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1. Introduction

Let X be a linear space; by a linear stochastic process will be meant a map L
from X to the linear space of measurable functions on some probability space
(Q0, S, Pr) such that, for each real a, b and each x, y in X, aL. + bLy = Lax+by
with probability one. Two such maps are equivalent if they have the same finite
dimensional joint distributions. Such processes have been objects of active
investigation in recent years, both for their intrinsic interest and in connection
with the study of other stochastic processes. For background, we refer the reader
to [2].
A central role is played by the canonical normal processes on real Hilbert

spaces, which are characterized by the conditions that each Lx is Gaussian with
zero mean and E{LXLY} = (x, y). The restrictions of these processes provide
models for all Gaussian processes with zero mean, in the following way. Let
{Rt t E T} be a Gaussian process with zero mean. Let H be the closed subspace
ofL2 (Pr) spanned by the random variables ofthe process. Thus, a map 4: T -+ H
is defined. Let L be the map:H -+ L°(Pr) which assigns to each x e H the
selfsame random variable regarded as a member of Lo (Pr). Then L is a linear
map: H -. Lo (Pr), that is, a linear stochastic process on H. Each Lx is Gaussian
with zero mean, and E(LXLy) = (x, y), so that L is a version of the canonical
normal process on H. The original process 4 is then given by c, = L+(t)-

Recently this viewpoint has been developed, notably in [2] and [8], in
connection with the study of pathwise boundedness and pathwise continuity of
Gaussian processes. It is easy to see that 4 will have a pathwise bounded version
if and only if L has a version whose restriction to +(T) is pathwise bounded.
If T has a topology, and t -X c, is stochastically continuous, then 4 is continuous:
T -+ H, so the existence of a version of L whose restriction to 4 (T) is pathwise
continuous will imply the existence of a pathwise continuous version for (;
while if 4 is also an open map, as is the case when T is compact, then the con-
verse implication also holds.
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DEFINITION 1. A set S in H is called a GB set if the restriction to S of the
canonical normal process in H has a pathwise bounded version, a GC set if it has
a pathwise continuous version.

DEFINITION 2. For any linear process L on a linear space X, L(S) is defined
as the essential supremum of the set of random variables {IL,, x E S}. Thus, L (S)
is a random variable with values in [0, + oo].

It is easy to see that L has a version whose restriction to S is pathwise
bounded if and only if L(S) < oo with probability one. Also, if S c R then
L(S) < L(R); while if R is the convex symmetric hull of S then L(S) = L(R).
So the property of possessing a pathwise bounded version on S persists through
the operations of convexifying, symmetrizing, and, of course, passing to a
subset. Furthermore, if X is a topological vector space and L is stochastically
continuous, the property is preserved through closure, since L(S) = L (S). This
is convenient, since convex closed symmetric sets are more amenable to study.
It is also fairly clear that the vector sum of two GB sets is again GB.

Continuity is more subtle: it is not true that a GC set will have a closed convex
symmetric hull which is a GC set; indeed, Example 2 shows that convexification
or symmetrization or closure alone can destroy the property. However, sur-
prisingly, if S is a compact GC set, then its closed convex symmetric hull is again
a aC set (Theorem 2). Also, it remains true, although no longer obvious, that in a
fairly general situation the vector sum of two GC sets is CC.

It is shown in [1] that a closed GB set is compact; and it is obvious that every
compact GC set is a GB set. But how badly can a GC set be non-GB? Our
results in this direction are summarized in Corollary 2 following Theorem 5:
every convex symmetric GC set is contained in the sum of a finite dimensional
subspace and a compact aC (and therefore also GB) set. As for the question of
how non-GC a GB set can be, our Theorem 6 makes more precise Theorem 4.7
of [2].

Finally, we discuss the connection between the GB and GC properties and
extendability of the images of the cylinder set measure associated with L to
certain Banach spaces arising naturally in the context. This is done both for the
Gaussian case and for a general linear process.

