4. Fixed-Point Logic with Counting

This chapter is devoted to the introduction and analysis of the natural ex-
tensions of the fixed-point logics FP and PFP that have expressive means for
cardinality properties.

o The actual formalization of fixed-point logics with counting, FP+C and
PFP+C, in a two-sorted framework is given in Section 4.1.

e In Section 4.2 the relation of FP+C and PFP+C with the C% and with
the C*-invariants is investigated. In particular we obtain the analogue of the
first theorem of Abiteboul and Vianu (Theorem 3.22 above) in the presence
of counting. In contrast with the second theorem of Abiteboul and Vianu
(Theorem 3.24) we here find that FP+C is the polynomial restriction of
PFP+C.

o Section 4.3 deals with the separation result FP+C ¢ PTIME, which is due
to Cai, Fiirer and Immerman, in a framework that lends itself to relativiza-
tion. In restriction to classes with certain closure properties FP+C can only
capture PTIME if some I« provides a complete invariant up to isomorphism
(equivalently, if some Cf,‘ow coincides with L) over this class.

e Section 4.4 summarizes some results on equivalent characterizations of the
expressive levels of FP+C and PFP+C.

As pointed out in the introduction, first-order logic at first sight suffers
from two independent shortcomings over finite structures: it completely lacks
mechanisms to model recursion — the fixed-point operations provided in FP
and PFP answer this requirement; and it also lacks expressive means to as-
sess cardinalities of definable sets. The latter defect is obviously overcome
automatically together with the former over ordered structures. By the theo-
rems of Immerman, Vardi and Abiteboul, Vardi, Vianu, FP and PFP capture
PTIME and PSPACE over ordered structures. In particular all PTIME, respec-
tively PSPACE, properties of cardinalities are expressible in FP, respectively
PFP, over ordered structures. Not so in the case of not necessarily ordered
structures: in fact the most obvious examples that FP and PFP do not corre-
spond to standard complexity classes in the general case all involve counting.
Over pure sets for instance FP, PFP and even LY, collapse to first-order

98 4. Fixed-Point Logic with Counting

logic and cannot express low complexity cardinality properties like “there is
an even number of elements”. For some time therefore it had been conjec-
tured, mainly by Immerman, that FP enriched with counting might capture
PTIME in the general case. This expectation was later disproved by Cai, Fiirer
and Immerman, who showed that not even C%, comprises all of PTIME.
There remains good motivation to study the extensions of FP and PFP by
expressive means for counting, however.

(a) FP and PFP are successful extensions of first-order logic and capture an
interesting notion of relational recursion on finite structures even in the
absence of order. Without order, however, they do not add to the power of
first-order with respect to cardinality properties. Many natural structural
properties involve counting in addition to relational recursion.

(b) It is reasonable to treat the two obvious defects of first-order logic on
an equal footing and to investigate natural levels of expressiveness that
address both defects.

(c) As indicated in the previous chapter, the relationship between FP and
PFP on the one hand and LY, on the other leads to valuable insights into
the nature of relational recursion on finite structures. FP and PFP are, in
some intuitive sense, PTIME and PSPACE in the world of LY, . C4 , is a
natural richer and still well-behaved fragment of Lo, . In particular C%,,
shares with LY , the benefit of elegant game characterizations and the
existence of PTIME computable invariants. It is natural therefore to expect
appropriate counting extensions of FP and PFP to represent PTIME and
PSPACE in the world of C¥

(d) It turns out that fixed-point logics with counting represent robust levels
of expressive power in the sense that the semantic strength proves to be
independent of several choices in the actual formalization. More impor-
tantly they offer a number of interesting equivalent characterizations.

(e) Finally we shall see that some properties of the counting extensions re-
semble those found for FP and PFP themselves only in the ordered case.
Roughly speaking, with counting one is closer to the ordered case.

4.1 Definition of FP+4+C and PFP+C

The natural modelling for the counting extensions uses two-sorted structures.
The given relational structure forms the first sort, an ordered numerical do-
main the second. In this way counting terms that take values in the numerical
domain can naturally be introduced. The two-sorted structures can of course
in the standard way be encoded in a one-sorted framework with extra unary
predicates to denote the different universes. We shall at some points appeal
to this possibility. For the basic formalizations, however, the two-sorted pic-
ture is easier to handle and intuitively neater. Let 7 be finite and relational
as usual.

4.1 Definition of FP+C and PFP+C 99

Definition 4.1. Let * be the functor that takes 2 € fin[r] to the two-sorted
structure 2A* which is the disjoint union of U itself for the first sort and the
canonical ordered structure of size |A| + 1 for the second sort.

A =AU (n+1,<™) where n = |A|.
Recall that we identify n+ 1 with {0,...,n}. Let fin[r]" := {A* | A € fin[7]}.

We apply the following formalism to the two-sorted structures in fin[r]".
Variable symbols z, y, z, ... range over the elements of the first sort, variables
v, W, ... range over the second sort. Of a second-order variable X we say that
it is of type (r1,72) if it ranges over subsets of (first sort)™ X (second sort)"2.
All second-order variables come with a definite typing in this sense.

We consider first-order logic and its extensions by FP- and PFP-operators
over fin[r]*. The first-order constructors comprise

— the formation of atomic expressions, which have to respect the type of
second-order variables in the obvious way,

— boolean connectives and

— quantifications with respect to first-order variables of each type.

