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1. Introduction

We must start with some basic notation and definitions. To avoid stopping
the process at time 0, we shall deal with one particular situation, leaving it to the
specialist to check whether our conclusions remain true when all hypotheses
are deleted. Let E be a locally compact space with countable base. Some A E E
has been singled out for infamous purposes. Let Q be the set of all mappings
co: R,- E which are right continuous and possess a "lifetime" 4(possibly 0
or + cc), namely,

(1. ) o(t) + A for t < (co), co(t) = A for t > (co).
We set as usual X,(co) = w)(t). XC,(wo) = A. and provide il With the natural
family of a-fields (it)t of the process (X,). Given now a Hunt transition
semigroup (P,),>0 on E. with A as an absorbing point, we can define as usual
measures P', Px on Q., for which the process (X,) is Markovian, with the transi-
tion semigroup (P,) and initial measures Mu, ex. The assumptions concerning left
limits in the definition of Hunt processes will be superfluous most of the time.
We postpone all other definitions to the main text.
We are interested in operations on the sample paths which preserve the

homogeneous Markov character of the process, with possible alteration of the
semigroup. Known examples of these operations are: turning a set into an
absorbing barrier; restarting the process at a stopping time (we shall use the
terminology "optional r.v." rather than "stopping time"); killing the process
at a terminal time; reversing time at an L time (L times are called cooptional
random variables below); clock changing relative to a continuous additive
functional. Our purpose here consists in giving two more examples of such
transformations.

Let us say informally that a positive random variable R is a birth time for the
process if the process (XR +t )t > 0 starting at time R is, for every law P', a homo-
geneous Markov process (its transition semigroup may depend on R, but not on

p). Similarly, replacing the process starting at R by the process killed at R. we
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get the notion of a death time. Then two of the preceding examples can be stated
as follows:

(a) optional times are birth times,
(b) terminal times are death times.

We are going to prove here that:
(c) coterminal times are birth times,
(d) cooptional times are death times.

Thus, for instance, the last exit time from a Borel set, which was historically
the first example of an L time (or cooptional r.v.), turns out to be the model for
coterminal times also. According to (c) and (d), it is both a birth time and a
death time.

Properties (c) and (d) are dual to (a) and (b), since time reversal from C
exchanges optional for cooptional, terminal for coterminal and birth for death.
Unfortunately, full proofs using time reversal would be very cumbersome, owing
to the impossibility of reversing on o=co}. Therefore, we have used time
reversal only as a guide to intuition.

2. Cooptional random variables and killing

Let us complete our notations. As usual, En denotes the a-field YO completed
with respect to PI, and sY. is Yo augmented with all subsets of Y" of measure
0; we set Y = nf, Y,, Y, = nf,sy It is well known that the family (Yt) is right
continuous.
The shift operator 0, is defined as usual by X,(06 ) = X,+ (o) for all s > 0,

and the killing operator k, is defined by

JX (CO) ifs8 < t,
(2.1) X (k co) =Pif s < t.
We have k, o kt = ks ^ t

DEFINITION 2.1. A positive random variable L on (Ql, Y) is cooptional if and
only if we have identically in t _ 0

(2.2) L(6tco) = (L(co)-t)+.

One generally allows a negligible set on which (2.2) doesn't hold. For the
sake of simplicity, we demand a true identity. If (2.2) isn't an identity, one can
generally restrict n to some shift invariant and killing invariant subset no of
full measure on which (2.2) holds identically, and the extension of our results
becomes trivial.
The most classical examples of cooptional times are last exit times: if A is

Borel in E, one sets LA(CO) = sup {t _ 0: X,(co) e A} with the usual convention
that sup (0) = 0. The terminology "cooptional" requires some justification,
provided by the following remark. Let T be a random variable on (Q. YF0),
such that 0 _ T . C. Then T is optional relative to the family (.F° ) if and only



