7. DEGREES OF INTERPRETABILITY

Suppose PA- T. We shall use A, B, etc. for extensions of T. (Thus, T, A, B, etc. are
essentially reflexive.) The relation < of interpretability is reflexive and transitive.
Thus, the relation = of mutual interpretability (restricted to extensions of T) is an
equivalence relation; its equivalence classes will be called degrees (of interpretability)
and will be written a, b, ¢, etc. Dy is the set of degrees of extensions of T. A is of
degree a if Aca and d(A) is the degree of A. The relation < among degrees is the
relation induced by the relation < among theories: d(A) < d(B) iff A<B. Dy = (Dr,<),
the partially ordered set of degrees defined in this way, will be studied in some
detail in this chapter.

§1. Algebraic properties. In this § we restrict ourselves to purely algebraic proper-
ties of Dr. First we define the theory AT and the operations | and T on theories as
follows.

AT =T + {Cony | ke N},

AlB =T + {Cony | v Cong | ke N},

ATB =T + {Conp | A Cong ;: ke N}.
From Lemma 6.2 and Theorem 6.6, we get the following:

Lemma 1. (a) A < B iff AT4 B. Thus, AT = A and A <B iff AT4 BT.
(b) A<B,Ciff A<BIC,
(c)A,B<Ciff ATB<C.

The following lemma is little more than a restatement of Lemma 4.4.
Lemma 2. If 8 is IT; and A} 6, there is a k such that PAF Conp [ — 6.

Instead of ALB it is sometimes convenient to use the theory AvB defined by
AVB = {p v y: pe A & yeB}.
Th(AvB) = Th(A) N Th(B). Evidently, AlB 4 AvB and, by Lemma 2, AvB -1n1A~LB.
But then, by Theorem 6.6, that AvB < ALB and so AvB = AUB. It follows that for
every sentence @, (A + @)L(A + -¢) < A.
From Lemma 2 and Lemma 6.1 we get:

Lemma 3. For every I1; sentence , T + n < ATB iff ATBF- n iff there are I1; sentences
¢, ¥ such that Al @, BF y,and T + ¢ A yt+ .

For Aca and Beb, letanb =d(AlB) and a Ub = d(ATB). By Lemma 1, N and U
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are well-defined, a N b is the g.1b. of a and b and a U b is Lu.b. of a and b. Thus,
we have proved part of the following:

Theorem 1. Dy is a distributive lattice.

To prove distributivity we need the following lemma whose proof is left to the
reader.

Lemma 4. (a) For every k, there is an m such that
PAF Con(AVB)Im - COI'IA|k \ ConBlk'

(b) For every k, there is an m such that
PAF COI‘\A Im VY COI‘[B Ilm ™ COH(AVB) 1k

Proof of Theorem 1. Let D = ATv(BTC) and E = (AvB)T(AVC). To prove that D is
distributive, it is, by Lemma 1, sufficient to show that D 4 E.
Let k be arbitrary. By Lemma 4 (a), there is an m such that
PAF Con(AvB) Im — COI‘IA kv COHB | ks
PAF Con(AvC)|m g ConA|k \% COI‘IC‘k.
But then
E+ COHA|k v (COI’IB”< A COHC|k).
It follows that D E. The proof that DI E is similar. B
Dt has a minimal element Ot = d(T) and a maximal element 1y, the common
degree of all inconsistent theories.
In our next result we answer a number of standard questions concerning D; in
particular, it follows that Dt is dense.

Theorem 2. Suppose a <b < 11, dg € a, and b & d;. There are then degrees cg, ¢;
such thata <c;<b,dy¥ ;¢ dy,i=0,1,cgncy=a,andcygucy =b.

We derive this from:

Lemma 5. Suppose X is r.e. and monoconsistent with PA. Let 6 be any true I, sen-
tence. There are then I1; sentences 6, 6; such that

(i) PAF8yv6,,

(i) PAFOyA6;—6,

(i) 6)eX, ij=0,1.

Proof. We may assume that if ¢ X and PAF ¢ — v, then ye X. Let 6 := Vxy(x),
where y(x) is PR. Let R(k,m) be a primitive recursive relation such that X =
{k: 3mR(k,m)} and let p(x,y) be a PR binumeration of R(k,m). Finally, let 6, and 6,
be such that

(1)  PAF8y & Vy((p(8py) v y)) — Fz<yp(8,,2)),
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(2)  PARB; & Vz(p(61,2) - Jy<z(p(8g,y) v ~Yy)))-
Then (i) and (ii) follow directly (cf. Lemma 1.3).

Suppose 6ge X or ;€ X and let m be the least number such that R(8p,m) or
R(8;,m). If R(6;,m), then 6, X. Also, by (2), and since 8 is true, PAF -6, a contra-
diction. It follows that not R(6;,m) and, therefore, R(6y5,m). But then 63e X and, by
(1), PAF -8, again a contradiction. Thus, 8,2 X and 6,¢ X.

Finally, if =6, X, then, by (i), 8;_je X. It follows that -6p¢ X and —6;¢ X. B
Proof of Theorem 2. Let Aca, Beb, Died; By Orey’s compactness theorem
(Theorem 6.5) there are sentences v, ¥ such that BF vy, w € A, Dot ¢, x € A. By
Theorem 6.6, there is a I1; sentence © such that B &, A¥ &, and D, &. Let

Xo ={¢: Ak @ v}, X1={g: y <A+ -0},

Xo ={@: x <A+ -0}, X3 ={g: D1\ ¢ v m}.
Let X = Xp U X; U X5 U X3. Then X is re. (cf. Lemma 6.5). It is also easy to verify
that X is monoconsistent with PA. By Lemma 5, there are then I1; sentences 6, 6,
such that
(1) PAF8yv 6y,
(2) PAI" 90 A 91 s COI’IB,
@) 8)eX, i,j=0,1
Lete;=d(A+6;),i=0,1. Thena<e; b ¥ e, since -6;2 X;. dy € e;, since 6,2 X,.
Letc;=e;nb. Thenc; <band dy ¥ c;. If ¢; < a, then, since 6; is IT;, AF 6; v &, con-
tradicting the fact that 8;¢ Xg. Thus, ¢; € a and so a < ¢;. Similarly, ¢; ¢ d,, since
8;2 X3. By (1), cg N ¢y = a. By (2), Theorem 6.4, and Lemma 3, ey U e; = b, whence,
by distributivity, cgucy=b N (egue;)=b. A

From Lemma 5 we can also derive the following:

Corollary 1. T is not Z;-sound iff there are degrees a(, a; < 17 such that agu a; =
1T (and agMaj = OT)

Proof. Suppose T is X;-sound. Let a, b < 11, Aca, Beb. Then ATB is consistent and
so a U b < 1. Next, suppose T is not X;-sound. There is then a true I1; sentence 8
such that Tk —6. Let ; be as in Lemma 5 with X = Th(T). Let a; = d(T+6;). Then a;
< 1y, by Lemma 5 (iii), and ag N a; = O, by Lemma 5 (i). Finally, by Lemma 3,
(T + GO)T(T + 67)F 6. Since TF -6, it follows that (T + GO)T(T + 0;) is inconsistent
andsoagua; = 11. B

By Corollary 1, if PA4 S and S is ;—sound but T is not, then Dg and D are not
isomorphic. But suppose S and T are both £;-sound. It is an open problem if this
implies that Dg and D are isomorphic.

Given that there are ¢, ¢; > a such that ¢y N ¢; = a, we may ask if any b such
that a <b < 1 caps to a in the sense that there is a ¢ > a such that b N ¢ = a. (Dually,
b cups to a if there is a ¢ < a such that b U ¢ = a.) In our next result this question and
its dual are answered in the negative. We write a <<~ b to mean that a <b and b
does not cap to a. Dually, a <<, b means that a < b and a does not cup to b.
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Theorem 3. (a) Suppose O < a ¢ c. There is a b such that Oy <b << ,aand b ¢ c.
(b) Suppose c €) a < 1t. There is a b such thata << b < 1yand c ¢ b.

