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1. Introduction

This paper considers the analysis of multidimensional contingency tables when
the contingency table can be regarded as being embedded in a 2" factorial classi-
fication. The model assumes that the response variable is binary and is observed
over n factors each at two levels. This gives rise to 2` 12 x 2 contingency tables.
The theoretical development is in the spirit of the Fisher-Irwin treatment of the
2 x 2 table. The work reported here can be regarded as a generalization and
extension of their work.
The new techniques for analyzing contingency tables derived here are based on

conditional reference sets. This allows derivation of exact tests of significance
for testing interactions arising in a contingency table context. These tests are
conditional tests and have the property that they are uniformly most powerful
unbiased tests.

Although this paper only discusses binary response random variables em-
bedded in a 2' classification, the methods are readily extended to multinomial
response embedded in an arbitrary cross classification structure. In a later paper,
analyses for more general contingency tables will be developed.
The classical method for analyzing the interactions associated with a complex

classification is based on chi square goodness of fit tests. More recently Kullback
and his associates [5], [6] have used the ideas of information theory to analyze
multidimensional contingency tables. These techniques are equivalent to likeli-
hood ratio tests. However, both the chi square and likelihood ratio techniques
are based on asymptotic distributions. The methods of analysis which use a logit
model or a multiplicative model for the probability of a response also are based
on asymptotic theory. It is interesting that recent reviews of the analysis of con-
tingency tables do not refer to any exact tests for testing interactions (see Lewis
[10], Goodman [4], and Plackett [11]).
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2. Preliminary results

The analysis of contingency tables will be made using the analogue of linear
regression for the logistic model. These results have served as the basis of several
papers by Cox [2], [3] dealing with the analysis of quantal response data and are
implicit in his work. In this section the results are summarized for completeness.
Let { Yi } be a sequence of independent random variables such that Oi = PtYi = 1 }
and 1 -Oi = P{Yi = O}. Let xi = (xi 1, xi 2,** xi,P) be a vector of known
constants and 1$' = f,#2, , ,Bp) be a vector of unknown parameters. The
Oi will be assumed to have the form

(2.1) 1 + exp {fIxi} for i = 1.2. . n.

If Ai is defined by Ai = log {Oi/(l - i)}, then we have the model

p
(2.2) Ri = I'xi = E f3jxi, for i = 1, 2, * n.

j= 1

The joint frequency function of {Yi} is p

n exp E fl,jt
(2.3) f(Yl, Y2, ,Y) = [1 Opp(1 - °i)'- = n j=1

= 1 1H (1 + exp {fxil})
i= 1

where t(') = 1% 1 Xi,jyi. Hence t' = (t(l), t(2), -. t(P)) are jointly sufficient
statistics for Y' = (f3l, fB2, *, ,Bp). The frequency function of the sufficient
statistics is

C(t) exp Y t0j,
(2.4) f(t) PIT) = t(l), T(2) = = t(P)} = j=1

Hl (1 + exp {xi})

where C(t) = C(t(l), t(2), ... , t(p)) is the number of ways of permuting YI, Y2,
yn such that T"') = t(l) T(2) = t(2) * , T(P) = t(P). The combinatorial co-

efficient C(t) may be found as the coefficient of

(2.5) 1 2 p

in the generating function
n

(2.6) 2(4) = H (1 + j1i ,2 p.

If one is interested in making an inference about only a single f,i, say ,p, one
can use the distribution of T(P) conditional on T(i) = t(i) forj = 1, 2, * p - 1.
This results in

(2.7) t(p)It), t(P-l)) _ C(t(l), t(2), , t(P)) exp {t(P)fP}
E C(t(l), t(2), . . . - 1), z
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where the summation in the denominator is taken over the range of t(P). Note
that (2.4) is of the exponential form. Hence use of the conditional distribution
given by (2.7) results in uniformly most powerful unbiased tests for testing the
null hypothesis Ho: ,p = 0 versus one sided or two sided alternatives (see
Lehmann [9]). Under Ho: ,Bp = 0, the conditional distribution of T(P) takes the
form

f0(t()jtM .,
t( -1))C(t(l)., t(2) *. t(p))(2.8) g tpl()... ( -l = C(t(l)~t(2),.* * tP1), Z)

3. Testing for interaction in two 2 x 2 contingency tables

3.1. Choice of model. Suppose we have a 22 factorial experiment where the
observations are "successes" or "failures." The two factors will be denoted by
A and B and the factor levels by 0 and 1. The observation of the kth measurement
made on the ith level of factor A and the jth level of B will be denoted by Yi j k.
where i, j = 0, 1; k = 1, 2, ni, j. Define the quantities Oi, j, k = PYi,j,k=
and i,j,k= log {0i,j,k/(A -ij,k)}. The model which we shall use for the
Ai, j, k iS

(3.1) Ai,j,k = It + ia + j13 + ij(45), i,j = 0. 1.

