1. Definitions and Preliminaries

A major part of this chapter serves to review and fix notation and terminol-
ogy. The material is standard. Readers familiar with the notions addressed
might therefore only want to refer back to particular definitions at later
points. The main issues of the individual sections are the following:

e Section 1.1 sums up the basics about structures, global relations, logics
and types that are relevant for our purposes.

e In Section 1.2 we consider algorithms that deal with structures as inputs
and fix some corresponding conventions. Recognizability of classes of finite
structures and computability of global relations are discussed.

e The bounded variable fragments of infinitary logic, and the fixed-point
logics, are presented in Section 1.3. We also provide some typical examples
for the expressive power of these logics.

e Section 1.4 contains some preliminary material about types and definability
in the relevant fragments of infinitary logic.

e Section 1.5 deals with interpretations, a concept that plays an important
role in many definability considerations.

e In Section 1.6 we review the notions of generalized quantifiers and Lind-
strom extensions. In particular we define the class of cardinality Lindstrom
quantifiers.

e Section 1.7 fixes some terminology with respect to the notion of can-
onization and of complete invariants for arbitrary equivalence relations. We
also sketch some technicalities and conventions concerning orderings and pre-
orderings.

1.1 Structures and Types

1.1.1 Structures

We deal with finite structures exclusively. fin[r] is the class of all finite 7-
structures. Unless explicitly stated otherwise, 7 stands for some finite and

16 1. Definitions and Preliminaries

purely relational vocabulary. A structure in fin[r] consists of its universe
together with interpretations for the symbolsin 7. If 7 = {Rl, ..., R }, where
R; is arelation or predicate symbol of arity r;, we write A = (4, R}, ..., R%)
for a T-structure. Thus R* C A™. The superscripts % are mostly omitted
when there is no danger of confusion.

It is sometimes convenient in special circumstances to admit some varia-
tions and extensions of the basic concept of structures:

(i) In order to deal with fixed tuples of parameters over some structure 2,
one may think of those parameters as interpretations for a correspond-
ing tuple of extra constant symbols. We here prefer to stick with an
entirely relational vocabulary and treat parameters as interpretations
for variable symbols. The distinction between parameters and variables
becomes purely intentional. The class of all 7-structures with fixed tu-
ples of r parameters is denoted

finfr;r] = {(m,a) \ 2 € finfr],a € A’}.

(ii) In our formalization of fixed-point logic with counting in Chapter 4 we
deal with two-sorted structures. These are structures over two disjoint
universes, one for each sort. Each relation symbol comes with a specifi-
cation telling which components range over the first sort and which over
the second. Similarly terms and in particular variables have a designated
status with respect to the sorts. There is a standard way to represent
two-sorted structures by ordinary one-sorted structures that have two
additional unary predicates to distinguish the sorts. A structure of the
form

(A,Ul,Ug,...) WlthA=U1UU2
can thus naturally encode a two-sorted structure with universes U; for
the two sorts. A binary relation R for instance whose i-th component
ranges over the i-th sort for ¢ = 1,2 then gets interpreted as a binary
relation over A that satisfies VazVy(Rzy — Uz A Upy).

(iii) At some places we consider weighted structures. These are structures
together with some functions from their domains to some external stan-
dard domain, mostly and without loss of generality to the set w of the
natural numbers. A standard example is that of graphs (V,E) with
weights put on the edges, formalized by a weight function v: V? — w.

Linearly ordered structures play a special role. Assume that T contains a
designated binary relation symbol < for a linear ordering. Then the class of
all finite 7-structures which are linearly ordered is denoted

ord[7] = {Ql € fin[7] ‘ <* a linear ordering of A}.

When talking of classes of finite structures it is generally understood that
these are closed with respect to isomorphism. The only exception in our treat-
ment being that in places we restrict attention to structures over standard

1.1 Structures and Types 17

domains, meaning structures with an initial segment of the natural numbers
for their universe. We denote by stan(r] the set of all finite 7-structures over
standard domains n = {0,...,n — 1} 1:

stan[r] = {2[€ fin[7] l A=n,n2 1}.

There is a direct correspondence between linearly ordered structures and
structures over standard domains. Each structure (2, <®) in ord[r U {<}] has
a unique representative (2) in stan[r] determined by the requirement that
2 ~ (A) and that the linear ordering < translates into the natural ordering
on the standard domain of () under the isomorphism. Obviously the map-
ping (A, <?) — (2A) induces a bijective correspondence between isomorphism
classes of linearly ordered structures and structures over standard domains

(): ord[rU{<}] /: — stan([7].

1.1.2 Queries and Global Relations

A class @) of finite 7-structures may be identified with a boolean valued
functor x on fin[r] that maps structures to 1 or 0 according to membership
in Q: @ = {¥ € fin[r] | x(A) = 1}. The term boolean gueries for classes of
structures stresses this functorial view. Since classes of structures are tacitly
assumed to be closed under isomorphisms, their characteristic functions x
are invariant under isomorphisms.

Consider similarly an isomorphism-invariant boolean valued function on
fin[r;r], x:fin[r;r] — {0,1}. Such a functor constitutes an r-ary query on
fin[r]. An alternative view is that of a mapping from 2 € fin[7] to a new
r-ary predicate R? over :

R’*":{EEA’

X(,3) = 1}.

The mapping R:2 — R? is a global relation of arity r. At the level
of this mapping isomorphism invariance of x turns into equivariance under
isomorphisms: if m:2 — ‘B is an isomorphism, then 7(R%*) = R®. This
is in fact the standard defining condition on global relations or queries as
introduced in [CH80]. We note in particular that the value of a global relation
over 2 must be invariant under all automorphisms of .

Definition 1.1. A global relation or query R of arity r over fin[7] is a map-
ping sending each structure A € fin[r] to an r-ary predicate R* C AT in
~-compatible fashion. Whenever w : A — B is an isomorphism, then 7 also
preserves R: m(R®) = R®. The characteristic functor xr of R is the boolean
valued mapping on fin[r;r] that sends (,8@) to 1 if @ € R®. Compatibility

! We apply the usual convention to identify the natural number n € w with the
set of its predecessors {0,...,n —1} Cw.

18 1. Definitions and Preliminaries

of R with isomorphisms is equivalent with invariance of xg under isomor-
phisms.

It is often convenient to regard boolean queries (boolean global relations)
as special, namely O-ary cases of r-ary queries. To accommodate this view
formally, we may naturally identify 0-ary predicates with boolean values and
fin[r; 0] with fin[7].

Some remark on our usage of the term functor is in order. We generally
apply it to a mapping f whose domain is a class of structures (or of struc-
tures with parameters and the like) if f is required to be invariant under
isomorphisms: A ~ B = f(™A) = f(B). If also the range of f consists of
structures, for instance f:fin[r] — fin[o] then the appropriate form of invari-
ance is A ~ B = f(A) ~ f(B).

1.1.3 Logics

Let £ be a logic. We do not require any formal general notion of a logic;
the apparent generality here only serves to collect some notions, that we
later apply to a few individual concrete logics, into common statements. £[7]
denotes the class of all formulae of £ in vocabulary 7. A formula ¢ € L[7]
without free variables (one that semantically evaluates to a boolean value
over each 7T-structure) is a sentence. Sentences define classes of structures,
concentrating on finite structures we put

fmod(yp): = {Ql € fin[7] ' A= <p}.

We mostly use letters ¢,1,,... to denote formulae. Let ¢ € L[r]. Vari-
ables displayed in brackets like the z; in ¢(zy,...,z,) indicate that semanti-
cally we consider ¢ as defining a global relation of arity r on fin[r]. Over ,
o(z1,-..,Z,) evaluates to the predicate

ol2]: = {a € A"

% = pla)}.

2 = p[a] says that ¢ is satisfied over A when the free variables are interpreted
as indicated. In this usage the notation ¢(z1,...,zx) does not imply that the
displayed z; must all be syntactically free in ¢, but that the free variables of ¢
are among those displayed. We speak of a formula in free variables z1,. ..,y
with this meaning: free(p) C {z1,...,zt}. For instance, we allow to regard
the formula z; =z, also as a formula in free variables z;,z2,z3, and write
p(r1,T2,T3) = T1 =T, if this view is intended.

Similar conventions apply to second-order variables (predicate variables)
where such occur. In particular notation like ¢(X,Z) € L[r] indicates that
given a 7-structure plus additional interpretations for the second-order vari-
ables X by extra predicates and for the Z by elements, ¢ evaluates to a
boolean value. 2 |= ¢[P,a) expresses that ¢ is satisfied in 2 with the indi-
cated interpretations for X and Z.

1.1 Structures and Types 19

It is sometimes convenient to consider interpretations for some free first-
or second-order variables as momentarily fixed. The notation (2, I") for some
partial interpretation of free variables through I" indicates this meaning.

Definition 1.2. (i) The sentence ¢ € L[r] defines the boolean query @ C
fin[7] if Q = fmod(p).
(it) The formula o(z1,...,z,) € L[r] defines the global relation R on fin[r]
if R® = @[] for all 2 € fin[7].

The expressive power of a logic is determined in terms of those global
relations that are definable in this logic.

Definition 1.3. Two logics are semantically equivalent if they define exactly
the same global relations on finite structures.

L:lE[.g

denotes this semantic equivalence over finite relational structures. The possi-
ble weakening of this requirement, that the two logics define the same classes
of finite structures is explicitly indicated. We write “L, = L, for sentences”

or “Ly = L5 for boolean queries”.

Observe that £; = L, says that for every formula of £; there is a formula
of Lo that is equivalent over finite structures, and vice versa. The weaker
notion of equivalence expresses the same requirement in restriction to sen-
tences. The distinction between the two notions of equivalence is of a purely
formal nature for our considerations. Most natural logics admit a faithful re-
duction from definable global relations to definable boolean global relations
so that their expressive power is fully determined by their strength in defining
classes, i.e. by their sentences.

The notation = for semantic equivalence extends with analogous meaning
to classes of queries that are not specified by logics. For instance if C is a class
of queries and £ a logic then C = L says that every query in C is definable
by a formula of £ and that conversely all £-definable queries are in C.

