
A PRIORI BOUNDS
FOR THE RICCATI EQUATION

R. S. BUCY
UNIVERSITY OF SOUTHERN CALIFORNIA

1. Introduction and general results

Since the appearance of [6] and [7], the theory of linear filtering has ex-
perienced a renaissance. This theory, although evidently well known to
statisticians in terms of "least squares estimates," has found many applications
in the early sixties, largely because of the realization and synthesis methods
provided in [6] and [7]. For an indication ofsome of the aerospace applications
to guidance of spacecraft, the interested reader may find detailed information
in [3]. Although the theory of linear filtering has changed little from that given
in [7] for the continuous time problem, the practical realization of the so-called
"correlated noise problem" as treated mathematically in [6], has recently found
a solution in [4]. The full solution of this discrete time filtering problem and its
meaning is described in detail in [5]. For readers desirous of a survey of recent
results in linear and nonlinear filtering, it is available in [5], while more detailed
information can be found in [3].

In this paper, our interest will center on the discrete matrix Riccati equation
with emphasis on the study of the asymptotic behavior of its covariance matrix
solution. A major tool in this study will be the Duffin parallel resistance of two
nonnegative definite matrices A and B denoted by A B. This operation is
described in detail in [1] and provides for us a link between the Riccati equation
and the classical continued fraction theory described in [9] and [10].
We have undertaken to study the discrete Riccati equation from the point of

view of continued fractions because this technique provides considerable
generality in that the nonsingular theory becomes a rather special case (see [3],
Chapter 5) and much deeper results are obtained for singular problems; also
the methods are striking generalizations of classical continued fraction methods.
We will be concerned with the cone C of d x d real entry symmetric non-

negative definite matrices. The cone C induces a natural partial ordering as for
A e C and BE C, A _ B when and only when A -B E C. The object of study
will be the map of C;
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(1.1) Tn(A)= M- 1(H- AH,-1: R. -)H. -14 + C,

where with Mem(R) the set of /' x m real entry matrices.
The matrices A and on belong to Md,d(R), Hn-.1 e Ms,d(R), R,- 1 e M,, (R),

and R,, is positive definite. The matrix Cn E Mdd(R) with s _ d and
M- 1Hn-1 = Id, the d x d identity. We will restrict C, and A to be members
of the cone C and will center our attention on iterates of the mapping T. We will
consider the case where s _ d and provide motivation for (1.1) in terms of the
filtering problem in a later section. We recall that (A: B) = A (A + B) #B (see
[1]), where * denotes the Moore-Penrose pseudoinverse determined by the
axioms:

(a) AA#A =A,
(b) A#AA# =A#,
(c) (AA#)' = AA#,
(d) (A#A) = A#A,

with ' denoting transpose.
The following series of lemmas will prove useful in the sequel.
LEMMA 1.1. For Ai EMe k(R),

(1.2) A[j A;AJ] [E A'AJ] i

for 1 _ i . n.
PROOF. See [8].
LEMMA 1.2. For A and B E C and A _ B, r,, (A) _ t,(B), and in particular

T,(C) c C.
PROOF. Denoting by I1XII2 the quadratic form induced by A E C, it is quite

easily seen that

(1.3) IIXII|(A) = min {|1.px + HM-1rIIA + lir112--- + x11X2},
re-R'

so that

(1.4) 'Cn (A) = ¢,n(A - AH"_- (H,,1AH"_- + Rn,1)#H1,1A)04n + Cn.
In particular, if A > B, then

( 1.5 ) AlX .t(A)
= min {1I4'x + Hn.-1rII2 + I1rII2---, + I1X112I + 1I4nx + H' rI2-B};

reR3

the result follows. Of course, if Sn,1(A) = A - AH_1(H,,1AH"l +
Rnj1)#H,,lA, then

