin 1957.