Note that this is not the usual model associated with a 22 experiment. If the
parameters ,u, a, /3, and (a/3) are written in terms of i ,j (the subscript k has been
dropped because Ai j k iS constant for all k), we have

(3.2) j = AO,o a = 2A1O - AOO, = O, l-iO,o,
(3.) (a) = (2A,-I2AO)-1 (40 - O)
An interpretation of these parameters can be made in terms of relative risks

or odds ratios. For this purpose define

iAW) = exp {A1,j - -O,j= 00,jA( - 0) j = 0, 1,

(3.3) O0,I/AI - o,1
B(W = exp { i, I- - ' i = 0, 1,

where Oi j = Oi, j, k for all k. Then we have

lJA(1) _ iB (1)
exp {a:} = ____ B(0)

vIA(0) 0)
(3.4) exp {a} = VA(0), exp {/3} = OB(O)-
The quantity exp {af/} is simply Bartlett's definition of a second order inter-

action for a 2 x 2 x 2 table [1]. The parameter OA(W) is the relative risk (odds
ratio) comparing the odds ratio of success for factor A at level 1 versus 0, holding
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factor B at level j. An analogous interpretation holds for /B(i). Thus exp {43}
is the ratio of two relative risks (or odds ratios).
A model for Ai,j in terms of the usual main effect and interaction terms associ-

ated with a 22 experiment would be

(3.5) Ai,j = /u + (2i - 1)(A) + (2j - 1)(B) + (2i - 1)(2j - 1)(AB),
i,j = O0 1,

where (A) and (B) are main effect terms and (AB) is the interaction term. Clearly
the relations among the parameters in the two models are

22(A) = - AO,0 + A1,0 - A, + A1,1 = 2ac + (al3),
(3.6) 22(B) = - AO,0 - A1,0 + A,1 + A, = 2/3 + (a:),

22(AB) = ,0- A, - A0,1 + Al,1 = (ax:3).

Therefore a test for Ho: (AB) = 0 is equivalent to Ho: (a,B) = 0. However tests
on the main effects Ho: (A) = 0 or Ho: (B) = Odo not correspond to Ho: a = 0
or Ho: /B = 0. On the other hand, tests on the null hypotheses Ho: a = 0 and
Ho: /B = 0 may be regarded as tests on main effects conditional on (43) = 0.
Hence, the parameters a and /B will be referred to as conditional main effects.
The statistical analyses are carried out by investigating the hypothesis Ho: (a,B) =
0. If the answer is in the affirmative, then one may carry out tests on the con-
ditional main effects.

3.2. Exact test for Ho: (43B) = 0. The data from the 22 experiment may
be summarized in the two 2 x 2 tables depicted below. In order to avoid
triple subscript notation we use the notation 81 = Sk Yl,j,k, rj = Sk Yo,j,k'
tj = rj + sj, Nj = mj + nj,

Bo B,
S F S F

(3.7) AO rO mO- rO mO r, ml -r ml
A1 so nO -0 nO 81 n, -81 n

to No-to No t1 N1 -t1 N1

We shall utilize the results of Section 2 to obtain a uniformly most powerful
unbiased test for Ho: (43) = 0 versus a one sided or two sided alternative. Define
li,j as a column vector of identity elements of length ni j; also let A' =
(A0o 1, *,1 1, Al ) be the vector ofthe logits. The model described by equation
(3.1) can then be written in matrix notation as

1O,O 0 0 0 1

(3.8) iA= 11,0 11,0 0 0

[10,1 0 101 0 /

li'l 11'1 li'l 11l'- (al)_
Let Yi,j correspond to the ni,j x 1 column vector of observations {Yi,j,k}

made at condition (Ai, Bj). Then the vector of sufficient statistics is
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(3.9) t(2) = o l1,o I', ,, Yi,
t(3) L ° lo :I' YO,1 j
_t(4)_ O O O I',, Yi,I

z 1' y
' -to + t= t

i, j

- l1, jY1,j SO + S1 = S
j=0

-
1' Yi I tl
i=0

'1,,Yl,1 _ _S

Therefore to test the hypothesis HO: (af,) = 0 we require the distribution of
P{S1 = SlT = t, S = S, T1 = t1} which will be denoted byf(silt.SI t1). This
distribution is given by equation (3.1); that is,

(3.10) f(1 I, x ) - C(t, S, tl, sl) exp {s1(czf3)}Z Ct, s, t1, z) exp {z(c43)}
z

The coefficient C(t, S, t1, sl) can be found from the coefficient of , in
the generating function

