
11

functions that we use will be the fact that it is recursively closed. This will

enable us to prove in §9 that the class of recursive functions is the smallest

recursively closed class.

6. Definitions of Recursive Functions

We are now going to show that certain kind of definitions of functions and

relations always lead to recursive functions and relations. The simplest kind of

definition of a function has the form F(z) ~ , where is an expression

which, if defined, represents a number and which contains only previously defined

symbols and variables from the sequence ί. Such a definition is called an

explicit definition of Fin terms of the symbols which appear in .

6.1. PROPOSITION. If Fis defined explicitly in terms of variables and names

of recursive functions, then Fis recursive.

Proof. We suppose that F is defined by F(j) ~ and use

induction on the number of symbols in . If consists of just an x ,

then Fis an I . and hence is recursive. Otherwise, is G(X^...,X^ where G

is recursive. By the induction hypothesis, we may define a recursive function H

\>yHfx)*Xf Then

Ffx) ~ GC//^),.,̂ }));

so F is recursive by 5.2. D

The simplest type of definition of a relation has the form R(x)«—»

where is a statement containing only previously defined symbols and

variables from the sequence 1. In order to make sure that this defines a relation,

we insist that be defined for all values of 5. We call such a definition an

explicit definition of R in terms of whatever symbols appear in .

6.2. PROPOSITION. If R is defined explicitly in terms of variables and names

of recursive functions and relations, then R is recursive.

Proof. The definition must be R(x) «-* Q(X...,X where Q is a

12

recursive relation. This may be rewritten as

XR(ί) s χgίV-Λ).

Then R is recursive by 6.1. α

Our intention is to expand the class of symbols which may be used on the

right side of explicit definitions of recursive functions and relations. For

simplicity, we call such symbols recursive symbols. Thus we have seen that

variables and names of recursive functions and relations are recursive symbols.

By 5.4, μ is a recursive symbol.

Now we show that the symbols 0, 1, 2, ... are recursive. If 2, say, appears

in an explicit definition, we can think of it as a symbol for a 0— ary function

applied to zero arguments. Thus we need only show that 2 is a recursive

function. Now this function has the explicit definition 2 ~ Sc(Sc(0)); since 0 and

Sc are recursive, 2 is recursive by 6.1.

6.3. PROPOSITION. Every constant total function is recursive.

Proof. If F is, say, a total function with constant value 2, then F

has the explicit definition F(~x) ~ 2. α

Let ... and _ z _ be expressions which represent numbers and are

defined for all values of their variables. Suppose that ... contains no variable

other than ί and that _ z _ contains no variable other than ί, y, and z. We

can define a total function F by induction as follows:

We call this an inductive definition of F in terms of whatever symbols appear in

... and _ z _ .

6.4. PROPOSITION. If F has an inductive definition in terms of recursive

symbols, then Fis recursive.

Proof. Let F be defined as above. We may define recursive

function Gand //explicitly by

13

G(ϊ) 2 ...,

H(z^'x) ~ _ z

Then

F(0,z) = G(3),

Hence F is recursive by 5.2. α

We have required that our inductive definitions be by induction on the

first argument; but this is not essential. Suppose that we have a definition of

f[XιV) by induction on y. If F'(J/,J) = F(z,j/), we can convert that definition

into a definition of F' by induction on y. If only recursive symbols are involved,

then F' is recursive. But Fhas the explicit definition F(x,y) z F'(y,x)\ so Fis

recursive.

We now give some inductive definitions of some common functions.

0 + x = j,

(yH) + x=Sc(y+x),

0 j=0,

(lH-1) •*=(»•*) + *,

Subtraction is not a total function for us, since we do not allow negative

numbers. We therefore introduce a modified subtraction - defined by x - y = x —

y if x > y, x 1 y = 0 otherwise. To show that this is recursive, first define a

function Pr inductively by

/MO) = 0,

Then - is defined inductively by

x 1 0 = x,

14

We recall that if X and Y are statements, then -Ά means not X] X v Y

means X or JK; X & Y means X and Y\ X -* y means if X, then J5 and X <-» Y

means A ifi .Γ We call -ι A the negation of A; A V y the disjunction of A and Y]

and X & y the conjunction of X and y. The symbols -«, V, &, -», and «-* are

called propositional connectives. We shall show that all of them are recursive

symbols. It is enough to do this for -» and V; for we can define A" & y to mean

-•(-iJirv -V); A-> y to mean ->X V y; and X <-* y to mean (A-> y) & (y-» A).