Proof. (a) Let Aca and Cec. There is a I1; sentence 8 such that A 6 and CH 0. Let
X =Th(C + -8). X is re. and (mono)consistent with T + —8. By Theorem 5.2, there
is a I1; sentence yg X such that y is ;—conservative over T + =6. Let B=T + y v 0
and b = d(B). Then Oy <b ¢ c and b < a. Suppose b U d = a. Let Ded. Then, by
Lemma 6.2, there is an m such that T + y + Conp|,F 6 and so T+-0+y}
=Conp | p,- Since y is Xj—conservative over T + -8, it follows that T+ -6 + ~Conp |
and so DF 8. Thus,d>bandsod=bud=a. ¢

The proof of the following lemma from Lemma 6.2, Theorem 6.6, and Lemma 2
is straightforward.

Lemma 6. The following conditions are equivalent:

(i) AlB<C.

(ii) A<C + -Cong |y for every k.

(iii) A < C + -8 for every II; sentence 8 such that Bl- 6.

Let 6 be any Z; sentence. By Corollary 6.3, the degree d(A+0) is uniquely deter-
mined by 6 and d(A). Thus, we may denote the former by d(A) + c. A degree of the
form a + ¢ will be called a Z-extension of a. If X is an r.e. set of Z; sentences, then,
by Theorem 6.11 (b), d(A+X) is a Z;—extension of d(A).

Lemma 7. The following conditions are equivalent:

(i) a <<+ b.
(ii)a < b and for every X;—extension c of a, if b < ¢, then ¢ = 1.

Proof. Suppose (i) holds. Let Aca and Beb. Let 6 be X; and such thatb<a + c.
Then BUY(A + -6) < (A + o)4(A + -6) < A. Hence, by assumption, A + =G < A,
whence Al -6 and so a + ¢ = 11. Thus, (ii) holds.

Next suppose (ii) holds. Let c be such that b n c = a. Let Aea, Beb, Cec. Let 6
be any II; sentence provable in C. It suffices to show that AF 6. By Lemma 6,
B < A + —6. But then, by assumption, Al 8, as desired. B

Lemma 8. If 7 is I1;, A < B + &, and - is II)—conservative over A, then d(A) <<
d(B + m).

Proof. Suppose B + T < A + ¢. Then, by Lemma 6.1, A + ot ©t, whence A + -nk -c
and so AF -, in other words, A + ¢ is inconsistent. Now use Lemma 7. B

Proof of Theorem 3 (b). Let Aca, Cec. By Theorem 6.5, there is a sentence y such
that Ck y ¢ A. Let X = {¢: y <A + —~¢}. Then, by Theorem 5.2, there is a £, sentence
x& X such that y is II;—conservative over A. Let B= A + =y and b = d(B). Then ¢ ¢
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b < 1t. Finally, by Lemma 8, a <g~b. B
From Theorem 6.4 and Lemma 8, and Theorem 5.1, we get the following (com-
pare Theorem 6.2):

Corollary 2. d(A) <5 d(T+Conp).

Theorem 3 (a) leads to the problem if for any a < 17, there is a b such that a <<, b
< 17. (The dual of this is false: if Oy < b < a and not O << a, then not b <<~ a.) We
now show that the answer is negative.
a is a cupping degree if a < 11 and a cups to every b such that a <b < 1. Let
CONfr = {a < 11: a = d(T+Con,) for some PR binumeration t(x) of T}.
By Corollary 2.4, CONt # O.

Theorem 4. Every member of CONr is a cupping degree.

Proof. Suppose a = d(T+Con,) < 11, where 1(x) is a PR binumeration of T. Let b be
any degree such that a <b < 11. Let Beb. We want to define a degree d such that d
# aand a U d >b. The obvious way to try is to let d = d(T+8), where
0 := Vu(Prfg(Lu) —» Jz<uPrf (L z)).
But it seems difficult to prove, and may not even be true, that d # a so we have to
proceed in a somewhat different way.
Let @ be such that
PAF ¢ & Vz(Prf(9,z) - JuszPrfg(L,u)),
and let
y = Vu(Prfg(L,u) — 3z<uPrf(¢,z)).
Then
1) Tk,
(2) PAFovy,
(3) PAF ¢ Ay — Cong.
Clearly, PAF =@ — Pr.(¢). Since -¢ is Z;, we also have, by provable Z;—complete-
ness, PAF =¢ — Pr.(-9). Thus,
4) PAF Con;— ¢.
Let d = d(T+y). Then, since y and Con, are I1;, it follows from (3), (4), Lemma 3,
and Theorem 6.4 that a U d > b. Suppose a <d. Then T + yt Con,. But then, by (2)
and (4), Tk @, contradicting (1). Thus, a ¢ d. Let c = d N b. Then ¢ < b. Finally,
auc=(aud)n(aub)=b. Thus, ais cupping. B
Theorem 14/, below, is an improvement of Theorem 4.
A set G of degrees is cofinal in Dr if for every degree a < 17, there is a degree
beG such thata <b < 1.

Lemma 9. CON7 is cofinal in Dr.



§1. Algebraic properties 99

Proof. Suppose b < 11. By Corollary 2.4, even if T is not Z;—sound, there is a PR
binumeration B(x) of a theory of degree b such that T + Cong is consistent. By
Theorem 6.4, b < d(T+Cong). By Theorem 2.8 (b), there is a PR binumeration 1(x) of
T such that Tk Con, <> Cong. Let a = d(T+Cony). Then b < ac CONt. B

Let P be a property of degrees. We shall say that there are arbitrarily large
degrees having property P if the set of degrees having P is cofinal in D. Every suf-
ficiently large degree has P if for every degree a < 17, there is a b such thata<b <
11 and every degree c such thatb <c < 1phasP.

If a is cupping and a <b, b is cupping. Thus, from Theorem 4 and Lemma 9 we
get:

Corollary 3. Every sufficiently large degree is a cupping degree.

By Corollary 1, if T is Z;-sound, no degree, except Ot and 1t, has a complement
whereas if T is not Z;-sound, some do. Also, of course, if Oy < a < 1, then a has
no complement. But, even if a has no complement, it may still have a pseudocom-
plement (p.c.). For example, if Oy << a, Oy is the p.c. of a. By Lemma 6, if 7t is I,
then d(T+-m) is the p.c. of d(T+m). On the other hand we have the following;:

Theorem 5. There is a degree which has no p.c.

The proof of this (and more) will be given in § 3 (Theorem 17).

In addition to the usual (finitary) distributive laws, D also satisfies the follow-
ing infinitary distributive laws. Let G be a set of degrees. \UG (/M\G) is then the
Lub. (glb.) of G, if it exists.

Theorem 6. (a) If \UG exists, then UG nb = U{a nb: aeG}.
(b) If MG exists, then MG Ub =M{a U b: aeG}.

By Theorem 6 (a), if a has no p.c., then {b: b n a = 0f} has no L.ub. In Lemma 23,
below, we give a nontrivial example of a set G which has no g.1b.
To prove Theorem 6 (b) we need the following:

Lemma 10. The following conditions are equivalent:
(i) ATB2C.
(ii) For all (Z;) sentences y and all m, if AT + =Conc | 35 T+ % then BF =,

Proof. Suppose (i) holds. Let x and m be such that AT + ~Congc |,y T + . There
is a k such that AT + Cong | Conc | . It follows that T + x+ =Cong}, whence BF-
=x. Thus, (ii) holds.

To prove that (ii) implies (i), suppose (i) fails, i.e. ATB # C. There is then an m
such that for every k, AT + Cong I Conc . But then, by Theorem 4.3, there is a
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%, sentence x such that AT + =Conc img, T +x and T + x¥ ~Congy for every k.
Since vy is Iy, it follows, by Lemma 2, that B —x. Thus, (ii) is false, as desired. B
Proof of Theorem 6. (a) Let ¢ = \UG. Clearly c N b is an upper bound of {a N b:
ae G}. Suppose d is any upper bound of {a N b: ac G}. It is then sufficient to show
that c " b < d. Let Beb, Cec, Ded. Then ALB < D for every A such that d(A)eG.
But then, by Lemma 6, A < D + -Cong | for every such A and every k. It follows
that for every k, C < D + ~Cong for every k, whence, by Lemma 6, C{B <D and
socnb<d. e

(b) Let c = MG. Clearly c U b is a lower bound of {a U b: ac G}. Suppose d is any
lower bound of {a U b: ae G}. It is then sufficient to show that d < c U b. Again let
Beb etc. Then D < ATB for every A such that d(A)e G. But then, by Lemma 10, for
every such A, every m and every X, sentence ¥, if BT + -Conp, mg, T+ then Ak
~x. It follows that for every m and every Z; sentence ¥, if BT + ~Conp | s T+%
then Ck —x. Hence, again by Lemma 10, D<CTBandsod<cub. B

Suppose a < b. Let [a,b] be the interval {c: a < ¢ < b}. (We also write [a,b) for
{c: a < ¢ < b} etc.) A natural (global) question concerning Dy is if all intervals [a,b],
where a <b < 17, are isomorphic (in the obvious sense). The answer is negative.