(1.6) Hn 1Snl(A)Hn'-
= Hn_ AHn-,1(Hn AH-1 + Rn-)#Rn-1 = (HniAHni):Rn-1

in view of Lemma. 1.1, or

(1.7) Sn.l(A) = HM1(Rn.1 - Rn1(H,,1AHM-1 + R1)*BRjln)H,1
since by our assumption, Hn_ H, - 1 = Id.
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We will be concerned with the iterated composition mapping rl1(t2(...
(z,,(A)) ... ). It is clear that 1 ..2.t.n(0) is monotone increasing in C, while
Tl * (cx) is monotone decreasing in C. We remark that Riesz has shown
bounded monotone sequences in C converge, that is, ifA_ > A 1 and A,, < aId
then lim,,- AnA exists.
For a direct generalization of the scalar continued fraction theory see Wall

[10].
THEOREM 1.1. Let ti(A) = D1 + A if i = 1, and

(1.8) ti(A) = -0i-..1H-2R1.2(Hi-2(A + Di)H.-2 + Ri-2)#Ri-2Hi-20E-1,
otherwise then

(1.9) T1T2 .... rn(A)
= t1 ... t,,(-0.H _1R-1(H.-,AH-1 + R-,1)#RnH,-10),

where Di = Cj + OiH'-1Rj- Hi-.j.
PROOF. An induction proof will be used to establish (1.9). For n = 1, it

follows that,

(1.10) c1(A) = D - 1H'RO(H0AH' + Ro)#RoHo04
= tl(-01H'RO(HOAH' + Ro)#RoHoO').

Now assume (1.9) is true for all n < k, then

(1.11) 'C1 .. tk+l(A)
= Tl ...* Tk ( + 1(A) )
= tl ... tk(-OkHkl-Rk-l(Hk-l1Tk+l(A)Hk-1 + Rk-1)#Rk-lHk-l k)

in view of the induction hypothesis. Now by the definition of tk + 1, (1.1 1) is equal
to t1 tk + 1 (Tk+ 1 (A) - Dk + l); however,

(1.12) Zk+l(A) - Dk+l = -4k+lkRk(HkAHk + Rk) RkHk4k+l,
in view of the proof of Lemma 1.2, so that the assertion follows.
COROLLARY 1.1. For A E C,

(1 .13) Tl * * * T(0) = tl ... "-"H R_1H_1t"
<=-rT1 n(A) _ tl ... t,,(0) = rl * * * Tn(oo).

PROOF. The proof is immediate.
COROLLARY 1.2. Let ti*(A) = Di + A. The limits Vi = lim,,-_ ti'ti+1 ... t,,(0)

and Li = lim,, t* ti + 1 .t.( -4H 1R,-1HRH. ) exist and Li < Vi.
PROOF. The map ti1ti+1 * t,,(mo) = limAtO .i....* ,,(A) is monotone non-

increasing in n and bounded above by D1 and below by 0 and hence converges.
A similar argument demonstrates the existence of the other limit.
REMARK 1.1. Notice that Vi and Li are equilibrium solutions in that from

the relation

(1.14) .iri+1 ....*n(A) = Ti( .+1 ... (A))
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and as ci preserves order in C, it follows that Vi = i(ViJ+1) and Li = ri(Li+ )
when Li e C, C the interior of C. Further, when i is autonomous, Li and Vi are
constant.
COROLLARY 1.3. Suppose [Ili pij+ ]IlD, - CQ1 tends to zero as n -oo,

where

(1.15) Pi,i+l = glliHi-,Ri-,[(Hi-,Li+lsnHi-1 + Ri1)#]2Ri-Hi tidll
and Lin = Ti ....*Tn(0), then

(1.16) Li = lim TCi **n(O) = lrm Ti *.n**t(A) = limri ...* *(c) = V
n-oo n-.o n-.f

for all A e C.
PROOF. Let Ein = Tri ....* (co) - Ti....*,n(O); then with Enn = Dn - Cn

and with Li,, = ....* ,,(0)

(1.17) Ei,n = OiH'j-.{(Hi-l[Ei+l,n + Li+l,AHM-.1 Ri: )

- (Hi- lLi+ 1nH'i- 1: Ri- l)}Hi- lo'i
or in view of Lemma 27 in [1]

(1.18) Ei n = OiH -Ri -.1C", (Ei+1,n: Ci,.)CC' Ri-Hi -l

where Ci,n = Hi-1L1i+i,AH'.1 + Ri-1. Hence, if ci,n = |lEinil, then ei, _
P7',i+1i+i n, where

