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1. Introduction

The purpose of this exposition is to give correct proofs of two well known and
reasonably important propositions concerning continuous additive functionals.
We adopt the terminology and notation of [1] throughout. We fix once and for
all a standard process X = (Q, Y, Yt, X1, St, PX) with state space E. (See
(1-9.2); all such references are to [1].)
The following two theorems are important facts about continuous additive

functionals (CAF's) of such a process. (See (IV-2.21) or [2].)
THEOREM 1. Let A be a CAF of X. Then A = E' 1 A' where each A' is a

CAF of X having a bounded one potential.
Making use of Theorem 1, one can establish the following result. (See

(V-2.1) or [2].)
THEOREM 2. Suppose that X has a reference measure (that is, satisfies the

hypothesis of absolute continuity). Then every CAF of X is equivalent to a perfect
CAF.

Unfortunately, the proofs known to me of Theorem 1 are not convincing.
For example, the "proof" in [1] goes as follows. Let A be a CAF of X. Define

(1.1) (x) = Ex e- te- A dt.

Clearly, 0 < (p _ 1 and p is universally measurable; actually it is not difficult
to see that up is nearly Borel, but this is not required. Let R = inf {t: A, = c}.
Then it is easy to check that R is a terminal time and that PX(R > 0) = 1 for
all x. Obviously, (p(x) = Ex J0R e-te-A, dt. Now if T is any stopping time,

(1.2) EX{e`T(XT); T < R} = EX e-T Jl e-te AtOT dt; T < R}

PR
= EX eAT { e-ue-A du: R <T
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and so using T15, Chapter VII, [3], one finds

(1.3) UAXp(x) = EX{ e-'(p(X,) dA,

= EX f e-'(p(X,)I[OR)(t) dAt
0

r R
= EX 1 J~R e-e-Au du dA

= Ex : e-ue(- eAr dAt) du

rR
= Ex 1 eu`(1 - e-A) du < 1.

Next let fn be the indicator function of {1/(n + 1) < (p . 1/n} for n > 1.
Clearly, EXf = 1 and so if we define A' = It nf(Xj) dAy, then EA' = A. Also,

(1.4) Ex e-t dAn = Ex e-f.(X,) dA,

. (n + 1)EXf e-'p(X,)dA, . n + 1.

Consequently, each A' is a CAF of X with a bounded one potential.
The joker, of course, comes in this last sentence; namely, although t -+ A' is

continuous almost surely, A' need not be an additive functional. To see the issue
fix n and let B = A' and f = f,. Then

(1.5) B,+ = B, + £ fjj. 0t d.A.

Now A"+, = A, + A., O6 and so if A, < cc, dA.+, = d(A. o 0,) which yields

(1.6) B,+, = B, + Bo,,°

if A, < cc. Obviously, (1.6) holds if B, = cc, but there is no reason for (1.6) to
hold on {A, = cc; B, < oo}. If A, = xc, then A.+, = co for all u and so

dAu+, = 0. Therefore, although (1.6) need not hold, at least

(1.7) Bt+s _ Bt + Bs°0,.

However, something of value can be salvaged from this discussion. Let fO, and
A' be as above. Note that

(1.8) A' =
f

f(Xs) dAs = f, (Xs) dA{s
tot
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since dA, puts no mass on the interval [R, cc]. In particular, each A' is a CAF
of (X, R) with a bounded one potential; recall that for B to be an additive
functional of (X, R) we only require that B,+, = B, + B,.61 almost surely on
{R > t} and that B is continuous at R and constant on [R. oo]. Thus, we have
proved the following lemma.
LEMMA 1.1. Let A be a CAF of X. Then A = )41A', where each A' is a

CAF of (X, R) having a bounded one potential.
Most likely Lemma 1.1 would suffice in many situations. Still it is of interest

to know that Theorem 1 is valid. The main purpose of this note is to present a
proof of Theorem 1. It is not at all surprising that Lemma 1.1 will be used in our
argument. Once Theorem 1 is established Theorem 2 follows as in [1]. However,
because our proof of Theorem 1 is rather long, there is some interest in giving
a direct proof of Theorem 2 which avoids an appeal to Theorem 1. We present
such a proof in Section 2.