If c < d, let [d,c] = ([c,d], 2). Another natural question is, under what conditions
[a,b] is isomorphic to [d,c], where a <b and ¢ < d.

Theorem 7. (a) There are degrees a, be(0p,11) such that the intervals [0p,a] and
[01,b] are not isomorphic.
(b) Suppose a < b and ¢ < d. Then [a,b] is not isomorphic to [d,c].

Theorem 7 (a) follows at once from our next two lemmas.

The interval [ag,a;], where ag < ay, is said to satisfy the reduction principle if for
any by, bie [ag,aq], if by U by = ay, there are ¢; < b;, i =0, 1, such that cg N c; = ag
and cyU c; = a;. A degree a is r.p. if [Or,a] satisfies the reduction principle.

Lemma 11. If a = d(T+6), where 6 is I1;, then a is r.p.

Proof. Let by, by be such that by U b; = a. There are then IT; sentences yy, y; such
that d(T+y;) <b; and T + yy A y;F 6. By Lemma 5.5, there are I1; sentences 6, 6;
such that TH 8y v 6;, Tk y; 5 6;,i=0,1, Tk 65 A 8; > Wy A yp. Let ¢; = d(T+86;), i =
0, 1. Then ¢; < b;, ¢y ¢; = Oy, and, by Lemma 3, cuc; =bgub; =a. B

Lemma 12. There is a degree a < 11 which is not r.p.

Proof. Let n be a I1; sentence undecidable in T. In case T is not £;-sound we also
need to assume that 7 is Z;-conservative over T (cf. Theorem 5.2). We now effec-
tively define r.e. sets X of I1; sentences such that

(1) T+ Xy +nlis consistent,i=0, 1,
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2 XS Xis,

B) T+ Xg+mh Xy,

4 T+Xg+n<T+ Xpyq.

Let Xy = @. Then (1) holds for k = 0. Now suppose (1) holds for k = n. By (the proof
of) Lemma 2.1, we can effectively find a IT; sentence y,, such that

(5) T+X,+7i+-yl is consistent, i =0, 1.

Let T =4¢ T + X,, + - + y,,. It follows that

(6)  there is no I; sentence 8 such that T, 6 and T + 6+ -m.

For suppose T + 8F =x. Then T + nk =6 and so Tk -6, whence, by (5), T, 6.

Let X471 = Th(T,) N I1;. Let k = n+1. Then (1) is satisfied for i = 1 and, by (6), (1)
is satisfied for i = 0. Moreover (2) and (4) hold for k = n. Finally, T + X1+ v, and
so, by (5), (3) holds for k = n.

Let ag = d(T+U{X:keN}), a; = d(T+=), and a = ag U a;. Since ag < 1t and 7 is
Z,—conservative over T, we have a < 11. We now show that a is not r.p. Let by and
by be such that by < ag, by < a;, by by =0, and by U by > a;. It is then sulfficient to
show that by U by 2 a,.

Let 6;  be I1; sentences such that b; = d(T+{6; ,:’ke N}), i = 0, 1. We may assume
that T + 8,1+ 6;) fori=0, 1 and all k. By Lemma 3, there is then an m such that
T + 6gm A 01 mb T . d(T+8g 1) < bg < ag. Thus, by (2), there is an n such that T +
80m ST + Xy, Since by by =07, forevery k, T+ 6 vt <T + 6y v (6 m A 01 m)
ST + 6y It follows that T + 8y v T < T + X, whence T + 6y <T + X, + -m
(cf. Corollary 6.3) and so, by (4), T + 6y <T + X,,1. But this holds for all k, whence
bg < d(T+X,41)- Next, by (3), by U by <bg U a; < d(T+X,,1+7) # ap. It follows that
by by # ag and so the proof is complete. B
Proof of Theorem 7 (b). Let Aca and let & be a IT; sentence such that A¥ n. Then
[a,d(AT+m)] satisfies the reduction principle (see the proof of Lemma 11). It follows
that in [a,b] there is a degree e > a such that [a,e] satisfies the reduction principle.
Thus, it is sufficient to show that the dual of the reduction principle is false in [c,d]
whenever ¢ < d.

Let Cec and Ded, and let & be such that C# & and DFn. Then, by Theorem 5.5
(b) with X = Th(CT + -m), there are Z; sentences o; such that CT+ -6;=CT + 5,_;,
i=0,1,and CT + -y A =0y ¥ 7. Let ¢; = d(CT+0;) = d(CT+-0,_;). Thencgn ey = ¢
and cguU ¢; # d. Let d; = ¢; d. Then dg N d; = cand dy U d; < d. Suppose now d;
<e;<d,i=0,1, and ey N e; = c. We have to show that ey U e; < d. Let Eyeey. c; »
ep=c;Nndney=d;Nney<e; Ney=c. It follows that (CT + ~6g)dEy < CT. But then,
by Lemma 6, for every II; sentence 6, if Egl- 6, then CT + -6, < CT + =6, whence
CT4ogt 6. It follows that ey < cg and so ey = d. Similarly, e; = d;. Hence eg U ey =
dy v d; < d and the proof is complete. B

Theorem 7 (a) leads to the problem of determining the exact number of noniso-
morphic intervals of Dy. This problem remains open.

We have actually proved more than is stated in Theorem 7. Let L= {<, n, U, 0,1}
be the language of the theory of lattices with a bottom and a top element.
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Formulated in L, the reduction principle is an V3 sentence. Hence, by the proof of
Theorem 7 (a), there are degrees a, be (Op,11) and an V3 sentence of L which holds
in [O,a] but not in [Op,b]. (This is, so far, the only known way of proving that two
intervals of D are nontrivially nonisomorphic.) Similarly, the proof of Theorem 7
(b) shows that if a < b and ¢ < d, there is an 3V3 sentence which is true in [a,b] and
false in [d,c].

§2. A classification of degrees. When there is no risk of confusion we shall use ¢
and X in place of T + ¢ and T + X. Thus, d(¢) is d(T+9), X < ¢ means that T + X <
T+, o=ythat T+ @=T + vy, etc. We also write a <<b to mean that a << b. A <<B
means that d(A) <<d(B). o, 6, etc. will be used to denote X, sentences and T, ©y,
etc. to denote IT; sentences.

A degree a is @ if there is a @ sentence ¢ such that a = d(¢). By the proof of
Theorem 6.11 (a), it is clear that every degree is I, and Z,. This can be somewhat
improved:

Theorem 8. Every degree is A,.

Proof. Let a be any degree. There is a primitive recursive set X of I; sentences such
that a = d(X). Let £(x) be a PR binumeration of X and let ¢ be such that
PAF ¢ & Vz([T1])(9,2) - (§(2) - Trpy, (2)))-
Then ¢ is IT; and T + ¢ is a [Ij—conservative extension of T + X (cf. the proof of
Theorem 5.4 (a)). It follows that a = d(¢). Using Lemma 5.1 (i) and Lemma 1.3 (v)
(applied to —9), we get:
PAF ¢ & Vz(§(2z) - Tryy,(2)) v 3z(—[](9,2) A Yu<z(E(u) > Trnl(u))).
Thus, pis A, B
By Theorem 8, in terms of the arithmetical hierarchy, the only interesting (prop-
er) subsets of Dy are the sets of B; degrees, Z; degrees, IT; degrees, and degrees
which are both Z; and IT;. (If T is not Z;-sound, there are also A? degrees other than
Ot and 17; see e.g. the proof of Corollary 1.) The object of the rest of this § is sim-
ply to show that these sets are different and that there is a non-B; degree. More
detailed information about the Z; and the I1; degrees will be given in the next §.
Our next lemma is a restatement of Theorem 6.11 (b).

Lemma 13. If X is an r.e. set of Z; sentences, then d(X) is Z;.
The following lemma is occasionally useful.

Lemma 14. There exist a (primitive) recursive sequence <G>}, and a sentence &
such that (i) T + o1+ oy, for all k, (ii) 6} < 0}, for all k, (iii) o = {0} : ke N}.
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This follows at once from (the proof of) Lemma 2.1 (applied to the sets {¢: Q + ¢ <
T + oy}; 69 := 0 =0) and Lemma 13.