(3.11) (W) = (1 + c )mo(1 + C C)fl(1 + CCfl)M'(l + i

Expanding (p(C) results in

(3.12) (p(
k

Y (oi) (jo) (mk) (ni) +J+ )

which after making the transformations

(3.13) t = i + j + k + , s= j + , t1 = k + 1s = {,

results in

(3.14) C(t 8,t11. S) ( mO )(nO)( Ml n),()
to -O80 8 t, - 81 81

MO no no (n,
=to -s + (1S -i1t) -i 1 S1

Note that the joint conditions (T = t, S = S, T1 = t1) are equivalent to To =to,
T, = t1, S = s) by virtue of T = T1 + T1. Hence we shall write f(s81 t 8, t )
as f(s1 Ito, t1, s). Furthermore in what follows it will be convenient to define

(3.15) C(sj, tj) = ) j j = 0, 1.
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Therefore

(3.16) C(t, s, t1, s1) = C(s - s1, to)C(s1, t1)
and we shall write (3.10) as

(3.17) f(siIto, t1, s) = C(S -s, to)C(s1. t) exp {s1(c4)}
E C(8 -Z, to)C(z, t1) exp {z(oc4)}
z

The conditional distribution of S1 when (4#) = 0 is thus

(3. 18) fo(~i Ito, ti-) =C(s- s1, to)C(S1, tl)
(3.18) f(s1jt0, 1. s) - C(s - z, t0)C(z, t1)'

Consequently the test of significance for HO: (ca/) = 0 against H1: (x,B) > 0
employs the tail probability
(3.19) P{S1 slTO = to, T1 = t1, S = s} = Y fo(wlto, t1, s).

w>=sl

The test ofsignificance against the two sided alternativeH 1: (a,B) + 0 is calculated
by defining the set W = {w: fo (w| to, t1, s) _ fo (siI to, t1, s)} and evaluating the
tail probability P = Xwew fo (WIto, t1, s).

3.3. Test for main effects and decomposition of probabilities. Analogous to
the decomposition of the sums of squares associated with the general linear
hypothesis for continuous type data is the decomposition of the frequency
function of the observations. To see this, we note that the joint probability
function is

(3.20) f(t, 8, t 1, 8l|1, a, fl, (a:#))
C(t, s, t1, s1) exp {pt + as + fitl + (a/)s1}

=
- , YC(i, j, k, f) exp{Ji + oaj + /1k + (ca/3)f'}

ii k C

This probability function can be further decomposed into

(3.21) f(t, s, t 1, sp|, oa, /3, (ocf))
= f(8l to, tl, s, (a(f/))f(s, t1It, Oa, 3,. (a,B))f(t|tu, Oa, /1, (cifi)).

where f(s1Ito, tI, s, (oafi)) is given by (3.17) and

C(t,s1, t1, ) exp{as + fitl + (otfi){}
(3.22) f(s, t, I t, oa, I, (cifi)) =, C(t, j, k, t)exp{aj + /k ±(a/ 3)f}

Z Z Z C(t,j, k, e) exp {put + aij + ,Bk + (a/f)f}
(3.23) f(t|8I

v
yx (am) = Y Z, C(i,j, k, t) exp {J,i + cxj + Pk + (c/1)t(}

i j k e
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Note that f(s, t1 It, a, 1, (axf,)) is the joint distribution of (s, tl) conditional on t
and f(t p, a, 13, (a,B)) is the marginal distribution of t. Further we can decompose

(3.24) f(s, t1l t, a, f, (a,f)) = f(sI to, t1, a, (c,xf))f(t I t, a, fi, (af))
= A(t, s, t, (a)fW(s8|t, aX, f, (afl)),

where
C(s - sl, to)C(s1, tl) exp {as + (af4)sl}

(3.25) f(sIto, t1, o, (a/3)) = , C(s- s, t0)C(s1 t1) exp {aIs + (af)s}
S SI

Z C(s - s, t - tl)C(sl, tl) exp {ft, + (ap)s8}
(3.26) f(t1 I, t~f (a3)) = E C(s - s8, t - t)C(s1, tl) exp {Pt, + (af)s8}1

tl Sl

(3.27) f(t1 t, a, f, (a))
Z Z C(s- s1,t - t1)C(s1, t1) exp {as + fit, + (a,B)sl}

S_ S

X , C(s - s1, t - t1)C(s1, t1) exp {as + BtI + (LB)s1}'
t1 SI S

and

(3.28) f(s|t, ax, /3, (aft))
XY C(s- s, t - t1)C(s1, t1) exp {as + fit, + (Lxp)sl}

_SI ti

-XXX C(s- si, t - t1)C(s1, t1) exp {as + fitI + (afl)s }'
S SI ti

If the hypothesis HO: (cxp) = 0 is correct then the probability function
f(sIto, t1, a, (xp) = 0) = f(s8 t0, t1, a) can be used to make an inference about
the null hypothesis Ho: a = 0. That is, the appropriate tail probability for the
alternate hypothesis H1: a > 0 is