For the fixed-point operators.we admit the most general kind of fixed-point
generations in the two-sorted framework by allowing fixed-point variables X
of arbitrary mixed types. Otherwise no changes are necessary to accommo-
date fixed-point operations over the 2A*. Compare Section 1.3.3 and Defini-
tions 1.22 and 1.23. Let for instance ¢(X,Z,7) be in the indicated free vari-
ables, where X is of type (r1,72) and Z and 7 are tuples of 7, respectively
r9, distinct variables for elements of the first, respectively second, sort.

Over each 2* € fin[r]" the formula ¢ induces the following mapping Ff'
(P denotes the power set).

FE: P47 x {0,...,141}") — P(4m x {0,...,14]}")
P — {(a,m)|22(*p=<p[P,a,m]}.

The semantics of formulae [PFPx z5¢(X, Z,7)|z¥ and [FPx z¢(X,Z,7)|Z7
is defined in terms of the partial, respectively inductive or inflationary, fixed
points of F,, just as in the one-sorted case.

Definition 4.2. Let L}, , be two-sorted first-order logic for *-structures. Sim-
ilarly L7 is that fragment of infinitary logic for two-sorted *-structures that
consists of formulae using only finitely many first-order variables (of either
sort). FP* and PFP* stand for the two-sorted variants of fized-point and

partial fized-point logic for these two-sorted structures.

Note that these logics admit formulae with free first-order variables of
both sorts, or, where applicable, also free second-order variables of mixed
type. We ultimately only consider formulae that are free over first-order vari-
ables of the first sort and define global relations over the original relational

100 4. Fixed-Point Logic with Counting

structures. This might be regarded as the standard part of the semantics for
these logics. All considerations about the expressive power of these logics con-
cern these standard parts. A statement like C% , D FP*, for instance, means
that any global relation over fin[r] that is FP*-definable as a global relation
over the first sort is C% -definable. Formulae with other free variables are
important, however, for the inductive generation of formulae and accordingly
play some roéle in particular in syntactic arguments by induction.

A technical comment is in order with respect to the standard one-sorted
modelling of two-sorted structures. In the sequel we shall want to apply results
that formally deal with one-sorted structures also in the present two-sorted
formalization. Rather than reproving them in a tedious adaptation of the
standard arguments one may directly apply them on the basis of the following
remark.

Remark 4.3. For L = L, L%, FP, PFP and with L* = L, ,, L%}, FP*,

PFP* according to Definition 4.2: the expressive power of L on the standard
one-sorted encodings of structures in fin[r]" is the same as that of L™.

Sketch of Proof. The argument is via mutual simulations between the one-
sorted and the two-sorted frameworks.

i) First-order constructors. Consider first the simulation of the two-sorted
framework in the one-sorted encodings, where the i-th sort is described by a
unary predicate U;. The distinction between first-order variables of different
sorts is faithfully simulated through relativizations to the respective sub-
domains. Conversely, a formula ¢(z,...,z,) of the one-sorted framework,
whose first-order variables range over the combined domain U; UUs, trans-
lates into a tuple of 2" formulae @,, s C {1,...,7}, of the two-sorted frame-
work — one for each possible typing. For instance if s = {1,2}, then ¢, =
ps(x1,x2,vs,...,v,) takes care of the case that just z; and z get interpreted
over U;. The inductive definition of the @, is straightforward. For instance,
if ¥(z1,...,%r-1) = Iz, (21, - ., Z/), then VYi1,2) = 3-’Er<P{1,2,r} \ 3”1'9"{1,2}'
ii) Second-order variables and fixed-point processes. A second-order variable
X that is of type (r1,72) over the two-sorted structures is simulated over
their one-sorted encodings by a second-order variable of arity v, + r2 which
can easily be relativized to interpretations of the correct type. Fixed-point
processes carry over directly. In the other direction consider an r-ary second-
order variable X over the one-sorted encodings. Since its interpretations do
not come with a fixed typing, it has to be modelled in general by a tuple
of 2" second-order variables (X;),cqa,....r}, one for each possible typing. We
think of the original X as the union of the X, where, for instance, X{1,2}
is the collection of tuples in X whose first two components come from Uj.
Obviously X and the X, are first-order interdefinable (over the one-sorted
encodings). A fixed-point process involving X naturally translates into a si-
multaneous fixed-point process for a system of formulae. In this system there
is one formula @, ((X¢)¢cq1,...,r}) in first-order variables typed according to s,

4.1 Definition of FP4+C and PFP+C 101

for each s. The resulting fixed points of systems can be recast into ordinary
fixed points using standard techniques as discussed in Example 1.27.]

This observation also implies that the usual semantic inclusions carry over
to the two-sorted framework.

Remark 4.4. L}, C FP* C PFP* C L¥?,.

The functor *:fin[r] — fin[r]" is isomorphism preserving: 2A* ~ 2A'* if
and only if 2 ~ 2'. Similarly it preserves the substructure relation. It does
not, however, preserve definability of substructures even at the atomic level.
As a consequence, FP* and PFP* do not have the relativization property.
For a simple example consider evenness. Evenness of the universe is obvi-
ously definable in FP*: |4| is even if the ordered second sort of 2* has an
odd number of elements, and FP*-recursion over the second sort suffices for
checking this. Evenness of a unary predicate U € 7, however, is not in FP*.
The straightforward adaptation of the standard game argument shows that
evenness of U C A is not even definable in L% * . In a sense, only the cardinal-
ity of the universe has yet been made available in the ordered numerical sort.
To introduce counting and to remedy the defects just pointed out, it suffices
to render the cardinalities of definable subsets over the first sort definable
over the second sort. We present below two equivalent ways of doing so. The
first approach introduces counting terms in a straightforward way. The other
one — more elegant maybe from a model theoretic view — uses the extension
by the Hartig quantifier.