1.1.4 Types

We are interested in L-definable properties of element tuples. The L-type
of a tuple @ = (ay,...,ax) of elements of a T-structure 2 is the class of all
L-formulae in free variables T = (z, ...,) that are satisfied by @ in 2:

w§ (@) = {¢(@) € £l | % = vla)}.
Tp*(r; k) is the class of all L[7]-types in variables z1,..., Ty
Tpé(r; k) = {tp§ (@) | 2 € finlr], 7 € 4*}.

Tp~ (A; k) denotes the set of all L[r]-types of k-tuples over a particular 2:

20 1. Definitions and Preliminaries
Tpl(2; k) = {tpg(a) | ae A"}.

We use Greek letters o, 3, ... to denote types. If & € Tp®(r;k) then a = ¢
means that 2 |= o[a] whenever 2 and @ are such that tpg (@) = . In case ¢
is also in L[r] this is just to say that ¢ € a.

We often think of TpZ(r;r) for 1 € r < k as embedded into Tp®(; k)

via
tp4 (a1, . ..,ar) — tp5(a1,...,a1,01,...,a,.).
k—r
Some of the logics that play a central réle in the following possess only
a bounded supply of variable symbols. If £ only has variables z,...,z; we

agree to apply the notion of £-type only to tuples @ of length at most k. We
adopt the convention that Tp*(r;r) = 0 for r > k in this context.

The most basic types considered are the atomic or quantifier free types.
They are obtained in the above formalism if £ is chosen to be the quantifier
free fragment of first-order logic. We write atpy (@) for the collection of all
quantifier free formulae that hold true of @ in 2. Note that each such type
can be fully represented by the set of atomic formulae contained in it. In
this sense, and for finite relational vocabularies, each atomic type is finite
and we may identify an atomic type 8 with a single quantifier free formula:
the conjunction over all atomic formulae contained in 6 together with the
negations of all those not contained in 6. Some such syntactic normal form is
tacitly assumed when we deal with sets of atomic types. The set of all atomic
T-types in variables z,,...,) is denoted by Atp(r;k):

Atp(r; k) = {atpm (a) | A € fin[r],a € Ak}.

Clearly only structures of size up to k need be considered since 7 is purely
relational. For finite 7 therefore, Atp(7; k) is obviously finite. In fact a finite
representation of Atp(7; k) in terms of the above syntactic normalization is
immediately obtained.

Atomic types in vocabulary # — in the language of pure sets, where only
equality is available — are here called equality types. We write eq(@) for the
equality type of @ and Eq(k) for the finite set of all equality types in variables
Tlyeeoy Tk

For indistinguishability of structures or structures with parameters in a
logic we use the following notation.

Definition 1.4. For the logic £ we denote by = the equivalence relation of

indistinguishability in L or L-equivalence both of structures and of structures
with parameters:

(i) A =LA if A and A' satisfy ezactly the same L-sentences.
(i) (A,a) =X (A, @) if @ and @ satisfy ezactly the same L-formulae over
A and A’ respectively — equivalently if tp§ (@) = tp§ (@').

Note that Tp”(r; k) may be identified with fin[r; k] /=£.

1.2 Algorithms on Structures 21

1.2 Algorithms on Structures

The informal notion of algorithms on structures simply refers to algorithms
that are intended to take finite structures as inputs. Algorithms do not deal
with abstract structures directly but with presentations or encodings of these.
In standard models of computation — we mainly think of Turing machines
— algorithms directly deal with words, ordered strings of symbols over some
fixed finite alphabet. Straightforward encoding schemes that faithfully map
structures to words are available for structures over standard domains. The
implicit ordering of the standard domain allows to enumerate all instantia-
tions of atoms lexicographically. The entire structural information can thus
be coded in a binary string that lists the boolean values of all instantiations
of atoms in this ordering. Having fixed any such convention for the direct en-
coding of standard structures we can identify standard structures with their
encodings as bit-strings. Without loss of generality we may thus pretend that
algorithms for computations on finite 7-structures directly accept elements
of stan[r] as inputs. We think of such an algorithm 4 as realizing a mapping

A:stan[r] — range(A)
A — AR).

The same considerations apply to algorithms that take structures with pa-
rameters as inputs; we replace stan[r] by stan[r;r] for some r. With respect
to the range of A we may distinguish two cases (the distinction is purely
intentional): either we regard range(A4) simply as a set of words, or we simi-
larly identify output words with standard objects they encode. In particular
we adopt the latter view if we want A to realize a mapping from structures
to structures. As for the input domain, we identify the output domain with
some stan[o] and pretend for instance that .4 directly realizes a mapping
A:stan[r] — stan[o]. Similar conventions can be employed to algorithms
which are to output natural numbers: A: stan[r] = w.

Algorithms are unproblematic as far as they realize mappings between
certain domains of standard objects (objects with standard encodings). The
picture becomes fundamentally different if we want to realize functors on
structures. Consider the algorithmic evaluation of a boolean query on fin[r].
No matter whether we restrict the domain to stan[r] or not, there remains
the crucial invariance condition that A(A) = A(2A') whenever % and 2’ are
isomorphic. Note that this condition really arises from two sources:

(a) when encoding even a single abstract 2 € fin[r] through an element of
stan[r] then a priori the representative in stan[r] is determined only up
to isomorphism.

(b) since a boolean query by definition corresponds to an isomorphism in-
variant functor, its restriction to stan[r] still has to be invariant under
isomorphisms.

22 1. Definitions and Preliminaries

Of course there are situations in which uniquely determined representa-
tives of abstract input structures by elements of stan[r] are available. Most
notably this applies to linearly ordered structures. As pointed out above we
may identify ord[r U {<}]/~ with stan[r]. Linearly ordered structures, even
when viewed only up to isomorphism, therefore are themselves objects with
standard encodings — whence their notorious special status in considerations
concerning logics for complexity classes arises. Somewhat more generally such
exceptions occur wherever there is some adequate normalization or canon-
ization procedure available. Variations on this issue will concern us in later
chapters.

Entirely similar considerations apply of course to the evaluation of r-ary
queries that we choose to realize in the boolean format

A:stan[r;r] — {0, 1}

which is also subject to invariance under isomorphism. Finally, functors from
structures to structures are realized as

A:stan[r] — stan[o]
with invariance condition A ~ B = A(A) ~ A(B).

Definition 1.5. (i) The algorithm A:stan[r] — {0, 1} computes the bool-
ean query @ C fin[r] if for all A € stan[r]: A(A) = 1 if and only if
A € Q. We also say that A recognizes the class Q.

(i) An algorithm A:stan[r;r] = {0,1} computes the r-ary query R on fin[7]
if for all (A,@) € stan[r;r]: A(%,@) = 1 if and only if a € R*.

(iii) An algorithm A:stan[r] — stan[o] computes the functor F:fin[r] —
fin[o] if for all A € stan(r]: A(A) ~ F(A).

(iv) An algorithm A:stan[r] - S computes the functor F:fin[r] = S whose
range is some domain of standard objects S if for all A € stan[7]:
A1) = F(2).

1.2.1 Complexity Classes and Presentations

We are interested in the complexity of problems that concern structures.
Consider a structural problem, any of the several kinds of computational
problems considered in Definition 1.5. The complexity of such problems is
the complexity in the standard sense of its algorithmic realizations .A. When
dealing with relational input structures we identify the input size with the
size of the universe of the input structure. Although this parameter may differ
from the length of an actual encoding of the input structure, the difference
does not matter for our purposes because the complexity classes considered —
mainly PTIME and PSPACE, but the same applies to all standard classes from
LoGSPACE upward — are robust under polynomially bounded re-scalings of
the input size.

1.2 Algorithms on Structures 23

A boolean query @ C fin[7], for instance, is in PTIME if there is a PTIME
algorithm A that computes @ in the sense of Definition 1.5 (i). More precisely,
if there is an algorithm A for @) that terminates its computation on all & =
(n,...) € stan[r] in time polynomial in n. It is customary to denote the class
of all PTIME queries again by PTIME, and similar conventions apply to all
the usual complexity classes. It should always be clear from context whether
we think of for instance PTIME either as the class of all polynomial time
computable functions (on the natural numbers, or on some other domain
of objects with standard encodings), or as the class of all polynomial time
computable queries on finite relational structures. In order to emphasize the
latter interpretation we shall sometimes speak of PTIME or other complexity
classes as complezity classes of queries, a notion introduced by Chandra and
Harel [CH80].

As pointed out in the introduction the issue of logics for complexity classes
is closely related with the abstract notion of recursive presentations for com-
plexity classes of queries.

Definition 1.6. Let C be a complezity class of queries. C is recursively pre-
sented by a recursive or recursively enumerable set M of algorithms if each
A € M is an algorithmic realization of a query in complezity C, and if M is
semantically complete for C: C = {Q|Q realized by some A € M }.

We write C = M to stress the underlying semantic equivalence and speak
of M as a recursive presentation for C. For short we also just call C recur-
sively enumerable if it admits a recursive presentation.

This notion of a recursive presentation similarly applies to any class of
problems C that is specified by algorithmic criteria. Recall from the intro-
duction that ordinary PTIME, as the class of all polynomial time computable
problems on natural numbers say, is recursively presentable through the
subclass of polynomially clocked PTIME machines (compare Section 0.1.2).
PTIME as a class of queries is a paradigmatic semantic class. As a subclass of
ordinary PTIME, PTIME as a class of queries is characterized by the semantic
condition of invariance under isomorphism. The problem whether there are
logics for complexity classes of queries essentially is the problem of finding
recursive presentations of these semantically defined classes.

1.2.2 Logics for Complexity Classes

This following notion was first presented in precise terms in [Gur88].

Definition 1.7. Let C be a complezity class of queries. Assume that L is
a logic with recursive syntaz and semantics: for finite T the set L[r] of 7-
formulae of L is recursive’ and there is a recursive mapping from L[] to

2 Note that just as for recursive presentations it does not really matter whether
we require recursive or recursively enumerable syntax. If (pi)i>1 is a recursive
enumeration then the recursive set {(yi,7)|¢ > 1} can replace the original syntax
if necessary.