Although our proof of Theorem 1 is rather involved, all of the ideas and tech-
niques that we will need are contained in Section V-5 of [1]. Since these tech-
niques are of some interest in themselves and not particularly well known, it is
perhaps worthwhile to present them here in a situation that is substantially
simpler than that of Section V-5 of [1]. Consequently, we will give complete
details even though this necessitates repeating certain arguments given in [1].
The key fact that we need is the following interesting result which is essentially

(V-5.12).
THEOREM 3. Let T be the hitting time of afinely open nearly Borel set and let

A be a CAF of (X, T) with a bounded one potential. Let ,] < 1 and let K =
{x: EX(e- T) < q}. Then there is a CAF, B of X with a bounded one potential such
that for every x and f E &* which vanishes off K, we have

(1.9) Ex fT e-tf(X) dA, = EX &e -'f(X,) dB,.

Most likely this theorem is true for an arbitrary exact terminal time T, but
our proof makes use of the fact that T is the hitting time of a finely open set. Of
course, one could easily abstract the property of T needed for the proof to go
through, but this would be of very little interest.

As mentioned before, Section 2 is devoted to a proof of Theorem 2. In
Section 3 we prove Theorem 1 assuming Theorem 3, while in Section 4 we prove
Theorem 3.

2. Proof of Theorem 2

We begin with some preliminary facts that will also be used in Section 3. We
fix an additive functional A of X and for the moment we assume only that A
has no infinite discontinuity. We assume without loss of generality that t -

A,(co) is right continuous and nondecreasing for all co. Recall that Ao = 0 and
t -- A, is continuous at 4. We will usually omit the phrase "almost surely" in our
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discussions. Let R = inf {t: A, = xe}. By right continuity AR = x if R < so
and since A has no infinite discontinuity. A is continuous at R if R < x. Of
course, A is continuous at R ifR = c) because A = lim, t.TA, by convention. It is
easy to see that R is a terminal time and that PX(R > 0) = I for all x. Therefore.
R is an exact terminal time. Let R, = inf {t: A, _ n}. Then each R, is a stopping
time and R, < R when R < x because A has no infinite discontinuity. Clearly,
{R,} is increasing. Let T = lim R, . R. Since A(R,) _ n on {R, < x}, it is
clear that A(T) = oc on {T < oo}. Consequently. T = R. Thus. {RB} is an in-
creasing sequence of stopping times with limit R and R, < R for all n if R < xo.
Let 0f(x) = EX(e-R). Because R is an exact terminal time / is 1-excessive and
0 . 4 < 1. LetE, ={0 > 1 - I/n}. Then each E, isa finely open nearly Borel
set, and the En decrease to the empty set. Finally. let Tn be the hitting time of E,.
The following lemma is well known. Since a more general and considerably more
complicated version is given in [1], we will give the proof here even though only
very standard techniques are involved.
LEMMA 2.1. Using the above notation Tn . R. lim 7'T = R. and 7'n < R if

R < x).
PROOF. By the usual supermartingale considerations e-RI(XRj) e-R L

where 0 . L < 1 and since R is a strong terminal time. we have, for any F E 7Rk
and n > Ic.

(2.1) Ex{e-R.i!I(XRJ) r1 Rn < R} = EX{e-R; F: Rn < R}.

Letting n -- -. we obtain

(2.2) EX{e-RL. r: R, < R. V n} = EX{e-R: F: R& < R. V n}

for all F e V.Rk. Let F = {R < oo} e V 7Rk. Since Rn < R if R < co. we see
that L = lim 0(XRJ) = 1 if R < so and since f is 1-excessive, this yields
liMItR O(Xl) = ] if R < o.
Now if 0 < t < Tn. O(X,) < 1 - I/n, and consequently Tn < R if R < x

because limtTRVI(Xt) = 1.Hence.T _ Rand T,2 < RifR < cc.Also, 0(XTj)>
1 - l/n if T. < x and so

(2.3) Ex{e-(R-T_): T, < R} = EX{f(XT9: T
>

< R} _ - P(T, < B)