X C(z -S1, to)C(s1, tl)
(3.29) X f(zIt, t1, a = °) = Z,CsSI

_~SfzIt,t1 XX C(Qz - 1, t0)C(s1, t1)
Z Si

The tail probability associated with the two sided alternative H1: a =k 0 is

(3.30) P = X f(sIto, t1, a = O),
weW

where W = {w:f(wIto, t1, X = 0) _ f(sIto, t1, a = 0)}.
3.4. Normal approximation to tests of significance. In this section, normal

approximations will be obtained for tests of significance associated with the test
on the interaction and the conditional main effects. The probability of Si = si
conditional on tj, j = 0, 1, associated with a single 2 x 2 table is

(3.31) p(s I t ) = C(sj, tj)IAIA() j = 0, 1,
z;
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where OA(J) is the relative risk for the 2 x 2 table with factor B held at levelj.
Under the null hypothesis Ho: 0A() = 1, the distribution of Si follows the
hypergeometric distribution: that is,

(3.32) Po(sIjt) =C(Sj. tj)

having mean and variance

,j = E{Sj Tj = tj} = jn

(3.33) tjnj(Ni - t1)
aj2 = Var {SjITj = tjl = j(N-j

N~(N. 1)
Note that if (xf,) = 0. the distribution of SO conditional on {Tj = tj. j 0. 1;
S = s4 given by (3.17) is simply

(3.34) f(si Ito, t1, PPo(8-1 Ito)Po(s1 Iti)
Ypo(S - ZIto)Po(zIti)
z

For notational simplicity we shall define the random variables WO and W1 by

P{WO = So} = P{So = sO8TO = to}, P{W1 = S3} = P{51 = silT1 = tl}.

When Nj is relatively large, the distribution of Wj tends to an independent normal
distribution with mean uj and variance a4. Therefore, when the normal approxi-
mation to the hypergeometric distribution holds we have

(3.35) P{S1 = sllTj = tj,j = 0, 1;So + S, = s} = P{W1 = sil WO + W1 = s}

(s - w1)p1 (w1 )
?(s)

where pj(x) is the p.d.f. of the normal distribution with parameters (pj, ao), and
9p(s) is the normal p.d.f. with mean (yo + ju1) and variance (a2 + a2). Sub-
stituting the appropriate p.d.f., an easy calculation shows that the approximate
distribution of W1 conditional on WO + W1 = s is normal with mean and vari-
ance given by

Poi 0iE{Wj1WO + Wi = s} = Itoi = Pi + (s - Po- 1),
Go

(3.36) Var {W1W + W =81 =o1 = Pg1I(2 + U2),
where

(3.37) Pol -2 + o(UO ± 1
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Hence since the conditional distribution of W1 is approximately N(1ol, 0g1),
a test of significance may be conducted by taking (W1 - l )/of l to be a N(O, 1)
random variable.

If one accepts the inference that the interaction is nonexistent, then one could
test the null hypotheses Ho: a = 0 and Ho: ,B = 0 which refer to the conditional
main effects. The appropriate conditional distributions for these hypotheses are
given by (3.25) to (3.28). Under Ho, these distributions do not depend on any
parameters. We shall illustrate the normal approximation for Ho: aL = 0.

Since the test of the hypothesis Ho: oa = 0 depends on the distribution of
S = SO + SI conditional on Tj = tj,j = 0, 1, we have

E{SITO = to. T1 = tl} = Po + /1i,
(3.38) Var {SITO = to, T, = t'} = ao + <1

Consequently the large sample approximation to S, if ca = 0, is to take S to be
normal with mean j0 + ,u1 and variance v0 + v12

3.5. Binomial approximation to nonnull distribution. The expression for the
frequency function f(1 to. t1, s), equation (3.17), associated with the test for
interaction may be approximated by using the binomial approximation to the
hypergeometric distribution. The hypergeometric distribution can often be
approximated quite accurately by the corresponding terms of the binomial dis-
tribution which has the same mean, and as closely as possible, the same variance
[5]. This approximation is

mj A njA

(3).39 (^:,)N(N p)Pjqj

where nt is the nearest integer to tjnj/[Nj- mj(N- tj)/(Nj- 1)] and
pt = t-nI/Ninj.

Using this approximation in (3.17) yields

(3.40) f(81 |Ito, t I, s)- Z2

81

j )
1

(

where

(3.41) piP 1/q Z_ = max (0, s - n*). Z2 = min (s, n*).

Note that (3.40) is exactly the same expression as the frequency function
associated with the nonnull conditional distribution of a single 2 x 2 con-

tingency table. Again, employing the binomial approximation to the hyper-
geometric distribution; that is,
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(3.42) (8 - 8) ) (-
(N*)

where N* = nt + ni, t1 = nearest integer to sn*/[N* - n*(N* -s)/(N* - 1)],
and a = 8nT/N*t', results in

( ) {7rq*e(0tP}S'{l - 7r}1-SI
(3.43) f(S8Ito,ti,I) (8i)[ {irIQ*e(^) +} S ] S q-S1,

where

(3.44)
=

Q
= P1

.([~fr*e(S) + 1 - i]'

Consequently, an approximation to f(s1 I to, t1, s) is to take the random variable
S1 to be approximately distributed as a binomial random variable with sample
size 11 and success probability P. Hence a confidence interval on P can, by suitable
transformation, be made into a confidence interval on e(a°. That is, if (P1, P2)
are 100(1 - 2a) per cent confidence limits on P, then

(3.45)(1-)/( -Ps) i = 1, 2,

are approximate confidence limits for e("P). Furthermore, another approximation
of the significance test for the null hypothesis Ho: (a,B) = 0 versus H1: (a,B) > 0
is to compute the tail area probabilities

(3.46) P{S1 _.1 |(a,I) = °}= E () PQ°-k

where PO = ntt/*/[7cqfr* + 1 - ].