Counting terms. Counting terms link the two sorts so that the second,
numerical sort can be used for talking about the size of definable subsets.
It suffices to consider unary subsets of the first sort, for reasons discussed
below.

Definition 4.5. With each formula ¢ and any variable = of the first sort
associate a counting term:
t:= #z0(z)
of the second sort. Put free(t) = free(p) \ {z}. If (A*,I") interprets all free
variables of ¢ apart from x, then the interpretation of t in (A*,I") is that
element of the second sort that describes the size of the predicate p[A*,I')
defined by p:
= [{ae 4| @, 1) = pla]}].

To obtain fixed-point logic with counting, we simultaneously close first-
order logic L}, for the two-sorted structures under the FP*-constructor, the
formation of counting terms and substitution of these for variables of the
second sort. The formal definition of the syntax would be via a combined
inductive generation of formulae and terms.

102 4. Fixed-Point Logic with Counting

Definition 4.6. Let FP+C be the smallest extension of FP* that is closed
under formation and substitution of counting terms and the FP*-constructor.
PFP+C is the corresponding closure with respect to PFP*.

Clearly FP+C C PTIME and PFP+C C PSPACE.

Using the Hartig quantifier instead. The Hértig quantifier, cf. Defini-
tion 1.53, expresses cardinality equality. Its semantics extends naturally to
two-sorted structures. Over the 2* it may be used to define counting-terms:

v = #,0(z) is equivalent with
Qu ((w; ®); (5 d))) for (p,v) = p<v.

Denote by FP(Qy)* and PFP(Qy)* the logics that result from adjoining the
Hartig quantifier in the two-sorted framework. It turns out that these provide
equivalent characterizations for FP+C and PFP+C, respectively.

Lemma 4.7. PFP+C = PFP(Qu)* and FP+C = FP(Qu)*.

Proof. We point out that the statement of Remark 4.3 extends to the exten-
sions of FP and PFP by the Hartig quantifier. Adjoining the Hartig quantifier
over the one-sorted encodings of two-sorted structures, we formally gain car-
dinality equalities for mixed-sorted unary predicates. These however are dis-
solved into equalities for the sums of cardinalities for two unary pure-sorted
predicates each. Sums over the second sort, however, are definable in FP over
the ordered second sort since they are PTIME computable.

For the proof of the lemma note that the inclusions “C” follow directly
from the definability of counting terms through the Hartig quantifier. Con-
sider then the converse inclusion for FP. An application of the Hartig quan-
tifier may involve two predicates over the first-sort — this case translates
into an equality for the corresponding counting terms directly. It may also
involve at least one predicate over the second sort — but over ordered do-
mains, values of counting terms of type #,¢ are even FP-definable since they
are PTIME computable. a

FP+C and PFP+C turn out to be very robust with respect to the for-
mal details concerning the introduction of counting terms. For example, it
is natural to allow counting not only for unary predicates but also in higher
arities and over mixed sorts. We have just seen that unary counting over the
second sort is for free. The reason for this robustness is that in FP+C we
already have the full power of PTIME operations over the second sort. This
is at the root of the following model theoretic statement of robustness. It
should be noted that a corresponding counting extension of first-order logic
does not at all share these properties, see Example 4.13 below. For the no-
tion of generalized interpretations and closure with respect to these compare
Definitions 1.44 and 1.48 in Section 1.5.

4.1 Definition of FP+C and PFP+C 103

Proposition 4.8. FP+C and PFP+C are closed with respect to generalized
interpretations.

Proof. Consider for instance FP+C. The statement to be proved is the fol-
lowing. Let i be some FP+C-definable generalized (o, 7)-interpretation, func-
torially i: fin[r] — fin[o]. Let R be some FP+C-definable global relation over
fin[o]. Then the global relation i(R) over fin[r] whose value over 2 is the
interpretation over 2 of R'?) has to be FP+C-definable as well. Since we
know that FP and PFP have the required closure properties, it suffices to
prove the following.

Each definable interpretation of o-structures over fin[r] induces a de-
finable interpretation of the corresponding two-sorted structures in

(%) fin[o]* over fin[r]*. This interpretation is such that counting terms for
the interpreted fin[o]*-structures are FP+C-definable over the parent
structures in fin[7]".

Sufficiently large numerical domains are interpretable in powers of the given
numerical domain. The set of s-tuples over n+ 1 together with the first-order
definable lexicographic ordering provides an interpretation of ((n +1)%, <)
over (n + 1,<) as always (n + 1)® > n® + 1. This numerical domain is suf-
ficiently large to provide the second sort for interpretations over the s-th
power. The numerical value represented by an s-tuple 7 in (n + 1)* is the
number of lexicographic predecessors of m: |{ﬁ’ [™' <.x M}|. Having these
numerical domains, (*) reduces to the following lemma: FP+C suffices to
simulate counting terms over interpretations in powers and quotients. (]

Lemma 4.9. The analogues of counting terms for counting in higher arity
and for counting modulo definable congruences (counting equivalence classes)
are definable over fin[r]* in FP+C.

Proof. The claim for higher arity counting means that for ¢(zy,...,z;s) in
FP+C (where other variables are suppressed without loss of generality) there
is a formula (v, ...,vs) in FP+C such that

wEym = el = [< m).