MARKOV PROCESSES 297

if the identity Tok, = T A t holds, and this is dual to (2.2) by time reversal at 4.
We collect in the following proposition some useful and simple results on

cooptional random variables.
PROPOSITION 2.1. (i) If L is cooptional, so is (L - t)+ for t _ 0.
(ii) If L and L' are cooptional, so are L A L' and L v L'.
(iii) Let L be cooptional, and CL be the set of all A e Y such that for every

u _0, A n {L >uu} = 0 -'(A) n {L > u}. Then CL is a A-field, and XL is CL
measurable (and also {L = I } E CL). If A E CL, the random variable LA defined
by LA = L on A, LA = 0 on AC is cooptional.
The proofs are very easy, and we give no details.
DEFINITION 2.2. The excessive function associated to the cooptional random

variable L is CL( ') = P{L > 0}.
We have PICL(X) = Px{LoO, > 0} = PX{L > t}. This implies immediately

that CL is excessive. We shall write c instead of CL, to simplify notation, and
define as usual the c path semigroup Q, as

1 P,(x, dy)c(y) ifc(x) 7 0,
(2.3) Q,(x, dy) = c (x)

,A(dy) ifc(x) = 0.

WAre give now the main theorem of this section. The result is quite easy, but it
has one surprising feature: we are killing the process (X,), and get a new process
(Y,) whose transition semigroup is not dominated by (P,). This is shocking at
first, but becomes quite easy to understand if one notes that if (X,) starts at x,
then the initial measure of (Y,) is not xe, but c(x)e. + (1 -C(X))Ea.
THEOREM 2.1. Let L be cooptional, and (Yt) be the process (X,) killed at timeL

(2.4) Y,'() = X,(C) if t < L(w)),
A if t . L(c).

If Q is given the measure P., the process (Yt) is Markovian with (Q,) as transition
semigroup, and c*,u + <1u, 1 - c>eA as initial measure.

PROOF. Let us define the a-field -V as the set of all A E E such that there
exists A, E Et satisfying A n {t < L} = A, n {t < L}. The family (X5) is
increasing, and Y, is A' measurable.

Let s and t be two epochs such that s < t, 4 be a bounded -S measurable
random variable, andf be Borel and bounded on E, equal to 0 at A. The theorem
amounts to saying that

(2.5) EM[0foYf ] = E"[4b.Qt(Y. fl)].

Let us compute the left side. It is equal to



298 SIXTH BERKELEY SYMPOSIUM: MEYER, SMYTHE, AND WALSH

(2.6) E8[0*foXt'I{t<L)] = E"[/ .fo X,*I{t<L}] = E4[0 .fo X 'I{L.ot>0}]'

where /, is (according to the definition of X5) some Y' measurable and
bounded r.v. equal to 4 on {s < L}. Taking conditional expectations with
respect to Et, we get

(2.7) EP[40,.foX,.PXt{L > 0}] = Eu[o,.((fc)cXt)].

Taking conditional expectations with respect to 7, we write this last integral
as E'[4..P, ,(X8, fc)]. On the other hand. P, (fc) = 0 on {c = 0} since the
function c is excessive, and the expectation can be written

(2.8) E`[0,.I(C>01P,-J,(X., fc)] = E"[¢,c.X,.QQ, -X , fA)]

On the other hand, the right side of (2.5) is equal to

(2.9) E"[4-Q,_.(XSf).I{s<L}] = E [0.-Q,_.(Xsf) I{s<L}]
= EP[OS-Qt-S(XSxf)-C.Xs]

(by the same reasoning as above). The theorem is proved.
We shall leave the main subject for a moment, to discuss the relation between

the existence of cooptional times and the transience of the process. Let us say
that a cooptional time L is trivial if for all x either PX{L = 0} = 1, or
PX{L = oo} = 1, and denote by U the potential operator 1' P, dt. We say that
an excessive function h is nearly constant if for all x P {hX = h (x) for all t} = 1.
THEOREM 2.2. The following statements are equivalent:
(i) U(x. B) takes on only the values 0 and -n;
(ii) all cooptional times are trivial.
PROOF. Assume (i), and let h be excessive, bounded by 1. Then h cannot

have a potential part, and therefore is invariant. From martingale theory,
h(x) = EX[hcj], hoX, = E[ho|lFt], where h,, = limper hoX,. Now 1 - M
is excessive, hence invariant; therefore, h2(x) = EX[h2] and h,, must be P'
a.s. equal to h(x), and h is nearly constant. This part of the reasoning is well
known.

