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8 Boolean algebras

In this section we consider the length of Borel hierarchies generated by a subset
of a complete boolean algebra. We find that the generators of the complete
boolean algebra associated with a-forcing generate it in exactly « + 1 steps. We
start by presenting some background information.

Let B be a cBa, i.e, complete boolean algebra. This means that in addition
to being a boolean algebra, infinite sums and products, also exist; i.e., for any
C C B there exists b (denoted ) C) such that

1. ¢ < bfor every ¢ € C and
2. for every d € B if ¢ < d for every ¢ € C, then b < d.
Similarly we define [[C = =) . —c where —c denotes the complement of ¢

in B.
A partial order P is separative iff for any p, ¢ € P we have

p < q iff Vr € P(r < p implies ¢, r compatible).

Theorem 8.1 (Scott, Solovay see [43]) A partial order P is separative iff there
ezists a cBa B such that P C B is dense in B, i.e. for every b€ B if b > 0 then
there exists p € P with p < b.

It is easy to check that the a-forcing P is separative (as long as B is infinite):
If p £ ¢ then either

1. t, does not extend t,, so there exists s such that ¢,(s) = B and either s
not in the domain of ¢, or t,(s) = C where C' # B and so in either case
we can find r < p with r, ¢ incompatible, or

2. F, does not contain Fy, so there exists (s, z) € (F, \ Fp) and we can either
add (s n, z) for sufficiently large n or add ¢,(s"n) = B for some sufficiently
large n and some B € B with z € B and get r < p which is incompatible
with q.

The elegant (but as far as I am concerned mysterious) approach to forcing
using complete boolean algebras contains the following facts:

1. for any sentence 6 in the forcing language

[60]=) {beB:b|-6}=> {peP:p|6}
where [P is any dense subset of B,
2.plFoiffp<[@],
3. 1-0)=-[F],
4 [0y =101 ¥ ],
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5. [ove]=[0]VIv]
6. for any set X in the ground model,

[Vee X o(z) 1= [J16(z]

TeX

Definitions. For B a cBa and C C B define:
oJ(C) = C and
O (C)={[IT:TC{-c:c€Upca 3(C)}} for a > 0.

ord(B) = min{a : 3C C B countable with [I%(C) = B}.

Theorem 8.2 (Miller [73]) For every a < w1 there ezists a countably generated
ccc cBa B with ord(B) = a.

proof:
Let P be a-forcing and B be the cBa given by the Scott-Solovay Theorem 8.1.
We will show that ord(B) = a + 1.
Let
C={pelP:F, =0}

C is countable and we claim that P C II%(C). Since B = EJ(P) this will imply
that B= X5,,(C) and so ord(B) < a+1.
First note that for any s € T with r(s) =0 and z € X,

[z€U,1=) {peC:3IBE€Bty(s)=Bandz € B}.
By Lemma 7.3 we know for generic filters G that for every z € X and s € T>°
zeU, <= IpeCG(s,z)€EF,.
Hence [z € U, | = (0, {(s, z)}) since if they are not equal, then
=lzelU,]A®{(s2)}) >0,

but letting G be a generic ultrafilter with b in it would lead to a contradiction.
We get that for 7(s) > 0:

@A =lzeUl=lze () ~Usrnl=]]-lz€Urnl

new new

Remembering that for r(s"n) = 0 we have [ z € U,~n | € ZY(C), we see by
induction that for every s € T>° if r(s) = 3 then

(@,{(s,2)}) € IH(C).

For any p e P
p={t0A J[ 0{G2)).

(s,7)EFy
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So we have that p € I3 (C).

Now we will see that ord(B) > «. We use the following Lemmas.
Bt are the nonzero elements of B.

Lemma 8.3 Ifr : P — OR is a rank function, i.e. it satisfies the Rank
Lemma 7.4 and in addition p < q implies r(p) < r(q), then if P is dense in
the cBa B then r extends to r* on BY :

r*(b) =min{8 €OR:3ICCP:b=) C andVp€ C r(p) < B}
and still satisfies the Rank Lemma.

proof:
Easy induction.
[ ]

Lemma 8.4 If r : Bt — ord is a rank function and E C B is a countable
collection of rank zero elements, then for any a € I%(E) and a # 0 there exists
b<a withr()<7y.

proof:

o
To see this let £ = {e, : n € w} and let Y be a name for the set in the
generic extension
Y={n€w:e, €G}.

Note that e, = [ n €y ]. For elements b of B in the complete subalgebra
generated by E let us associate sentences 6 of the infinitary propositional logic
Lo (P, : n € w) as follows:

0e,. =P,
6_p = 0
01-[R =r/EY}§0,-

Note that [Y |= 65 | = b and if b € IIJ(E) then 6; is a II,-sentence. The Rank
and Forcing Lemma 7.5 gives us (by translating p F Y E 6, intop <[Y E
6y | = b) that:

For any v > 1 and p < b € IJY(E) there exists a p compatible with
p such that p < b and 7(p) < v.

|

Now we use the lemmas to see that ord(B) > a.

Given any countable £ C B, let @ C X be countable so that for any e € F
there exists H C IP countable so that e = ) H and for every p € H we have
rank(p, Q) = 0. Let z € X \ @ be arbitrary; then we claim:

[zeUy ¢ BUE).
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We have chosen @ so that r(p) = rank(p,Q) = 0 for any p € E so the
hypothesis of Lemma 8.4 is satisfied. Suppose for contradiction that | z €
Uy l=b€BYE). Let b=13", ¢, bn where each b, is I3 (C) for some 7, < a.
For some n and p € P we would have p < b,. By Lemma 8.4 we have that
there exists p with p < b, < b = [ z € Uj) | and rank(p,Q) < v,. But by
the definition of rank(p,@Q) the pair ((), ) is not in F3, but this contradicts
p<bn<b=[zelUy|=(0,{((),)}).

This takes care of all countable successor ordinals. (We leave the case of
a = 0,1 for the reader to contemplate.) For A a limit ordinal take a,, increasing
todandlet P=3" ., Pa, be the direct sum, where Py, is a,-forcing. Another
way to describe essentially the same thing is as follows: Let Py be A-forcing.
Then take PP to be the subposet of Py such that () doesn’t occur, i.e.,

P= {pEP,\:—\a:EEX ((),:L‘)EFP}.

Now if P is dense in the cBa B, then ord(B) = A. This is easy to see, because for
each p € P there exists # < A with p € [I?, (C). Consequently, P C (s, [Ig ©)
and so since B = XI(P) we get B = £3(C). Similarly to the other argument
we see that for any countable E we can choose a countable Q C X such for any
s € T with2 <r(s) =8 < A (so s # () we have that [ z € U, ] is not Z3(E).
Hence ord(IB) = A.

For ord(B) = w; we postpone until section 12.





