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Summary. We define an extension R% of the bounded arithmetic theory R% and
show that the class of functions Σ\ -definable in &% coincides with the computational
complexity class TC° of functions computable by polynomial size, constant depth
threshold circuits.

1. Introduction

The theories 5 ,̂ for i £ N, of Bounded Arithmetic were introduced by
Buss [3]. The language of these theories is the language of Peano Arith-
metic extended by symbols for the functions \\x\, \x\ := |Ίog2(# + 1)] and

xφy := 2'xIΊίΊ . A quantifier of the form Vx<t,3x<t with x not occurring in
t is called a bounded quantifier. Furthermore, a quantifier of the form Vx < \t \ ,
3x < \t\ is called sharply bounded. A formula is called (sharply) bounded if
all quantifiers in it are (sharply) bounded.

The class of bounded formulae is divided into an hierarchy analogous
to the arithmetical hierarchy: The class of sharply bounded formulae is de-
noted ΣQ or ΠQ. For i G N, Σ$+l (resp. /7^+1) is the least class containing
Π\ (resp. Σ\} and closed under conjunction, disjunction, sharply bounded
quantification and bounded existential (resp. universal) quantification.

Now the theory S\ is defined by a finite set BASIC of quantifier-free
axioms plus the scheme of polynomial induction

A(Q)ΛVx(A(\lχ\)-+A(x)) -» VxA(x)
Zl

for every Σ^-formula A(x) (Σf-PIND).
For a class of formulae Γ, a number-theoretic function / is said to be

/^-definable in a theory T if there is a formula A(x,y) G -Γ, describing the
graph of / in the standard model, and a term t(x), such that T proves

Vz,yι,y 2 ^(z,yι)ΛA(z,y 2 ) -» 2/ι = 2/2

The main result of [3] relates the theories S% to the Polynomial Time Hier-
archy PH of Computational Complexity Theory (cf. [9]):

This paper is in its final form, and no version of it will be submitted for publi-
cation elsewhere
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The class of functions that are Σb

i+l- definable in S%+1 coincides with

FPΣί , the class of functions computable in polynomial time with an
oracle from the ith level of the PH.

In particular, the functions Γ^-definable in S% are precisely those computable
in polynomial time.

The theories R1

2 were defined in various disguises by several authors [1, 10,
5]. Their language is the same as that of S% extended by additional function
symbols for subtraction - and MSP(x,i) := [ jr\. They are axiomatized
by an extended set BASIC of quantifier-free axioms plus the scheme of
polynomial length induction

A(0)ΛVx(A([τ-x\)->A(x)) -> VxA(\x\)

for every Γf-formula A(x) (ΣΪ-LPIND).
R\ is related to the complexity class JVC, the class of functions com-

putable in polylogarithmic parallel time with a polynomial amount of hard-
ware:

The Σι-definable functions of R^ are exactly those in NC.

In [10] it was shown that R% is equivalent to S$ in the extended language,
which is trivially equivalent to the theory given by the BASIC axioms and
the scheme of length induction

A(0) Λ Vx (A(x) -> A(Sx)) -> Vx A(\x\)

for every Σβ-formula A(x) (Σ&-LIND).
TC° denotes the class of functions computable by uniform polynomial

size, constant depth families of threshold circuits (cf. [2]). This class can be
viewed as the smallest reasonable complexity class, e.g. it is the smallest
class known to contain all arithmetical operations: integer multiplication is
complete for it under a very weak form of reducibility.

Let B be the set of functions containing all projections, the constant 0,
SQ(X) := 2x, Sι(x) := Ίx + 1, Bit(x,i) giving the value of the ith bit in the
binary representation of x, # and multiplication. The class TC° was char-
acterized in [6] as the smallest class of functions that contains the initial
functions in B and is closed under composition and the operation of concate-
nation recursion on notation (CRN), where a function / is defined by CRN
from g and ΛO> hi if

f ( £ , 0 ) =<?(*)
/(ϊ,s0(y)) = 2 /(2,y) + Λo(*.») for y > 0

provided that hi(x,y) < 1 for all x,y and i = 0,1. It follows from this
characterization by methods from [4] that the characteristic function of any
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predicate defined by a Σ0-formula in the language of R% is in TC°, and that
TC° is closed under sharply bounded minimization, i.e. if g £ TC°, then /
defined by f ( x ) := μi<\x\ g(i) =_0 is also in ΓC°.

We shall define an extension R% of R% the JC^-definable functions of which
are exactly the functions in TC°. In [6], an arithmetical theory TTCQ is
presented that also characterizes TC°. We shall compare our work to this in
the final section of the paper.