Let L be cooptional, and assume that PX{L = co} < 1. Set h(x) = PX{L =
oc}. This is an invariant function, and h,, = '{L=} Since h,, is a constant
Pxa.s.,andisnota.s. 1,hlo = 0Pxa.s.ThentheexcessivefunctioncL = P{L > 0}
is such that P CL -- 0 at x as t -s cc. Therefore at x. CL = lims0 U((CL- PcL)/t);
since U takes on the values 0 and o only, cL(x) = 0. Finally, PX{L = 0} = 1.

Conversely, assume that for some x e E and B E, we have 0 < U(x, B) <
cc. Then P,(x. U(IB)) -- 0 as t -A ce. Hence. U(XJ B) -- 0 P' a.s. as t -O 0.
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Define L as the last exit time from {U(, B) > e}; then for e > 0, L is nontrivial
in the stronger sense that P'{O < L < cc} + 0. Theorem 2.2 is proved.

3. Some trivialities about fields

In Section 5, it will be useful to define 7R for random variables R which are
not optional. This has already been done by K. L. Chung and J. L. Doob in a
well-known paper, but their definition is not convenient for our purposes.
Therefore, we are going to shift for a while to "general abstract nonsense." This
section may be safely skipped, except for a glance at the results.
DEFINITION 3.1. Let R be any positive r.v. on (Q, 7). We define YR as the

set of all A e Y such that for every t _ 0 there exists A, e it such that
A n {R < t} = A, n {R < t}. We say that R is honest ifR is HER measurable.

In more general situations A E Y should be replaced by A e .o. If R is
optional, Definition 3.1 is equivalent to the standard definition of YR.

Here are some obvious remarks. A real valued r.v. Y is .7R measurable if and
only if for every t there exists some .t measurable r.v. Y, such that Y = Y, on
{R < t}. Then for any optional T there exists some YT measurable YT such
that Y = YT on {R < T} (start with a countably valued T, and pass to the
limit, using the right continuity of the family (fY)). Also, {R < T} can be
replaced by {R _ T}. Finally, note that the family (YR+,),>o is increasing and
right continuous.
The random variable R is honest if and only if, for every t, R is equal on

{R < t} to some S, measurable r.v. Rt. This allows a simple characterization of
YR when R is honest.
PROPOSITION 3.1. Let R be honest. Then a random variable Y is .R measurable

if and only if there exists a progressively measurable process (Ye) such that Y = YR
on {R < °°}.

PROOF. The condition is necessary: indeed, for every s rational choose some
r.v. Y, which is ES measurable, such that Y = Y1 on {R < s}. Then for every
t set Y, = lim inf5,t,,,5> Ys1 where s is rational; this is a progressive process, and
Y= YR on {R < co}.

Conversely, if (Ye) is progressive, and Y = YR, then Y is equal on {R < t}
to YRt, which is SWt measurable. Therefore, Y is JFR measurable.
We do not need anything more about honest random variables. Let us just

quote an amusing result. Consider the abstract situation of a right continuous
family (it ), such that .l contains all sets of measure 0 for the basic measure P.
Then R is honest if and only if there exists a well-measurable subset H of
R, x Q such that R is the end of H:

(3.1) R(co) = sup {t: (t, w) e H}.

The class of all random variables which are ends of predictable sets is strictly
smaller than that of honest random variables and particularly interesting, as
shown by a recent paper of Azema.
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4. Terminal and coterminal times, duality
DEFINITION 4.1. A random variable L _ 0 on (Q, JW) is a coterminal time if
(i) L,0 = (L - s)'foreverys.

(ii) Lok, = L on {L < 4}
(iii) Loks . s for every s.
The first property means that L is cooptional. The second property implies

that L is honest, and would mean precisely honestness if the a-fields had not
been completed. The third property is equivalent to the inequality L _ C,:
indeed, applying (iii) with s 4' we get that L < 4', and conversely L < 4
implies Lok, _ 4'ok, < s.