Letting n -o. we see that lim Tn = R on {Tn < R: V n}. But lim Tn = R on

{Tn = R for some n}. and so Lemma 2.1 is established.
The importance of Lemma 2.1 is that the 7'n are hitting times of finely open

sets and hence are perfect exact terminal times.
We now are ready to prove Theorem 2. We assume that A is a CA F of X and

we will use the notation developed above. Define B' = A(t A Tn). Then each B"
is a CAF of (X. Tj) and B" is finite on [0. Tn): this is clear if R < so because then
Tn < R and it is true a priori if R = so. But I[o Tn)(t) is a perfect multiplicative
functional of X and so it follows from (V'-2.1) that each B" is perfect. (The
proof of ('-2.1) is valid for all CAF's of (X. M) which are finite on [0. S) where
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S = inf {t: M, = 0}.) As a result for each n there exists A,, e Y with Px(AJ) = 0
for all x such that if co ¢ An, Bt+S = Bt + BSoOtI[oTn)(t) identically in t and s.
Let AO = {lim Tn + R} and A = U,, 0 An . The proof of Theorem 2 is completed
by observing that

(2.4) {A+,, # A, + A..0, for some t and u} c A.

3. Proof of Theorem 1

Let A be a CAF of X. Then by Lemma 1.1 we can write A = E A" where each
A" is a CAF of (X, R) with a bounded one potential.
LEMMA 3.1. Let B be a CAF of (X. R) with a bounded one potential. Then

there exist CAF's B" of X. each having a bounded one potential such that B, =
E B n if t < R.

Before coming to the proof of this lemma, let us use it to prove Theorem 1.
Applying Lemma 3.1 to each A". we have

(3.1) A, = nAt' = A nk if t < R.
n n k

where each Ank is a CAF of X with a bounded one potential. But if t . R.
A, = cc and since the double sum in (3.1) is monotone in t. it also must be
infinite if t > R. Thus, (3.1) holds for all t establishing Theorem 1.

It remains to prove Lemma 3.1. We do this assuming Theorem 3 which will
be proved in Section 4. As in Section 2 let V(x) = EX(e-R) and let Tn be the
hitting time of the finely open set E,, = {0 > 1 - l/n}. Then Tn T R according
to Lemma 2.1. Let Gn = {i/ . 1 - I/n} and let pn(x) = Ex(e-T,). Next define
Kn'k = {Pn < 1 - I/k}. It is immediate that Kn k increases with both n and kim
and so if we let Kn = K"" then Kn c G,, for each n and U Kn = E. Now t-
B(t A Tn) is a CAF of (X, Tj) with a bounded one potential and so by Theorem 3
there exists a CAF, C". of X with a bounded one potential such that if f Ec
and vanishes off K, then

(3.2) Ex f e-f(X,) dB, = EX e-f(X,) d j'.

We need the following compatibility relationship: if f > 0 vanishes off K,
then for all ni

(3.3) Ex e'f(X,) dCn = EX e 'f(X,) dB,.

Suppose firstly that ni < n. It follows from (3.2) that

(3.4) = T (X.) dB = f, IK,,(XU) dCi
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define CAF's of (X, TJ) with the same bounded one potential. Consequently,
by the uniqueness theorem for CAF'S, B = C (that is, B and C are equivalent).
But T_ < Tn and hence (3.3) holds if m < n.

Next suppose that m > n. Then K, ' G, ' G,,. Recall that Em = E - Gm
and Tm is the hitting time of Em. Let S be the hitting time K, u Em and define
stopping times as follows: S0 = 0,

(3.5) S2k+1 = 82k + Tn°oS2k. S2k+2 = 82k+1 + 8 0S2k +2'

for k > 0. Then {Sk} forms an increasing sequence of stopping times and since
Em is finely open, Sk _ Tm for all k. Also, X(S2k) e K, if S2k < Tm and using the
definition of K, this yields

(3.6) Ex{e S2k+1; 82k+1 < Tm} . Ex{exp {-(52k + Tfl s2k)}; 52k < Tm}

. (1 - 1/n)EX{e S2k; S2k < Tm}

. (1 - 1/n)Ex{e S2k ; S2k-1 < Tm}.