24 1. Definitions and Preliminaries

algorithms, ¢ — A, such that A, evaluates (the query defined by) ¢ over
fin[7].

L is a logic for C or captures C if C coincides with the class of queries that
are definable in L, C = L, and if the recursive semantics ¢ — A, maps L[]
to algorithmic realizations within C.

Of course the same notion applies to other classes of queries that are
defined in terms of algorithmic criteria, in particular to subclasses of com-
plexity classes of queries. The well known theorem of Immerman and Vardi
for instance says that the class of all PTIME queries on ordered structures is
captured in exactly this sense by fixed-point logic.

Sometimes it is useful to strengthen these requirements so that other
important data also become recursive in terms of the formulae of £, compare
[Gur88, EF95]. For instance one may require that data describing complexity
bounds on A, be recursive in ¢. While such strengthenings are crucial for
certain arguments we can here stick to the basic notion.

It is worth to note the essential equivalence between the notions of cap-
turing by some logic and that of a recursive presentation. It is clear that a
logical representation as in the last definition provides a recursive presenta-
tion through {A¢ | pE E} . Conversely, any recursive set of algorithms may
be regarded as a logic with recursive syntax in the abstract sense; for the
semantics choose the obvious one embodied in the algorithms. In this way
any recursive presentation of C can essentially be regarded as a logic that
captures C. There are some fine points to be considered if as usual we want
abstract logics to satisfy some appropriate regularity criteria as outlined in
[Ebb85]. For this it is obviously necessary that C itself as a set of queries
satisfies corresponding closure criteria. At least for classes C that are natural
in such respects it follows that indeed the two notions are equivalent. We
do not here enlarge on this issue, in fact an informal concept of ‘logics for
complexity classes’ will be quite sufficient for our purposes.

1.3 Some Particular Logics

1.3.1 First-Order Logic and Infinitary Logic

We write L., for first-order logic. The expressive power of first-order logic
over finite structures is very unsatisfactory in terms of computational com-
plexity. While all L,,-definable queries are LOGSPACE computable, first-
order logic fails to define fundamental structural properties in LOGSPACE
or even below. This was briefly discussed in the introduction. First-order
equivalence =L~~ however, turns out to be too strong a notion of equiva-
lence over finite structures. Two finite structures are first-order equivalent
if and only if they are isomorphic: a first-order sentence, that uses enough
variables to enumerate all elements of a given structure and specify all basic
relations between them, characterizes that structure up to isomorphism.

1.3 Some Particular Logics 25

Full infinitary logic is the logic L, that has the usual first-order rules
for the formation of formulae and in addition is closed under infinitary con-
junctions and disjunctions: if ¥ is any set (!) of formulae of Ly, then A Y,
the conjunction over ¥, and \/ ¥, the disjunction over ¥, are also formulae of
Lo, Their semantics is the obvious one: A ¥ evaluates to true if all formulae
in ¥ evaluate to true and \/ ¥ evaluates to true if at least one formula in ¥
does. Note that one often has to deal with families of formulae (1;);cr and
then writes for instance A, v; instead of A{v; |i € I'}.

As mentioned in the introduction any query on finite structures is defin-
able in Ly,,. This follows from the observation that any finite structure 2 is
characterized up to isomorphism by some first-order sentence @g. If @ is a
boolean query, for instance, then the infinite disjunction ¢ = \/ ¢y over all
o for A € Q Nstan[r] clearly defines Q. Recall, however, that ¢y typically
requires n + 1 variables if the size of 2 is n. This motivates the introduction
of the finite variable fragments of Loo,,.

1.3.2 Fragments of Infinitary Logic

Definition 1.8. LY is the fragment of Loo, that consists of formulae us-
ing only variable symbols from {z,,...,zx}. The union of the L%, is denoted
LY, . It consists of all formulae of L, that use finitely many variable sym-
bols (from the standard supply {z;|i > 1}).

We also consider the corresponding bounded variable fragments of L, :
let Lk, denote first-order logic with variable symbols {z1,...,zx}.

The union of the Lk , is full first-order logic L. In actual formalizations
we often use variable symbols z, y, z, ... instead of the standardized z;
for the sake of easier readability. The official restriction to standard sets of
variables is convenient, however, to have syntactic closure under conjunctions
and disjunctions for each Lk . We give some examples for the expressive
power of the L% . Formalizations with few variable symbols typically require
clever re-use of already quantified variables. Examples 1.9 and 1.11 are from
[KVa92a], Example 1.16 plays an important role in [DLW95] in a context
that will also concern us here later.

Example 1.9. Over linear orderings (A, <) two different variable symbols
suffice to produce first-order formulae ¢;(z), for ¢ > 0, which express that z
is the i-th element with respect to <. Equivalently, for the standard linear
orderings (n, <):

(n, <) = pilm] exactly for m = .

To obtain these formulae put @o(z) := =3y y <z to define the bottom element
in any linear ordering (A4, <). Inductively let

i1 (@):= J\ ~pj(2) A Vy(y <z-\/ wj(y)),

Jsi i<

26 1. Definitions and Preliminaries

where @, (y) is the result of exchanging x and y throughout the formula ¢;(z).

Example 1.10. The class of acyclic directed graphs (A, E) is definable by
a sentence of L2, . Observe that a finite graph is acyclic if it has no infinite
E-paths, or equivalently if there is some finite bound on the length of E-
paths. Put &(z) := —-3yFEyz to characterize those vertices that have no
E-predecessors. Inductively let

€iv1(z): = Vy(Eyz - &(y)).

Then (A, E) | &[v] if and only if there is no E-path of length greater than
i reaching v. It follows that

&= \/ Vz&i(a)

i€w
characterizes acyclic directed finite graphs as desired.

The sequence of formulae §; from Example 1.10 can be extended to ordinal
indices to form formulae £, () asserting (over arbitrary structures) that the
E-rank of z is at most a: inductively &4 (z) = Vy(Eyz — Visca &(y)). E is
well-founded if there are no infinite descending E-paths, which is equivalent
with the existence of some A such that (4,E) = V., Yz (x). It follows
that the class of well-founded relations of rank less than) is L2, -definable
over arbitrary structures, for each A\. We shall return to two variables, linear
orderings, and well-foundedness in Example 1.12 and Corollaries 1.13 and
1.14 below.

Example 1.11. The reflexive transitive closure of a binary relation F is
definable in L2_,. The formula v, (z,y) := 2=y V Ezy describes the pairs of
E-distance at most 1. Inductively, ¢i+1(z,y) := ¥i(z,y) VIz(¢i(z, 2) A Ezy)
defines those pairs (z,y), whose E-distance is at most i + 1. Thus &(z,y) :=
Vis1%i(z,y) defines the reflexive transitive closure of E.

It is a well known fact (that will also be illustrated in Example 2.6 with a
typical game argument) that two variables do not suffice to define transitive
closures or to assert transitivity of a given binary relation. The following
observation, which is also a direct consequence of the very first exercise in
Poizat’s [P0i82], is therefore quite intriguing. The way it is proved here is
inspired by an argument from [GOR96a].

Example 1.12. The class of finite linear orderings is L2 -definable (even
over not necessarily finite structures). Let ¢’ be an L2 [<]-sentence asserting

that < is acyclic (obtained from £ in Example 1.10 through replacing E by
<). We claim that

Pora = 51/\‘»001
where 99 := VaVy(z=yVz<yVy<z),

1.3 Some Particular Logics 27

defines the class of all finite linear orderings. It remains to argue that ¢..q
enforces

(i) irreflexivity — Vz—z < z: it does since ¢’ forbids loops.
(ii) antisymmetry — VzVy—(z < y Ay < z): it does since ¢ also forbids
cycles of length two.
(iii) transitivity — VaVyVz(z < yAy <z oz <z2):ifz<yandy < z
then = # z (forbidden cycle of length two) and 2 £ z (forbidden cycle
of length three), whence g forces z < z.

In fact, over not necessarily finite structures and for any ordinal X the class
of all well-orderings of order type less than X is L2 -definable. It follows
that for instance the class of all countable well-orderings is L2, -definable
over arbitrary structures. This claim is justified just as in the last example,
if we replace ¢’ by a sentence that expresses that < is a well-founded rela-
tion of rank less than A (compare the remark following Example 1.10). ¢’ in
particular forbids loops and cycles, so that irreflexivity, antisymmetry and
transitivity follow as above.

Returning to finite structures, we have the following:

Corollary 1.13. Let <€ T and let T have no relation symbols of arity greater
than 2. Then any query of linearly ordered finite T-structures @ C ord[7] is
L2, -definable.

Sketch of Proof. Consider without loss 7 = {<,E} with one extra binary
relation E besides <. Let A = (n, <, E) have standard domain with the
natural interpretation of <. Put, for formulae ¢; as in Example 1.9 that
characterize the i-th element of the ordering,

pa:= @oa AVZ \[wi@)A N\ 3z3y(pi(z) A p;(y) A Exy)
i<n (,5)€E
A N\ 33y(pi(@) A p;(y) A-Ezy).
(i.J)¢E
Then g characterizes 2 up to isomorphism. The disjunction \/ ¢y over those
of these 2 that are in @ defines Q. O

In particular, for any set W C w \ {0}, the class of those linear orderings
whose size is in W is definable in L2_,. This immediately gives the following:

Corollary 1.14. L2, is sufficiently ezpressive to define arbitrarily complex
and even non-recursive queries.

Example 1.15. The class of all finite trees is definable in L3 . A structure
(A, E) is a tree if E is acyclic and if

(i) there is exactly one element without E-predecessors (the root).
(ii) each element has at most one E-predecessor.

28 1. Definitions and Preliminaries

Note that connectedness is implied by (i) and (ii) if there cannot be cycles.
Now cycles can be forbidden in L2, according to Example 1.10. (i) can even
be formalized in L2, through

JzVy-Eyz A VzVy ((Vy—'Ey:c AVz-Ezy) — T = y).

(ii) actually needs a third variable for mere counting, as for instance in the
formalization
VzVyVz(Eyz A Ezz > y = z).

A binary tree is a tree in which all nodes have out-degree 0 or 2. A full
binary tree is a binary tree in which all leaves (nodes of out-degree 0) are at
the same distance from the root (at the same height).