Theorem 9. (a) There is a IT; degree which isn't ;.

(b) There is a X, degree which isn’t IT;.

(c) There is a degree other than O and 1t which is both X; and IT;.
(d) There is a B degree which is neither £; nor II;.

(e) There is a degree which isn’t B;.

Proof. (a) Let m be such that - is IT;—conservative over T and T# -n. Then, by
Lemma 8, Oy << d(r) and so, by Lemma 7, d() is not Z;.

(b) Let <0} >k, and © be as in Lemma 14. Suppose d(o) is I1; and let & be such
that o = n. Then = = {o): ke N} and so, by Lemma 14 (i), there is an m such that
T + o+ m But then {o}: ke N} < 6, contradicting Lemma 14 (ii). Thus, d(c) isn’t
;. ¢

(d) The easiest way to prove this is to define & as in the proof of (a) and then ¢
as in the proof of (b), except that T is replaced by T + m. Then d(nA0) is neither X;
nor I1;. Details are left to the reader. ¢

Theorem 9 (c) will be derived from the following lemma, which will also be
used later.

Lemma 15. There are I1; sentences 8;,i = 0, 1, such that
i) T 6;,

(i) TF6gv 8y,

(iii) TF 6gA 67 = Conr,

(iv) T+ Congl =Prp(6)),

(V) T+ CODTI' ei,

(vi) 6=

Proof. Let 0, i = 0, 1, be such that
PAF6; &> Vz(Prf(8;,z) - Ju<z+iPrfp(8;_,u)).

A standard argument proves (i). Formalizing this argument we get (iv). (ii) and (iii)
are immediate. (v) follows from (iv). By (ii),
(1)  PAF Prp(—6;) - Prp(61)-
Also,
(2) PAF —6;_; & Prp(6,_;) A 6;.
By Theorem 6.8, 8; A Pry(-8;) < 8;. By (1), it follows that 6; A Pry(8;_;) < 6; and so,
by (2), 6;_; < 6;. But then, by (ii), 8; = =6;_j, i.e. (v) holds. B
Proof of Theorem 9 (c). Let 6; be as in Lemma 15. Let a = d(6p). Then a is I1; and,
by Lemma 15 (vi), a is £;. By Lemma 15 (i), a > Or. Finally, by Lemma 15 (i) and (ii),
a<ly. ¢

To prove Theorem 9 (e) we need the following:
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Lemma 16. Suppose X is r.e. and for every k, Xk <<X. Then if ¢ is B; and X < ¢,
then X << ¢. Thus, a fortiori d(X) is not B;.

Proof. ¢ can be written in the form (g A Gg) V...v (T, A G,). It is easily checked that
for any degrees a, b, ¢, if a <<b and a <<¢, then a << b N c. Thus, it is sufficient to
show that if X <® A 0, then X <<t A 6. Let ) be a Z; sentence such that t A6 < X +
x- Then, by Lemma 7, it suffices to show that T + X+ —y. By assumption, there is a
ksuchthat T+ Xlk+yFn. Hence T+ tAc 4T+ Xlk+ (x Ac)and so X< X1k +
(x A ©). But then, since Xk << X, by Lemma 7, T + Xk —(3 A 6). But X <& A ©. It fol-
lows that T + © A o+ —x, whence T + X + xF —x and so T + X+ —y, as was to be
shown. l

Proof of Theorem 9 (e). By (the proof of) Theorem 5.2, we can effectively construct
sentences m, such that —n, is IT;-conservative over but not provable in T + {m:
k <n}. Let X = {m: ke N}. Then, by Lemma 8, X1k <<X for all k. So, by Lemma 16,
d(X) isnot B;. W

§3. Z; and I1; degrees. This § is devoted to a discussion of the Z; and IT; degrees
and the relations between them.

The L.ub. of two IT; degrees is IT; and the g.Lb. of two I1 (£1) degrees is I1; (Z,).

Let us say that a is high if a >> O, low otherwise. Thus, by Lemma 7, a is low iff
there is a X; degree b such that a <b < 11. By Lemma 8, if - is IT;—conservative
over T, d(rn) is high. By Corollary 2, every member of CONr is high.

The following lemma is sometimes useful.

Lemma 17. Suppose a is high. Then for any b, [a N b,b) contains no Z; degree; in
fact,ifcisZjandanb<c thenb<c.

Proof. Let Aca, Beb, and c = d(o). Suppose AlB < T + 6. Then, by Lemma 6, A <
T + 6 A ~Cong | for every k. Since a is high, it follows that T + ot Cong |}, for every
k,andsoB<T+oc.1

Theorem 10. (a) The set of IT; degrees is cofinal in Dr.

(b) The set of Z; degrees is not cofinal in D; in fact, for every degree a > O, there
is a degree b < a such that [b,a) contains no X; degree.

(c) There is a low I1; degree which is not %;.

Proof. (a) Since all members of CONy are I1;, this follows from Lemma 9. ¢

(b) By Theorem 3 (b), there is a high degree c such a £ c. Let b = ¢ n a. Then, by
Lemma 17, b is as desired. ¢

(c) Let a be any low IT; degree > O1. By Theorem 3 (b), there is a high I1; degree
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cZa.Letb=anc. Thenb is low and and IT;. Finally, by Lemma 17, bis not Z;. B
Using Theorem 2 we can now prove the following corollary.

Corollary 4. (a) Suppose a is not I1; and ae (b,c). There are then degrees b’, ¢’ such
that ae (b’,c’) < (b,c) and [b’,c’] contains no IT; degree.

(b) Suppose a is not Z; and ae (b,c). There are then degrees b’, ¢’ such that
ae (b’,c’) € (b,c) and [b’,c’] contains no Z; degree.

Proof. (a) By Theorem 2, there are degrees by, by such thatb<b; <a,i=0, 1, and
by u by = a. Either [bg,a] or [by,a] contains no IT; degree. If not, then a would be the
Lu.b. of two I1; degrees and therefore I'ly. Suppose [b;,a] contains no I; degree and
let b’ = b;. By Theorem 2, there are degrees c(, ¢; such thata <c;<c,i=0, 1, and
cg N cp = a. Either [b’,¢g] or [b’,c;] contains no IT; degree. For suppose d;e [b’,c;] and
d; is ITy, i = 0, 1. Then dy N dq€[b’,a] and dy N d; is [T}, a contradiction. Suppose
[b”,cj] contains no IT; degree and let ¢’ = ¢;. Then b” and ¢’ are as desired. ¢

(b) By a slight modification of the proof of Theorem 10 (b), which we leave to
the reader, there is a degree b’ such that b <b’ < a and [b’,a] contains no X; degree.
The rest of the proof is the same as the proof of (a). B

Theorem 10 (b) leads to the question if there are arbitrarily small ¥, degrees. By
our next result, the answer is affirmative; later we shall prove a stronger result
(Theorem 15).

Theorem 11. If Oy < a, then there is a 2; and I1; degree be (Or,a).
To prove this we need a lemma on partial conservativity.

Lemma 18. Let X be an r.e. set. There is then a PR formula n(y,x,z) such that for all
kand 6,

(i) if ke X, then T + 6+ -3zn(8,k,z),

(ii) if ke X, then 3zn(0,k,z) is I1;-conservative over T + 6.

The proof of Lemma 18 is similar to the proof of Lemma 5.3 (for I' = I1;) and is left
to the reader.
Proof of Theorem 11. Let Vud(u), where 8(u) is PR, be a I1; sentence such that
01 < d(Vud(u)) < a. By Lemma 18, there is a PR formula y(x,z) such that
(1) if T+ @, then TF -3zY(9,z),
(2) if TF @, then 3zy(9,z) is IT;—conservative over T + ¢.
Let 0 be such that
(3) PAF 6 & Vu(-d(u) —» Iz<uy(6,2)),
and let
6 := 3z(Y(8,2) A Yu<zd(u)).
Then
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(4) PAF 6 3zY(0,2) A 6,
(5) PA+ 6+ -3zy(0,z)F Yud(u).
It follows that
(6) THe6.
For suppose not. Then, by (1), Tk -3zy(6,z) and so, by (5), TF Vud(u), contrary to
the choice of d(u).