Consequently, lim Sk = Tm. But f vanishes off K, and X, ¢ K, if S2k+ 1_ t <
S2k+2. As a result using (3.2), we obtain

r~ma) rS2k + I

(3.7) Ex e-f(X,) dB, = EX e'f(X,) dB,
0 J S2k

= EX e-S2kEx(S2k) f e`tf(XJ) dB1}
k=O J

= ExEe-S2k~x(S2) e `-f(X,) dC,'
k=O J

rT_
=Ex e| Jef(X,) dC,.

Thus, (3.3) is established since it reduces to (3.2) when m = n.
Now disjoint the Kn: J1 = K1, Jn = K. - Uj<n Kj. Thus, {Jn} is a dis-

joint sequence of nearly Borel sets such that U Jn = E and Jn c Kn for each n.
Define

(3.8) Bn= Ij,(XJ) dCW.

Each Bn is a CAF of X with a bounded one potential. Let C, = 1 B' and let
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f E . Then for each n

(3.9) Ex f e-tf(X,) dC, = E Ex fn e t(fIJk) (X) dCk

= Z Ex e (fIJk) (X,) dBt

= EX fn e`tf(X,) dB,

and letting n cc, we obtain

rR rR
(3.10) Ex { etf(X,) dC, = EX e`tf(X,) dB,.

Since R > 0 almost surely. this implies that t -+ C, is finite on [0, R) and it is
then easy to see that C is a CAF of X. Once again the uniqueness theorem for
CAF's tells us that B, = C, if t < R. But C = E1B' where each B" is a CAF of
X with a bounded one potential, and so Lemma 3.1 is established.

4. Proof of Theorem 3

The proof of Theorem 3 is rather long and so we will break it up into several
lemmas. We refer the reader to Section 1 for the statement of Theorem 3. We
begin with some notation that will be used throughout the proof. Let G be the
finely open set such that T = TG. Lete!(x) = EX(e- T). Then K = {f < q} where
t < l and K c {j . } c E- G. Define To = 0 and for n _ 0

(4.1) T2n+1 = T2n + ToOT2, T2n+2 = T2.+1 + TKO0T2+1

Thus, {T.} is an increasing sequence of stopping times, and for any x and n _ 1

(4.2) Ex{e-T2n+1; T2n < 0 = EX{e T2n, (XT2J); T2n <

. 1Ex{e-;T2 T2n < oo}

. qEX{e-T2 1;T2.-2 < °°}

because Of(XT2.) _ il if T2n < xo and n > 1. As a result lim Tn = cx.
Suppose for the moment that there is a CAF, B of X for which the conclusion

of Theorem 3 holds. If we define

(4.3) u(x) = EXf e tIK(X,) dA, = UAIK(X),
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then because X, 0 K if T2n -1 _ t < T2n we can compute U'IK (x) as follows

(4.4) UgIK(X) = EX e'IK(X,) dB,
co ¢T2n + 1

= n=O EX 1 e-'IK(X,) dB,
n=O TT
== Ext e-T2nEX(T2!) T e-tIK(Xt) dBt}

= Z EX{e T2nU(XT2J)}.
n=O

The main part of the proof of Theorem 3 consists in showing that if we define

(4.5) w(x) = i Ex{e2nu(XT2 )},
n 0

then w is a regular one potential of X, and hence the one potential of CAF of X.
By hypothesis, u is bounded and since

(4.6) W(X) . l|ull Ex(eT2n) . lull E tn < c0
n=0 n=O

w is also bounded.
LEMMA 4.1. Let K be as above. Then w PkW.
PROOF. For typographical simplicity let Q = TK. Then

(4.7) PKw(x) = EX{e-Qw(XQ)}

= Z EX{exp {-(Q + T2n0lQ)}u(XQ+T2,ooQ)}.
n=O

Break each summand into an integral over {Q < T1} and over {Q _ T1}. A
straightforward induction argument shows that if k _ 1, Q + Tk OOQ = Tk on