2. Definition of

Before the theory R% can be defined, we have to develop R% a little. To be able
to talk about the bits of a number, we first define Mod2(x) := x - 2 \_\x\ and
then Bit(x,ί) := Mod2(MSP(x,ϊ)}. In R®, a number is uniquely determined
by its bits, as the extensionality axiom

|α| = |b| Λ Vi < |α| (Bit(a, i) = Bit(b, i)) -> α = b

can be proved in R% (see [7] for a proof).
We shall need the possibility to define a number by specifying its bits.

So for a class of formulae Γ1, let the /^-comprehension scheme be the axiom
scheme

3y < 21*1 V« < |t| (Bit(y, i) = 1 <4 A(i))

for every formula A(i) € Γ.
Next we need the possibility of coding pairs and short sequences. The

coding used is based on the one presented in [5], but we need a refined analysis
to show its accessibility in R®.

First let s~g(x) := 1 -x, and then [x < y] := sg(x -y). Obviously, [x <
y] = I iff x < y and [x < y] = 0 else. Further let [x < y] := [Sx < y], and
then define

max(x, y) := [x < y] - y + [y < x] x .

Let now x ̂  y := x 2\y\ + y, then we define

We go on to define DMSB(x] := Z - 2 I L H I , front(x) := MSP(x, [\\x\\)

and back(x) := x - front(x) - 2l/ ront(χ)l, and finally

(x)ι := DMSB(front(x)) and (rτ)2 := DMSB(back(x)) .

Using extensionality, one can prove in 7?2 that ({x, y))ι = re and ({x, y))2 = y,
hence these functions form a pairing system. The pairing function is not
surjective, but its range can be described by

paίr(x) :<-> x > 2 Λ Mod2(\x\) = 0 Λ Bit(x, \_-\x\\ - 1) = 1 .



A Bounded Arithmetic Theory for Constant Depth Threshold Circuits 227

Inductively we can define ( x ) * := (x)i for i = 1,2, and for n > 2 and j < n

(xι,..., xnj

:= (aOa

Note that all the functions defined up to now are terms in the language of R%.
Furthermore, they are all in TC°, since the function symbols in the language
represent functions in TC°.

We define a restricted form of division for small numbers by the formula

z = LenDiυ(x, y) :<-» (y = 0 Λ z = 0) v (y > 0 Λ z - y < \x\ Λ (Sz) - y > \x\) ,

then in R$ we can prove V#, y 3z < \x\ z = LenDiv(x, y) as follows: Consider
the following instance of Σ

b 0 < 5|o| Λ Vz (6 x < S\a\ -> b Sx < S\a\) -> Vx 6 |x| < 5|α|

Since b > 0 ->• -iVrr b \x\ < S\a\ is provable, and b 0 > 5|α| can be refuted,
we get from the contrapositive of the above

b> 0 -> 3x (b x < \a\ Λ b - Sx > \a\)

from which the claim follows easily. The uniqueness of a z with z =
LenDiv(x,y) is also easily proved in R%.

Now the formula z = LenDiv(x,y) is ΣQ, anc^ z is always bounded by
|x|, hence we can extend the language by a function symbol for LenDiv such
that any sharply bounded formula in the extended language is equivalent to
a Σ0-formula in the original language.

Let LenMod(x,y) := \x\-y- LenDiυ(x,y). For readability, we write

L^J for LenDiv(x,y) and |x|rnody for LenMod(x,y). Let furthermore

LSP'(x,y) :=x^ MSP(x, \y\) -2\y\', we also write LSP(x, \y\] for this, where
LSP(x,i) is intended to be the number consisting of the rightmost i bits of
x, i.e. α;mod2t. Now we define a coding for sequences of numbers of length
less than |α| by

Seqa(w) :+* |u;|mod|α| = 0 Λ Vz < ||f J Bit(w, (i + 1) |α|) = 1

Lena(w) :=[Q\

βa(w,i) := DMSB(LSP(MSP(w, (i - 1) - |α|), |o|))

Note that βa(w,i) is a term, and Seqa(w) as well as any sharply bounded
formula containing Lena are equivalent to a Σ0-formula. Finally we define

Seq(w) :4-> pair(w) Λ
Len(w) :=
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The remarks above concerning βa, Seqa and Lena also apply to /?, Seq and
I/en. Finally we need a term SqBd(x,y) such that a sequence of length \x\
all of whose entries are bounded by y has a code less than SqBd(x,y). For
this we can set SqBd(x,y) := 4(a;#22/)2.