Examples of coterminal times are: the lifetime 4 and last exit times from
sets; last exit times of the left limit process (XJ -) from sets; last jumps of one
given kind, and so forth.
We state some obvious properties of coterminal times.
PROPOSITION 4.1. Let L be a coterminal time. Then:

(i) Lo k, . L for every s;
(ii) s < t implies Lo k. < L. k_

(iii) s < t, Lok, = 0, and Lok, > 0 imply Lok >, s
(iv) set L' = sup,<,,, Lok5. Then L' is a coterminal time, L' < L, with equality

on {L < co3}, and Lok, = L'ok, for every finite t.
PROOF. (i) If s _ L, then Lok, . s . L from Definition 4.1 (iii). If L < s,

Lok, = L from Definition 4.1 (ii).
(ii) Composition of (i) with k, gives Lo k, = Lo ko k, _ L,ok,.
(iii) Assume the contrary: Lokt < s. Then from Definition 4.1 (ii) Loksokl =

Lo kt, a contradiction since the right side is greater than 0, while the left side
is equal to Lo k, = 0.

(iv) According to (ii), this "sup- is really a lim. We first have L' . L from
(i). If L < x, take s > L and apply Definition 4.1 (ii). we find L' . Lo. k = L,
so L and L' are equal on {L < or}. We have for finite t L'ok, = limc
Lo k5 -kk = Lo k, (take s > t).
We must prove that L' is a coterminal time. We have seen that Definition

4.1 (iii) is equivalent to L' _ 4'; since L' . L and L satisfies Definition 4.1 (iii),
the property holds. Next (Lok.)oO, = LoOok.__ if u > s. and this is equal to
(Lok__ - s)' from Definition 4.1 (i). Letting u -- o, we get property Defini-
tion 4.1 (i) for L'. Let us finally prove Definition 4.1 (ii): assume L' < s, then
we have L. k. < s ifu is finite; hence, from Definition 4.1 (ii) Lo k. = Lo ko k, =
Lok, if u > s. Letting u -- o, we get L' = L'ok,.

DEFINITION 4.2. The coterminal time L is exact if L = sup,<,, Loks.
If L is not exact, then the coterminal time L' we have just considered is exact,

and differs from L only on {L = x }. Thus, exactness is not much of a restriction.
We are going now to construct the terminal time associated with the coterminal

time L.
DEFINITION 4.3. The time TL (or simply T) is the function on Q defined by

(4.1) TL(w) = inf {t > 0: L(ktc)) > 0}.
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Note that TL = TL'.
All the results on TL which may be needed below are collected in the following

proposition.
PROPOSITION 4.2. The function T = TL satisfies the following relations:

(i) T is an optional r.v.;
(ii) T < L on {L > 0}, T = oo on {L = 0};

(iii) To t = °o is equivalent to L' < t; hence, L' = sup {t:To.t < oo}
(iv) To k, = oe on {T > 8};
(v) T is a perfect, exact terminal time;
(vi) a < L' . b is equivalent to To0a < b - a, TOb = 00.

PROOF. (i) The inequality T < t holds if and only if there exists some
rational r < t such that Lokr > 0. This implies that T is an optional r.v.

(ii) If L = 0, then Lok, < L is O for all t, and hence T = oo. The inequality
T _ L is obvious on L = oo. If 0 < L < oo, take t > L; therefore L = Lo kt
from Definition 4.1 (ii), and since L > 0 we have T < t, and finally T _ L.

(iii) Using Definition 4.1 (i),

(4.2) T°0t = inf{u > 0:Lok.ofl0 > 0} = inf{u > 0:LoOtok.+t > 0}

= inf {u > 0: L. k.+t > t}
so (To0, = °°) (Lok.+t_ t for all t).e>(L' _ t).