Example 1.16. The class of all full binary trees is definable in L3 . The
condition on equal height of all leaves is formalized in three variables us-
ing auxiliary formulae ¢; that define the set of vertices at height ¢. These
are constructed inductively similar to the formulae used in Example 1.9.
wo(z) := =3yEyz defines the root. Inductively ¢;11(z) := Jy(vi(y) A Eyzx)
is as desired. The L2 -sentence \/; Vz(~3yEzy — ¢;(x)) forces all leaves to
be at the same height.

It might look surprising that the condition on out-degree 2 should also
be expressible in just three variables. It is however, and quite simply, in the
context of trees. The sentence

-3z, 3z,323 (/\ stz n N (Hz,- A E‘Tﬂj))

i#j i=1,2,3 J#i

expresses that there are no three vertices with common direct predecessors
for any two of them. If the in-degree can at most be 1 then this is equivalent
with a bound of 2 on the out-degree. The condition that the out-degree of
all vertices apart from the leaves must be at least 2 is trivially first-order
expressible in three variables.

In Example 1.15 some variables had to be spent for mere counting in the
conditions on the degree of vertices. In general the explicit formalization of
3>Mg(x) requires at least m variables as for instance in

Exl...ﬂzm(/\ T #xj A /\ <p(:ci)).

1€i<ig<m 1<i<m

Indeed, over the empty vocabulary it follows easily from game arguments that
are treated in Chapter 2, that no sentence of L ! can express the existence
of at least m distinct elements. It is therefore natural to consider fragments
of first-order and infinitary logic with a bounded supply of variables that
admit, however, arbitrary counting quantifiers 32™.

1.3 Some Particular Logics 29

Definition 1.17. CX , is the fragment of Lo, that consists of formulae
using only variable symbols from {z1,...,zx} but allows arbitrary counting
quantifiers 3™, m > 1, instead of the standard ezistential quantifier 3. The
union of the CX , is denoted C¥, .

Some simplifications in actual formalizations are achieved with the fol-
lowing agreements. We write 3=™zp(z) as an abbreviation for 32™zp(z) A
=3>™+1zp(z). This notation may be extended to allow 3=%zy(z) as short-
hand for ~3z¢(z). Quantifiers 3>™, 3S™ and 3<™ are similarly introduced.

We give a few simple examples for the expressive power of C2,,. A much
more central example, the expressibility of the stable colouring of graphs in
C?. ., is presented in detail in Chapter 2.

oow?

Example 1.18. The class of regular graphs is definable in C2 . Apart from
the standard axioms for graphs, which are in two variables, take

x: = VaVy /\ (I™yEzy & IMzEyz)

mew

to express regularity.

Example 1.19. Even C?, does not have the finite model property, i.e. there
are sentences of C2 without finite models that are satisfiable in infinite
structures. For instance it is expressible in C2 that a binary relation E is
the graph of an injective total function that is not surjective:

Vz3=lyEzy A Vy3SizExy A yVz—Exy.

First-order logic with two variables L2, on the other hand is known to have
the finite property by a result of Mortimer’s, see Theorem 7.35.

Example 1.20. Any finite equivalence relation is characterized up to iso-
morphism among all finite equivalence relations by its C% -theory. The ax-
iomatization of equivalence relations, however, needs at least three variables.
Let A = (A,~) where ~ is an equivalence relation over A. A complete in-
variant that characterizes any finite equivalence relation up to isomorphism
is its spectrum, the set of pairs (i, 1/,-) such that there are exactly v; classes
of size 7 in (A, ~). This information is expressed in two variables by

/\ F Wi Iy ~y.

i
That two variables even with counting quantifiers do not suffice to express
transitivity of a binary relation E is shown easily with games discussed in
Chapter 2, see Example 2.6.

Example 1.21. The classes of all trees and of all full binary trees are de-
finable in C2_ . In fact we observed in Example 1.15 and 1.16 that a third
variable was only needed for counting purposes. For instance (ii) of Exam-
ple 1.15 now simply becomes Yz3S'yEyz.

30 1. Definitions and Preliminaries
1.3.3 Fixed-Point Logics

Fixed-point logics provide extensions of first-order logic that capture some
recursion on relations. Consider a formula ¢(X,Z) in free variables X and T
of matching arities, X a second-order variable for a predicate of arity r and
T = (z1,.-.,Tr). Over structures 2 that interpret ¢ up to X and the Z the
formula ¢ induces a mapping on r-ary predicates:

FX:P(A") — P(4A")
P — {ae A" |AE[Pal}.

P(A") denotes the power set of A”. For any mapping F:P(A") = P(A")
consider the following two recursive processes.

The partial fixed point of F. Inductively, a sequence of r-ary predicates
is generated through iterated application of F' to the empty predicate:

XQ = @
Xi+1 = F(X,)

With this sequence the partial fized point of F' is defined to be either the
stationary value of this sequence if such exists or the empty set otherwise:

X,‘ lf Xi+1 = Xi

PFP[F] := { 0 if X;11 # X; for all 4.

The inductive or inflationary fixed point associated with F'. Induc-
tively, the following increasing sequence of r-ary predicates is generated:

Xo = @
Xit+1 = X; UF(X)).

Note that this sequence may alternatively be obtained through iterated ap-
plication of a modified operation F,, to the empty predicate. F,, is the
inflationary variant of F, defined by F,,,(P) := P U F(P); generally an op-
eration G on sets is called inflationary if always G(P) D P.

Since the domain A is finite, the sequence of the X; must become station-
ary within polynomially many steps of the iteration. The limit reached is the
inductive or inflationary fized point:

IFP[F] = Xz'o where io = min{z’|X,-+1 = X,}

Equivalently: IFP[F] =, X;,
or IFP[F] = PFP[F,).

The X; in these definitions are referred to as the stages in the generation of
the respective fixed points.

Fixed-point logics provide constructors for the definition of those predi-
cates that are obtained as fixed points of operators F = F, as above. For the

1.3 Some Particular Logics 31

inductive definition of their syntax and semantics it is important to consider
formulae ¢ that may have other free first- and second-order variables than
X and Z. To make clear which variables are those involved in the fixed-point
process, we write PFP x z¢ for the partial fixed point associated with the
operator F,, where free variables other than X and T in ¢ are kept fixed
as parameters with respect to the operation F,. The same applies to the
inductive fixed point.

Syntax and semantics of partial fixed-point logic PFP are defined as fol-
lows. Syntactically, PFP is the closure of atomic formulae (where second-
order variables are admitted) under the usual first-order constructions and
the partial fixed-point constructor. The latter allows to construct a new for-
mula ¢ = [PFP Xy;cp] T from any formula ¢ € PFP, where X is a second-order
variable of some arity r and T an r-tuple of distinct first-order variables. For
the free occurrence of variables put free(y) := (free(y) U {Z}) \ {X}.

The semantics for the PFP-constructor is that induced by the partial fixed
point of the corresponding operator. If (2, I') is a structure of the appropriate
vocabulary together with interpretations for all variables in free(y) \ {X,Z},
then

@, 1) Eyla if aePFPFYT],

where F2T': P(A™) — P(A") is the operation induced over (%, I") by .

Definition 1.22. Partial fized-point logic PFP is the smallest logic closed
under the usual first-order constructors and the PFP-constructor.

Clearly PFP C PsPACE. Recall that first-order queries are in LOGSPACE.
Over structures of size n PFP-processes in arity r terminate within at most
2™ + 1 steps, where m = n”. A corresponding step counter can be run in
PsSPACE and only two stages of the fixed-point generation need be kept si-
multaneously.

For fized-point logic FP one considers the inductive or inflationary fixed-
point operator instead of the partial fixed-point operator. The syntax is ex-
actly the same as for PFP, only that we write FP instead of PFP in fixed-point
formulae and choose the semantics based on the inductive fixed point of the
underlying operation: for ¢ and (%, I") as above, and ¥ = [FPxz¢|T put

@, 1) Evyla if aelFPFX).

Definition 1.23. Fized-point logic FP is the smallest logic closed under first-
order constructors and the FP-constructor.

It is obvious that FP C PTIME as IFP-processes terminate within a poly-
nomial number of iterations.
We regard FP as a sublogic of PFP in the sense that [FPx zp|Z may

be identified with [PFPxz(XZ V ¢)]Z, since the inflationary variant of the
operation F, is the same as F, for ¢' = XTV ¢.

32 1. Definitions and Preliminaries

Theorem 1.24 (Immerman, Vardi). Over the class of linearly ordered fi-
nite structures FP captures PTIME: a class of linearly ordered structures is
recognized by a PTIME algorithm if and only if it is the class of finite mod-
els of some sentence of FP; a global relation on ordered structures is PTIME
computable if and only if it is definablé in FP.

Theorem 1.25 (Abiteboul, Vardi, Vianu). Ouver linearly ordered finite
structures PFP captures PSPACE: a class of linearly ordered structures is
recognized by a PSPACE algorithm if and only if it is the class of finite models
of some sentence of PFP; a global relation on ordered structures is PSPACE
computable if and only if it is definable in PFP.

Theorem 1.24 was obtained in [Imm86] and [Var82]. Theorem 1.25 com-
bines results from [Var82] and [AV89] (via equivalences with relational While-
queries).

Let us briefly indicate how the fixed-point processes available in FP and
PFP can be used to code PTIME, respectively PSPACE, computations over
linearly ordered structures — an observation that is the key to the preceding
theorems.

Example 1.26. Polynomially space bounded configurations of a Turing ma-
chine can be encoded by predicates over the ordered domains of the input
structures. The arity of the predicate depends on the degree of the space
bound. A definable indexing of the tape cells is provided by the lexicographic
ordering on an appropriate power of the universe. In terms of these encodings
by predicates it is easily seen that the successor step from one configuration
to the next becomes first-order definable.

For a PSPACE machine that computes a boolean query say, consider the
partial fixed-point process based on this first-order formalization of the com-
putational successor (with a corresponding definition of the initial configura-
tion). Provided that we adapt the transition function of the machine in such
a way that an eventual halting configuration is formally repeated indefinitely,
the limit value of this partial fixed-point process is an encoding of the halting
configuration if the machine halts on the given input structure.