Consider for instance the binary case, a formula ¢(z,y). For each m,
the number of z such that there are exactly m many y satisfying ¢ with
that z is t(u) = #<(#y0(z,y) = p), where p is the second-sort variable
for m. But obviously the desired lexicographic representation of the number
l= |{(x, y)|<p}] is PTIME computable in terms of the function m — t(m)

through
l= Z mt(m).
m

The graph of the function m +— t(m) is FP+C-definable over the second sort
so that FP+C-definability of ! follows immediately.

104 4. Fixed-Point Logic with Counting

Counting with respect to a definable congruence, or the lexicographic
representation of the number ! =]cp[Ql*]/w[Ql"] , is treated analogously.
Without loss of generality let now ¢ = ¢(z) be unary, ¥ = ¥(z,y) bi-
nary. Here [is PTIME computable from the function m — t(m) where

t(n) = #z(p(z) A #4(0(y) AY(z,y)) = p), such that ¢(m) is the number
of elements whose 1-class in ¢ has exactly m elements and

l= z m~1t(m).

O

Example 4.10. All (even quotient) cardinality Lindstrom quantifiers (see
Definitions 1.52 and 1.54) that are based on PTIME computable numerical
predicates are expressible in FP+C. This is an obvious consequence of the
above fact that FP+C has definable counting terms for counting in arbi-
trary arities and with respect to definable congruences together with the
Immerman-Vardi theorem applied to fixed-point definability over the second
sort.

Example 4.11. Since in particular the Rescher quantifier (Definition 1.53)
is definable in FP+C we obtain from Lemma 2.22 that the stable colouring of
graphs is FP+C-definable. It similarly follows from Proposition 3.6 that the
relational parts of the the C*-invariants are FP+C-interpretable as quotients
over the k-th power. This is further explored in the next section.

Example 4.12. =C" is in FP+C, just as =" is in FP according to Corol-
lary 3.15. This is easier to see than the stronger claim made in Proposi-
tion 3.10 about definability in FP(Qy), since one may here argue directly
with interpretability of the relational parts of the I« together with avail-
ability of counting terms to check equality for the weights.

Aside on first-order logic with unary counting. As pointed out above,
first-order logic is far more sensitive to slight changes in the definition of a
“counting extension” than FP and PFP are. This is not surprising since the
robustness of FP+C and PFP+C is due to their recursive power over the
second sort. Let for the considerations of the following example first-order
logic with unary counting be defined as the closure of L}, , with respect to the
formation and substitution of counting terms in the sense of Definition 4.5.

Example 4.13. First-order logic with unary counting does not capture bi-
nary counting. Consider 7 = {U;,Us,Us} consisting of three unary predi-
cates. Let @ be the class of those 7-structures whose universe is partitioned
into three disjoint sets by the U;. Let always m; stand for the cardinality of U,
and n = my + mg + mg for the overall size of A € Q. The tuple (m;,m2, m3)
characterizes 2 up to isomorphism, of course. Let Qo C Q be the subclass
defined by the condition my = m?. Clearly Qo is definable in first-order

4.1 Definition of FP+C and PFP+C 105

logic with counting terms for binary predicates: one need merely equate the
cardinalities of the first-order definable predicates {(z,y)|z =y A Usz} and
{(z,y)|U1z A Ury}.

We claim that Q) is not definable in L} , with unary counting terms. Call
this logic £ for the purposes of this proof. The proof involves a reduction of
definability in £ to ordinary first-order definability over the second, arith-
metical sort of the A* expanded with just a fixed finite number of constants
for some particular values of counting terms. Standard Ehrenfeucht-Fraissé
arguments for linear orderings then apply to show that Qy cannot be sepa-
rated from @ \ Qo by these first-order means.

A trivial automorphism argument will be used repeatedly. If @ and @' are
such that atpy (@) = atpy(a@') then there is an automorphism of A* which
maps @ to @ and fixes the second sort of A* pointwise. It follows that

(i) for ¢(Z,7) € L and fixed interpretation 7 for 7 over A*, the predicate
o[A*,m) = {a|A* = pla,m]} is a union of sets §[A] for § € Atp(; k),
(k the arity of 7).

(ii) for 6 € Atp(%; k) and @ C Atp(; k) the counting values

t(0,0)* = |{b€ A | atp(al) € 6}]

for @ € 0[] only depend on ¥, 6 and @ (and not on @ € [2]).

(iii) for 8, © as above and for all % € @ with sufficiently large m; = |UZ|,
t(9,0) is of the form) ;. m; +d, where s C {1,2,3} and 0 < d < k,
s and d depending only on 6 and O.

Consider the second sort of 2*, for 2 € Q, as equipped with parameters ¢ for
the values of all t(8, @) (for fixed k, as appropriate).

Claim. For each ¢(T,7) € L and 0 € Atp(2; k) there is a <-formula ¢, (¥, i)
in first-order logic (for the the second sort) such that for all A € @ with
sufficiently large m; and for all interpretations 7 for the ¥:

oA ol m] e A .

This claim is justified inductively. The atomic cases and boolean connec-
tives are trivially dealt with.

If ¢ = 3z;9(T,7), then p, is the disjunction over all ¥, with 0 €
Atp(; k) such that 6’ and 6 agree on {z1,...,zx} \ {z;}. For ¢ = vy (Z, u)
one can simply take p, = v,

Finally let ¢ = #,,%(Z,7) = v. Then 0[] C p[A*,m, m] if t(9,0)% =
for © = {#' € Atp(r;k) | 6'[%] C »[A*,m]}. But by the inductive hypothesis

= {0’ | 2" | ¢,,[m,7]}. The equation ¢(§,0) = m can be put into the
des1red form through a distinction of cases: ¢(6, @) = v is equivalent with the
disjunction of the following formulae, over all subsets @' C Atp(t; k):

N\ ¢, 7.8 A N\ ¢, 7.8 A t6,6)=v.