(1.19) p7,i+1 = ||oiH'- Ri- [(Hi- Li+ lnH' 1 + Ri- j)*]2Ri-iHi-1oll
so that

(1.20) ei,,, - H Pn j+i] I1Dn - Cn
J=i

by Corollary 1.1.
EXAMPLE 1.1. Consider the scalar Riccati equation

22
(1.21) P" = U.p2_1 - nPn- 1 + q,,,

r.- 1 + Pn-,1

where qn _ 0 and r. > 0. The associated continued fraction is

all a21 ..(1.22) bo + rb, + 1b2
where bo = qO + a2r-1,
(1.23) bi = qi + cx~ri-1 + ri-2,

ai= 21 r 2.

In view of Corollary 1.3, it suffices that

(1.24) [Ti (qjirj- 1 ] 1



RICCATI EQUATION 649

tends to zero as n -- co. Notice this result is far stronger than those of [2]. In
the autonomous case the associated continued fraction is

(1.25) y =/3o 1/3*i + fl +.

where wlo = - r = q + ac2r and a* = -x2r2 and it is well known that the
continued fraction converges to y = x -r with x the positive root of
X2-f_*x - a* = 0. For detailed information see [10], problem 1.4, page 23.
Explicitly, y is given by

(1.26) y = (q + (OC2 + 1)r + [(q + (X2 + 1)r)2 -42r] /2) r.

Further, if x = e'f. r = r*/A, and q = q*A, it is easily verified that as A -* 0

(1.27) Y(A) 1 fr* + (f2(r*)2 + r*q*)1/2,
the equilibrium solution of the analogous continuous time Riccati equation
(see Example 1, p. 98, [7]).
COROLLARY 1.4. For n > 1, C1 . l .... (A) _ D1.
THEOREM 1.2. If Sa = {A E C |r n(A) > A for all n > ox} and Sa -

{A e C r,(A) . A for all n . a}, then Ta * (A) is monotone nondecreasing
for A e S+ and monotone nonincreasing for A E S-. Further, if there exist real
yx and fl. such that D, _ yJ, CQ, _ /2I, for all n _ a, then

(1.28) S {A c CIA < fl2I},
ScT 2 {A c CIA _ YI}.

PROOF. Since zn preserves the ordering of C, if ,,(A) _ A, then T, _ 1Tz(A) _
zr_1(A), and so forth, so that Ta *r (A) > Ta * ..(A) for A eS- The
other assertions are obvious.
REMARK 1.2. In view of the double argument convexity of (A: B), 8+ is

convex (see [1], Theorem 24).
We will now specialize further and assume that hi, Ci, and Ri are invertible

for all i; in view of Corollary 1.4, it suffices to consider zn (A) forA E C the interior
of C.
Now

(1.29) zn(A) = 4.(A1 ±O+y1Y140 + C.
= On(A: On)kn' + Cn

with 0n = (H' 1R,721H.- ) ' This relation follows since

(1.30) (Hn-A Hn- 1: Rn-1)
= Hn-1AHn (H,,-AH 1 + Rn-1)-y1Rn1
=H.-1AHn-1 -H.-1AHn'-l(Hn-,AHn-1 +R,.-,)-'(Hn-IAH'-,),
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so that
(1.31) Hn- 1(Hn-_ AHn - : R._-jHn-,1

=A -AHM1(Hn1AH'-1 + R_1) 1H,1A
= (A' +O[1)-i = (A: O.)

by the Schur lemma (see [3], Theorem (8.6)). Hence, (1.1) demonstrates (1.29)
in view of (1.30). Again, it is of interest to study 1 * * (A), however, now for
A _ CO > 0.