4. The general case of n factors

4.1. Preliminaries and notation. In this section we extend the treatment of the
analysis of 2 x 2 contingency tables for the situation where the number of
tables is a power of two. It is convenient to use the notation associated with
factorial experiments. Let A 1, A 2, * * * , A, represent n factors each at two levels.
There will then be 2" factorial combinations. If we fix on one factor, say A 1, this
situation may be regarded as having 2" 1 2 x 2 contingency tables involving
the two levels ofA 1 where each contingency table represents a fixed combination
of the remaining (n - 1) factors.
The general development is eased if one adopts an operational calculus suited

to factorial experiments (see Kurkjian and Zelen [8]). Let a factorial combination
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be denoted by the n tuple binary number x = (xl, x2, * * ,x") where xi = 0
or 1, i = 1, 2, * * ,n, depending on whether the ith factor is at the "low" level
or "high" level, respectively. Throughout this section, we will have need for
ordering the 2" n digit binary numbers in a standard order. For this purpose we
use the operation of the symbolic direct product which is designated by (®
( see [8]). Define the vector 5 by c' = (0, 1). Then the standard order for n = 2
(four treatment combinations) is given by the rows of a ® 5 which is

O O
(4.1)

0 0
= 0 l

1 1

The standard order for n = 3 is given by the rows of

0 1 0
1 0 1

1 1 0-10

The generalization to arbitrary n is clear.
Let Y(x) denote a binary random variable representing the outcome of the

xth treatment combination. Also define

0(X) = P{Y(x) = 1}, 1 -0(X) = P{Y(x) = O},
(4.3) i(X) = log {0(x)/(l - 0(x)}.
The generalized interaction among the factors A i, Ai, Aip will be denoted
by aili2 ... i,. Another way of designating this generalized interaction is to define

I if factor Ai is included in the generalized interaction,
= l0 otherwise,

(4.4) z = (z1, Z2, ' * I Zn),
and let a(z) = ai,i2 . ip. That is, the generalized interaction can also be designated
by an n digit binary number. The binary number (0, 0, * * ,0) will refer to a
constant term; that is, a(O, 0, * * *, 0) = u.

For the purpose of writing A(x) as a function of the generalized interactions,
define

(4.5) bzi = {(0, 1)' if Zi = 1,
(1, 1)' if zi = 0,
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and

(4.6) (Z1 x 52 X nX

where x denotes the Kronecker product. Then if A is the vector of {1(x)}
arranged in the standard order we have

(4.7) A= bza(z),
z

where the summation is over all n digit binary numbers. The A(x) corresponding
to a particular treatment combination can then be written as

(4.8) (X)= -[( x) I x2 x) '' xI (1)] A

S [( X) b X ) a x . . .x( ) bz"] a(z),

where x denotes Kronecker product multiplication. It is easy to verify that

(4-9) ( i) £Z - 1 - z1(l -xi), i = 1, 2, n.

Hence we have

(4.10) i(x) = E n [1 - zi( -xi)]a(z) = E (x, z)a(z),
z i=l z

where
n

p(x, z) = [1 - zi( x-xid
4.2 The logistic model. At condition x let

(4.11) 0(x) {( )= 1 exp {i(x)}
Then if YI(x), Y2(x), *--, Y(,)(x) denote m(x) independent binary random
variables made at treatment x, we have

(4.12)
P{Y(x) = y(x)} = P{Yl(X) = yI(x), Y2(X) = Y2(X), , Ym(x)(X) = Y.(.)(X)l

exp {s(x)A(x)}
[1 + exp {A(x)}]m(x)'

where s(x) = _m(x) yj(x) is the total number of one's at condition x. Hence if Y
denotes the vector of {Y(x)} over all treatment combinations and y is the vector
of outcomes we have

(4.13) P{Y= y}l= exp {s(x)(x)} _ expE.s(x)A(x)
X [1 + exp {s(x)A(x)}]m(x) r=H [1 + exp {A(x)]
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where all the products and sums are taken over the n digit binary numbers x.
Since Y. s(x))(x) = .3s(x) Z, p(x, z)a(z) = Y, t(z)a(z) where

(4.14) t(z) = (p(x, z)s(x),
x

we have
exp E t(z)a(z)