By using sharply bounded minimization, one sees that the functions
LenDiv and LenMod, and hence also the sequence coding operations, are in

Now for a class of formulae Γ, the /"-replacement axiom scheme is

Vx < \s\ 3y < t(x) A(x, y)-*3w< SqBd(2s, t(\s\)) [Seq(w) Λ

Λ Len(w) = \s\ + I Λ Vx < \s\ β(w, Sx) < t(x) Λ A(x, β(w, Sx))] ,

for every formula A(x,y) G Γ.
Finally, the theory B^ is defined as Λ§ extended by the schemes of ΣQ-

comprehension and Σo-replacement. A result in [7] shows that this extension
is proper.

3. Definability of TC°-functions

For every Σ'ί-formula A(ά) we define a formula WITNESS A (w,ά) (to be read
as "w witnesses A(α)") inductively as follows: If A(a) is a Σ0-formula, then

w,ά) :=A(ά).

If A(ά) = B(a) o C(a) for o G { Λ , v }, then

WlTNESSΛ(^,ά) := WlTNESSβ((w)ι,ά) o

If A(a) = 3x<t(ά) B(a,x) and A(a) is not a Σ0-formula, then

WlTNESSΛ(iϋ,α) := (w)2 < t(δ) ΛWlTNESSβ((tι;)ι,α, (117)2).

If A(a) = Vx< \s(a)\ B(ά,x) and A(a) is not a Γ^-formula, then

WITNESSΛ(^, α) := Seq(w) Λ Len(w) = \s(ά)\ + 1 Λ

If A(a) = ->B(a) and A(a) is not a Σ0-formula, then let A* (a) be a formula
logically equivalent to A(ά) obtained by pushing the negation side inside by
de Morgan's rules, and let

WITNESSA(W, α) := WITNESS^* (w, a).

Clearly, WιTNESS>ι(ιt;, α) is equivalent Σ"o-formula for every Σ% -formula A(a).

Proposition 3.1. For every E^-formula A(a) there is a term tA(a) such
that:
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1. K$ h WrrNESSA(w,ά) -» A(a)
2. R% h A(a) -> 3w<tA(ά) WITNESS A (w,α)

This is proved by a straightforward induction on the complexity of the for-
mula A(a). For part (ή*), in the case where A(a) starts with a sharply bounded
universal quantifier, ^-replacement is needed.

Proposition 3.2. The Σ* -replacement axioms are provable in R®.

Proof. By Prop. 3.1, every Γf-formula A(x, y) is equivalent in R% to a formula
of the form 3z<u(x,y) B(x,y,z) for some term u(x,y) and B(x,y,z) G ΣQ,
hence it suffices to deduce the replacement axiom for such a formula.

Prom the premise of the replacement axiom for this formula we can now
easily conclude Vx < \s\ 3p< (t(x), u(x, t(x))) B(x, (p)ι , (p)2), and an applica-
tion of ^-replacement yields

(*)3v<SqBd(2s,(t(\s\),u(\s\,t(\s\)))) [Seq(υ) Λ Len(v) = \s\ + 1 Λ

*Vx<\s\β(v,Sx) < (t(x)M^t(^))^B(x,(β(v,Sx))^(β(v,Sx))2)} .

Next we need the following

Lemma 3.1. For every term t(x) the following is provable in Rξ:

Vv Seq(v) -+

3^ [Seq(w) Λ Len(w) = Len(v] Λ Vi < Len(w) β(w, Si) = t(β(v, Si))] .

This lemma, which is easily proved by Σ*Q-replacement, for t(x) = (x)ι applied
to the v from (*) yields a sequence as required in the conclusion of the
replacement axiom. D

Now we are ready to show

Theorem 3.1. Every function in TC° is Σ^-definable in R%.

Proof. It is trivial that the Σ'ί-definable functions in R% comprise the initial
functions in B and are closed under composition, hence it remains to prove
that they are closed under CRN.

So let / be defined by CRN from g, hQ and ΛI, let g and hi be Z^-defined
by the formulae C(x,y) and Bi(x,y,z) resp. and the terms s(x) and ti(x,y),
for i = 0,1.

First we show the existence of the sequence of those values of the functions
hi that are needed in the computation of f(x, y) by CRN, i.e. we prove in R%

3w<SqBd(2y,m(x,y)) Seq(w) *Len(w) = \y\

Λ V i < | y | [(Bit(y,i) = Q*B0(x,MSP(y, \y\-i), β(
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where m(x, y) := max(t0(x, y),tι(x, y)). This follows by ^-replacement from

which is easily obtained from the existence conditions in the ^-definitions
of /IQ and hi .