By (3), 8 < Vud(u) and so d(6) < a. By (6), Op < d(6). Finally, by (4), (6), (2), c=6.
Thus, b = d(0) is as claimed. B

It is natural to ask if Dy is “generated” by some “small” set of degrees, for exam-
ple, the set of =; degrees. We prove two negative results, Theorems 12 and 13, and
one partial positive result, Theorem 14 (and 14").

Let E7 be the set of Lu.b.s of (finite) sets of Z; degrees. Note that Et is closed
under M. By Lemma 15, CONt € Er.

Theorem 12. There is a IT; degree not in Er.
This is an immediate consequence of the following two lemmas.
Lemma 19. If ac Er, there is a smallest X; degree > a.

Proof. Suppose a = d(cp) L...u d(0,). Then d(GgA...AC) is the smallest Z; degree >
d(cp) L...u d(0y,). This can be seen as follows. Suppose d(cp) L...u d(c,) < d(0). Let
© be such that T + 6y A...A 6,F ©. Then T + 6yF 6] A...A 6, = T. Now, 6; A...A G, =
7 is a I1; sentence. It follows that T + oF 6; A..A 6, > . Butthen T + 61 6 A G,
A..A 6, = mand so T + o 6, A...A 6, = T. Continuing in this way we eventually
get T + oF m, as desired. B

Lemma 20. There is a IT; degree a for which there is no smallest X; degree > a.

Proof. Let <0y >1 ., and 6 be as in Lemma 14. Let a = d(—0). Then a is IT;. Now let
X be any X; sentence such that a <d(x). Then T + x+—c and so T + ot—y. It follows
that there is a k such that T + o, F—y and so
(1) T+ yF—op.
Since oy < 0, there is a sentence & such that T + o+ m and T + 6, I# 7. It follows that
2) T+ -—rnk—o,
@) T+ -nk—o.
But then, by (2), a < d(—r) and, by (1) and (3), x £ —n. Thus, d(¥) is not the small-
est ) degree>a. B

A strengthening of Lemma 20 will be proved later (Lemma 23).

Let Fy be the set of Lu.b.s of (finite) sets of X; and I1; degrees. By Theorem 12,
FT Q ET'
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Theorem 13. Ft # Dr.

We need the following definition: A <<<B iff A < B and for every set X of Z; sen-
tences, if B-lHIA + X, then A + X is inconsistent. (Here X need not be r.e.) We write
a <<<b to mean that A <<<B where Aea and Beb. (If A=A’ and B =B’, then A <<
B iff A’<<<B’.) By Lemma 7, A <<<B implies A <<B. As will become clear, the con-
verse of this is not true. But if a is IT; and high, then 0 <<< a.

Lemma 21. Suppose ae Fy and for all &, if d(r) < a, then d(n) << a. Then O <«<<a.

Proof. By assumption there are 7, 0y,...,0, such that a = d(n) U d(cp) L...u d(oy).
Also d(n) << a. Let Aca. Then
(1) T+o;<Afori<n
Moreover, T <<&t A Gy A...A G and so, by Lemma 7, T+ ik -0 v...v —0,. But AF &
and so
(2) Ak —ogV...v —0,.
Let X be any set of X; sentences such that
(3) A"n T+ X
Then, by (2), T + Xk =g v...v =0y, whence there is a kg such that T + ogF =AX kg
V =07 V...V =Gy, and so, by (1) and (3), T + Xk —6; v...v —c,,. Continuing in this
way we eventually obtain the conclusion that T + X is inconsistent. Bl
Proof of Theorem 13. We effectively construct sentences yj, ¥y,... such that if A =
T+ {y: k<n}and A =T + {y: ke N}, then
(1) Ap<Ansy
(2) notT<<<A.
Let a = d(A). Then for all &, if d(r) < a, there is an n such that d(r) < d(A,). Also
d(Ap) <<d(Ap;1) < aand so d(r) <<a. Thus, by (2) and Lemma 21, a¢ Fr.

There is an r.e. relation S(n,k,p,q) such that

(not T + y < T + y + 9) iff IpVqS(y,9,p,q).

By Lemma 3.2 (b), there are a I1; formula 6(x,y,z,u) and a X; formula ¢’(x,y,z,u)
such that
(3)  ifS(nkp,q), then Tk o’(nk,p,q),
4 Tko'(nkp.q) - o(nkp.q),
(5 T +Yis consistent where Y = {—o(n,k,p,q): not S(n, kp.q}

Let Ag = T. Suppose A, has been defined and set 8, := A{yy: k <n}. Then
(6) notA <A+ ¢iff 3pvqS(8,,9,p.q)-
By (3) and Lemma 5.2, there is a Z; formula p,(x,y) such that
(7)  Aqk pn(0p) > 0'(6,,0.p,9),
(8)  if VqS(6,,9,p.q), then p,(9,p) is [1;-conservative over A,
By Theorem 5.4 (b), there is a formula n,(x) such that
(9) A, +nu(9) is a [1;-conservative extension of A, + {—p,(¢,p): pe N}.
Finally, let y,, be such that
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(10) Tk yp & Nn(Vn)-
The formulas p,(x,y), Na(x) and the sentences y,, can be found effectively in n.

To prove (1) assume it is false. Then, by (6), there is a p such that VqS(0n,¥n.P.9)-
But then, by (8), pp(Wnp) is IIj-conservative over A.. By (9) and (10), ApqF
—pp(Wop)- But, by Lemma 8, this implies that A, << A ,;, a contradiction. This
proves (1).

Next we prove (2). Let Y be as in (5). Then T + Y is consistent. To prove that
A, T + Y we first show that
(1) Appr +YdqAp +Y.

Suppose Ap,; + YF 7. Then there is a k such that
(12) ApF-AYlkvm
By (1) and (6), for each p there is a 9 such that
(13) ot S8y Y P/dp)-
By (12), (9), and (10),
Ap + (=pn(Wnp): peNIF SAY Ik v .
By (13), (4), (7), Ap + YF —p,(y,p) for every p. It follows that A, + Y+ n. This
proves (11).

Since (11) holds for all n, it follows that Adpg T+Y. This proves (2) and so the
proof is complete. B

Let Gt be the set of degrees obtained from the Z; and the I1; degrees by closing
under N and u. It is an open problem if Gy # Dr.

The degree mentioned in Lemma 20 cannot be arbitrarily large: if a is high, there
is a smallest X, degree > a, namely 1t. Similarly, the degree a defined in the proof
of Theorem 13 cannot be arbitrarily large; it is not >>> Ot. This is explained, at least
partially, by the following surprising:

Theorem 14. (a) Every sufficiently large degree is the Lu.b. of a £; degree and a Il;
degree.

(b) Every sufficiently large degree is the l.u.b. of two X; degrees.

Proof. We may assume that d(Conr) < 1. By Lemma 9, it is sufficient to consider
degrees a such that d(Cont) < a < 1t. Let 1, := Vud,(u), where 8,(u) is PR, be I1;
sentences such that a = d({n:ne N}). We may assume that for all n,
(1) Tk ny— Conr,
@ T Ty o T,

(a) We define I, sentences ¢, and y,, in the following way:
(B) Tk ¢, & Vz(Prfr(Vig:ksn},z) - Fu<z-5,,,1(u)),

Y = Vu(=8,, (1) = Iz<uPrfr(Vig:ksn},z)).

It follows that
@ TFouv v,
6) T+ @y Ay, F —Pr(V{gksn)) Ay,
(6) T+ nn+1'_ Ynr
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(7) T+ -~out Pro(M{gk<n}),
® ~Vi{pgk<n}<m,
(Mo k <0} := L) (4), (5), (6) are standard.
Since -¢, is X1, we have T + =@, F Prp(-9,). Also, by (3),
T + =@, Pro(V{g:k<n}).
But then (7) follows.

By Theorem 6.4, (8) follows from
9) T+ nyb Prp(M{gk<n}).
By (1), (9) holds for n = 0. Suppose (9) holds for n = m. To show that it holds for n
=m+1, we argue in T as follows: “Suppose ;... Then, by (6), y,,. Also, by (2) and
the inductive assumption, =Prp(V{@y:k<m}) and so, by (7), ¢,. Finally, by (5),
=Prp(V{g:k<m+1}), as desired.” Thus, (9) holds for n = m+1. This proves (9) and
so we have proved (8).

Next we show that for all n,
(10) T+ Al k <n} + Contl @y.
We first show that
(11) T+ COI’[TF 9o,
(12) T+ wy, + QuF @41
(11) follows from (7) with n = 0. (12) follows from (5) and (7).