(4.15) } Hl [1 + exp Y (p(x. z)a(x)]
x z

Thus we have shown that {t(z)} is jointly sufficient for the 2" parameters {a(z)}.
Since a set of sufficient statistics exists which is actually a minimal set, we

can reduce the distribution of Y given by (4.13) to the joint distribution of the
sufficient statistics {t(x)}. Consequently, if t is the vector of sufficient statistics.
we have

C(t) exp Y t(z)a(z)
(4.16) p(t) = P{T = t} =n z

Hl [1 + exp Y p(x. z)a(z)]M(x)'
x z

where C(t) is a quantity dependent on t and not on {a(z)} which makes 1, p(t) = 1.
In order to find C(t), note that

(4.17) E C(t) exp Y t(z)a(z) = H, [1 + exp E (p(x. z)a(z)]m(x).
t z x z

Letting 4(z) = exp {a(z)} results in (4.17) being written as

(4.18) E C(t) Hl 4(Z) = H, [1 + H ~(Z)l(xz)]m(x)
t z x z

Thus

(4.19) (D(4) = H [1 + H ~(Z)¢(Xz)]m(x)
x z

is the generating function which enables the coefficients C(t) to be found.

Expanding I(D() gives

(4.20) m(x)L (=) Hl Z(z)Fx (x,z)r(x)
x r(x)0=0 r(x)

and therefore setting
(4.21) t(z) Y p(x, z)r(x),

x
we have

(4.22) C(t) = rl (M(X))

where the {r(x)} in (4.22) are replaced by solving the 2" simultaneous equations
(4.21) for {r(x)}.
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We shall now solve the system of linear equations (4.21) for {r(x)}. Writing
t(z) as

(4.23) t(z) = p(x, z)r(x) = EZ
X X Z Xi

= [l5z]l , [(1 X1 (1 X2 x ... x (1 rn)]
and substituting

(4.24) r(x) = [( x1) x ( x2) x x ( X* x) r

where r is the column vector of {r(x)} arranged in standard order, results in

(4.25) t(z) = [6 ][( ) (1- xi,xi)

x ( 1 -2 x2, x2) x .. X*
I

x )(
-X. x", x")] r-

Since

(4.26) (1 -X (1- Xi ,xi) ,

0 1~~=1
the matrix of order 2"

(4.27) [( -xI )(I -xi, xi)

x ( ) (1 - X2, X2) X * *(.X)( X,W Xn)

consists of all zeros except for a single entry of unity on the main diagonal which
is in the same position as x = (x1, x2, * , xn) is in the standard order.
Therefore

(4.28)
-

[(1 x) (1 - xi, xi)

x (
X(2 X2, X2) X ... X ( )

and thus

(4.29) t(z) = [z]Ir
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Now if the matrix M is defined by

(4.30) M = to 1J

the solution of (4.29) is

(4.31) r= [M x M x x M]t.

The proof is immediate by substituting (4.31) in (4.29); that is,

(4.32) t(z) [bz]f[M x M x ... x M]t

=[( , x ( Z2 x... x ( n) t = t(z)

as (bZi)'M = (1 -Zi, zi). Furthermore, since

(4.33) r(x) = [( X) ( X2) x .. x (1 Xn r)

we have

(4.34) r(x) = (27 ,1 )( X2 x (27i)] t434 [(12x -x1
2X2 -

X2)2( - In)
by virtue of

(4.35) (1 - xi, xi)M = (1 - xi, 2xi- 1).

Thus, we have shown that the coefficient C(t) in (4.16) is given explicitly by
C(t) = rli(-(xx)) where r(x) is found from (4.34).
Another way of viewing this analysis problem is to consider the data arranged

in 2"- 1 2 x 2 contingency tables where each table records the number of suc-

cesses and failures for factor A 1 at its two levels. The 2"- 1 different tables corres-

pond to all possible combinations of the remaining factors A2, A 3, , An. An
(n - 1) digit binary number, say y = (Y2, Y3, ** * Yn). can be used to denote a

particular combination of the (n- 1) factors. It may also be convenient to
number the 2n-1 contingency tables in the base ten number system. For this
purpose let the ith table, corresponding to the combination y = (Y2., Y3 , Yn),
be

(4.36) i = Y22 + Y32 ±3+ + Yn,

where i = 0, 1, N (N = 2n-1 - 1). Then from (4.14) we have

t(0, y) = (p(x 0, y)s(x)
x

(4.37) = EP(x, 0, y)[s(O, x2, *, xn) + s(l, x2, Xn)],
x

t(I, y) = E c(x, 1, y)s(x) = Eq(x, 1, y)[8(1, x2, *, x
x x
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Thus we have that an equivalent set of sufficient statistics are {s(0, y) + s(I. y)}
and {s(l, y)} where y ranges over all (n - 1) digit binary numbers. It will be
convenient to let

ti = s(0, y) + s(1, y) = total number of successes in the ith contingency
table,

si = s(l, y) = total successes for level one of factor A1 in the ith con-
tingency table,

(4.38) mi = m(0, y) = total number of trials in the ith contingency table for
level zero of factor A 1,

ni = m(l, y) = total number of trials in the ith contingency table for
level one of factor A1.