Thus we must show that if P and P' are recursive, and Q and β are defined by

QCx)~^PCx),

β(3) - P(5) v />'$,

then Q and R are recursive. This follows from the explicit definitions

X r) - 1 -

We shall now show that the relations <, >, <, >, and = are recursive.

(By the relation <, for example, we mean the relation R defined by R(x,y) «-» x <

y.) It is easy to see that

so > is recursive. The other relations have the explicit definitions:

z< y^^(y> x)

χ<

6.5. PROPOSITION. Let βp...,Λ be recursive relations such that for every

x, exactly one of /^(j),...,/? (3) is true. Let F1V..,F be total recursive
1 7 * 1 71

functions, and define a total function F by

ifβ/x).

15

Then F is recursive.

Proof. We have

F(ί) = Fjφ-χ o (ϊ) + ... + F (3)-χn
1

We use 6.5 in connection with definitions by cases of functions and

relations. For example, suppose that we define F by

F(x,y) = x if x < I/,

= 0 + 2 if y < z & j = 4,

= 3 otherwise.

This comes under 6.5 if we define

- 3,

A definition by cases of a relation is easily converted into a definition by cases of

its representing function. The conclusion is that if we define a total function or

relation by cases in terms of recursive symbols, then the function or relation is

recursive. We shall consider definition by cases of partial functions in §8.

6.6. PROPOSITION. Let F be a total recursive function, and let G be a total

function such that G(x) = F(x) for all but a finite number of 1 Then G is

recursive.

Proof. Suppose, for example that F is unary and G(x) = F(x)

except that G(3) = 5 and (7(7) = 2. Then we can define G by cases as follows:

G(x) = 5 if x = 3,

= 2 if ι=7,

= F(x) otherwise, α

6.7. COROLLARY. Every finite relation is recursive.

Proof. If R is finite, χ p(x) = 1 for all but a finite number of "x. D

Recall that a unary relation is simply a set. Then 6.7 shows that every

16

finite set is recursive. The complement of a recursive set is recursive; for the

complement of A is -*A. The union and intersection of two recursive sets is

recursive; for the union of A and B is A V B, and the intersection of A and B is A

& R

Recall that Vj means for ail x and 3ar means for some x. We call Va: a

universal quantifier and 3x an existential quantifier. As we shall see in §13,

these are not recursive symbols. We introduce some modified quantifiers, called

bounded quantifiers, which are recursive. We let (Vj < y)X(x) mean that X(x)

holds for all x less than y, and let (Bar < y)X(x) mean that X(x) holds for some x

less than y. To see that these are recursive, note that

(Vx < y)X(x) <-> μx(~>X(x) V x = y) = y,

(3x< y)X(x) *->μx(X(x) V x = y) < y.

To allow us to use bounded quantifiers with < instead of <, we agree that (Var <

y) means (Va: < y+l) and similarly for 3.

We summarize the results of this section. If a function or a relation has

an explicit definition or an inductive definition or a definition by cases in terms

of recursive symbols, then it is recursive. Recursive symbols include variables,

names of recursive functions and relations, μ, propositional connectives, and

bounded quantifiers. The recursive functions include the initial functions, +, ,

2̂ , -, and all constant total functions. The recursive relations include all finite

relations, <,>,<, >, and =.

7. Codes

Suppose that we wish to do computations with a class / other than ω as

our set of inputs and outputs. One approach is to assign to each member of / a

number, called the code of that member, so that different codes are assigned to

different members. Given some inputs in /, we first replace each input by its

code. We then do a computation with these numerical inputs to obtain a