In order to simplify this study, we introduce the following transformation

(1.32) aia(A) = +A + Si,
i(A) = -qi-10i-l(A + Si + Oi-l)1Oi-lo-1

with Si = Cj + qi5i'o*a
It will be convenient to rewrite (1.29) as

(1.33) tr(A) = Sn - nnO,(O°n + A) 10,.on.
THEOREM 1.3. For A e C,

(1.34) aj+1 .. cgn(-onnOf(O + A)1O,,4n) = i...* r*(A).
PROOF. We prove this by induction. For n = i,

(1.35) a!i(-Oii(°i + A)1O',i) = Si- /iOi(Oi + A)-10oi =Ti(A)
in view of (1.33). Suppose (1.34) is valid for all n . k, then

(1.36) 'Ci ...* k* 1 (A) = 'ti rk(.rk+ (A)),
which equals by the induction hypothesis

(1.37) U7 UJk(- OkOk(Ok + Tk+l(A)) Okkk)
=U°i +.+ . Uk+l(zk+l(A) - Sk+l)

i (i+ ... ak+1(0k+10k+1(0k+1 +A)VlOk+l4k+l),
demqnstrating the assertion for invertible A. Since (1.33) holds for all A e C,
the theorem is valid.
COROLLARY 1.5. The maps a and r satisfy the relations

(1.38) Ut1u2 ... on(-0nOn(On + Cen+)V1O,°,n)
= T1 ... Tn(Cn+1) = ... Tn+1(°)
. 1 ...Tn+l(A) _ Tl...*,,+1() = T1 --*.(s.+. )

U*2 ...( -4,n(O + Sn,+y1O),cIn)
PROOF. Since T1 ...*Tn+(O) _ T1 ... Tn+z(A) < T1 ..*Tn+l(oo), the result

follows from the theorem and the obvious relations

(1.39) T1 . Tn+1(0) = T1 Tnn+l)
1...* Tn+1(0) = T1 ....n(n+)
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Now for n > 1, it is clear that

(1.40) a* U2 * *Un+1(c0) = UTU2 *- * a(0) =- ABn'
so that we will suppose that

(1.41) a2 ... 1an(F) = (An+1 + A.K.r)(Bn+1 + B.Knr)
In fact, if the following relations are satisfied

K,<= - 10 - l

(1.42) A.+, = A.Kn(S,+1 + O0) -A,-Kn-10n,
B.,1= B.K,,(S,,+1 + O0) -B, Kn-10¢0nX

with Ao = K-1, A, = S1, Bo = 0, B1 = I, the relationship (1.41) can be
proved by induction. The only point here to be verified is that B.+ 1 + BnK,, r
is invertible, and this follows by a simple disconjugacy argument analogous to
that given in [3], Theorem (5.1).
REMARK 1.3. Equation (1.41) is the analogy of the symplectic system

(1.43) rX,. un -o-1n X,-1
(1.43)

Yn
=

c.i on- 0 - (7 nl- on- 1 LY.- 1

associated with the mapping Tk(M) given by (1.29) as rT(r) = YJ-X1' with
Xn-1 = Iand Y, 1 = r.

Another point of interest is that of investigation of the equilibrium solutions
of (1.33). Previously, we have shown the existence of two equilibrium solutions
Li and Vi. Let Ei denote general equilibrium solution, then if Ei = Ei + O-1
it follows from (1.33) that

(1.44) yi = Si + oi-1 -

and in the autonomous case

(1.45) E = S + 0 - O0(E)-O '.

These equations generalize the quadratic fixed points of scalar continued
fractions.
EXAMPLE 1.2. If ( = I in (1.45), then

(1.46) [O_1/20o-12] = o112co-0112 + 2I - [o-1/2E0-112]-1
and

(1.47) 0-12Po-112 = -I + T{1 + 2pi + [pi + (1pi)2]"2}T'
= T{1pi + [pi + (!Mi)2]112}T,

where T'O-112CO-112T = {pi}, the notation {Ai} denotes the diagonal matrix

Al 01
(1.48)
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The equilibrium solution of r(A) is unique and equals P with P = L = V, if
0 and C are positive definite.

Explicitly, in terms of the unique positive semidefinite square root, we obtain

(1.49) P = IC + 0112(4o-112CO-C0-1112 + 0~1/2C0-112)1120112.

The continuous version of (1.49) when C = AA and 0 = B(1/A) and A tends
to zero is

(1.49') (= B'22.