2. Persistence of the GC property

DEFINITION 3. The set B(S) will be the smallest closed convex symmetric set
containing S.
EXAMPLE 1. Let S be an infinite orthonormal set. Then S is a aC set, since

it has the discrete topology; S is closed and bounded. However, S is not a GB
set, and B(S) is not a aC set (see [1], Proposition 6.7).
EXAMPLE 2. Let R = {ajej:j = 2,3, ---}, where {e2, e3, } is ortho-

normal and aj = (logj)-112. Then R is a aC set, since discrete; Ru {0} is a
GB set, but not a GC set (see [1], Propositions 6.7 and 6.9). Let xo be a nonzero
point not in the convex hull ofR, but in its closure; for example, Em= 1 (1/2m)ajej.
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Let S = (R - x0)u {x0}. Then S is a GB set and also a GC set; but neither the
convex hull of S, nor the symmetrization of S, nor the closure of S is a GC set.
DEFINITION 4. For any set X and any family F of real valued functions on X,

let (1, .f) be the smallest a-algebra of subsets of Y making all elements of .F
measurable.
THEOREM 1. Let L be a linear process on the topological vector space X, and

let S be a convex symmetric separable subset of X whose closure S is metrizable.
Suppose L has a version whose restriction to S is pathwise continuous at 0. Then L
has a version which is pathwise linear, and whose restriction to S is uniformly
continuous.

PROOF. Let d be a compatible metric on S. Let |x = d(-x, 0). Then it is
easy to see that x, y -| x - yll is also a compatible metric on S.
Assume that L has restriction to S which is pathwise continuous at 0. Let SO

be a countable, rationally convex, symmetric, dense subset of S; such clearly
exist. Let Xa be the algebraic dual of X and

(2.1) Y = {xa E X': xa continuous at 0 on SO}

=nu aCxEXaIKx< x>a|< -
j=1 k=1 xeSo,IIxII <lI/k k

The set Y is in 4(Xa, X). Now, there is a probability measure P on f(Xa, X)
such that x -& <, x> becomes a version of L (see [2] for details). Thus

(2.2) P(Y) = Pr wn L.,o(wI < }
j=l k=U QISoalxII<l/k k

which by assumption is 1. Observe that if y E Y, then <y, > is uniformly
continuous on So, since |<Y, x1> - y, x2> = 21<y, 2(x1 - x2)>, which tends
to 0 as||x1-x2 -+0, since2(x1-x2)e S0.

Let V = UJT= 1 jS. This is a linear subspace of X. Let W be a complementary
subspace (in the purely algebraic sense; these need not be closed subspaces).
For x = v + w, define M.(y), y E Y, as follows: write v as js- with s E S. Then
s = limk- 8k'8kk ES0. Set

(2.3) M.(y) = j lim <y Sk> + <y, w>

To see that this definition is unique: first, it is independent of which sequence
(8k) is chosen to approximate s, because of uniform continuity of <y, > on So.
Next, if v = js- = ir with r E S, and i < j, then ((i/j)Sk) is a sequence in SO
which converges to r as k -xo, and

(2.4) i lim < y, (i/j)sk> = j lim <yY, 8k>

So the definition is independent of the representation of v.
It is clear that M has pathwise uniformly continuous restriction to S. As for

linearity: M.(y) = <y, x> for x e So, hence x -* Mx(y) is rationally convex

linear on SO. By continuity, it is convex linear on S. Then, by construction, it
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is linear on V. Since it equals <x, y> for x E W, it is also linear there. So
x -s M,(y) is linear on X for each y.
To see that M is equivalent to L as a stochastic process, it suffices to check

it on S. If x E S and x = limk -. Sk, then we need to show that

(2.5) Pr({y: <y, x> ¢ MA(Y)}) = 0.

But <y, x> = <y, x - Sk> + <y, Sk>, and

(2.6) MA(Y) = Mx-Sk(y) + M5"(Y) = Mx.-Sk(Y) + <Y, 8k>.
So <y,x> - M.(y) = <y,x - Sk> - Mx.k(y). Now, <,x - Sk> -.0 in
probability, because of the pathwise continuity at zero of L, while Mx-sk(y) -°0
for each y, by definition. Q.E.D.
COROLLARY 1. IfS is a convex symmetric GC set in Hilbert space, so is S.
THEOREM 2. Let S be a compact GOC set in Hilbert space. Then B(S) is a