(iv) is obvious, from the definition of T.
(v) A terminal time is an optional r.v. S such that for every t, S = t + So t

a.s. on {S > t}. In the definition which is most commonly used, the exceptional
set may depend on t; if it can be chosen independent of t, S is a perfect terminal
time (in our case the exceptional set will turn out to be empty). Also S is exact
if t + S Ot -- S a.s. as t -O 0.
From the proof of (iii), we have

(4.3) t + To06 = inf{w > t:LokW > t} = inf{w > 0:Lok, > t}

(since w > Lok, according to Definition 4.1 (iii)). Assume that t < T, and
choose u such that t < u < T. Then LokU = 0, and from Proposition 4.1 (iii),
LokW > 0 implies Lok_ > u > t. Therefore, on t < T we have

(4.4) t + To t = inf{w > 0:LokW > 0} = TV

and this means that T is a perfect terminal time without exceptional set.
Let us prove that T is exact. We always have

(4.5) t + To0t = inf{w > 0:LokW > t}
> inf{w > 0:Lok, > 0} = T.

There is equality on {T = oo}. On {T < oo} we have T < T + u for every
u > 0. Therefore, LokT+u > 0, and for t small enough t + To0t < T + u;
hence, T = lim,¢ t + To0t.
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(vi) The relation a < L' . b is equivalent to T 0a < 00, T°O6b = 00
according to (iii), but (ToO < b - a, ToOb = 00) => (To a < 00, T Ob = =00)
(To0a < b -a, T.Ob = 00) since 00 > To0. > b - a implies (b -a) +
TO0b-a0a = ToO. < o0, according to (v), and therefore ToOb < 00.
We have now everything we need to prove that coterminal times are birth

times. However, only one side of the duality between terminal and coterminal
times appears in Propositions 4.1 and 4.2, and we must give the other side.

PROPOSITION 4.3. Let T be a random variable on (Q, JF) which satisfies the
following properties:

(i) T < s = Tok, = T;
(ii) 5< T=> Tok. = ;oo
(iii) s < T => T-s = ToO5.

Set LT (or simply L) = sup {t: T 0, < 0o}. Then L is an exact coterminal time,
and TL = T if and only if Tis exact, that is t + ToO,4Tas t4,0.

PROOF. Let us show first that T < s : Tokk < s. The implication = is
obvious from (i). Conversely, if Tok5 < r < s, (i) implies that Tokoks =
Tokr < r, which excludes the possibility that T > r according to (ii). There-
fore, T < r < s. As a consequence, we have that {T < s} e-.F; hence, T is
optional and a terminal time according to (iii). Note that T is not an arbitrary
terminal time, because of property (ii): 4, for instance, is a terminal time and
s < 4 implies 4ok, = s, not o0.

It follows at once from (iii) that s + To0, > T. and then that t + T 0,
increases in t. Let us set T' = limt 0 t + T.0t. We have T' > T. with T' = T
on {T > 0}. If s < T', then s < T Ot for t small enough, and (iii) gives
s + To0,+t = To0,; letting t -. 0, we get s + T'o0O = T'. Hence, T' satisfies
(iii). If s < T', then s < t + T Ot for all t; hence Tok ,o,0, = o0 from (ii), or
To0,ok5 = oo. Finally, T'ok = 00. If T' < s, then t + T Ot < s for t small
enough. Hence, ToOt = TokoO, from (i); and letting t -O 0, we find again
that T'ok5 = T', that is, T' satisfies (i). Thus, T' is an exact terminal time. Note
that LT = LT'-

Let us prove that L is an exact coterminal time. We have

(4.6) Lo°GO = sup {t: To- t+5 < o0} = (L - s) .

Hence, L satisfies Definition 4.1 (i). Next, assume that T is not identically 0
(in which case everything would be trivial); denote by [A] the constant sample
function equal to A, choose some cl such that T(w) > 0 and some s < T(co).
Then T(kwco) = 0o > s from (ii), and from (iii) T(O5(kclco)) = oo; otherwise
stated, T([A]) = o0.
Then we have

(4.7) Lok, = sup {t:To0tok5 < o0} = sup {t:Tok(5,)+o0, < 0o}.