For a PTIME machine we may pass from the encoding of individual con-
figurations to a cumulative encoding of initial segments of the computation
path. We use a fixed-point variable with additional entries for a lexicographic
indexing also for a polynomial number of time steps. This leads to an induc-
tive fixed-point process whose i-th level describes the computation path up
to step . The limit reached in this process is an encoding of the entire com-
putation path on the given input structure.

In either case the actual result of the computation (acceptance or rejection
in the case of a boolean query) is first-order definable in terms of the final
configuration.

The original and intuitively also very appealing definition of fixed-point
logic FP in terms of a least fired-point operator LFP rather than the in-

1.3 Some Particular Logics 33

ductive or inflationary operator IFP is equivalent in expressive power. This
equivalence between the least fixed-point extension of first-order logic and the
formalization using IFP is shown by Gurevich and Shelah [GS86], see also
[Lei90]. The formalization using inductive fixed points will be more convenient
in connection with the counting extensions to be introduced in Chapter 4.

As a further indication of the versatility of fixed-point constructs we
briefly consider systems of simultaneous fized points.

Example 1.27. Let = (pi(X1, .- .,Xm,f(i)))i=1’”.,m be a tuple of formu-
lae in which the arities 7; of the Z(*) match those of the X;. With 3 one may
associate an operation Fz on P(A™) x --- x P(A™), over structures that
interpret the ; up to the X; and (9, through:
P ({@¥ | @P) F eila®]}).
1=1,...,m
Iteration in the spirit of IFP or PFP yields inflationary or partial fixed points
for such systems of interrelated relational transformations. Standard tech-
niques for the encoding of tuples of relations through a single relation of
higher arity can be employed to show that fixed-point logic FP and partial
fixed-point logic PFP are closed under the formation of respective fixed points
for systems.

1.3.4 Fixed-Point Logics and the L';w

The fixed-point logics PFP and FP both are sublogics of L%, . Since FP itself
is a sublogic of PFP it suffices to review the argument that yields PFP C
LY .- Since we have already seen that LY, expresses queries of arbitrary
complexity, whereas PFP-definable queries obviously are in PSPACE, it follows
that PFP ¢ LY, .

For a convenient statement of the following arguments it is useful to elimi-
nate first-order parameters in fixed-point processes. This is easily done at the
expense of an increase in the arity of the second-order fixed-point variable.

Lemma 1.28. Any formula in PFP is equivalent with one in which fized-
point operators are applied only in the form PFPx zp, where all free first-
order variables of ¢ are among those in T. The same holds of FP.

Sketch of Proof. Consider ¢ with free first-order variables T, Z. Assume that
T and Z together consist of pairwise distinct variables and that no variable in Z
is bound in ¢. Let ¢’ be the result of replacing any atom X in ¢ by the atom
ZZz7u, where Z is a new second-order variable whose arity is that of X plus
arity of z. It is easily seen that {ZZ | [PFPxzp|z} = {zZ | [PFP2z3z¢'|2T}.

m}

Lemma 1.29. Let ¢ € LY, be a formula, possibly with free second-order
variables. Let X be a second-order variable of arity r, and T an r-tuple of

34 1. Definitions and Preliminaries

pairwise distinct variables from {z1,...,zr}. Assume that all free first-order
variables of ¢ are among those in T. Then 1 := [PFP X,;<p]f s equivalent
with a formula in L% .

Proof. Let us write ¢(X,Z) for the given ¢, second-order variables apart
from X are irrelevant in the argument. Without loss of generality we assume
that all X-atoms in ¢ are of the form X7 for an r-tuple of mutually distinct
variables 7. An atom Xz;z;7’ for instance can be replaced by the formula
3z;(x; = z; A Xxja:y') for a variable z; different from z; and the 7'.

It is shown inductively that the stages X; in the generation of the fixed
point PFP x (X, T) are definable by L, -formulae ¢;(Z). @o(Z) is the result
of replacing each X-atom in ¢(Z) by some universally false expression like
-z = z in the same variables. Inductively assume that ¢;(Z) is as desired.
Semantically p;1(T) has to be the result of substituting {Z | ¢i(Z)} for X
in ¢(Z). Consider a single atom X7 in ¢(Z), ¥ a tuple of mutually distinct
variables. Choose a permutation of the set of variables {zi,...,z;} that
maps T to J. An application of this permutation to all variables in ¢;(T)
yields a formula ¢;(7) with X; = {g I ¢i(y)} that can be substituted in
place of X7 in ¢(Z) without any clashes with bound variables. ;11 () is the
result of corresponding substitutions for all X-atoms in ¢(Z). It follows that

[PFPx z¢(X,T)]7 is equivalent with Viso (Vf(cp,(i) “ pir1(T) A (p,-(f)).
0

Corollary 1.30. FP CPFP ¢ LY .

The first semantic inclusion is strict if and only if PTIME & PSPACE by a
theorem of Abiteboul and Vianu. We shall come back to this in Chapter 3.

Note that the L% are indeed not closed with respect to PFP or FP,
since fixed points may involve first-order parameters. The elimination of these
according to Lemma 1.28 may need extra variables. An easy example to this
effect is the following one in the language of a single binary relation E.

Example 1.31. The formula ¢(z,y) := [FPx . (z=yV3Iy(XyAEyz))]z de-
fines the reflexive transitive closure of E. If ¢ were equivalent with a formula
in L%, it would follow that transitivity of a symmetric reflexive relation E
is expressible in L2 since it is expressed by VzVyp(z,y). As we shall see in
Example 2.6 below, transitivity is not even definable in C2 .

Another corollary to Lemma 1.29 concerns a frequently used collapsing
argument over structures that realize few L¥ -types.

Corollary 1.32. Let K C fin[r] be a class such that for some d each
2 € K realizes at most d different L% -types. Then any fized point over
an L, -formula without first-order parameters as considered in Lemma 1.29
is reached after at most 2¢ + 1 iterations. It follows in particular that Lk, is
closed with respect to fized points without first-order parameters over K.

1.4 Types and Definability in the L%, and C%,, 35

Sketch of Proof. Under the assumptions and for ¢(X,Z) as in Lemma 1.29,
there are no more than 2¢ different L, -definable k-ary relations over any
A € K that can occur as stages in the fixed-point iteration. This is because
each L% -definable relation over 2 corresponds to a union of Lk, -types over
AF. Therefore, in the notation of the proof of Lemma 1.29, [PFPx z¢|Z is
equivalent over K with

Y(T): = W(‘Pm(f) © ‘pm+1(f)) A om(Z),
for m = 24. If ¢ is in Lk _, then so is 1. a

ww?

1.4 Types and Definability in the L* and Ck

The following lemma applies to the fragments of infinitary logic considered
above. Since they provide conjunctions and disjunctions over arbitrary sets of
formulae, they are in particular closed with respect to countable conjunctions
and disjunctions. Generally, a logic £ is closed with respect to countable con-
junctions and disjunctions if for any family (¢;),_ of formulaein £ there are
L-formulae with semantics corresponding to the conjunction and disjunction
over the g;, respectively. As usual we write \;c, @i and ;. ¢; for these.
Closure under negation is similarly defined. The lemma is a consequence of
the fact that, for fixed finite vocabulary 7, fin[r] and fin[r; k] are countable

up to isomorphism.

Lemma 1.33. Let L be closed under negation and with respect to countable
conjunctions and disjunctions, T a finite vocabulary. Then

(i) each A € fin[r] is characterized up to =* by some sentence g € L[T],
i.e. for all ' € fin[r]: A =X A <= A' | .

(%) each L-type over fin[r] is isolated by a formula of L, i.e. for all o €
Tp~(r;r) there is a formula @o(z1,...,2,) € L[] such that for all
(21,a) € fin[r;7): tp5(a) = a <= A E ¢[a].

(111) a global relation on fin[r] is definable in £ if and only if it is closed with
respect to =£.

In the boolean case, Q C fin[r] is L-definable if for all A, A' € fin[r]:
A=LA = (AeQ & A €Q).

For an r-ary global relation R on fin[7], R is L-definable if for all (A,a),
(A, @) € fin[r;r]: (A,3) =° (A',a') = (@€ R* © @ € RY).

Recall that by convention for logics like L% and C%X ,, which only have
variables zi,...,Ts, we do not consider types in more than k variables:
Tp%(r;r) = 0 for 7 > k. The statement in (iii) has to to be restricted to
arities r < k accordingly.

36 1. Definitions and Preliminaries

Proof. (i) Since L, as any logic, cannot distinguish between isomorphic struc-
tures, and since fin[r]/ =~ is countable, it follows that also fin[r]/ = is
countable. Let (2;);er, for I finite or I = w, be a system of representatives
for fin[r]/ =£. For i,j € I,i # j let ¢;; € L[r] be such that A |
and ®A; E —p;;. It follows that each 2; is characterized up to =¢ by the
L-sentence ; := \;_,; ¢i;. For the claim about boolean global relations in
(iii) assume that @ is =“-closed. Then the disjunction \/ ¢; over those i, for
which ; € Q, defines Q.

(ii) and that part of (iii) that concerns r-ary queries are proved in exactly
the same way using a system of representatives for Tp”(r;r) = fin[r;r] /=~
instead of fin[r] /=~. O

Corollary 1.34. For L= L% , or Ck ,
A=LA' ifand only if Tp“(A;k) = TpL(A';k).

Sketch of Proof. Let g characterize 2 up to =* as in (i) of Lemma 1.33.
Then A =£ A’ iff o = gy for some (any) type a € Tp®(A'; k). Therefore
Tp~ (A; k) = TpL(A'; k) implies A =€ A'.

Conversely assume that there is some o € Tp®(%;k) \ Tp(2'; k). Let
¢a(Z) be as in (ii) of Lemma 1.33. Then A | ITp,(F) whereas A'
—~ITpo (T). u]

We apply the observations of Lemma 1.33 to the Lk , Ck | and to
their fragments of bounded quantifier rank. Note that these are all closed
with respect to infinitary conjunctions and disjunctions (as well as under

negation) while L% , and C% , are not!