GC set.
PROOF. Let L be a version of the canonical normal process on H which is

pathwise continuous on S. First we will show that Pr({L(S) < £}) > 0 for each
s > 0. Choose So countable and dense in S. Now,

(2.7) {co:x,yeSand ||x - Y| <6 L(,)- LY(c)I < 2}
= {c:x, y E S0 and ||x -y|| < L.,L,(c) - L,(a)) 2£}

because of continuity of x -mi L.(co) on S and density of So. Thus, since each
x -m Lx(co) is uniformly continuous on S, there is some 6 such that this set, call
it A, has positive probability. Choose xi, * * *, XN such that the open spheres of
radius 6 > 0 about the xi cover S. Let T (x) be the first xi such that l|x-Xi || < 6.
Let T = {x - (X) :XE S}. Let To = {x - (X) :X E So}. Then To is dense in
T; for if x(k) E So and x(k) - x E S, then r(x(k)) eventually = T(x). So

(2.8) 0 < Pr(A) _ Pr({ILy|< for all y E To})

= Pr({ILYI . js for all y e T})

= Pr({L(T) < 'el).
Let F be the subspace spanned by x1, XN,xN. Then, by [1], Proposition 4.1,
(2.9) Pr({L(PF±(T)) < '3£) > Pr({L(T) < '2)-
For x E S, write

(2.10) x = PFX + PFIX = PFX + PF±(X l(x)),
since T (X) E F. Now, PF(S) is a compact subset of F and PFx E PF(S), while
PF (X- T (X)) EPF (T). Thus,
(2.11) L(S) _ L(PF(S)) + L(PF.(T))
with probability one. But L (PF(S)) and L(PF±(T)) are independent, so
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(2.12) Pr({L(S) < 4}) _ Pr({L(P,(S)) <
'el

n {L(PF±(T)) < '4l)
= Pr({L(PF(S)) < i4))Pr({L(PF,(T)) < 'el) > 0.

Now, Pr{L(S) < s4 = Pr{L(B(S)) < el, so, by [1], Theorem 4.6, B(S) is
a Gc set. QE.D.
REMARK. The essence of the above proof is to show that compact Gc sets

S are characterized by the property Pr{L(S) < 4} > 0 for all e > 0.
EXAMPLE 3. A plausible approach to the above theorem would be to try

to show that if a linear functional on H is continuous on S, then it is continuous
on B(S). Unfortunately, this is not true, as this example shows. Let R and xo be
as in Example 2. Let S = R - xo. Choose a linear functional xG on H which is
1 at xo and 0 on the (nonclosed) linear subspace spanned by R. Then xa is
continuous on S, in fact is identically -1 on S. But 0 E S, and xa is zero there,
of course.
THEOREM 3. If S and T are compact GOC sets, then Su T is a GC set.
PROOF. By Theorem 2, we may assume that S and T are also convex and

symmetric. Consider now the seminorms in H having So and To as unit spheres;
by Theorem 3 of [4], these are both measurable seminorms, in the terminology
of that paper. Then, by Lemma 5 of that same paper, their sum is also a
measurable seminorm. But its unit sphere is So n TO; so, again by Theorem 3
of [4], (So rn T°)° = (S u T)°° is a GC set. Q.E.D.

3. Structure of GC sets

IfS is a closed convex symmetric bounded set in H, and So is its polar, that is,
S0 = {y: <(y, x)> _ 1 for all x e S}, then let |- be the seminorm on H which
has So as its unit sphere; this exists, because So is absorbing, since S is bounded.
This seminorm | is continuous, because So contains a neighborhood of 0 in H.
Then there is a Banach space W and a continuous map 0: H -. W, with 0(H)
dense in W, and 1| 0(x) || = |x|. Furthermore, U °-1 nS may be given a norm for
which S is the unit sphere, and in this norm it becomes a Banach space. Further-
more, the map 0': W' -+ H is a homeomorphism from W' onto this Banach
space. For details see [7].
THEOREM 4. A closed convex symmetric bounded GOC set is compact.
PROOF. Let S be the set. Let 1-1, 0, W be as above. By Theorem 1, there

exists a version of the canonical normal process on H which is pathwise linear
and pathwise continuous on S. Let L be such a version. Then w' -* Lo,(W,)(o) is
bounded on the unit sphere of W' and linear on W'. Thus, w'-m LO.(w.)(co) is
continuous on the unit sphere of W'. So L(0'(unit sphere of W')) = L(S) < oo
with probability 1. Q.E.D.