If t = s, we have T([A]) = oo. Hence, Lok5 < s, that is, Definition 4.1 (iii) is
true. Let us remark that T < To k for all s: ifwe had T > r > To k5 for some r,
we would have from (i) To/kr = o0, from (ii) Tok,ok5 = Tok5 < 00. Hence,
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r > s and T > s; thus, Tok, = o from (ii), which is a contradiction. This
implies that L. k, . L. On the other hand, if s > L, choose some s' such that
s > s' > L. Then To05, = o. Hence, r < L implies T. r < cc, which implies
T0 _ s' - r < s- rfrom(iii).Thereforefrom(i),wegetTok__ oO = ToO,,
or To or°kS = T °o, < co; and finally, r < L. k_ Otherwise stated, L = Lo k
and property (ii) of Definition 4.1 is proved.

IfL = xc, we have ToOt < oo for all t. Given t, choose w > t + T Ot. Then
w-t >To0 andfrom (i)TokW-oO = To t< o. Hence,ToO okw< cc. and
L. kw_> t. Since t is arbitrary, we have also L' = cc and L is exact.
We finish with the proof that TL = T. We have

(4.8) TL = inf{t > 0:Lok, > 0} = inf{t > 0: forsomes ToO ok, < cc}

= inf{t > 0:T'ok, < cc} = inf{t > 0:t > T'} = T'.

5. Birth of the process at a coterminal time

We consider a coterminal time L, exact, and its associated terminal time T.
Let us define a new semigroup (K,) by killing at time T,

(5.1) K,(x,f) = EX[foXt.I{t<T})1
It has A as an absorbing point (since L([A]) = 0. T([A]) = + cc), but it does
not satisfy K,1 -1. That does not matter.

Let us define also g(x) = PX{L = 0} = PX{T = c} for all x e E, including
A (see Proposition 4.2 (iii)). The following computation shows that g is invariant
for (K,):
(5.2) K,(x, g)= Px{To0,=°°, t < T} =Px{T- t =x, t < T}

= PX{T = co} = g(x).

We can therefore define the conditioned semigroup,
1 K, (x, dy)g(y) if g(X) 0,

(5.3) K'(x, dy) = g() g(x)

8(dy) if g(x) = 0.

If g(x) =& 0, this is a probability measure carried by {g > 0}.
We shall need the following elementary property of the semigroup (Kr,).

Let (Yj)5>0 be any right continuous Markov process with (Kg) as its transition
semigroup, and let f be a bounded continuous function on E. Set j = Kgf. Then
the process (Ys) is strong Markov, and the process (jo Ys)>0 is a.s. right con-
tinuous. These properties belong to the folklore of Markov processes, the
second statement being a particular case of the so-called "Feller property of
the semigroup in the fine topology." They are true for all right continuous
strong Markov semigroups (see the bibliographical comments at the end of the
paper).
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We state and prove now our main result. The restriction to the open interval
(0, oo) is essential.
THEOREM .5.1. The process8(XL + ),>o iS a strong Markov pr.ocess with respect

to the family wwith (KM) as transition semigroup.
PROOF. Implicit in the statement is the hypothesis that Q2 has been provided

with some law PI; we drop p from our notation, however.
Let L, be the dyadic approximation ofL from above., that is. L, = C2 ` if and

only if (k - 1)2` < L _ k2`. k > 1, and L, = Oon {L = 0}. We are going
to prove that, forf continuous and bounded on E and 0 < s < t,

(5.4) E[foXL +tI |Ln+s] = K-s(XL +s. f)
(the fields are defined as in Definition 3.1. L. L,. L, + s, Ln + t being honest;
XL,+, iS L + measurable according to Proposition 4.2). This relation will imply
Theorem 5.1. Indeed, each process (XL.+u).>o is a right continuous Markov
process with (Kg,,) as transition semigroup according to (5.4). Using the Feller
property above, Kgf is a.s. right continuous on the sample paths of every process
(XL,+.), and therefore as n - oc. on the sample paths of (XL+U)U>O. If
H e JL+S C JL.,, the relation