Now (10) follows from (11) and (12).

Let ag = d({~¢i:ke N}), a; = d(Conr), a; = d({@:ke N}). Then, by Lemma 13, aj
is Xy. ap is I1;. By (8) and Orey’s compactness theorem, aj < a and, by hypothesis,
aj < a. But then ag U a; < a. By (4) and (5), ag U a 2 a. By (4) and (10), ag U a1 > aj.
It follows that ag U a; 2 a and so ay U a; = a, as desired. ¢

(b) Let 8;,i =0, 1, be as in Lemma 15. We define I1; sentences ¢, and y,, in the
following way:

(13) Tk @y <> Vz(Prip(Bgv V{gi:ks<n},z) - FJusz-d,,1(u)),
Wy, = Vu(=8,,;(u) = Iz<uPrfp(8gv V{g k<n},z)).
It follows that
(14) Tk @y Vv Yy,
(15) T+ @, Ayt "Pri(6gvVieksn}) A my g,
16) T+myqt W
(17) T+ ~outF Prp(6pv Vi :k<n}),
(18) -BpA-V{g:k<n}<m,
The proofs of (14) — (18) are almost the same as the proofs of (4) - (8).

Next we show that for all n,

(19) T+ Aly:k<n}+6pa6:F @

We first show that

(20) T+ 6 A 01F @,

(21) T+wy, +0uF 0py1-

(20) follows from Lemma 15 (iii) and (iv) and (17) with n = 0. (21) follows from (15)
and (17).
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Now (19) follows from (20) and (21).

Let ag = d(-6p+{~@:ke N}), a; = d(6). Then aj is Z;. By Lemma 15 (vi), a; is Z;.
By (18), ag < a and, by Lemma 15 (v), a; < a. But then ag U a; < a. By Lemma 15 (ii),
(14), (19), and (15), ag U a; > a. Thus, ag U a; = a, as desired. B

The proof of Theorem 14 actually yields the following stronger result; Theorem
14’ is also an improvement of Theorem 4.

Theorem 14'. (a) Suppose ac CONt and a <b < 1t. There is then a Z; degree c such
thatauc=b.

(b) Suppose ac CONT. There are then degrees a, a; such that (i) ay and a, are
both Z; and IT;, (ii) ag N a; = O, (iii) ag U a; = a, (iv) for every degree b > a, there
is a Z; degree b; such that a; Ub;=b,i=0, 1.

One way to strengthen Theorem 12 would be to show that there is a I1; degree a >
Ot such that no Z; degree cups to a. This, however, is not the case:

Theorem 15. For every II; degree a > Oy, there is a Z; (and II;) degree which cups
to a.

Proof. The following proof is similar to that of Theorem 11. Let ©t be such thata =
d(r) and let §(u) be a PR formula such that  := Vud(u). By Lemma 18, there is a PR
formula n(x,y,z) such that for all @, y,
(1) if T+ ok m, then T + yk ~3zn(0,y,z),
(2)  if T + ¢F m, then 3zn(¢,y,z) is I1;-conservative over T + y.
Next let 6 and y be such that
(3) TF 6 e Vu(-d(u) —» Iz<un(y,6,z)),

TF x & Vz(n(,0,z) > Fu<z-6(u)).
Then
4) TrOvy,
5) THOAY -
We now show that
6) T+y¥m
Suppose not. Then, by (1) and (3), T + 8+ n. But then, by (4), Tk =, contrary to
assumption. This proves (6).

Now let

6 := Jz(n(Y,6,2) A Yu<zd(u)).
Then

TF 6 & 3zn(%,0,2) A 6.
By (3), d(8) < a. By (2) and (6), 6 = 6. Thus, d(o) is £; and I1;. Let b = a n d(y). By
(6), a ¢ d(x) and so b < a. By (5), d(6) U b = a. Thus, d(c) cups to a. Also note that
b (is IT; and) d(6) " b = 0r. W

The problem if for every degree a > O, there is a £; degree which cups to a
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remains open. By Theorem 14, this is true of every sufficiently large degree.
Our next task is to show that the result of interchanging ¥, and II; in Theorem
15 is false.

Theorem 16. There is a Z; degree a > Ot such that no I1; degree cups to a.

Let §(x) be as in Lemma 5.8 with n = 1 and let a = d({§(k):ke N}). Then a > 01 and
no I1; degree cups to a (see the proof of Theorem 3 (a)). To obtain a X; degree sat-
isfying these conditions we first prove the following refinement of Lemma 5.8 (for
n=1).

Lemma 22. There are IT; formulas §(x), n(x) and Z; sentences y; such that
(@)  THEk)

(i) Tk mndk) - &(k),

(i) Tk g(k+1) = n(k),

(iv) &(k) is Z;—conservative over T + m(k),

(v)  {&(k): ke N} = {x,: ke N}

Proof. We combine the ideas of the proofs of Lemma 5.8 and Theorem 11. By
Lemma 18, there is a PR formula y(x,z) such that for all o,
(1) if Tk @, then T+ -3zY(@,z),
(2)  if T @, then 3zy(¢,z) I1;—~onservative over T + ¢.
Let &(u) be an arbitrary PR formula. Let x(z,u,x,y) and v(z,u,x,y) be I1; formulas
and u(z,u,x,y,v) a PR formula such that
3) Tk x(z,uxy) & Vvu(zuxyv),
4) Tk =v(zux,0),
&) TFxBuky) < viouky) v Vv([}:l](ﬂns(k)/\ﬁs(k),v) - —-PrfT(és(k),v)),
6) TFv@uky+l) & Vv(uduk+lyv) - Hz<max{u,v}y(n8(k),z)),
where
E5(x) == Vu(8(u) - x(dux,u +x)),
Ng(x) = Vu(d(u) = v(8,u,x,u +x)).
As in the proof of Lemma 5.8, (5) implies that
() ThEgK) © nglk) v Y(IE I Mg nEs(K)v) — “PriEs(,v)).
Let
ns’(x) = Vu(d(u) = v(d,u,x,(u = (x+1)) + 1)).
Then, by (6),
® TFnik) < Vuv(3(u) A u(d,uk+Lu * (k+1),v) > Iz<max{u,v}y(ngKk) z))-
Let
Tox = = 3z(ymg(k),2) A Vuv<z-(8(u) A ~p(duk+lu = (k+1),v))).
Then XS 1s %; and (cf. Lemma 1.3)
9) TF Xsx © Elzy(na(k) z) A Vuv(d(u) A “pd,uk+l,u = (k+1),v) -
E!z<max{u,v}y(n5(k) z))
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and so, by (8),
(10) Tk Xsx € Jzying(k),z) A né(k).
We now show that
(1) Tk ngk) - E5(K),
(12) if Tk is(k), then Tk ny(k),
(13) Tk &g(k+1) - ny(k),
(14) if TF &(u) » u >k, then T+ né(k) o nyk),
(15) if Tk §(u) - u > k and Tk ng(k), then TH Eg(k+1).
(11) follows from (7). (12) follows from (7) by the same argument as in the proof of
Lemma 5.8. (13) follows by predicate logic from (3) and (8). (14) is obvious.

To prove (15), assume T+ 8(u) = u > k and Tk na(k). Then, by (14), T+ né(k).
Also, by (1), T+ -Elzy(na(k),z). By (8), it follows that

TF Vuv(d(u) - ud,uk+1,u = (k+1),v))

and so, by (3), TF é’;a(k+1). This proves (15).

It can now be shown that

if Jud(u) is true, then TH E4(0).

The proof of this from (4), (12), (15) is the same as that of (6) in the proof of Lemma
5.8.

As in the proof of Lemma 5.8 we can now find a PR formula &'(x) such that
Fud’(u) is false and TH §5,(0). Let &(x) := 55,(x), n(x) := Ng(x), Xy = Xs’

The verification of (i) — (iv) is now straightforward or much the same as in the
proof of Lemma 5.8; this is where (13) is needed.