0'co’ 9'¢e’

106 4. Fixed-Point Logic with Counting

This proves the claim.

For sentences ¢ € L it follows that there is a formula ¢ of L, [<] such
that forall A€ Q: A* = & ({0,...,]4]},<,T*) E .

The standard Ehrenfeucht-Fraissé analysis of linear orderings shows that
no first-order formula of quantifier rank ¢ can distinguish

(n+1,<,t1,...,t;) from (n+1,<,8,...,t)

if 0=t <ty <:-- <t =n,
0=t <th<---<t;]=n,

and if for all 4,j: either |t; — t;| = |t — t;| or |t; — ¢, [t; — ;| > 27.

By (iii) above we see that this degree of similarity is achieved for structures
(n +1,<,7) and (n + 1,<,7*') whenever 0, m;, my, m3, and n +1 =
my + mgy + m3 + 1 are spaced sufficiently far apart. Therefore, no first-order
formula can separate those (n + 1,<,#%) for % € Qo from those for A € Qo,
and Qo cannot be definable in L either.

4.2 FP+C and the Ck-Invariants

We saw in Section 3.4.1 that interpretability of the L*-invariants in fixed-
point logic on the one hand and representability of fixed-point processes over
the invariants on the other hand lead to characterizations of the expressive
power of FP and PFP in terms the I;+. An important aspect of this character-
ization is the reduction to ordered domains. FP and PFP over not necessarily
ordered structures can be analyzed in terms of FP and PFP over the linearly
ordered invariants. This section is devoted to the corresponding analysis for
fixed-point logics with counting.

The first lemma concerns FP+C-interpretability of the Ig«-invariants.
Essentially this is a restatement of the definability properties of the Igx
expressed in Proposition 3.6 above — now put in terms of FP+C.

Lemma 4.14. I« (2) is FP+C-interpretable over A*. More precisely all the
following are FP+C-interpretable:

(i) the relational part of Iox as a quotient over the k-th power over the first
sort.
(i) Icwx as a whole (and being a standard structure) over the second sort.
(iii) the natural projection from the quotient interpretation of the relational
part of Ick over the first sort to its representation over the second sort.

Proof. Proposition 3.6 applies to show (i) since FP(Qg) C FP+C. FP* itself
suffices to define the natural projection from the pre-ordering in this interpre-
tation of the relational part of Ioxto the ordered quotient structure over the
second sort (iii). Definability of the weight functions through simple counting
terms as stated in Proposition 3.6 completes the interpretability of the full
invariant as expressed in (ii). a

4.2 FP+C and the C*-Invariants 107

Let I} () := Icx(A*) stand for the C*-invariant of %* € fin[7]", more
precisely of the standard one-sorted encoding of A*.

Lemma 4.15. The 17, are FP-interpretable over the Icx.

Proof. Since we are dealing with ordered structures it suffices to show that
there is a PTIME algorithm that computes I3, (2) from Icx(2). But the
inductive generation of I}, (%) is obviously in PTIME and requires no other
data than those encoded in I« (2). The initial stage for instance is based
on some fixed ordering of the atomic types of k-tuples in A*. Since A* is
the disjoint union of 2 with the linear ordering (]A4] + 1, <), these atomic
types can be presented by pairs of atomic types, one in vocabulary 7 for the
components in the first sort and one in vocabulary < for the components in
the second sort. Note that all the relevant information about r-tuples over 2
for r < k is also encoded in I« (21) since the C*-type of a tuple (z1,...,z,)
is encoded by the C*-type of the k-tuple (z1,...,21,21,...,2,) with r — k
additional entries z;. In this fashion the inductive steps in the generation of
I () are easily simulated over I« (). a

The lemma is in fact a special case of the following more general observa-
tion that can be proved along the same lines. The statement admits further
generalizations in the style of Feferman-Vaught Theorems for the L*- and
C*-theories of finite structures.

Remark 4.16. The L*- and C*-invariants are modular with respect to dis-
joint unions and direct products in the sense that, for example for Io. and for
disjoint unions, there is a PTIME function X such that for all 2,8 € fin[r]:

Iox (AUB) = Z(Ick @), Iok (93)).

This implies also that Icx (A UB) is FP-interpretable over the disjoint union
of Icx () and I+ (%B).

PTIME(Icw) and PSPACE(Icx) are defined in analogy with Definition 3.20:

Definition 4.17. PTIME(Ig«) and PSPACE(Igk) stand for the classes of all
those queries that are PTIME, respectively PSPACE, computable in terms of
the IC" .

More precisely, a boolean query Q on fin[r] is in PTIME(Io+) if member-
ship of A in Q is a PTIME property of Icx (A). A similar characterization can
be applied to global relations (of arity at most k) using the extensions of the
invariants to the fin[r;r].

As in the corresponding treatment of the Ipx a query is in PTIME(I¢x)
respectively PSPACB(IC;.) if it is Ck -definable and its natural representa-
tion over the relational part of the Io« can be computed in PTIME, respec-
tively PSPACE over the Ic«. Logically these classes can further be identified

108 4. Fixed-Point Logic with Counting

with classes FP(Iox) and PFP(Ig+) since FP and PFP capture PTIME and
PSPACE over the ordered Iox:

FP(Icx) = PTME(IGH),
PFP(Iox)

PspPACE(Icx).