Definition 1.35. The quantifier rank of a formula in Ly, is given by an
ordinal-valued function qr that is inductively defined by:

ar(p) =0 for atomic o, qr(A) = qr(\V ¥) = sup{ar(y) | ¢ € ¥},
ar(—¢) = qr(e), qr(3zy) = ar(Vzy) = ar(p) + 1.
The quantifier rank of formulae in C¥ , is defined similarly, with the last
clause replaced by qr(32™z¢) = qr(p) + 1 for all m.

Definition 1.36. For £ = LX Lk Ck or Ck, 6 and m € w let L.,,, de-
note the fragment defined through restriction to those formulae that have
quantifier rank at most m.

In the absence of counting quantifiers, infinitary logic of finitely bounded
quantifier rank collapses to the corresponding fragment of first-order logic as
follows.

Lemma 1.37. Let 7 be finite and relational, m € w. Any L%, . [7]-formula
is equivalent with a formula in wa mlT]- There are only finitely many for-
mulae in LE . [7] up to logical equivalence. It follows that for £ := Lk,

1.4 Types and Definability in the LX,, and C%,, 37

also fin[r] /=% and fin[r; k] /=* are finite. Hence each structure in fin[r]
is characterized up to = even by a sentence of Lk, and all L-types are

isolated by formulae in wa e

Sketch of Proof. The proof is by induction on m. The case of quantifier free
formulae is clear. For the induction let ¥,, C Lk . [r] be a finite system of

representatives for all of Loow;m[r]. Then up to logical equivalence all formulae
of quantifier rank at most m + 1 are boolean combinations over the finite set
PU{3ziy |y e ¥ 1<i<k}]

The same claim cannot be made for the C% ..., because there are in-
finitely many counting quantifiers. Over structures of fixed finite size n, how-
ever, only quantifiers 32¢ for s < n are non-trivial. This fact is used in the
following lemma.

Lemma 1.38. Let £ := CX ... m € w, 7 finite and relational. Then each
o € TpL(r;k) is isolated by a formula @u (1, .. zk) € Cu'ﬁw;m and each
2 € fin[7] is characterized up to =° by a sentence of i

Proof. Consider the claim for types. The claim is trivial for m = 0; so assume
m > 1. Let a = tp4(a), (%,a) € fin[r;k] with |A| = n. Let fin,[r] and
fin,[7; k] denote the restrictions of fin[r] and fin[r; k] to structures of size
n. It is obvious that in restriction to fin,[7], each formula in C%,,.,,[7] is
equivalent with one that only uses quantifiers 32* for s < n, since any 32°z;¢
with s > n is universally false on fin,[7]. An adaptation of the argument in the
proof of Lemma 1.37 shows that up to equivalence there are only finitely many
formulae in C%,,,..,,[7] of this kind, and that these can all be represented up to

equivalence by formulae in C% . [7]. Therefore again fin,[r; k] /=£ is ﬁnite
and each such type is isolated by a formula of C¥ . (7] within fin,[r; k] /=*

Let ¢o € CX,,.,[7] isolate a in fin,[7; k] /=£. Then ¢4 := I "zz=2 A 1/10,
is in Ck,...[7] and isolates a in Tp“(r;k) = fin[r; k] /=~. o

We sum up these observations as follows.

Lemma 1.39. Let T be a finite relational vocabulary.
(i) For L = Ck or LY., each type in Tp*(r;k) is isolated by some for-
mula of £[T]
(it) If L = Ck ., or L =Lk .., m €w, then furthermore each type in
Tp*(r; k) is isolated by a formula of CE ,.mlT) or LK. [7], respectively.

As an immediate consequence of (ii) in the lemma we get the following.

Corollary 1.40. Let T be finite and relational, m € w. Then over ﬁn[T]
and over all fin[r;r] for r < k, CX,,. .-equivalence coincides with Ck,...-

equivalence and Loow .m -equivalence coincides with wa .m-€quivalence.

38 1. Definitions and Preliminaries

The analysis of the games for CX , and LX , in the next chapter will
extend this observation from the bounded quantifier fragments to the logics

Cck ., Ck, and L* ,, L themselves. See Corollaries 2.3 and 2.4.

1.5 Interpretations

Interpretations concern the definition of one structure within another. The
basic form is that of a direct interpretation. An L[r]-formula ¢(z,,...,z,) in
free variables z,...,z, defines an r-ary global relation on fin[7]: the value
of this relation over 2 € fin[7] is

ol = {aear

2 pfa]}.

Alternatively, ¢ may be viewed as defining a structure of vocabulary {R}, R
an r-ary relation symbol, over each 2 € fin[r], namely the structure (A4, ¢[2]).
To obtain defined structures in an arbitrary finite relational vocabulary o we
use tuples of formulae, one for each relation symbol in o.

Definition 1.41. Let 0 = {Rl,...,R,}, R; of arity r;. An L-definable

(o, 7)-interpretation is given by a tuple ¥ = ((p,-(f“)))l <icy Of formulae
in L[r], with T® = (z1,...,%,,). The o-structure interpreted by @ over
A € fin[r] is

(4,7020) = (4,120, @u[20).

1.5.1 Variants of Interpretations

One may first of all allow other free variables in the ¢; to obtain interpre-
tations with parameters (first- and second-order). This is also true of all the
variants considered in the following.

Relativized interpretations. Relativizations serve to restrict the universe
of the interpreted structure to a definable subset of the parent structure. Let
o and P be as above, po(z) an extra 7-formula in one free variable. The
o-structure interpreted by @ over o on 2 is defined if o[A] # 0. It is the
restriction of the above to o[2]:

(A,7020) T wol2] = (vol2t], 220N (ol2)"™,., 2] N (wol20])")-

1.5 Interpretations 39

Interpretations in powers. It is often natural to regard not the given
universe but some power of it as the domain for the interpreted structure.
This leads to the concept of an interpretation over some power of the universe.
Let o be as above. Let p = (<pi(f“)))1<i<l be a tuple of formulae in L[],
where now (; has to be in sr; distinct free variables. We index these so as to
indicate a natural identification of the sr;-tuple with an r;-tuple of s-tuples:

TH = (1,‘(1’1), ce Z(1,8)5 0y T(ri,1)0 e e 7-7"(1'.-,3))-

Definition 1.42. The o-structure interpreted by @ over the s-th power of
2 € fin[7] is

(As, @[Ql]) = (As, QO][%], ey ‘Pl[m]))
where @;[A] C A% is regarded as an r;-ary predicate over A°.

Interpretations in quotients. Another variant that occurs in many natu-
ral applications further admits that the universe of the interpreted structure is
represented as the quotient with respect to a definable equivalence relation.
In order to yield a well defined o-structure, the given equivalence relation
must be compatible with the defined o-predicates. An equivalence relation ~
is a congruence for some r-ary predicate R if the following is satisfied for all
T = (1,...,%,) and T’ = (z},...2,): \,;zi ~ 2} — (RT ¢ RT').

Let o be as above, i in a format appropriate for the direct interpretation of
a o-structure. Let in addition 9 (z,z') be in the format for the interpretation
of a binary relation ~.

Definition 1.43. The o-structure interpreted as a quotient with respect to
¥ by P over A € fin[7] is defined if the binary relation [] is a congruence
with respect to the predicates P[A). In this case it is the quotient structure

(4, 2]) / (]

It is instructive to think of the congruence defined by 1) as a definition of
the equality relation for the interpreted structure.

Note that these variants are not mutually exclusive. Quite to the contrary
all combinations are possible and in fact occur naturally, see Example 1.45
below. One may speak for instance of an interpretation as a quotient over
the s-th power of the universe, meaning that what is interpreted in the s-th
power is itself the interpretation of a o-structure as a quotient. The most
general notion of interpretation we want to consider is that of a relativized
interpretation as a quotient in some power. It subsumes the others as special
cases.

Definition 1.44. A generalized (o, 7)-interpretation is an interpretation of
o-structures as relativizations in a quotient over some s-th power of 7-
structures.

40 1. Definitions and Preliminaries

For o as above such an interpretation is specified by formulae g, % and ¢
where the ¢; in @ are of arities sr;, po and ¢ of arities s and 2s, respectively.
Let i = (po;P;1) denote this interpretation itself and i(2A) the interpreted
structure over 2:

i(2) = (47,72 1 gol2]) / vl

i(2A) is defined if 0[] is non-empty and if ¥[2A] interprets a congruence with
respect to the P[] | po[2]. It is useful to note that as a (partially defined)
mapping
i:fin[r] — fin[o]
A — i(A)

an interpretation i is a functor that preserves isomorphism. In particular
the interpreted structure must be invariant under all automorphisms of the
parent structure.

1.5.2 Examples

Example 1.45. The dual of a symmetric graph is interpretable in first-order
logic as the relativization of a quotient in the second power. Let & = (V, E)
be a symmetric graph. Its dual is the graph &, whose vertices are the edges of
®, with an edge connecting two different ones of these if they share a common
vertex of . An edge of & is an element of E/ ~ where two different pairs
(v1,v2) and (v}, v}) in E represent the same edge of &, if {v1,v2} = {v],v}}.
Two different edges represented by (vi,v2) and (v}, v}) share a common ver-
tex if {vi,v2} N {v],v3} # 0. Thus the dual of & is the quotient

((Vz,w[@]) HOO[@]) /1/)[@5], where

#o(v1,v2) = Evivg,
‘Pl(vhv%vllavé) = “{vl’v2} # {‘Ui,Ué}” A “{’Ul,’vz} n {’Ui,’vé} # 0”,
1/)(”1,”27'01’”5) = “{vlav2} = {’Ui,’Ué}”o

With i = (po; ¢1;9) this is an interpretation of the dual. Explicit first-order
formulae for the expressions in quotes are immediately supplied.

Example 1.46. A pre-ordering is a binary relation < that is reflexive, tran-
sitive, and connex, see Definition 1.62 below. It is easily checked, that (4, <)
satisfies these axioms if and only if (i) — (iii):

(i) ¥(z,y) = ¢ < y Ay < = interprets an equivalence relation ~ on A.
(ii) ~ is a congruence with respect to <.
(iii) ¢(z,y) = = < y interprets a linear ordering in the sense of < in the
quotient of A with respect to ~.

