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1. Introduction

During the past few decades, a number of workers have considered math-
ematical formulations for the reproductive performance of a group of women,
or for some aspect of this performance (see [1] to [20] and reviews in [21], [22],
[23]). These formulations have been intended to help in the appraisal of ob-
served data, to yield estimators of some of the biological determinants of re-
production, or to predict effects of defined contraceptive practices, sterilization
programs, and so forth. To date, explicit analytic results have been obtained
only with considerable simplification of the underlying concepts, different
workers resorting to different kinds of simplification. Alternatively, for greater
realism, computer models are being developed, as discussed in the paper by E. B.
Perrin in these Proceedings [56].

Sections 2 to 4 of this present paper will summarize work, done in collabora-
tion with E. B. Perrin, on a class of mathematical models based on a relatively
simple scheme for the process of human reproduction [9], [12] and will illustrate
applications pertinent to efforts to reduce birth rates. Section 5 will illustrate
issues arising in efforts to ‘apply the results to empirical data, by using data
from a simpler organism, the laboratory mouse, obtained in collaboration with
D. P. Doolittle and M. New. Section 6 will present data on conception delays
of a group of women, and an extension of a model previously presented for this
phenomenon in a heterogeneous population [14].

Among the implications of such work, the greatest current interest probably
lies in potential contributions to the evaluation of efforts to reduce birth rates—
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the predominant aim of “population policy”’ today. Such policy includes meas-
ures intended to influence birth rates either directly or indirectly, such as to:
increase educational and employment opportunities for women, presenting
attractive alternatives to large families; inform couples about contraceptive
methods and supply the necessary means; provide easier access to induced abor-
tion; or sterilize adults who meet defined criteria of age and parity. Though
many considerations must enter into the evaluation of such policies [24], [25],
we will be concerned only with methods that may contribute toward assessing

the effectiveness of a specified program and toward predicting its effect on the
birth rate.

2. Definition of the process

2.1. General. Since the social, economic, and psychological factors that affect
birth rates can exert their effects only through modifying the biological deter-
minants of the process [26], it is relevant to investigate the action of these
biological determinants. The approach taken here attempts to do so. Also, it
views the reproductive process as a sequence of events occurring to a cohort
of women over a period of years. This viewpoint is different from and com-
plementary to that underlying mathematical investigations of population
growth such as stable population theory. Its rationale is straightforward: it
seems t0 be a natural way of considering the action of biological factors, and
even social factors; the advantages of regarding reproduction as a cohort
phenomenon, in addition to examining annual cross sectional data, have been
well established by experience [27]. Furthermore, since efforts to evaluate
experimental ‘‘family planning” programs often consist of observations on a
group of women followed from the inception of the program [28], [29], this
viewpoint is especially relevant to methods used in evaluating such programs.

2.2. Biological considerations. In addition to the age when women begin
their reproductive history and the duration of the reproductive span, the follow-
ing biological factors call for consideration.

(1) Fecundability [1]. For a woman living in a sexual union, the probability
that, during any ovulatory cycle, an ovum becomes fertilized and embedded
(fecundability), depends on the interplay of many factors, including the use of
contraceptives. Hence we may treat conception as a chance event, and the
conception delay, or waiting time to conception [14], as a random variable.
Despite a tradition that the norm for the length of the relevant biological time
unit, the ovulatory cycle, is 28 days, there is evidence that its mean length is
fairly close to a calendar month, 29.5 or 30 days [30], [31]. Hence we will equate
the cycle to a calendar month, ignoring the appreciable variation between
women and between cycles for any woman.

(2) Outcomes of a pregnancy. The importance of the variable incidence of
pregnancy outcomes other than live births is obvious [16], [32]; in some situa-
tions, it is also desirable to distinguish between live births followed by death in
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infancy and those followed by survival [33]. The probabilities of the various
outcomes may vary with maternal age and health, rank order of the pregnancy
the time elapsed since the previous pregnancy, and the incidence of induced
abortion.

() ““Lost time” or nonsusceptible periods. A conception is followed by a period
during which the woman is not susceptible to another conception. This ‘lost
time” consists of pregnancy (gestation) plus the interval after its termination
before resumption of ovulation [34], [35]. The outcome of a pregnancy is cor-
related with the durations of pregnancy and postpartum nonsusceptibility, while
the latter depends also on breast feeding practices and their physiological impact
[36], [37]. When ovulation is first resumed, it may be irregular, producing low
fecundability. Subsequently, fecundability may increase gradually to assume its
previous value or some new value.

On the basis of these considerations, the reproductive history of a woman
may be taken to consist of passages through one or more mutually exclusive
states (figure 1). At the beginning of a sexual union, she is nonpregnant and
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States in the reprodubtive history of a woman.

susceptible to conception (Sy). After a random period of time, she may enter
pregnancy (S1), from which she will enter the postpartum nonsusceptible state
following a surviving live birth (Bi,), a live birth followed by early death (Bis),
a stillbirth (B;) or an early fetal death (B; if spontaneous, B, if induced). After
a stay of variable duration in any of these states, she again becomes susceptible,
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passing to S; and so on, the primes indicating that each successive visit to a
state may be different from earlier ones. The number of states B, that is, the
number of possible outcomes of pregnancy considered, can depend on the detail
needed for a specific purpose.