Syntactically the formulae of FP(Icx) or PFP(Ick) are FP*-formulae,
respectively PFP*-formulae, in terms of the interpreted Io». These logics
may thus be regarded as fragments of FP+C or PFP+C. See the proof of the
following theorem.

Theorem 4.18. With the FP(Ig+) and PFP(Iow) as characterized:
FP+C = U, FP(Iox) = U,PTIME(IG)
PFP+C Uy PFP(Icx) Uy PSPACE(Igw).
Proof. We prove the equivalences between the logical characterizations. The
arguments for FP+C and PFP+C are completely analogous. Consider FP+C.

By Lemma 3.19 FP(Qu) C U, FP(Icx). An application to the one-sorted
encodings of structures in fin[r]" yields

FP(Qu)" C | JFP(I2).
k

But FP(Qy)* is FP4+C by Lemma 4.7. On the right-hand side of the above
inclusion we apply Lemma 4.15 and the closure of FP with respect to interpre-
tations to see that FP(I3.) = FP(Icx). This proves FP+C C U, FP(Icx).
The converse inclusion follows directly from closure of FP+C with respect
to interpretations (Proposition 4.8) and interpretability of I« in FP+C
(Lemma 4.14). a

The analogue of the Abiteboul-Vianu Theorem (Theorem 3.22) follows im-
mediately.

Corollary 4.19. FP+C = PFP+C if and only if PTIME = PSPACE.

We may now also infer the basic inclusion PFP+C C C¥ from the character-
ization of PFP+C in Theorem 4.18 without getting involved in technicalities.

Corollary 4.20. FP4+C C PFP+C ¢ C¥,

Proof. Tt suffices to show that every PFP-definable global relation is closed
with respect to =" for some k, cf. Lemma 1.33. But this is obvious from
PFP+C = (J, PFP(Ick). Strictness of the inclusion PFP+C ¢ C% is
clear since PFP+C is in PSPACE whereas C%, , expresses even non-recursive
queries. O

4.3 The Separation from PTIME 109

There is of course also a straightforward direct proof of these inclusions
parallel to the proof for FP,PFP C L¥ | cf. Lemma 1.29 and Corollary 1.30.
Technically these are more tedious, however, since mixed-type predicates over
the A* have to be represented in the one-sorted framework of the 2 them-
selves. A single type (1,1) formula ¢(z,v) of the two-sorted framework for
instance can be decomposed into a family of formulae ¢y, j(z) for j < n with
the intended meaning that for all 2 of size n: p[A*] = Uy < (¥n,5 (] X {5})-

In characterizations like FP+C = PTIME(Ick) for fixed points with count-
ing, it is important to note that the size of Io« is of the same order as the
size of the original structure. This essential difference between Iy« and the
I leads to a picture that is in sharp contrast with the second theorem
of Abiteboul and Vianu for FP and PFP without counting (Theorem 3.24
above). Let PFP+C],.,, be the sublogic of PFP+C in which all occurrences
of the PFP-constructor must be such that the limit in the partial fixed-point
process is always reached within a polynomial number of steps. The following
very simple theorem shows FP+C to be better behaved as a logic for PTIME
recursion within C¥ , than FP is within LY.

Theorem 4.21. PFP+C|,., = FP+C.

Sketch of Proof. Let PFP x zz¢ be such that the fixed-point process is poly-
nomially bounded. This fixed-point process is then represented by a polyno-
mially bounded PFP-process over the I« for some k. Over the ordered I«
it must therefore be equivalent with an FP-process. Inductively we obtain
PFP+Cl|,.., € Uy FP(Icr) = FP+C. a

4.3 The Separation from PTIME

It is an important result of Cai, Fiirer and Immerman [CFI89)] that also FP+C
is too weak to capture the class of all PTIME queries on not necessarily ordered
finite structures. The construction has been reviewed in Example 2.7.

It is worth to note that on the basis of the present analysis we may in-
fer FP+C 2 PTIME from the fact that none of the CX , defines all queries.
This argument is of some interest in its own because it relativizes to many
subclasses of the class of all finite structures. The only requirement on the
subclass K is that it admits some kind of padding: some simple construction
should be available within K that allows to increase arbitrarily the size of
structures. We choose closure under disjoint unions as a corresponding pre-
requisite on K in the statement of the following theorem. It will be clear from
the proof that a number of other natural closure conditions would serve just
as well.

Theorem 4.22. Let K C fin[r] be a class of finite T-structures that is closed

under disjoint unions. Assume that FP+C captures PTIME on K, in particu-
lar that any PTIME computable boolean query on K is definable by a sentence

110 4. Fixed-Point Logic with Counting

of FP+C and hence also by a sentence in C% . Then there is some k satis-
fying the following two (equivalent) conditions.

(i) Iow classifies structures in K up to isomorphism:
for al A, A € K: I (A) = I (A) < A=A

(ii) In restriction to K, CX , = Lo, for sentences; in other words, any
boolean query on K must be definable in C% .

Applying this to the class of all finite graphs, and using the result of Cai,
Fiirer and Immerman just to the effect that no C%, coincides with Lo, on
the class of all finite graphs (as expressed in Theorem 2.9) we obtain the
following.

Corollary 4.23 (Cai, Fiirer, Inmerman).
FP+C ¢ PTIME, in fact even PTIME € C%,

On the basis of Theorem 4.22 this separation is also obtained as a corollary of
recent results of Gurevich and Shelah [GS96]. They prove that in a suitable
vocabulary 7 there are for each k rigid structures in fin[7] that do not admit a
Ck ,-definable linear ordering. Again it follows that on (expansions) of these
structures no C% coincides with Lo, (for sentences even).