The following example restates the theorem of Immerman and Vardi,
Theorem 1.24, in the terminology of interpretations.

1.5 Interpretations 41

Example 1.47. Let 0, and o2 both contain a binary predicate < for a linear
ordering. Recall that ord[o] stands for the class of all finite o-structures that
are linearly ordered by <. Let f be a PTIME functor

f:ord[o1] — ordo?].

Then there is a FP-definable (02,04)-interpretation i, more precisely a rel-
ativized interpretation in some power, such that for all sufficiently large

A € 01‘d[0'1]: f(m) (m)
~1 .

The proof is a standard application of the Immerman-Vardi Theorem.
In a situation where g; and g; are two functors with the same domain
and with classes of ordered structures for their ranges

9:: fin[r] — ord|o;]

we shall say that go is FP-interpretable in terms of g1, or that go(%) is
uniformly FP-interpretable over g;(2), if there is a (o3, 01)-interpretation
i in FP such that i(g1(2)) = g2(2) for all A € fin[r]. By the above this is the
case if and only if there is a PTIME computable functor A which makes the
following diagram commute:

)/ ord[o;]
fin[7] h

X

Ol‘d[ag]

All these considerations apply analogously to PSPACE computable functors
and PFP-interpretability, by the theorem of Abiteboul, Vianu and Vardi,
Theorem 1.25.

1.5.3 Interpretations and Definability

Natural logics are often semantically closed with respect to definable prop-
erties of definably interpreted structures. For an example think of first-order
properties of the dual of a graph. These are first-order definable on the graph
itself, since the dual is interpretable over the original graph by first-order
means.

Closure under direct interpretations and under relativized interpretations
are standard regularity requirements on logics in abstract model theory. They
correspond to the substitution property and relativization property, compare
[Ebb85]. Closure properties related to interpretations in quotients are also
sometimes considered as an abstract criterion under the name of congruence
closure.

42 1. Definitions and Preliminaries

Let i be a (o, 7)-interpretation, R a global relation on fin[o]. With R we
may associate a global relation i(R) defined on all those structures 2 € fin[7]
for which i(2A) is defined. The value of i(R) on 2 is the interpretation over 2
of the value of R on i(2).

Formally, for a generalized interpretation i = (yo;®; %) in the sense of
Definition 1.44 and for A such that i(2) is defined, let 7 : o[2A] = wo[A]/P[A]
be the natural projection with respect to the equivalence relation interpreted
by . Then i(R)* := n~1(R'®). We may put i(R)® = @ for those 2 for
which i(21) is not defined. That i(R)¥ is well defined as a value for a global
relation follows from the fact that RY®) is closed under isomorphisms of i(2).

Definition 1.48. Let 0 and 7 be finite relational. We say that L is closed
under (o, 7)-interpretations (of a certain kind) if the following is satisfied.

If i is an L-definable (o, T)-interpretation (of the respective kind) and R
is an L-definable global relation on fin[o], then i(R) is L-definable as a global
relation over fin[r].

Consider the boolean case: for any L£-definable class @ of o-structures,
the class of those 7-structures for which the interpreted o-structure is in @
is L-definable itself.

Lemma 1.49. First-order logic L., the infinitary logics Loow,L%,,C% .,
and the fized-point logics FP, PFP are each closed under generalized inter-

pretations.

The proofs by syntactic induction are technically tedious though not dif-
ficult at all. In the case of interpretations in some power s one replaces all
first-order variables by s-tuples of variables. For atomic expressions involv-
ing predicates from o the corresponding defining formulae are substituted.
Equality is replaced by the defined equivalence relation. Quantification trans-
lates to higher arity quantification (relativized where necessary) in an obvious
manner.

Consider for instance a relativized first-order interpretation, of struc-
tures in the vocabulary E of graphs, as a quotient in power 2. Let i =
(¢o(v1,v2); 01 (v1,v2,v],v5);%(v1,v2,v],v3)). The graph axiom VaVy(Ezy —
—~z = y) then translates into

Voo el Vet ((po(v1,v2) A po(vl,vh) A p1(v1,v2,0},vh)))
1VU2VU; VU .

— —tp(vy, v, v}, vh)

Second-order variables of arity r are accordingly replaced by second-order
variables of arity sr over interpretations in power s. Fixed-point processes are
also modelled in correspondingly higher arity in a natural way.

It is obvious that the L%, and C% , on the other hand cannot be robust
with respect to interpretations in powers, owing to the bounded supply of
variables. This is the only restriction, however, so that the straightforward
arguments give the following.

1.6 Lindstrom Quantifiers and Extensions 43

Lemma 1.50. Let £¥ = Lk ,C% Lk or Ck , respectively. Let accord-
ingly L°* stand for the respective logic with sk variables instead of k. For any
L% _definable generalized (o, T)-interpretation i in the s-th power and any
L*-definable global relation R on fin[o], the global relation i(R) on fin[r] —
whose value on A is the interpretation of R'®) over A — is £L*-definable in

restriction to all those A € fin[r] for which i(A) is defined.’

1.6 Lindstrom Quantifiers and Extensions

Lindstrém quantifiers provide the means to assert structural properties of
definably interpreted structures. Let () be any isomorphism-closed class of
structures of type o = {Ry,...,Ri}, R; of arity r;. With @ we associate a
Lindstrém quantifier of type o, for which we also write Q. The quantifier Q
binds a tuple ¥ of formulae apt for a direct interpretation of o-structures,
possibly with parameters. For a logic £ the syntax is extended to allow the
construction of a formula

¥ = Q35 0i(z))
from formulae ;. Put free(y)) = |J;(free(;)\{Z{"}). The semantics is defined

such that
Ay i (4,7) Q.

Here we have suppressed parameters and assumed that 2 itself interprets
the ¢; up to the free variables Z(®). The “closure” of £ under this new rule
of formula formation is denoted L£(Q). As we are only interested in such
extensions of first-order and fixed-point logics it suffices to give the following
precise definition.

i=1...1

Definition 1.51. If Q is a class of Lindstrom quantifiers, we denote by
FP(Q) and PFP(Q) the logics obtained as the simultaneous closure of first-
order logic under the respective fized-point constructor, the usual first-order
constructors, and Q-quantification for all quantifiers Q € Q. L, (Q) simi-
larly is obtained from first-order constructors together with Q-quantification

for Q € Q.

1.6.1 Cardinality Lindstrom Quantifiers

The class of cardinality Lindstrém quantifiers is an example of a semantically
defined class of quantifiers with natural closure properties. Cardinality Lind-
strom quantifiers express purely numerical relations about the cardinalities
of definable predicates.

3 In non-trivial quotient interpretations more variables may be necessary to express
that the interpreted structure is well defined.

44 1. Definitions and Preliminaries

Definition 1.52. Let S C w't! be a numerical predicate, ¥ = (r1,...,71) @
tuple of arities. Let 0 = {Ry, ... ,Ri}, R; of arity r;. With S and T associate
a cardinality Lindstrom quantifier Qs 7 of type o whose defining class is

Qs = {(B,Ry,...,) € fnfo] | (B, |Rul,..., |Ru]) € S}.
Let Q...q be the family of all cardinality Lindstrém quantifiers.

Note that there is no restriction with respect to the number of formu-
lae bound, their arities, or even recursiveness of the underlying numerical
relation. Two important cardinality properties which are naturally rendered
as Lindstrom quantifiers are those that express equality of two cardinalities
and comparison in the sense of <, respectively. For the original sources see
[Har65] and [Res62], respectively.

Definition 1.53. Qy and Qg are the Lindstrom quantifiers of type 0 =
{U1,U2}, Uy and Uy unary, with the following defining classes.

(i) For the Hartig quantifier: Qy = {(A, Ui, Us) | U] = |U2|}.
(i) For the Rescher quantifier: Qp = {(A, Ui, Us) I Ui| < |U2|}.

It is natural to extend these quantifiers to higher arities and to introduce
for instance a variant of the Hértig quantifier that expresses equicardinality
for two definable predicates of arity k. All these natural variants are cardinal-
ity quantifiers themselves. A further extension that goes beyond the power of
ordinary cardinality Lindstrém quantifiers replaces the counting of tuples in
a relation by the counting of equivalence classes within a relation, relative to
a given congruence. Let us call the quantifiers thus obtained quotient cardi-
nality Lindstrém quantifiers. We give an ad-hoc definition here and indicate
a more systematic treatment as an aside below.

Definition 1.54. Let S C W'Y, 7 = (r1,...,7) a tuple of arities. Let o
consist of r;-ary relation symbols R; and 2r;-ary relation symbols ~; for i =
1,...,l. With S and T associate a cardinality Lindstrom quantifier Q55 of
type o whose defining class is

B ~ ~; a congruence of (B™,R;) and
{(aRl, ,Rh 1) l) (lBI’lRl/Nl Ii“‘?lRl/Nl I)ES

Q...q 18 the family of all quotient cardinality Lindstrom quantifiers.

1.6.2 Aside on Uniform Families of Quantifiers

The material presented in this aside will not be used explicitly in the se-
quel. According to the definitions a Lindstrom quantifier Q can express the
structural property of belonging to the class Q of structures that are directly

1.6 Lindstréom Quantifiers and Extensions 45

interpreted over the structure at hand. It is often reasonable to make this
same property available in application to structures interpreted according to
one of the natural variants of interpretations considered above. Formally this
can be achieved with derived quantifiers. Suppose for instance that @ is of
type 0 = {Ry,..., Rl} and that we want to capture the property of belong-
ing to @ for relativized interpreted o-structures. The derived quantifier that
does exactly this is one of type o U{U} for a new unary relation symbol U
and with defining class

Q" ={®,v)|B1Ucq}.

The other variants of interpretations are treated similarly. Thus, for ex-
ample a quantifier that corresponds to @ in interpretations in the s-th power
is one of type {R{",...,R{"}, where R{" is of arity sr; if r; is the arity of
R;. Its defining class is

Q”:“RRPquﬂ’wﬂmﬂ”qmﬁeQ}

Q' is called the s-th power of Q. The countable set of all quantifiers Q)
for s > 1is called the uniform sequence generated by Q in [Daw95a). Let Q“
stand for this uniform sequence generated by @ and Q“ for the union of the
Q¥ for Q € Q.