Clearly, a fecund woman must be in one and only one of these states at any
time, and her reproductive history is characterized completely by the sequence
in which the states are visited and by the length of time spent in each state at
each visit. Accordingly, we seek models to describe the possible paths in this
chain of events and the probability distribution of the number of transitions of
each kind in time ¢.

3. A class of models

3.1. Assumptions. An approximation to this process, for which mathematical
results are available, is shown in figure 2, where no distinction is made between
the first and subsequent visits to any state (and where, for simplicity of presenta~
tion, the number of pregnancy outcomes included has been reduced). Models for
processes involving “lost time’” have been considered in the “counter problem”
[38] and in other situations [39], [40].
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FIGURE 2

Probabilities of passage from one state to the next when length of stay
at each state is considered as a random variable.

In figure 2, the length of stay in each state of the model is viewed as a random
variable, the number of months spent in the susceptible nonpregnant state S,
before passage to S; having the probability density A(¢). The duration of stay
in pregnancy (S,) is assumed to depend on the outcome of the pregnancy, f:(?)
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being the (conditional) probability density of the number of months spent in S;
given that the next state visited is B, and the density of the number of months
spent in the postpartum state B; being g:(t). Finally, 6; is the probability that
a given pregnancy ends with a transition to B;.
The stationary process defined can be shown to be a semi-Markov or Markov
renewal process (MRP) [40], [41], [42] with the specified states, the length of
stay in any state being a random variable whose distribution function can
depend on the state being occupied as well as on the next state to which the
process will move. Further restrictions on the model provide special cases
described elsewhere [9], [10], [12], [43]. As will be illustrated below, this for-
mulation permits the moments of the passage times to be derived and hence
yields the usual results for a renewal process, including asymptotic expressions
for:
(1) the mean and variance of N;(t), the number of passages into a specified
state (for example, the number of live births or of pregnarcies) that occur in
the interval (0, t);
(2) the fertility rate or pregnancy rate per unit of time;
(3) the probability distribution of states after the process has continued for
time &.
If it is assumed that the total ‘“lost time” for each outcome has a fixed integral
value, and that fecundability is constant, the foregoing may be reduced to a
Markov chain, and explicit expressions derived for the probability distribution
of the cumulative number of visits made to any state by time &.
3.2. Results. Since each passage time to any state can be expressed as a sum
of a random number of random variables with all distributions specified, the
mean and variance of the passage times may be derived by a straightforward
probability argument [12]. Here, however, the methods of Pyke [41], [42], which
give additional results, will be followed, with changes in notation.
Let
B; be the postpartum nonsusceptible state that follows the 7th type of pregnancy
termination forz =1,2, --- , a;

0; be the probability that a given pregnancy ends in the outcome represented
by B;;

() be the p.d.f. of the length of stay in S;

fi(t) and g:(t) the p.d.f., respectively, of the length of stay in S; and B; given
that passage from S; is to B;;

L, F; and G; be the Laplace-Steiltjes (LS) transforms, respectively, of M¢), fi(t)
and g:(¢);

af” be the rth moment of the compound distribution A(¢)f:(t)g:(t);

Wibel — L 3% 0;F G

M .. the LS transform of the density function of the passage time from state m
to state n;

13 be the rth moment about zero of the passage time from state m to state »;

N;(t) be the number of visits made to state j in the interval (0, ).
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To derive the matrix M of the elements M., from which the moments of the
passage times are obtained, as well as other results, we proceed as follows. Form
the matrix @ as shown, with general postpartum states B; and B; for j = 2,
3, ---,a, and elements Q,, with m,n =1,2, ---, a + 2, consisting of LS
transforms of the appropriate transition distributions as defined by Pyke and
shown in [12]. For example, the probability that from pregnancy (S;) the next
passage will be to B; and will occur by time ¢ is the transition distribution

6, '/: fi(z) dz. Consequently,
(3.1) Qi = 0 Lﬁ e~**fy(x) dx = 6:Fy.
TABLE 1

MATRIX Q
(LS TrANsFORMS OF THE TRANSITION DISTRIBUTIONS)

To State
From State S S B, B,;
So 0 L 0 0
Sy 0 0 0F 0 F
B, Gy 0 0 0
.Bi .G,' 0 0 0
The matrix M is given by
3.2) M = QU — @)~{diag [ — @']},

where I is the identity matrix and diag [A] is the matrix with diagonal elements
A,.m and zeros elsewhere.