Thus, a closed convex symmetric Gc set satisfies the assumptions of the
following lemma.
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LEMMA 1. Suppose S is a closed symmetric convex set, and has compact inter-
section with every closed ball in H. Then either S is bounded or S contains some
line through the origin.

PROOF. For c > 0, let

(3.1) S ={xC eS:1IIx = c}.c

This S, is compact. If S is unbounded, then each S, is nonempty. Finally, if
c < d, then SC =Sd; forifxeS and |x| = d, then

(3.2) -X =-IxI-xe-S
d c d d

because S is convex and contains zero, and 11(c/d)x|| = c. So n,>o S, contains
some xo. The elements of each S, have norm 1, so

(3.3) lixoll = 1.

Now, cxo e S for all c > 0, so, by symmetry of S, also for all c < 0, and, by
convexity, for c = 0. Q.E.D.
THEOREM 5. If S is a closed convex symmetric Gc set, then S contains a

largest subspace F, which is finite dimensional. Furthermore, S r) F' is compact
andScF + 2(SriF').

PROOF. Convexity of S implies that it contains a largest subspace F. Since
the intersection ofF with the unit sphere is convex, symmetric, and GC, so is its
closure (by Corollary 1); hence, this closure is compact (by Theorem 4) and so
F must be finite dimensional.

I now claim that the image of S in H/F has compact intersection with any
closed ball in H/F. For if xi E S and fi FE F and j|xi + fi 11 < c, then

(3.4) 2 (Xi + fi) E{xES: IxI _
Cc

2-2

so xi + fi has a subsequence converging to some xo E S; and xi + F therefore has
a convergent subsequence. Thus, by Lemma 1, the image of S in H/F is
bounded. This image is sent to (S + F) n F', in the canonical isomorphism
between H/F and F'; thus, (S + F) rn F' is bounded, but also Gc, since it is
contained in 2S. Therefore it is compact. Finally, given x E S, write

(3.5) x = PFx + (x-PFx) F + (S + F)rNF c F + 2(SnF').
QE.D.
Combining Corollary 1, Theorem 4, and Theorem 5, gives the following.
COROLLARY 2. A convex symmetric GC set is contained in the sum of a finite

dimensional subspace and a compact convex symmetric GOC set.
COROLLARY 3. IfS and T are convex symmetric Gc sets, then so is their vector

sumS + T.
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PROOF. Corollary 2 immediately reduces us to the case where S = C + E,
T = D + F, C and D being compact convex symmetric GC sets, E and F being
finite dimensional subspaces. Now, C + D is contained in the convex hull of
2Cu 2D, which is Gc by Theorem 3. Since

(3.6) S + T = (C + D) + (E + F),

it remains only to consider the effect of adding a finite dimensional subspace to
a compact convex symmetric GOC set. But it is easy to see that the GC property
persists through this operation. Q.E.D.

Following [2], we call the closed convex symmetric GB set S maximal,
provided there is no closed convex symmetric GB set So such that S is contained
in UjjSo and is compact there in the topology which has SO as unit sphere.
Theorem 4.7 of [2] asserts that if a closed convex symmetric GB set is not GOC,
then it is maximal.
LEMMA 2. If K1, K2, * are compact convex symmetric sets in H, di =

sup { IxIxe Kj}, and Ej cjdj < o, then

(3.7) { cjxj: xj e Kj, only finitely many xj ¢ 0}

is a convex symmetric set with compact closure.
PROOF. Let

(3.8) x(k) = Ecxk)

By a diagonal process, choose ki so that x4ki) converges for each j. Then
N so

(3.9) |x(kh) - x(ki)l .<E cj j1xkh) - xAkzflI + 2 E cjdj.
j=1 j=N+1

First choose N so the second term is less than I-; then choose h, i so large
that the first term is less than Ie, so