Now we show that for every sequence w and number α there is a number
consisting of α concatenated with the least significant bits of the terms of w,
i.e.

Vα, w Seq(w) — »• 3z < l#aw [ \z\ = \a\ + Len(w) Λ
Λ Vi < |*| ( i < Len(w) Λ Bit(z, i) = Mod2(β(w, i + 1)) )

v (i > Len(w) /\Bit(z,ϊ) = Bit(a,i - Len(w)))]

which is easily deduced in Λ§ by use of ^-comprehension. Setting g(x) for
α and the sequence from above for w yields the existence condition for a
rf-definition of /, with the bounding term l#s(x) SqBd(2y,m(x,y)). The
uniqueness is easily proved by use of extensionality. D

4. Witnessing

The converse of Thm. 3.1 is proved by a witnessing argument as in [3]. For
this, ^2 has to be formulated in a sequent calculus with special rules for
the introduction of bounded quantifiers, the BASIC, comprehension and
replacement axioms as initial sequents and the E^-LIND rule

A(b),Γ=ϊΔ,A(Sb)

A(0),Γ=*Δ,A(\t\) '

where the free variable b must not occur in the conclusion, except possibly
in the term t.

Since the formulae in the initial sequents are all Σ"J, we can, by a stan-
dard cut elimination argument, assume that every formula appearing in the
proof of a Σ*-statement is in Σ* U 77 .̂ Therefore we can prove the following
witnessing theorem by induction on the length of a proof:

Theorem 4.1. Let Γ,Δ be sequences of Σ^-formulae and Π,Λ sequences of
Π^-formulae such that

ϊϊ$t-Γ,Π=ϊΔ,Λ =:S,

let furthermore all free variables in S be among the a. Let G := /\ Γ Λ /\ -iΛ
and H := V Δ v V ^Π. Then there is a function f G TCQ such that

N |= WiTNESSG(w,a) -> WITNESS//(/(w,α),α)
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Proof. The induction base has four cases: A logical axiom A => A, where
A is an atomic formula, is trivially witnessed, and likewise the initial se-
quents stemming from the BASIC axioms. A function witnessing a Σ$-
comprehension axiom

3y < 21*1 Vi < |t| (Bit(y, i) = l++ A(ΐ)}

can be defined by CRN from the characteristic function of the predicate A(ι),
which is in TC° since A(i) is a ΣQ-foimula,.

A witness for the left hand side of a Σo-replacement axiom

/<*(z) A(x,y) =>3w<SqBd(2s,t(\s\)) [Seq(w) Λ

Λ Len(w) = \s\ + 1 Λ Vz < \s\ β(w, Sx) < t(x) Λ A(x, β(w, Sx))] ,

is a sequence of length \s\ + 1 whose iih term is a pair (ίi,r;), where ii
is a witness for A(i — l,rt ). Similar to Lemma 3.1 we obtain the sequence
R := {ri)i<|β|+ι. This sequence satisfies the matrix B(w) := [. . .] of the
right hand side of the replacement axiom, and since B(w) is equivalent to
a Σo-formula, this can be witnessed by any value. Thus (0, R) witnesses
3w<SqBd(2s,t(\s\))B(w).

In the induction step there is a case distinction corresponding to the last
inference in the proof. In the cases of bounded quantifier inferences, we further
have to distinguish whether the principal formula of the inference is ΣQ or
not. Most of the cases are straightforward or easily adapted from existing
witnessing proofs like the proof of the main theorem in [3].

The only more difficult cases are (V<: right) where the principal formula
is not ΣQ, and LIND. W.l.o.g. we can assume that a (V<: right) inference
is of the form

b<\t\,Γ=*Δ,A(b)
Γ=ϊΔ,Vx<\t\A(x)

with Γ, Δ consisting of Σ'f-formulae. Then the induction hypothesis yields a
function / £ TC° such that f ( w , b ) witnesses \/ Δv A(b) provided that w
witnesses 6 < |£| Λ f\Γ.

We need a function g such that g(w) witnesses V ΔvVx < \t\A(x) whenever

w witnesses Λ Γ. Let now w' := (θ, (w)(\Γl\ . . . , (w)^) and let

g(w) := ((/KO));1^ s(w,t))

where s(w, t) is a code for the sequence ((f(w, i)) , ' ^ /^m The function s

can be defined by use of CRN, and thus g is in TC°. Now it is easily verified
that g has the desired witnessing property.