{Q < T1}. On the other hand if Q _ T1, then Q = T2. But then Q + T1 0Q =
T2 + TOOT2 = T3 and again one sees by induction that for k > 0, Q +

Tk°oQ = Tk+2 if Q > T1. Consequently,

(4.8) PKhv(x) = Ex{e7Qu(XQ); Q < T1} + Ex{e T2U(XT2J)}.
n= 1

Therefore,
(4.9) w(x) - PKw(x) = u(x) - E{e-Qu(XQ): Q < T1}.
But T1 = T. Q = TK, and using the definition of u (see (4.3)), we obtain

(4.10) EX{e-Qu(XQ); Q < T1} = EX { e-'K(X,) dA, = u(x).

Therefore. in = PKw. completing the proof of Lemma 4.1.
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LEMMA 4.2. If J is any compact set, then PJw _ w.
PROOF. Let S = TJ + Q. OTJ where Q = TK as before. Now Xs c Ku K' if

S < cc. But X, ¢KuKT if Tn+, _ t < T2+2.and so {S < oo} = U,, {T2n _
S < T2n + 1 }. Also, it is easy to check by induction that for k _ 0, Tk + 2 = T2 +
Tk°oT2. Hence,

(4.11) w(x) = u(x) + Ex{eT2U(XT2)}
n= 1

= u(x) + E{e-T2w(XT9}.
Again one checks that for k _ 1. S + TkoOS = Tk if S < T1. Now {S < T1} e
7T 1 C 7T2 and so

(4.12) EX{eSw(Xs); S < T1}
= EX{esu(Xs); S < T1} + EX{e T2wU(XT2); S < T1}

Using (4.11) and the fact that u is one (X, T) excessive, we obtain

(4.13) EX{e-sw(Xs); S < T1} + EX{e-T2w(XT2); S _ T1} . w(x).

We next prove by induction that for all n _ 1

(4.14) w(x) _ EX{e-sw(Xs); S < T2n} + Ex{e-T2.w(XT2.); S _ T2n}.
If n = 1, this reduces to (4.13) because S lies in some interval [T2k. T2k+l)
when S is finite. Assume (4.14) for a fixed value of n. The second summand on

the right side of (4.14) may be written

(4.15) EX{eSw(Xs): S = T2n} + Ex{e T2w(XT2) S > 2n}
It is immediate that if T2n < S then T2n -1 < TJ . Recall that S = TJ + Q OOT,
and T2n = T2n-1 + QoOT2n-1. But this together with the fact that K is finely
open implies that T2n < TJ if T2n < S. Consequently. T2n + SOT2n = S if
T2n < S. Combining these observations with (4.13). we obtain

(4.16) Ex{e T2nW(XT2.); S > T2n}
> Ex{e-T2nEX(T2n) [e-sw(Xs); S < T1]; S > T2n}

+ Ex{e-T2EX(T2)[e T2w(XT2); S _ T11JS > T2n}

= EX{eSw(Xs); T2n < S < T2n+l}
+ Ex{eT22 W(XT2 + 2).S _ T2n+1}

But {T2n < S < T2n+1} = {T2n < S < T2n+2} and {S > T2n+1} = {S > T2n+2}.
As a result (4.14) holds with n replaced by n + 1, and hence it holds for all n _ 1.
Now lim Tn = oo and so letting n - oo in (4.14). we obtain w > PSw. But
PSw = PJPKw = PJW since w = PKW by Lemma 4.1. completing the proof of
Lemma 4.2.
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LEMMA 4.3. The function w is 1-excessive.
PROOF. In light of Lemma 4.2 and Dynkin's theorem (11-5.3), it will suffice

to show that lim inf, 0 P,'w(x) > w(x) for all x. Suppose first of all that x is not
regular for K. Then almost surely pX, t + Q o Ot = Q for t sufficiently small, and
since w = PKw this yields

(4.17) lim P11W(X) = lim P'1PKW(X)
t lo0 t B0

= lim EX{exp {-(t + QoO,)}w(Xt+QOet)}
= PKW(X) = W(X).