(5.5) fH XLn+, dP fKt-fH.XL +, dP

passes nicely to the limit as n -00 . giving the result we seek.
Let us therefore prove (5.4). Take H e 3L +s. Then letting Jk = {k2C <

L . (k + 1)2-},

(5.6) f°XLn+, dP = foXt dP + f| fX(k+ 1)2-n dP.
(5.6) TH./OXL~ P fH,L=O k=O HnJk

Since H e 3Ln +±s, and we are on {L < (k + 1)2`}. therefore on
{Ln + 8 _ (k + 1)2-n + s}, we may replace H by some H' Ce (k+1)2n+s.
The kth term of the sum can be written

(5.7) E[fox(k+l)2-+t, H', TO0k2-n 2-n. T.0(k+l)2-n =

We write {T0(k+1)2-n = x} as {To0(k+1)2-- > t} n {T0(k+1)2-n+t = cc} and
take conditional expectations with respect to JF(k+ 1)2 -n+t. We get

(5.8) E[foX(k+l)2-n+t, H'. To0k2-n < 2', TO0(k+1)2-a > tgoX(k+1)2-.+t]
- E[H', TO0k2-n _ 2`. TO0(k+l)2-n > 8.

T°0(k+ 1)2-n+s > t - s., (M x(k+1)2-1+t]-

Taking now conditional expectations with respect to JP(k+1)2-n+s± equation
(5.8) is equal to

(5.9) E[H'. T°Ok2-n _ 2 . T O(k+l)2-n s -K1s(X(k + 1)2 n+. fg)].
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We replace K,-,(fg) by gKg-s(f), a legitimate step since K,-,(fg) = 0 on

{g = 0}, and we get
(5.10) E[H', TO0k2- _ 2-", TO0(k+1)2- > s, goX(k+1)2-l+s,

KgSfoX(k+1)2-n+s]
which is equal to

(5.11) E[H', k2-n < L < (k + 1)2- KtKg-SfOX(k+l)2 n+s],
according to a reasoning similar to the first transformation of this proof. We
now replace H' by H, sum over k (the first term on the right side of (5.6) needs
a similar, but slightly different treatment), and we get

(5.12) H 'XLn,, = JKg'H nXLn s dp,

which is equivalent to (5.4).
REMARK. An easy computation shows that

(5.13) Kg(x,f) = 1 Q (x fg) =Ex[foX, T < ]

Thus, (Kg) appears as the transition semigroup conditioned by the fact that
T = oo. For instance, if L is the last hitting time of A, (Kr ) is the semigroup of
the original process conditioned not to hit A. This is reasonably intuitive.

REFERENCES

[1] J. AZEMA, M. DUFLO, and D. REVUZ, "Proprietes relatives des processus de Markov recurrents,"
Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Vol. 13 (1969), pp. 286-314.

[2] R. M. BLUMENTHAL and R. K. GETOOR, Markov Processes and Potential Theory, New York
and London, Academic Press, 1968.

[3] K. L. ChuNG and J. L. DOOB, "Fields, optionality and measurability," Amer. J. Math., Vol. 87

(1965) pp. 397-424.
[4] K. L. CHUNG and J. B. WALSH, "To reverse a Markov process," Acta Math., Vol. 123 (1970),

pp. 225-251.
[5] E. B. DYNKIN, Markov Processes I, II (translated by J. Fabius. V. Greenberg, A. Maitra, and

G. Majone), New York, Academic Press; Berlin-Gottingen-Heidelberg, Springer-Verlag, 1965.
[6] P. A. MEYER, "Le retournement du temps d'apres Chung et Walsh," Seminaire de probabilites

V, Universite de Strasbourg Lecture Notes in Mathematics, Heidelberg, Springer-Verlag, 1971.
[7] M. NAGASAWA, "Time reversions of Markov processes," Nagoya Math. J., Vol. 24 (1964),

pp. 177-204.
[8] D. REVUZ, oral communication.
[9] J. B. WALSH. "Some remarks on the Feller Property," Ann. Math. Statist., Vol. 41 (1970),

pp. 1672-1683.