To prove (v), we first note that {£(k): ke N} < {xk: ke N} follows from (10), (14),
(11). Next suppose T + {x,: ke N}I- . There is then an m such that T + x4+
X1 AA Xm = T By (i) and (ii), T¥ n(0). Hence, by (2), 3zy(n(0),z) is I1;—conserva-
tive over T + 1(0). But then, by (10) and (14), T + n(0)F X1 A Xm — T By (10), (14),
(ii), (iii), T + x,F n(0). It follows that T + Xq AeeA Xm" T Continuing in this way we
eventually get T + n(m)F © and so, by (iii), T + §(m+1)F n. This shows that {xk:
ke N} < {g(k): ke N} and so (v) is proved. B
Proof of Theorem 16. Let £(x) and n(x) be as in Lemma 22. Let a = d({€(k):ke N}).
Then, by Lemma 22 (i), a > Ot. Also, by Lemma 22 (v) and Lemma 13, a is X;. By
Lemma 22 (ii), d(§(k)) < d(n(k)) for every k. That d(§(k)) doesn’t cup to d(n(k)) now
follows from Lemma 22 (iv).

Suppose b is IT; and b < a. Then, by Lemma 22 (ii) and (iii), b < d(§(k)), for some
k, and d(n(k)) < a. Since d(§(k)) doesn’t cup to d(n(k)), it follows that b doesn’t cup
toa. B

Note that if a is as in Theorem 16, then a does not cup to any I1; degree. Indeed,
let b be I1; and > a. If a cups to b, there is a I1; degree c < a which cups to b. But
then c cups to a, contrary to assumption.

Finally, we prove Theorem 5 (and a bit more). We have already observed that
d(-m) is the p.c. of d(n). Thus, every I1; degree has a p.c. It follows that, in terms of
our classification of degrees, the following result is the best we can do.
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Theorem 17. There is a Z£; degree which has no p.c.

This is a consequence of the following strengthening of Lemma 20.
Lemma 23. There is a sentence ¢ such that {b > d(—0): b is £;} has no g.Lb.
To prove this, we need another:

Lemma 24. Suppose {n,: ke N} is re. and let G = {d(my): ke N}. Suppose there is no
finite subset H of G such that (MH is a lower bound of G. Then G has no g.Lb.

Proof. Let X = {m: T + mF- = for every k}. X is not r.e. This can be seen as follows.

Let R(k,m) be a primitive recursive relation such that Y = {k: VmR(k,m)} is not r.e.

and let p(x,y) be a PR binumeration of R(k,m). We may assume that Z = {n,: ke N}

is primitive recursive; let {(x) be a PR binumeration of Z. Finally, let n(x) :=
Vz(-p(x,z) = Ju<z(C(u) A Trnl(u)).

It is sufficient to show that

(1)  Y={knkeX}.

If ke Y, then, clearly, n(k)e X. Suppose k¢ Y. Let m be such that not R(k,m). Then T

+ Nn(k)F VZIm. By assumption, there is an n such that T + n,¥ VZIm and so

n(k)e X. Thus, (1) holds and so X is not r.e.

Suppose d(A) < d(m ) for every k. Then Th(A) N II; € X. Since X is not r.e., it fol-
lows that there is a me X such that AF m. But then n < my_ for every k and d(r) £ d(A).
Thus, d(A) is not the g.1b. of G. B
Proof of Lemma 23. From the proof of Theorem 11 it is clear that there are (primi-
tive) recursive functions f(n) and g(n) such that if n is any I, sentence, then f(r) is
a II; sentence, g(m) is a Z; sentence, and if TH m, then T < T + f(n) = T + g(n) <
T+m

We now define my and oy as follows. Let my be any I1; sentence not provable in
T. Next suppose m has been defined and TF m,. Let y be a IT; sentence undecid-
ablein T + ~m. Then T < T + my v y < T + my.. Let 6y := g(mvy) and my ¢ := f(mevy).
Then TF T+1-

For every k,

(1) m SO <m

By Theorem 5.4 (a), there is a sentence ¢ such that

(2) T+ oisallj-conservative extension of T + {—m: ke N}.

By (1) and (2),

(3) —c < Ok-

Moreover

(4) ifbisZ; and b > d(—0), there is a k such that b > d(my).

For suppose b = d(x) > d(—c), where y is Z;. Then T + xF —c, whence T + o+ —.
But then, by (2), there is a k such that T +—m -y, whence T+yFm and so b >d(my).
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Let G = {d(my): ke N}. If {b 2 d(—0): b is Z1} has a g.Lb. ¢, then, by (1), (3), (4), ¢
is the g.Lb. of G. But from (1) it follows that no d(m,) is a lower bound of G. Hence,
by Lemma 24, G has no g.Lb. and so {b > d(—0): b is Z;} hasno g.1.b. B
Proof of Theorem 17. Let ¢ be as in Lemma 23. By Lemma 6, for all B, (T + o)NB<
T iff B <T + i for all Z; sentences  such that T + xF —c. But then the p.c. of d(c),
if it had one, would also be the g.1.b. of {b > d(—0): b is Z;}. Thus, by Lemma 23,
d(c) hasnop.c.

Every £, degree is the p.c. of some degree. It is an open problem if the converse
of this is true. If it is, the Z; degrees can be characterized in a purely algebraic way
as those degrees that are p.c.s.

Exercises for Chapter 7.
In the following exercises we assume that PA- T and that A, B, etc. are extensions
of T.

1. Suppose G € Dr. G is independent if for any disjoint finite subsets Gy and G; of
G, MGy £ UG;. (MG = 11, UG = 01.) (Thus, for example, @ is independent and
{a} is independent iff O < a < 11.) Show that for every finite independent set G,
there are degrees by, by such that G U {b;} is independent, i =0, 1, and by by = 0.
Conclude that every finite independent set is included in 2¥0 many maximal inde-
pendent sets.

2. Suppose a < b.

(a) ¢ cups to b above a if there is a d such thata<d <b and c U d =b. Show that
there is a ce (a,b] which doesn’t cup to b above a.

(b) c caps to a below b if there is a d such thata < d <b and ¢ n d = a. Show that
there is a ce[a,b) which doesn’t cap to a below b.

3. Suppose a <b and b < 11 if T is Z;—sound. For ce[a,b], let c* be the complement of
cin [a,b] if it exists, i.e. ¢ M ¢* = a and c U ¢* = b. (Complements are unique.) Let
Cpl, p, be the set of degrees in [a,b] having complements in [a,b].

(a) Show that Cpla,b is closed under N, U, and *.

Let Cpl, 1, = (Cpl,p, M, U, ¥, a, b). Then Cpl, }, is a Boolean algebra.

(b) Show that if ¢, deCpl, , and c < d, there is an ee Cpl,}, such that c < e < d.
(It follows that the Boolean algebras Cpl,}, are (denumerable and) atomless and
therefore isomorphic.)

(c) Show that if a < ¢ < d < b, there is an ee[c,d) such that Cplyp N [ed) = 9.
[Hint: Cpl, , N [c,d] € Cpl. 4]

(d) Show thatifa<c<e<d<b and e¢Cpl,}, there are ¢’, d’ such that c < ¢’ <
e<d’'<dand Cpl,, N [c",d"] = @.
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4. Suppose a is X;.

(a) Show that if a < b < 1, then a caps to O below b.

(b) Show that if a < b and b is high, then a <<b. Conclude that if b;>a,i=0, 1,
and by N b; = a, then by and by are low. ((a) and (b) are true of every a which is the
p.c. of some degree,)

5. Show that for every low degree a, there is a low I1; degree > a. [Hint: Let B =
T + o and o := 3xd(x), where 5(x) is PR, be such that a < d(B) < 11. We may assume
that Bl -Cong. Let
8 := Vy(Prfg(Ly) — Ix<yd(x)),
x = Ix(3(x) A Vy<sx-Prfg(L,y)).
Then 6 <0<y and T + ¥ is consistent.]

6. Referring to the proof of Theorem 4, show that there is a primitive recursive
function g such that y can be replaced by the sentence

x = Vu(Prfg(Lu) = 3z<g(uw)Prfp(L,z)),
similar to 6. [Hint: Define g in such a way that PAF -¢ — x.]

7. (a) Show that there is an r.p. degree a which is not Il; (compare Lemma 11).
[Hint: Let x(x) be as in Exercise 2.11 and let a = d({k(k):ke N})].

(b) Improve (a) by showing that there is a non-Il; Z; degree a which is r.p.
(compare Exercise 16 (c)). [Hint: Define m, and oy so that TH my, Tk x(k) - m,
where x(x) is as in (a), and ©y A...A Ty_1 A O =Ty A...A T Let a = d({o:ke N}).]