Using the above change of notation, C(t) may be written as

N

(4.39) C(t) = H C(i ti), N 2n-1 - 1,
i=O

where

(4.40) ((si.C =t t-s) (2;)

Note that t(l, y) (4.37) can be written as

(4.41) t(l, y) = [by2 x * *X by]'S1,
where S' = ( s0 , 8.., SN). However (4.41) is the same form as (4.34). Con-
sequently, the solution of the S, vector is

(4.42) S1 = [M x ... x M]t1,
where t1 is the vector of {t(l, y)}. Also the analogue of (4.34) is

(4.43) Si = s(, Y) = [( -Y2) x ( 1) x . x I ;) t.

Similarly t(O, y) (4.37) may be written as

(4.44) to = [3Y2 x Y3X ... x bYn]' t,

where to is the vector of {t(0, y)} and t' = (tO, t1, tN). Hence t =
[M x M x ... x M]to.

4.3. Conditional test of significancefor interactions. The analysis of the set of
the 2 n-' contingency tables proceeds by testing the highest order interaction.
If the inference is made that this interaction exists, the 2- 1 contingency tables
are partitioned into two sets, each of 2n-"2 tables each. An independent analysis
is done on each set, first testing for the highest order interaction. On the other
hand, if the inference is made that the n factor interaction is zero, the next step
in the analysis is to make inferences on the n interactions involving (n - 1)
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factors, assuming the n factor interaction is zero. The analysis proceeds in this
way, partitioning the set of tables whenever the highest order interaction is real
and testing the next lowest order interactions if the highest order interaction is
negligible. In this section we exhibit the appropriate tests of significance for
carrying out the necessary significance tests. The significance tests are all based
on conditional reference sets and are parameter free in the same sense as the
Fisher-Irwin analysis of the 2 x 2 contingency table.

Let x be a given n digit binary number and let f(x) denote the 2' - 1 vector of
the {t(z)} excluding t(x). Then we can write t as t = (f(x), t(x)). Using (4.16),
we have

(4.45) p(t(x) If(x)) = P{T(x) = t(x) I T(x) = f(x)}
C(f(x), t(x)) exp {t(x)a(x)}

E C(f(x), t(x)) exp {t(x)a(x)}'
t(x)

where the summation in the denominator is over the range of t(x). When the
hypothesis Ho: a(x) = 0 is true, then (4.45) becomes

C(t(x),1(x))'(4.46) po(t(x1tx)) = C(i(x), t(x))~
t(x)

Thus po(t(x) f(x)) can be used to carry out a test of significance for the null
hypothesis Ho: a(x) = 0. The test may be one sided or two sided depending on
the alternative hypothesis.
The test for the highest order interaction corresponds to taking x=

(1, 1, * * * , 1). Using this value in (4.14) we find that

(4.47) t(l, 1, * , 1) = s(l, 1, * , 1) = total number of ones (or successes)
at factorial combination where all
factors are at the upper level.

Hence, the appropriate distributions for carrying out inferences on a(l, 1, * , 1)
are (4.45) and (4.46).

If one concludes that the n factor interaction is zero, then the next step in the
analysis is to make an inference on the interactions involving (n - 1) factors
conditional on the n factor interaction being zero. Let 1 be a row vector having
n elements. Then the marginal distribution of T(1) may be written

E C(f(1), t(l)) exp E t(z)a(z)
(4.48) P{T(1) = H(1)}= rl [1 + exp E p(x, z)a(z)]m(x)'

x ~~~~z
and the conditional distribution of T(x) (corresponding to a(x)) is

(4.49) P{T(x) = t(x)IT(x) = [(x) excluding T(1) = t(I)}

{l C(f(1), t(l))} exp {t(x)a(x)}
E t(t)
_ {Z C(f(1), t(1))} exp {t(x)a(x)}'

t(x) t(1)
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The distribution under the null hypothesis Ho: a(x) = 0 is obtained from (4.49)
by setting a(x) = 0.
The general procedure for making inferences on lower order interactions is

clear. A test on an interaction among p factors is only carried out if all higher
order interactions involving the p factors are assumed to be zero. That is, define:

f ~ ~ ~~~n

(4.50) 4p = g{x: a(x) = 0, , xi > p = subset of all n digit binary numbers
) associated with interactions in-

volving at least (p + 1) factors;
(4.51) sdp = complement of 4p;
(4.52) .4(a(x)) = {xi: xi = 1, a(x)} = set of xi elements for which xi = 1 in

a(x);
(4.53) p = n .4(a(x)) = subset ofxi elements which are equal to unity in ?.