Suppose on the other hand that x is regular for K. Then PX(t < T) -- 1 as

t -- 0 and so using (4.11) with T = T1,
(4.18) P,1w(x) > Ex{e&w(X,); t < T}

= EX{e&u(Xt); t < T} + EX{eT2w(XT2); t < T}.

Because u is 1 - (X, T) excessive this approaches u(x) + EX{e-T2w(XT2)} =
w(x) as t -+ 0, completing the proof of Lemma 4.3.
LEMMA 4.4. The function w is a regular one potential.
PROOF. We must show that if {S8} is an increasing sequence of stopping

times with limit S, then PS1.w -+ Psw. It follows from (IV-3.6) and (IV-3.8) that
we need consider only the case S,, = TB, where {Bj} is a decreasing sequence of
nearly Borel sets. In particular each 5,, is a strong terminal time and consequently
so is their limit S. In checking that Ps',w(x) -- Ps'w(x), we may assume that
PX(8n > 0) = 1 since if 8,, = 0 for all n the conclusion is obvious. Now fix x
and let

(4.19) a,,,k = EX{esnW(Xs.); Tk < 8n _ Tk+l}

and

(4.20) ak = EX{e w(Xs); Tk < 8 . Tk + 1}.

Then Psiw(X) = 2k ank and PS' w(x) = Xk ak. It will suffice to show that for each
k, aflk -* ak as n -- o because Yk>N a, k _< |IwIEx(e-TN) ° 0 as N x cc.
Suppose first of all that k is even, say k = 2j. If R is any strong terminal time
then on {T2i < R . T2 +1} we have R = T2i + R.OT2j, and also because T is
the hitting time of a finely open set R + T200R = T2j+2. Now using (4.11), we

obtain for any strong terminal time R

(4.21) EX{e-RW(XR); T2j < R . T2j+l}
= Ex{e- U(XR); T2i < R; ROOTj . T OTO.}

+ EX{e REX(R) [eT2w(X2); T2 < R . T2j+1}
= EX{e-T2jEX(T2i)[e-RU(XR); R < T]; T2i < R}

+ EX{e-T2i+2W(XT2J+2); T2. < R < T2j+1}
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In (4.21), we may replace R by either S& or S. Observe that the set {T2i < S,}
approaches the set {T2i < S} as n -+ oo and that {T2i <5, _ T2j+1} approaches
{T2<8S .T2j+1} as n -- cc. Now u is a regular one potential of (X, T) since
it is the one potential of a CAF of (X, T), and u(XT) = 0 because XT is regular
for G; recall.T = TG with G finely open. As a result for any y

(4.22) EY{e-snu(Xs.); 5n _ T} = EY{e'su(Xs); 5, < T}
EY{e-su(Xs); S < T}

- EY{e-su(Xs); S < T}.

as n -- oo. Consequently, a,,, 2j -a2j as n -+ co. Next consider the case in which
k is odd, say k = 2j + 1. Using the fact that w = PKw, we obtain

(4.23) a,,,2j+1 = EX{exp {-S8 + TK° OS} W(XS +TK°Os.); T2j+1 <5n _T2.+2}
and a similar expression for a2i+ 1 with 5, replaced by S. But on {T2j+ 1 < Sn <

T21+2} we have 5, + TK(OOsn = T2i+2 while on {T2j+1 < S . T2i+2}, S +
TKo0s = T2i+2 because K is finely open. From this and the fact that S,,TS, it is
immediate that a, 2J+ 1 -a2+ 1 as n --+ c. This completes the proof of Lemma
4.4.
We are now prepared to complete the proof of Theorem 3. Since w is a regular

one potential there is a CAF, B of X such that w = U,1. that is, w is the one
potential of B. Now D, = BAT is a CAF of (X, T) and

(4.24) UD1 (x) = EX{ e- dB, = w(x) - Ex{eT W(XT,)}.

From Lemma 4.1

(4.25) EX{e-TlW(XT,)} = Ex{e T2W(XT2)}
and so by (4.11), UD1 = u. Hence, D and t -go IK(XU) dA, are equivalent
CAF's of (X, T). Therefore, Ex Jo etf(X,) dA, = EX f0 e'f(Xt) dB, iff vanishes
off K. completing the proof of Theorem 3.
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