(3.10) |x (kh) - x(ki) || < g,
which completes the proof.
Now we can show the converse ofthe result mentioned before the above lemma.
THEOREM 6. A closed convex symmetric GB set which is actually a GOC set

cannot be maximal.
PROOF. Let 1 1, 0, W be as in the beginning of this section. Then Theorem 2

of [4] says that, if n is the cylinder set measure on H associated with L, (see [2]
for details), no0- extends to a regular measure 4u on W. Thus, there exist
compact sets K1, K2, * * * with y (Kj) T 1. Now, 0' maps the unit sphere of W'
onto the compact set S, so 0' is a compact operator; therefore, 0 is also compact
and 0 sends the unit sphere of H into a precompact set. Thus we may assume
that K1 contains this image and also that K1, K2, * are all convex and
symmetric. Then by Lemma 2 there exist constants c1, c2, * * * > 0 such that the
closure of {Tjcjxj:xj e Kj} is a compact, convex, symmetric set K in W. Let
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WO be UJT 1 jK, made into a Banach space with K as unit sphere. Since each
Kj c Wo, we have

(3.11) 1i(WO) = 1,
so let

(3.12) go = Y IWo
and 0(H) c Wo. The injection q: WO -. W is continuous, indeed compact, so

0': W' -. WO is likewise.
Let 00 be 0 regarded as a map from H into WO. Let SO be the closure of the

image of the unit sphere of WO under 6'. Let
co

(3.13) V U jso.
j=1

Then V may be regarded as a Banach space with SO as unit sphere. Since 00
sends the unit sphere of WO into that of V, it is continuous, in fact norm
reducing: WO- V. Now,

(3.14) S = 0' (unit sphere of W') = 0' r' (unit sphere of W').

But f' is compact, so f' (unit sphere of W') is compact in WO and its image S
under 0 is compact in V.

Finally, we must show that SO is a GB set. For each wo E WO,
(3.15) {IKwo, wo>I: w'O E unit sphere of W'}
is bounded. But

(3.16) w'0 Lob(wb)
is equivalent to the linear process w'0 -* (w' , *> on the probability space
(WO, -4(W)I WWo0, o), where -(W) is the Borel sets of W. Thus, L(0O' (unit
sphere of W'O)) < oo with probability one, and therefore L(SO) < oo with
probability one. Q.E.D.

4. Connection with countable additivity of cylinder set measures

For the moment we consider an arbitrary locally convex separated topo-
logical vector space X. There is a one to one correspondence between equiva-
lence classes of random linear functionals L on X and cylinder set measures m
on the cylinder sets W(X, X') of X induced by the duality with X' (see [3] for
details). The correspondence is characterized by the equalities

(4-1) Pr{L.,j E Aj, j = 1, * ,n} = m({x': <Xj, x'> E- Aj, j = 1, * * *,m)

Throughout this section, let S be a convex, symmetric, weakly compact subset
of X. This is equivalent to the statement that So0 = S, where polars of subsets
of X are taken in X' and polars of subsets of X' are taken in X. It is also
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equivalent to saying that S is the polar of a Mackey neighborhood of zero in X';
recall that the Mackey topology is the finest locally convex topology in X' for
which X is the dual.
The set So serves as the unit sphere for a seminorm on X'. Let W be the Banach

space constructed for X' by means of this seminorm; thus, there is a continuous
linear map 0: X' W having dense range, and if I (W) is the unit sphere of W,
then 0-1(1 (W)) = S. Furthermore, there is an adjoint map 0': W' -X,
continuous from the norm topology on W' to the original topology on X, which
is one to one (since 0 has dense range) and for which 0'(Y (W')) = S. (For
details see [4].) Denote by i the canonical injection W -+ W". Then for a

cylinder set measure m on W(X', X), mo0- is a cylinder set measure on
(W, W'), and mo'0-oi- is a cylinder set measure on W(W", W').
Theorem 7 should perhaps be called a "folk theorem"; slight variants of it are

contained in, for example, [5] and [6].
THEOREM 7. The process L on S has a pathwise bounded version if and only if

m O0- oi-1 is concentrated on spheres; in this case mo01 i 1 is also countably
additive.