8. Suppose A- B. Show that there is a A, sentence ¢ such that A + ¢ =B (compare
Corollary 6.10 and Theorem 8).

9. Show that there is a X; sentence 6 such that 01 < d(c) < 11 and for every X sen-
tence %, if 6 <%, then T + ¢} o. [Hint: Let 6 be such that d(-0) is £,.]

10. Let <0y >k, and o be as in Lemma 14. Show that every IT; degree < d(c) caps
to Op below d(o) (compare Exercise 26 (c)).

11. (a) Show that for every I1; sentence 7, d(r) U d(-x) is high; in fact, if b is the p.c.
of a, then a U b is high.

(b) Let a = d(0) U d(—0). a is high. Let <0} >}, and o be as in Lemma 14. Show
that if b is I1; and b < a, then b is low. [Hint: Use Exercise 4 (a).]

12. Show that there is a degree of the form d(ovn) which is neither Z; nor IT;.

13. Show that there is a IT; degree a such that for every IT; degree b, ifamb =0,
then a U b is low (compare Exercise 18 (c)).
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14. Suppose a < b < 11. Show that
(a) there is a degree c < 1 such that for every d, if bnd = a, thend <,
(b) there is a degree ¢ > Oy such that for every d, ifaud =b, thend > c.

15. (a) Verify that in any distributive lattice, for any a, b, the intervals [a N b,a] and
[b,a U b] are isomorphic.

(b) Show that there are degrees a, b, ¢, d such that a <<b, ¢ < d, not ¢ <<d, and
[a,b] and [c,d] are isomorphic. [Hint: Use Exercises 4 (b) and 11 (a).]

16. (a) Verify that in any distributive lattice, if a <b < c and [a,c] satisfies the reduc-
tion principle, so does [b,c].

(b) Show that for each degree a < 1, there is a b such that a <b < 17 and [a,b]
does not satisfy the reduction principle.

(c) The non-r.p. degree a defined in the proof of Lemma 12 is high (cf. Exercise
11 (a)). Show that there is a X; degree which is not r.p. Conclude from Exercise 7 (b)
that there are non-II; Z; degrees such that [Or,a] and [Op,b] are not isomorphic.
[Hint: Use Theorem 14’ (a).]

17. (a) Suppose ¢ and X are as in Lemma 16. Show that if ¢ <X, then ¢ <<X.
(b) Suppose a < b. Show that there are c, d such thata <c <d <b and [c,d] con-
tains no B; degree.

18. (a) Show, by combining the proofs of Theorem 4 and Lemma 15, that there are
cupping degrees ag and a; which are X; and II; and such that ay m a; = Or.
Conclude that there are low cupping degrees. (This also follows from Theorem 14’
(b).)

(b) Show that there is a high (I1;) degree a which is not cupping. [Hint: Suppose
d(Conr) < 1t. Let a = d(n) where & is X;—conservative over T + =Cont and - is
IT;—conservative over T + ~Conr.]

(c) Show that there is a low (I1;) degree a such that for every degree b, ifa nb
= Or, then a U b is not cupping (compare Exercise 13). [Hint: Let d(r) be as in (b).
Define a sentence ¢ such that d(o) > O and d(c) U d(-0) < d(r); use Theorem 11.
Let a = d(-0).]

19. Show that there are degrees a, b such that a is Z;, b is both £; and I1}, and a U
b is not B;.

20. Prove Lemma 15 by letting 6, be a IT; Rosser sentence for T and 6, :=
Vu(Prfp(=6p,u) — 3z<uPrfr(8,z)).
Conclude that d(8) is Z; (compare Exercise 6.9).

21. (a) Suppose a€ Ep and a > Ot. Show that there is a degree b < a such that [b,a] €
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Et. [Hint: We may assume that a £ d(Conrg). Let b = a n d(Cong) and use Theorem
14’ (b). (By Lemma 17, no member of [b,a) is X;).]

(b) Suppose there is a Z; degree which cups to a. Show that there isa b < a such
that for every ce [b,a], there is a X; degree which cups to c.

22. (a) Let E be the set of degrees obtained from Op by taking L.u.b.s, g.Lb.s, and
Z;-extensions. Show that if ac E, there is a least Z; degree > a. Conclude that there
is a I1; degree not in E. (This improves Theorem 12.)

(b) Let F be the set of degrees obtained from Eyand the I1; degrees by taking
Lu.b.s and Z;-extensions. Show that the degree defined in the proof of Theorem 13
is not in F.}. Conclude that there is a degree which is not the L.u.b. of a finite set of
degrees of the form d(nAc). (This improves Theorem 13.)

23. Show that for any a, if there is a member of G which cups to a, then there is a
X, degree which cups to a. (This improves Theorem 15.)

24. (a) Show that not all non-II; Z; degrees are as stated in Theorem 16.

(b) Improve Theorem 16 by showing that for every degree b > Or, there is a Z;
degree a such that Op < a < b and no I1; degree cups to a. [Hint: By Theorem 11,
there are sentences m and o such that Op < d(n) = d(c) <b. Let C = T + -m. By the
proof of Lemma 22, with T replaced by C, there are I1; formulas &(x), n(x) and Z;
sentences ;. such that (i) — (iv) hold with T replaced by C and C + {§(k): ke N} =C
+ {x: ke N}). Let a = d({E(k)vr:keN}).]

25. Show that in contrast to Lemma 24 we have the following: There is a set G =
{d(oy): ke N} of £, degrees, where {0} : ke N} is (primitive) recursive, such that MH
> O for every finite subset H of G and (MG = 0. [Hint: Let a be high and such that
there is no high IT; degree < a (cf. Exercise 11 (b)). Let Ac a and let 6} := ~Conp | ]

26. (a) Show that there is a PR formula 8(u) such that if 6 is defined as in the proof
of Theorem 11, then d(-6) isn’t IT;.

(b) Let 0 be as in (a). Show that d(=6) has a p.c. Conclude that there is a non-II;
X, degree which has a p.c.

(c) Let 6 be as in (a). Show that there is a IT; degree < d(=8) which does not cap
to O below d(—8) (compare Exercise 10).

Notes for Chapter 7.

The lattice Dy was introduced by Lindstrém (1979), (1984b); a related lattice V
(degrees of finite extensions of T) has been defined by §vejdar (1978) (see also
Jeroslow (1971a)). (By Theorem 6.11 (a), V1 and Dy are isomorphic.) Theorem 1 is
due to Lindstrom (1979), (1984b) and (for V) to §vejdar (1978). Corollary 1 is,
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modulo Theorem 6.6, a restatement of the equivalence of Exercise 2.22 (i) and (ii).
The proof of Theorem 4 was suggested by the proof of a related result in Hajkova
II (1971). Theorem 7 is new; the term “reduction principle” is borrowed from
descriptive set theory and recursion theory (cf. Soare (1987)). (The only way of
showing that intervals are isomorphic known so far is given in Exercise 15 (a) and
works in all distributive lattices.) The remaining results of § 1 are due to Lindstrém
(1979), (1984b). In connection with the proof of Theorem 4, see Exercise 6. Lemmas
11 and 12 lead to the question if there is a non-II; r.p. degree; this question is
answered in Exercise 7.

Theorem 8 (with a slightly different proof; see Exercise 6.12 (a)) is due to
Montagna (cf. Lindstrém (1993)). Theorem 9 is due to Lindstrém (1979), (1984b),
(1993); (a) and (c) were also proved by Svejdar (1978); for a different proof of
Theorem 9 (d), see Exercise 12.

Theorem 10 is due to Lindstrom (1979), (1984b); (a) and the first half of (b) were
also proved by Svejdar (1978). Theorems 14 and 16 are new, they were announced
in Lindstrém (1993), where a weaker form of Theorem 16 is proved; Theorem 16
leads to the question if there is a X, degree a such that no I1; degree caps to a; this
is answered negatively in Exercise 5; in connection with Theorem 16, see also
Exercise 24. The remaining results of § 3 are due to Lindstrom (1984b), (1993). The
definition of the sentences ¢, and y,, in the proof of Theorem 14 (a) and the obser-
vations concerning these sentences, except (8), were first used by Misercque (1982)
in a different context. For improvements of Theorems 12, 13, 15, and 16, see
Exercises 22 (a), 22 (b), 23, 24 (b). Theorem 17 leads to the question if no non-II; £;
degree has a p.c.; this question is answered in Exercise 26 (b).

For a proof of Exercise 26 (a), see Lindstrom (1993).