Finally we consider a L J7V£)-inference of the form

A(b),Γ=*Δ,A(Sb)
A(0),Γ=*Δ,A(\t\) '
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with Γ,Δ as above. Since A(b) is Σ$, by induction there is / G TC° such
that for each w, b with w witnessing A(b) Λ /\ Γ, either f(w, b) witnesses V ̂
or A(Sb) holds. Now define

g(w) : = f ( w , μy<\t\ WlΎNESSy Δ ( f ( w , y ) ) ) ,

then for w witnessing A(Q)/\ /\ Γ, either g(w) witnesses V ̂  and we a16 done,
or for every y < \t\ f(w,y) does not witness \J Δ. Since w also witnesses
A(y) Λ Λ Γ, we can conclude A(Sy) from this for every such y, hence we
can conclude A(\t\) inductively from A(0) then. Since A(\t\) is ΣQ, it is then
trivially witnessed. D

Prom this witnessing theorem we obtain the converse of Thm. 3.1:

Corollary 4.1. Every function Σ^-definable in R% is in TCQ.

Proof. If / is Σ*ι -definable in Λ§, there is a Σ* -formula A(ά,b) and a term
t(a) such that fl% proves 3y < t(a) A(ά,y). Then by Thm. 4.1 there is a
function g G TC° such that g(a) witnesses this. But then (#(ά))2 satisfies
A(α, (p(α))2) for every α, and hence /(α) = (^(α))2, and thus / G TC°. D

Together with Thm. 3.1 we get the characterization of the functions in TCQ:

Theorem 4.2. The Σ^-definable functions in R% are exactly those in TC°.

5. Conclusion

We have characterized the class TC° as the ^-definable functions in R%.
Prom this characterization, we can conclude things like

IfS% = R\, then TC° = NC, and R% = S% implies TC° = FP.

or, viewed from a different perspective:

Under the hypothesis that TC° φ FP (or TC° φ NC), S\ (resp.
R%) is not conservative over R% w.r.t. VΣ"J-sentences.

In [6], a theory TTC° is defined that also yields a characterization of
TC°. For the purpose of comparison, we recall the definition of TTC°: The
language is the same as that of R®. To state its axioms we first need a technical
definition:

A formula A is called essentially sharply bounded, or esb, in a theory Γ,
if A is in the smallest class Γ of formulae s.t.

1. every atomic formula is in Γ.
2. Γ is closed under propositional connectives and sharply bounded quan-

tification.



A Bounded Arithmetic Theory for Constant Depth Threshold Circuits 233

3. if A(x, y) and B(x, y) are in Γ, and Vy, z < t(x) A(x, y) Λ A(x, z) ->• y = z
and Vx 3y<t(x) A(x,y) are provable in T, then the formulae

3y<t(x)A(x,y)*B(x,y) and Vy<t(x) A(x,y) -> B(x,y)

are in Γ.

Now the theory TTC° is given by the BASIC axioms, esb-LIND and
the esfr-comprehension scheme, i.e. TTC° is the least theory T that contains
the basic axioms and has the property that whenever A(x) is esb in T, then

A(0) Λ Vz μ(a ) -> A(x + 1)) -> Vx A(\x\)

and
3y < 21*1 Vi < |ί I (B«(y , i) = 1 ** Λ(i))

are axioms of T.
The theory TTC0 characterizes TC° in the following way: ΓC° coincides

with the class of esb-definable functions in TTC°. Compared to this char-
acterization, the one in the present paper is, in the author's opinion, much
more natural.

First, the notion of ^-definability is a more useful one than that of esb-
definability, since it delineates the functions in TC° among a probably larger
class of functions (those whose graph is in NP vs. those whose graph is
in TCQ). This might be easily remedied since it could be the case that the
ΣI -definable functions of (some extension of) TTC° also coincide with TC°.

But second, the theory TTC° itself has a quite cumbersome definition.
We think that the axiomatization of a theory should be such that the set of
axioms is easily decidable. This is not the case with TTC°: It seems that for
a VΣ'f-sentence, determining whether it is an axiom of TTC° is as difficult
as deciding its provability in TTC°.

There is of course the possibility that TTC° is equivalent to R®, but this
seems to be unlikely, or at least difficult to prove, in view of the following
fact: A crucial step in the obvious proof of equivalence would be to show
that every es&-formula is equivalent to a Σ0-formula in TTC°. Now the es&-
formulae in TTC° describe exactly the predicates in TC°. But in [8] it was
shown that the class of predicates definable by Σ0-formulae in (a variant of)
the language of R% is a proper subclass of P. Hence a proof of equivalence as
above would separate TC° from P, and thus solve a difficult open problem
in Complexity Theory.
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