Then if a(x) corresponds to an interaction involvingp factors such that all xi = 1
in a(x) belong to tp we have

(4.54) P{T(x) = t(x) I T(y) = t(y), y :& x and all yeE,;4}
{ *... E C(t)} exp t(x)a(x)

t(z)

E {Zy . * C(t)} exp t(x)a(x)'
t(x) t(z)

where the summation in brackets in both numerator and denominator is over
the range of t(z) for all z E 4P.

4.4 The analysis for four 2 x 2 tables (n = 3). In this section we illustrate
how special cases can easily be obtained from the general results ofthe preceeding
sections. We shall take the case n = 3 corresponding to four 2 x 2 tables. The
first step in the analysis is to obtain the C(t) coefficients using (4.40) and (4.41).
The identification between the binary and base ten notation for two digit numbers
is given in Table I.

TABLE I

IDENTIFICATION BETWEEN BINARY AND BASE TEN NOTATION

Binary (y) Base Ten (i)

(0,0) 0
((, 1) I
(1,0) 2
(1, 1) 3

Let the four tables be identified with the above indices. Then if si is the total
success for level one of A1 and ti is the total number of successes for table i,
i = 0, 1, 2, 3. We easily calculate from (4.41) and (4.43),
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(4.55) tI(0) = t(1, 0, 0) =E si, tj(2) = t(l, 1, 0) = S2 + 83,
i=O

t1(1) = t(1, 0, 1) = SI + S3, tj(3) = t(I, 1, 1) = 83,

and

so = to(l) - tl(l) - t1(2) + t1(3),
Si = ti(l) -t(3),

(4.56) 82 = t2(1) -t(3),
S3 = tj(3).

Therefore, from (4.39) and (4.40) we have
3

(4.57) C(t) = H C(si, ti),
i=O

where (4.56) gives the values of si in terms of t1(i). Thus, the conditional prob-
ability distribution associated with the test of the highest order interaction is

(4.58) P{T(1, 1, 1) = s3|Ti = ti(i = 0, 1, 2, 3), S2 + S3 = t1(2),
3

SI + S3 = tl(l), E Si =tl()
i=O

H C(8i, ti) exp {s3a(1, 1, 1)}
i=O

3

ff C(8i, ti) exp {s3a(1, 1, 1)}
S3 i=O

Tail area probabilities for HO: a (1, 1, 1) = 0 may be calculated from (4.58) by
setting a(l, 1, 1) = 0.

If one concludes that the a(l, 1, 1) interaction is zero, the next step in the
analysis is to make an inference on the conditional interactions involving two
factors; that is, a(1, 1, 0), a(1, 0, 1), and a(0, 1, 1). We shall illustrate the
appropriate conditional test for the a(l, 1, 0) and a(O, 1, 1) interactions. Using
(4.49) with x = (1, 1, 0), we have

3

(4.59) P{T1(2) = t1(2) ITi = ti(i = 0, 1, 2, 3), SI + S3 = tI(l), E Si = ti(0)}
i=_

ti) {~H C(si, ti)} exp {tl(2)a(1, 1,0)}tj(2) S3 i=O
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Note that both the inference on a(l, 1, 1) and a(l, 1., 0) were made conditional
on Ti = ti, i = 0, 1, 2, 3. On the other hand, the inference for a(0, 1, 1) is con-
ditional on the Si = si, i = 0, 1, 2, 3. The appropriate conditional test for
Ho: a(0, 1, 1) = 0 is obtained by finding the probability of T(0, 1, 1) = t(0. 1, 1)
conditional on Si = si, i = 0, 1, 2, 3. T(0, y) = t(0, y) for y= (0. 0), (0, 1), (1, 0).
From (4.37) we have

3
to(0) = t(0, 0, 0) = , tj, to(2) = t(0, 1, 0) = t2 + t3

i=o

(4.60) to(l) = (0, 0, 1) = t1 + t3, to(3) = t(0. 1, 1) = t3.
Also, solving for the {ti} terms of {to(i)} results in

to = to(o) - to(l) - to(2) + to(3),

(4.61) t, = to(l) - to(3)
(4.61)~ ~ t2= to(2) - to(3).

t3 = to(3)-

The conditional distribution of T3 is
3

(4.62) = t3 Si = si(i = 0. 1, 2), E Ti = to(°),
i=O

T1 + T3 = to(l), T2 + T3 = to(2)}

_ H C(si, ti) exp {t3a(0, 1, 1)}
S3 i=O
-3

E E H C(si, ti) exp {t3a(0, 1, 1)}
t3 S3 i=O

where the ti is replaced in the {C(si, ti)} by (4.61). The test of significance is
obtained by setting a(0, 1, 1) = 0 in (4.62) and calculating the appropriate tail
probability.

Added in proof. The recently published book by D. R. Cox, Analysis of
Binary Data, London, Methuen, 1970, summarizes much of the results of [2]
and [3] as well as several generalizations.
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