Note that the only separation results between FP+C and PTIME that can
be obtained along the lines of Theorem 4.22 — and these are all there are,
as yet — are in fact separations of C%,, N PTIME from PTIME.

Proof (of Theorem 4.22). Let K be as required. Choose some sufficiently fast
growing monotone function f:w — w such that f(n) is computable from n in
time polynomial in f(n). Assume that f(n) > n for all n. It follows that there
is a PTIME algorithm that recognizes numbers of the form n(f(n) + f(n)?)
and computes n for these: for given m it suffices to compute n(f(n) + f(n)?)
for all n with n3 < m and check for equality with m.

It further follows that m, and ms can be computed in PTIME from n and
my f(n) + maf(n)? for any m;,ms < n: simply expand the given number
m = my f(n) + maf(n)? in base f(n) to obtain the m; as its digits.

We claim that for suitable f the following padded variant of the isomor-
phism query on K becomes a PTIME query:

Q:= {(’: l C~AU...UA, wherem = f(n) + f(n)’,n = |A|}

m

The intended algorithm first checks whether the size of an input € is of
the form n(f(n) + f(n)?) and computes n in this case. It then checks for
all isomorphism types of connected! 7-structures © of size at most n how
many connected components of € are isomorphic with © (and that € has no
components of size greater than n). This is done in time polynomial in |€|

! A structure is called connected if it is not the disjoint union of two other
structures.

4.4 Other Characterizations of FP+C 111

provided f(n) is sufficiently large for n; the precise meaning of ‘sufficiently
large’ has to take into account the arities in 7.

Let v(®D) be the corresponding number for each ©. Then € € Q if and
only if all ¥(®D) are of the form v(D) = u(D)(f(n) + f(n)?) for appropriate
(D) < n. Necessity of this condition is clear. For sufficiency observe that, if
V(D) = p(®@)(f(n) + f(n)?) for all D, then € is of the required form if for 2
one takes the disjoint union of u(®) copies of each D.

By assumption @ therefore is definable in some Ck . But the above
characterization of € € @ through the v(D) also implies that for any two
2A,B € fin[r] of the same size n,

C=2U...UYUBU...UB
f(n) f(n)?
is in @ if and only if 2 ~ B. It follows from Remark 4.16 on the other hand
that I« (€) is a function of I« () and I« (*B), so that A ~ B is determined
by Icx () and Iox (). This implies claim (i) of the theorem, and equivalence
of (i) and (ii) is obvious. The argument given here is a structural variant of the

so-called padding technique that is often useful in complexity considerations.
0

The results of this chapter show that FP+C is the right logic for PTIME
recursion in the world of C% ,. In this respect its relation to C%, , resembles
that of FP to LY . It is known from the result of Cai, Fiirer and Immerman
that real PTIME is not within C% . On the other hand all known separation
results for FP+C from PTIME are separations of C , N PTIME from PTIME.
The question that arises at this point is the following:

Does FP+C capture PTIMENCY, ,, the class of all those queries that
are both PTIME computable and definable in C¥,,?

More suggestively:
Does FP+C capture PTIME in the world of C%,,,?

This question is further explored in the last two chapters. Note that the same
question with FP and L% , in the place of FP+C and C%,, can be answered
negatively unless PTIME = PSPACE. Obviously PFP|,,, € PTIMEN Ly,
but PFP|,,, C FP only if PTIME = PSPACE by the second theorem of
Abiteboul and Vianu. There is a reasonable variant of the issue that remains
an open problem for FP and LY, too. We shall come back to these issues
in Chapter 6. In the last Chapter we find positive solutions to such questions
in the very restricted case of just two variables, i.e. for L%, and CZ .

4.4 Other Characterizations of FP+C

It may be a further indication of the naturalness of FP+C as a level of
expressiveness within PTIME that it admits several different equivalent logical

112 4. Fixed-Point Logic with Counting

characterizations and also a natural algorithmic characterization. We here
only indicate some of these briefly. More detailed accounts can be found in
[GO93] and [Ott96a], respectively.

Among the logical variations we mention the following:

(a) FP4+C can be obtained as a straightforward extension of Datalog. For
our purposes Datalog is the logic of positive Horn-clause programs with
the least fixed-point semantics. Its counting extension is based on the
two-sorted variants of structures in fin[r]* and allows the use of counting
terms and cardinality comparisons in the sense of < in clauses. It is not
difficult to see that the counting extension leads to closure under negation.
It follows that this extension of Datalog comprises the full power of fixed-
point logic and thus is semantically equivalent with FP+C.

(b) The approach to extend finite structures with standard sorts, like the
arithmetical second sort of the structures in fin[7]", has been carried much
further in the framework of meta-finite structures put forward by Gradel
and Gurevich in [GG95). Here finiteness of the second standardized sorts
is given up in order to obtain a more uniform modelling for issues on finite
structures that essentially involve reference to infinite standard structures
(like the natural or the real numbers). In order to obtain an adequate lim-
itation on the access to the infinite standard domains, recursive processes
like those in fixed-point are restricted to the finite relational domain. The
infinite standard parts are accessed through terms and multiset opera-
tions. The latter can roughly be described as arithmetical operations that
are performed on weight functions from the finite relational domain to
the infinite standard part. It turns out that FP+C can be isolated in this
framework by taking arithmetic on the natural numbers (w, <, +,-) for
the infinite standard structure, with exactly the PTIME multiset opera-
tions. It is shown in [GG95] that the expressive power of fixed-point logic
in this meta-finite frame coincides with FP+C.