This equilibrium solution of P = -PB `P + A has been obtained by Reid,
Bellman, and others and has lead to the comment that in this particular case
the Riccati equation is a continuous "square rooter."
We rewrite (1.29) in the more convenient form for Li and Vi as

(1.50) Li = 44'Li+14i' + 4i(Li+l: Oi)0-1(Li+l: Oi)4p + C

with hi' = (Li+1 + 01)-0Oiq5 and

(1.51) Vi = Ic*V * + 0i(Vi+l: Oi)Oi-l(Vi+l: Oi)01 + Ci
with hi* *' = (Vi+1 + Oi)0 10Oio.

It also follows easily that Ei = Vi- Li satisfies

(1.52) Ei=
(see [1], Lemma 27). Now the following theorem establishes the asymptotic
theory for iterates of ;j.
THEOREM 1.4. Suppose Xi, Ri and, Oi are invertible and further that there

exist a and P3 real positive numbers such that

(i) 0 < al < Ci,
(ii) Vi_< pi,

and that ill-||-. C1, then Vi Li = Pi and

(1.53) lim Pi*- *,(A)= ,

the convergence being exponential.
Further (1.44) has a unique supnorm bound solution with Ei >- Oi-. given by

Ei = Pi + 0i+ 1 and P, E C.
PROOF. From (1.50) and (1.51) and our assumptions, it is easily checked that

the quadratic forms I1xII2 and I1xII2 are Liapounov functions for X(i+l)=
i* xi and Y(i+ 1) = *'yi, respectively. In particular, this implies

(1.54) 114Hi* * c* exp {-y*(n-i)}
for n > i for some c* and y* positive and analogous relations for X*' hold
with parameters c** and y**. But since Vi- Li satisfies (1.52), it follows that
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(1.55) Ei = .... O*Ek.llk O
and hence,
(1.56) llEi 12 _ c*c* exp {-(y* + **)(k- i)}IEk+ ill2.

However, as k is arbitrary and liEk+1 ll2 is uniformly bounded, Ei must be zero.
The validity of equation (1.53) follows as Li, i . .* z(A) _ Vi,., since Li,,
and Vi,, converge to Pi = Vi = Li, as Ei = 0. Now suppose (1.44) has two
solutions li and Ti, then xi = li - Oi- 1 andyi = Ti- Oi- 1 are equilibrium
solutions of (1.29) both supnorm bounded and members of.C. Now

(1.57) pi . n(X.+ 1) = Xi,
Ti ..T.(y.+ l) = Yi,

and hence, as x,+ 1 and yn+ 1 are members of C,

(1.58) Li.n_<Xiy Vin

Li," - yi < Vi,n
but the last equation implies xi = yi = Pi.
REMARK 1.4. Theorem 1.4 is essentially unchanged when Ri is singular and

provides stability and a unique equilibrium solution for (1.1) when Li is
uniformly positive definite and Vi is uniformly bounded in C.
REMARK 1.5. Notice that conditions (i) and (ii) of the theorem depend in

general on the existence of uniform a priori bounds, which we developed
previously.

2. Applications to the theory of filtering

In order to apply the theory of iterates of the mapping zn (A) of the last section
to problems in linear filtering theory, we must study the mapping

(2.1) An(A) = O.AO' - K.(H,1AHM1 + Rn-l)#Kn + GnG'
with Kn = 4nAH'1 + GnL'-1, Rn-1 _ Ln-1L L for A e C. This mapping
is similar to I,, except that H E Ms d(R) and G E Mdr(R) with r and s for many
problems less than d. Note also the more general nonlinear term which arises
from the observation noise being correlated with the signal process. Iterates of
A determine the error covariance matrix of the optimal filter (see [3], Chapters
4 and 9). The following lemma relates An (A) to the simpler Riccati mapping Tn.
LEMMA 2.1. For A e C, An(A) = Tn (A), where

(2.2) Tn(A) = i/i8Sn(A)n + Gn(I -L' R L. G'
and

Sn(A) = A - AH-l(Hn-1AHn1- + Rn-1)#Hn-lA,
(2.3) Oin = On- GnE-',R# Hn- 1.
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PROOF. From the definition, A. (A) can be written as

(2.4) A.(A) = 0.8.(A)O' - G.LE-l(H._1AHn-1 + Rn.1)#HnII1 AqP
+ G.L._l(Hn1AHn1 + Rn-1)#L%1Gn

- OAH._l(H._1AM- + Rn-1)%L_1G + G.Gn-
But by the definition of S (A) and Lemma 1.1, it follows that