To deal with interpretations as quotients we can further pass to type
o U{~} for a new binary relation symbol ~ and consider the quantifier with
defining class

Q~ ={(B,~) | ~ a congruence of B and B/~ € Q}.

If Q is any quantifier, let Q stand for the class of all quantifiers obtained
by translating Q to generalized interpretations so that Q consists of all powers
of (Q"‘)N. Similarly, let for a class Q of quantifiers @ denote all quantifiers
obtained in this manner from quantifiers @ € Q.

A very weak and fundamental notion of reducibility between quantifiers
is that of quantifier free reducibility. @ is said to be quantifier free reducible
to Q' if Q is quantifier free definable from @' in the sense that

Q={%|(B,p[®B)cQ}

for quantifier free formulae @ in the vocabulary of Q. Write @ < Q' for this
reducibility, and @ < Q' if each Q € Q is quantifier free reducible to some
Q' € Q'. 1t is instructive to check that < is preserved in the passage to Q:
Q < Q' implies 0 < Q'.

The class of all cardinality Lindstrém quantifiers has nice closure proper-
ties. If Q € Q...q, then Q™' and all Q®’ are quantifier free reducible to Q.,.a-
Consider the relativization Q%'; of a cardinality quantifier Qg5 to find that

46 1. Definitions and Preliminaries
5= {(B,Ry,...,Ri,U) | (B,U,RiNU,...,RiNU) € Qs }

with 7 = (1,7) and S’ = {(n,mo,m) | (mo, M) € S}.

Let Q... be the class of Lindstrom quantifiers of monadic type . @ € Q,.on
asserts some property of a tuple of unary predicates. Q... and Q... are
closely related.

Lemma 1.55. Any quantifier in Q... is quantifier free reducible to a cardi-
nality quantifier, in fact to one in Q. ..a N Quon. Conversely, any quantifier
in Q...qa 18 quantifier free reducible to some power of a monadic quantifier:

Qmon < anrd q Q:on‘

Sketch of Proof. Both claims are obvious. For the first claim consider @ of
type {Ui,...,Ui}, all U; unary. Any monadic structure (B,U,...,U;) is
characterized up to isomorphism by the cardinalities of B and all boolean
combinations of the U;. The corresponding cardinality quantifier is in a type
that has one unary predicate for each boolean combination over the U;. In its
numerical predicate collect all tuples of characteristic cardinalities of struc-
tures in Q.

For the second claim observe that first of all a cardinality quantifier Qg7
is quantifier free reducible to one of homogeneous type (r,...,r), r the maxi-
mum of the arities in 7. For instance if 7 = (1,2), then (B, Ry, Rz2) € Qg,(1,2)

if (B, {(z,9)|lz =y A Rlz},Rz) € Qs,(gyg). Further QS’(,.,_”,T) = Qg'),(l,...,l)
for S’ = {(n",m)|(n,m) € S}. o

It is easy to show that the quotient variant of a cardinality quantifier or
of a unary quantifier is not in general reducible to a cardinality quantifier.

The above definition of quotient cardinality quantifiers, Definition 1.54,
may seem to be more general even than the extension of Q... to generalized
interpretations, Q...q. Up to quantifier free reducibility, however, these classes
coincide. We only give a brief sketch of the argument. Note first, that by
arguments as in the proof of Lemma 1.55, any quotient cardinality quantifier
reduces to one of homogeneous type. In a further reduction process one may
also achieve reduction to applications to disjoint predicates R;. For this the
arities are further increased, and some components are used to attach labels
consisting of different equality types to the individual predicates. An example
would be the passage from R; and R; to R} = {(z1,22,%) | T, =72 A RiT}
and Ry = {(z1,%2,%) | 1 #22 A R;%}. In this situation the several ~; may
be reduced to a single ~ by piecewise definition over the individual R}. The
combined reduction leads to a quantifier in Q...

Remark 1.56. Up to quantifier free reducibility the following classes of
quantifiers coincide: Q. oa, Qon ., and Qpon-

1.7 Miscellaneous 47

1.7 Miscellaneous

1.7.1 Canonization and Invariants

Generally the canonization problem for an equivalence relation ~ is the prob-
lem of assigning unique representatives to each ~-class.

Definition 1.57. A function H: X — X is called a canonization with re-
spect to the equivalence relation ~ over X if it satisfies the following two

conditions:
Vz H(z) ~ z,
VzVe' z~z' — H(z) = H(z').

Note that the converse implication in the second condition is implied by
the first condition, so that H satisfies ~ 2’ < H(z) = H(z'). In particular
therefore, a canonization function H for ~ classifies objects in X exactly up
to ~. In the sense of the following definition it is a complete invariant for ~
as well.

Definition 1.58. A function I: X — S is a complete invariant for ~ if it

satisfies
VzVz' z ~2z' o I(z) =I(z').

The difference between canonizations and complete invariants is that can-
onizations must map elements to representatives of their class.

Definition 1.59. Let I: X — S be a complete invariant for ~. A mapping
F:image(I) — X is regarded as an inverse to I if I o F is the identity on
image(I), equivalently if

Ve F(I(z)) ~ =z

Assume that I: X — S and I': X — S’ are both complete invariants for
~ and that both mappings are surjective. It follows that there is a bijection
0:S — S’ between the ranges such that I’ = o o I. Let now H be a can-
onization and I any complete invariant for ~. Since H also is a complete
invariant, there is a bijection from image(I) to image(H) that relates the
two. It follows directly from the definition that this bijection is an inverse
to I. Conversely, given any complete invariant I and any inverse F' to this
invariant it is immediate that their composition F o I is a canonization. We
thus have the following little lemma.

Lemma 1.60. Given any canonization H and any complete invariant I for
~, there is a uniquely determined inverse F' of I such that H = F ol. If
F is an inverse to any complete invariant I for ~ then H := Fol is a
canonization function with respect to ~.

It is important to note that under complexity considerations some invari-
ants might be easier to invert than others. It is obvious that the problem of

48 1. Definitions and Preliminaries

computing some complete invariant reduces to that of computing a canon-
ization function, and that the decision problem for ~ reduces to the compu-
tation of any invariant. That the converse reductions are not to be expected
for instance as regards PTIME computability and polynomial time Turing
reductions in general is shown in [BG84]. General PTIME equivalence of the
canonization problem and the problem of the computation of a complete in-
variant for instance is equivalent with a “shrinking principle” for NP sets
that is introduced in [BG84]. Blass and Gurevich also construct an equiva-
lence relation and an oracle relative to which the canonization problem and
the problem of computing a complete invariant are not PTIME equivalent.
These general results do not have any immediate implications, however, in
the case of particular individual equivalence relations.

We shall consider the notions of complete invariants and of canonization
for classes of finite relational structures with respect to equivalence relations
=£ on these. As any =% is compatible with isomorphisms, it is clear that
canonizations as well as invariants have to be functors that are compatible
with isomorphisms.

For computable invariants we also require these to take values in some

domain of canonically encoded objects. With respect to computability it is
moreover natural to require canonization functors on fin[r] to take canonically
encoded structures as their values: the point of canonization is that we get
unique representatives and not just representatives up to isomorphism.
A complete invariant for =£ on stan[7] or a canonization with respect to
on stan[r] immediately extend to corresponding functors on all of fin[r].
Algorithmically a computable invariant on stan[r] is an invariant on fin[7]
and the same is true of computable canonization. This is simply because
algorithmic realizations of functors on fin[r] take (encodings of) structures in
stan[7] as inputs anyway.

=L

Definition 1.61. Let ~ be an equivalence relation on fin[7] that is invariant
under isomorphism.

(i) A computable complete invariant for ~ is a computable function I from
stan(r] to some domain S of standard objects such that

A~ = 1) =IA).

(ii)) A computable canonization functor with respect to ~ is a computable
function H from stan[r] to stan[r] such that

HYA) ~A and A~A = HRA)=H).

Extensions to domains fin[7; k] are straightforward.

1.7 Miscellaneous 49
1.7.2 Orderings and Pre-Orderings

Usually we reserve the binary symbol < for linear orderings. < then stands
for the corresponding weak ordering z < y ¢ £ < y Vz = y, which we call a
linear ordering in the sense of <.

Definition 1.62. A pre-ordering < is a binary relation that is transitive,
reflexive and connex:

Vezyz(z s yAysz—ozc<x2) AVz(z <z) AVoy(z s yVy < 1)

We always write < for the associated strict pre-ordering and ~ for the induced
equivalence relation:

r<y & rIYAYzI,
T~y & TXYAy<=w

It is readily checked that the axioms for < are equivalent with the statement
“~ is an equivalence relation and < / ~ is an ordering in the sense of <”.
Therefore, pre-orderings exactly are the interpretations of linear orderings as
quotients, cf. Example 1.46 above.

Obviously < and < are quantifier free definable in terms of each other. ~
is quantifier free definable form both, but contains strictly less information
than < and < (unless ~, < and < are trivial).

1.7.3 Lexicographic Orderings

The standard way to construct new orderings in products from given ones in
the factors is by lexicographic orderings. It is useful to fix one definite conven-
tion regarding these. Consider first the case of the product set D; x D, where
D; is linearly ordered by <;. We write <,., for the lexicographic ordering on
D, x Dy with dominant first component: (dy,ds) <,.x (di’,d2’) if d; <1 dy’ or
if di = dy and dy <2 da'. We employ similar conventions to products with any
number of components: entries further to the left always dominate those to
the right. The lexicographic ordering is always understood if we are dealing
with multiply indexed objects. For instance matrices (di;) = (dij)1<igt,1<i<s
are interpreted as tuples where the ordering of the components is the lexico-
graphic one on {1,...,t} x {1,...,s}. If the entries d;; themselves are from
an ordered domain (D, <) we further obtain the lexicographic ordering on
{(di;) | dij € Dfor1 <i<t1<j< s} according to (dij) <i. (dij') if
d;j < d;;' for the least index pair (%,7) such that d;; # d;;'.

Note that lexicographic orderings are always first-order definable from the
constituent orderings in the components and the ordering of the components.