We mention two more characterizations of different kinds in slightly greater
detail. One is in terms of uniform sequences of formulae, the other by means
of a computational model.

P-uniform sequences of formulae. Logical characterizations in terms of
sequences of formulae are proposed and investigated in the work of Immer-
man, see for instance [Imm82]. Let fin,[7] stand for the restriction of fin[r]
to structures of size n. The idea is to associate for instance with a boolean
query @ C fin[r] a sequence of sentences (¢n) ., in some logic L[r] such

n>1
that for all sizes n:

QNfiny[7] = {Qt € fin,[7] ‘ AE <pn}.

A priori this is a completely non-uniform notion of logical definability. Re-
strictions on the constituent formulae ¢, in terms of quantifier rank, numbers

4.4 Other Characterizations of FP+C 113

of variables and size (all regarded as functions in n) or constructibility cri-
teria for the mapping n — ¢, serve to employ this approach as a tool in
the logical analysis of complexity. It turns out that FP4+C and PFP+C are
isolated by very natural uniformity conditions on sequences. Note that in the
presence of counting quantifiers and for sequences of formulae ¢, € C%, the
semantics given to the sequence is that of \/,,, (3="zz=z A ¢,) € C% .

Definition 4.24. Call a sequence (¢n)n>1 of formulae in some CX,, PTIME-
uniform, respectively PSPACE-uniform, if ¢, is constructible in time, respec-
tively space, polynomial in n. Let PTIME-CY , and PSPACE-CY , stand
for the sublogics of C¥,, corresponding to all PTIME-, respectively PSPACE-
uniform sequences.

Clearly PTIME-CY,, C PSPACE-CY , C C%,. The following is proved in
[Ott96a].

Proposition 4.25. FP+C = PTIME-CY,, and PFP+C = PSPACE-CY,,.

This is quite unlike the situation for FP and PFP themselves: trivial
examples involving pure sets show for instance that FP is properly contained
in the correspondingly defined PTIME-LY_ .

A computational characterization. Finally there is a natural compu-
tational model whose PTIME and PSPACE restrictions coincide with FP4-C
and PFP+C, respectively. This model is the obvious generalization of the
relational computational model of Abiteboul and Vianu [AV91] that incor-
porates counting operations in a generic manner. Let us call the machines
under consideration relational machines with counting. We give a brief sketch.
A relational machine with counting consists of two components. First there
is a relational store with a fixed number of relational registers of fixed arities.
These can hold sets of tuples from the domain of the input structure. Among
these relational registers there are specified ones that are initialized to rep-
resent the given predicates in the input structure. The others are initially
empty. In any case, at each stage of the computation, the content of a rela-
tional register is a relation over the input domain. The second component of
the machine resembles an ordinary Turing machine with a work tape with a
read—-write head, an extra communication tape with a write-only head, and
the usual finite state control. The interaction between the two components is
the following.

e Each transition, as laid down in the transition table of the Turing control,
may depend not only on the current internal state and symbol read on
the work tape but also on the information which of the relational registers
are currently empty. These implicit emptiness queries constitute the only
flow of information from the relational part of the machine to the Turing
component.

o The execution of a transition may involve not only the printing of tape
symbols and movements of the heads but may also include one of several

114 4. Fixed-Point Logic with Counting

update operations on the relational store. The operations available here

are the following:

— copy and move operations between relational registers.

— boolean operations on the current contents of specified relational regis-
ters (e.g. union and complementation).

— operations corresponding to the natural action of the permutation groups
S, on the contents of r-ary registers.

— counting projections.

Counting projections take as input a numerical parameter v whose current
value is read from the communication tape. The content of a prescribed
relational register R is then replaced by all those tuples for which there
are at least v substitutes for the first component that are currently in R:
R' := {@a | 3>"b@? € R)}. Only in this operation does the present model
extend the one proposed by Abiteboul and Vianu. Their model only allows
ordinary existential projections which appear here as a special case for v = 1.

Computations of these machines are formalized in the natural manner.
The result of a computation that is to produce a boolean value can be encoded
in the final state reached by the Turing control. For machines that are to
compute an r-ary query, the output is the content of one specified r-ary
relational register when the machine reaches its halting state.

This model of computation is entirely isomorphism-preserving (‘generic’
is the term usually applied in the literature). Any isomorphism between in-
put structures naturally extends to all stages of the computation, so that the
resulting computations are not only equivalent but really isomorphic them-
selves.

Complexities for this model are defined in terms of the Turing component.
PTIME and PSPACE for the relational machines with counting comprise those
queries that are computable by one of these machines within a number of
steps, respectively with the use of a number of tape cells (of the Turing
component) that is polynomially bounded in the size of the input structure.

Theorem 4.26. On finite relational structures, PTIME and PSPACE for the
relational machines with counting exactly correspond to FP+C and PFP+C.

In particular FP+C and PFP+C are the polynomial time and space re-
strictions of a generic model of computation — a situation that in a sense
is ruled out by the second theorem of Abiteboul and Vianu, Theorem 3.24
above, for FP and PFP themselves.

Attributions and remarks. FP+C — roughly in our formalization — is
implicit in the work of Immerman, in particular see [Imm87a]. The present
explicit form was first presented in [GO93]. Most of the material treated in
this chapter can also be found in [Ott96a] and [GO93]. The latter source

should be consulted in particular for those characterizations of FP+C that
are only sketched here.