(2.5) 8.(A)M-1R* L,_,G'
= AHn-1(H1n~AH'-1 + Rn-1)*LnlG n

= AH_1(HAH-1 + 1)#L-1G nX

and hence,

(2.6) G.E._ R_ Hn- 1S(A)H'- R_ 1Ln_ Gn
= LLG - GEL'n- 1(Hn 1AHn-1 + Rn-)#Ln-1anG

In view of the above equalities and (2.4), the lemma follows.
REMARK 2.1. Lemma 2.1 is the discrete time generalization of continuous

time equivalence of Riccati equations (see [3], especially page 90).
REMARK 2.2. Notice that if R.~1 > 0, then Q controllability and R

observability of (2.1) hold when and only when (2.2) is Q* controllable and R*
observable. In fact, in the general case, it seems appropriate to call (2.1) con-
trollable and observable when these conditions hold for (2.2).

In order to overcome difficulty that H has in general less sensors than the
state dimension, we process the observations in blocks of k corresponding to
k sequential time observations. In other words, if i(n, r, no) represents solution
of the Riccati equation, we find the recursion for n(no + kv, r, no) in terms of
ir(no + k(v - 1), r, no). This recursion equation is of the general form of (2.1)
with Hn C Mks,d (R), and hence for sk _ d using Lemma 2. 1, the results of Section
1 are applicable.
As an example, we consider the mapping

(2.7) T(A) = {A - AH' {H*AH'* + R*}#H*A}O' + G*G'.
Then Tk(A) = 0k{A - (AH' + 0-kGLE)(HAH' + R + LLE) (HA + L'O'-k)(p'k
+ GG', where

0 0
UO 0 ...

(2.8) L = .°.. ui = H*ODG*,
U2 U1 U3 0 ...

Uk-2 Uk-3 ... U0 0 ...
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R* 0 0 0
0 R* 0 ...

(2.9) R= 0 R*0

- * * OR*-
H*

(2.10) H , C= [4k'G,- ,*G.

H. ok-1

If 4* is invertible, define M via the equation H0*kG = M + L, using pro-
perties of the pseudoinverse

(2.11) TIXIk(A) = min {||'x + H'yI + RY+LL' + 1G1XIII L,(R+LLW)#L}
for all x e Rd.
An interesting problem is that of characterizing Je = {X E Rd | T j(A)x = T (0)x,

all A E C, all j _ t}. This problem has been solved for H* a vector and
R* = 0 (see [4]). In [5], the general solution has been given for R = 0. From
(2.11) the following theorem determines Jk in general.
THEOREM 2.1. With matrices given by (2.8), (2.9), and (2.10),

(2.12) 4k = {x e RdlTk(A)x = Tk(O)x, for all A E C}
= {x e Rd' |x = H Y, tE R",I (RI+LL') = 0}.

PROOF. It is clear that {x e Rd | Tk(A)x = Tk(O)x, for all A E C} - Jk. Since
for A = Te(B) and x such that Tk(O)x = Tk(A)x, it follows that Tk(O)x =
Tk+t(B)x for arbitrary B e C, so that first set equality is valid. The second set
equality follows from (2.11) by considering Tk(0) and Tk(A) for A e C.
REMARK 2.3. Notice that the invertibility of k is unnecessary for the validity

of Theorem 2.1.
The general technique of enlarging the sensor by block processing is valid in

the time dependent case and leads to a structure analogous to (2.8), (2.9), and
(2.10). Because of this the a priori bounds of Section 1 as well as the asymptotic
results apply in general with the only restriction being that there exists a k such
that rank [H'., * * *'(no, no + k)H'o+k] = d for all no.

3. Conclusions

We have shown that the theory of the Riccati equation which arises in the
discrete time linear filtering problem can be easily obtained by considering the
temporal evolution of k fold iterates. A generalized theory of continued
fractions in semidefinite matrices has been given, which provides best possible
upper and lower a priori bounds for the Riccati equation solutions. It would
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seem that the upper and lower approximates would provide interesting ways to
compute suboptimal filters in environments where the prior variance is unknown.

In a future paper, we will study the analogous continuous time situation.
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