PROOF. Existence of a pathwise bounded version on S implies that for each
e > 0 there exists a t > 0 such that if x1, , x. E S, then

(4.2) Pr{IL.Il < t,j = 1,I , m} _ 1 - E.

Now,

(4.3) Pr{ILx.I _ t,j = 1, * , n}
= m({x': I<xj, x'>I < t,j = 1, ,n})
= m(t{Xl, * , Xn1 )

Furthermore, for any x1, * * *, x, E X, we have

(4.4) {x1, * ,xn}c S >{Xi}0 S', j = 1, n,

since Soo = S. In particular, let e1, .., en E W' and ej 1. Notice that if
io0(x) E {e1, *... , e, then

(4.5) xc 0'({e' *.*.* e' }°)
since

(4.6) <io0(x), e'> = <x, 0'(e')>.

So

(4.7) 1 - . m(t{0'(e'1), * * , 0'(e)}0) . mo0-1 oi-1({e1 . . *.el,°).
Thus, any finite intersection of symmetric closed slabs containing t2 (W") has
m o0o-1 i- 1 measure at least 1 - s. Then the same holds for closed half spaces
instead of slabs. Now Lemma 3 of [6] or Theorem 4 of [9] apply, after a little
reformulation, to give countable additivity as well.
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Conversely, let 4u be a countably additive measure on the a-field generated by
t(W", W') which agrees with mo0-1oi- on W(W", W') and which is con-
centrated on spheres. The map 0'(e') -* <e', *> gives a linear process on 0'(W'),
and if

(4.8) |ejI| < 1, j = 1,***,n,
then

(4.9) {j<e1,*>1 _ t,j= 1,***,n}
mo0-1oi1({e":I<e, e">I _ t,j = 1, ** , n})

- m({x':I<0'(ej), x'>I < t,j = 1, n})
- Pr{IL,(e)l _ t,j = 1, * , n}-

Since this can be made arbitrarily small for large t, and since 0'(1 (W')) = S,
this shows that L has a pathwise bounded version. Q.E.D.
THEOREM 8. Assume S is compact in the original topology of X; then
(i) countable additivity of moO' implies existence of a pathwise continuous

version of L on S, and
(ii) for separable W, existence ofapathwise continuous version ofL on S implies

countable additivity ofm o- 1.
PROOF. For (i), let u be a countably additive extension of mO01. Then, as

in the previous theorem, the stochastic process

(4.10) 0'(e') - <e', >, e' Ec (W'),

is equivalent to the restriction of L to 0'(1 (W')), which is S. Furthermore, 6' is
easily seen to be continuous from the weak* topology on I (W') to the weak
topology on S. Since I (W') is weak* compact, the map is a homeomorphism.
But also the identity map on S is a homeomorphism from the original topology
on S to the weak topology, since S is assumed compact in the original topology.
So

(4.11) 0'(e') <e', e>
is continuous on S.
For (ii), assume L has a pathwise continuous version. As noted in (i), 8' is a

homeomorphism from I (W') onto S, when I (W') is given the weak* topology.
Let

(4.12) Me, = Le9(e').
Then M has a pathwise continuous version on I (W') for the weak* topology
on E (W'). But separability of W implies that I (W') is separable and metrizable
in its weak* topology. Then Theorem 1 shows that M has a version for which
every path function is linear and, when restricted to E (W'), is weak* continuous.
From this it follows that the probability measure may be transferred to W.
Q.E.D.
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Finally, assume that X is separable Hilbert space with its usual topology and
L is the canonical normal process. Weak compactness of S then amounts to
boundedness of S. The following theorem combines known results from [1] and
[4] with the results of this paper. Recall that we have assumed also convexity
and symmetry of S.
THEOREM 9. (i) If S is a GC set then S is compact and mo0-' is countably

additive.
(ii) If m o0- 1 is countably additive then S is a compact GC set.
PROOF. The proof is immediate from [4], Theorem 3 and the present

Theorem 4.

The author wishes to express his gratitude to Lucien LeCam for several
stimulating conversations connected with the present work. In particular, the
proof of Theorem 1 was the outcome of one such conversation. He also wishes
to thank Haskell Rosenthal for Example 3. Also, Lemma 2 was noted by Dick
Dudley in a letter.
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