TABLE II

MaTrix M
(LS TRANSFORMS OF THE DENSITY FUNCTIONS OF THE PassaGe TiMEs)

To State
From State So Sy B, cee B;
So LZO.;F.‘G.‘ L LolFl/Wl LoiFi/Wi
k3
Sy 2 0:FG; L _6:FG; 0.F1/ Wy 0;F;/W;
1 1
B, G LG, L&F\Gy/ W, GiLo;Fi/ W

B; G; LG; G;L01F1/ W, L0,~F,~G,-/W,~
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The moments of the passage times are obtained as
(3.3) pmn = (—1)"M7:(0),

where M(0) is the rth order derivative of M, with respect to s, evaluated
at zero. In particular, the first two moments of the intervals between successive
pregnancy outcomes B; are

(3.4 WP = 23 fhaf?
0: %
and
3.5) W =15 00 + 15 el [T 000].
0: % 07 % 2

If pn is the mean interval between live births, the asymptotic monthly fertility
rate is given by [40]

(3.6) FR =~ 1/pn.

Among other results [12], these methods also yield the asymptotic probability
P, of being in state n, given that the process began in state m. The matrix P
is derived as

(3.7) P=(I-Q™I—H),

where H is the diagonal matrix with H,, = >_.Qnn.

Rather than this matrix, however, we shall use results from a Markov chain
formulation [38] of the process. Consider that a transition may occur at monthly
intervals, between states:

Sy nonpregnant, susceptible;

L; the month of conception leading to a live birth;

Ly, L3, - -+, Ln_y the first, second, -- -, (m — 2)th month of nonsusceptibil-
ity leading to a live birth;

Ay, Asy -+, A,y the corresponding months relating to a conception leading
to a fetal loss.

Let the transition matrix D be as shown, with p + 74+ ¢ =1 and \(¢) =
(1 — ¢)¢*. The probability distribution of states occupied after the {th transition
is given by the elements of D!, the first row referring to the results when the
process begins in Sp. For example, the probability of being in S, after the ¢
transition is

(3.8) PIDS L

—rm+r —ow+0)!
!t — rm — vw)!

prﬂ. Vq t—rm—vw’

where r and v assume all possible integral values that yield nonnegative expo-
nents for the probabilities.

As t — « the probability distribution of being in the respective states at
time ¢ approaches
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1

m’ fOI‘ So;

- P cees
(3.9) q + mp + wr for Lly L2y i

™

q + mp + wr
Accordingly, under this model approximately
(3.10) [m — Dp + (w — Dr](g + mp + wm)™!

of the married, reproducing women will be nonsusceptible at any time after a
reasonably long period since marriage, a portion of them becoming susceptible
each month thereafter over a period of time. The results have implications both
for the analysis of data on the distributions of births to a group of women in
a calendar period [23] and for the planning and evaluation of family planning
programs, as will be illustrated in section 4.

for Ay A, --- .

TABLE III

D TRANSITION MATRIX

So L, L, e Ly, Ay Az X Aua
So q P 0 0 T 0 0
L, 0 0 1 0 0 0 0
L, 0 0 0 0 0 0 0
Ln, 1 0 0 0 0 0 0
Ay 0 0 0 0 0 1 0
A, 0 0 0 0 0 0 0
Ay 1 0 0 0 0 0 0

4. Applications of results

4.1. Examples. Probably the most fruitful applications so far of such results
have consisted of operations with apparently realistic parameters (see [5] to
[8], [10], [11], [13], [21], [32], [33], [43], [44]), to study the role of the various
biological factors determining birth rates and to indicate approximate mag-
nitudes of effects of changes in contraceptive use, abortion rates or the duration
of the nonsusceptible periods. For example, it appears that unless a large propor-
tion of a population adopts the use of contraceptives, highly effective methods
are needed to lower the fertility rate appreciably (figure 3). Thus, on one set
of assumptions, a contraceptive that reduces fecundability by 50 per cent
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(“effectiveness”), if used by even 70 per cent of all women, would reduce the
asymptotic birth rate by less than 14 per cent. On the other hand, a contracep-
tive that is 70 per cent effective and is used by 50 per cent of the women would
"reduce the birth rate a little more, that is, by 18 per cent. Even a contraceptive
with 95 per cent. effectiveness would reduce the fertility rate by only 41 per
cent if half the population used it and by only 82 per cent given universal
use [10].
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Reduction in fertility rate as a function of effectiveness
of contraceptive and per cent of population using contraceptive.

The explanation of such findings is not too far to seek. With the postulated
original parameters (p = .18, = = .02, m = 18 and w = 5), the “lost time” of
18 months, which is not subject to change by the adoption of contraceptives,
constitutes more than 80 per cent of the original birth interval of 23 months.
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A contraceptive that reduces fecundability by 70 per cent increases the mean
interval between births only to 36 months; its effect on the asymptotic birth
rate is correspondingly small. Thus, without contraception, the asymptotic num-
ber of conceptions expected per 1000 women per month is

(4.1) 1000(p + =)/(g + mp 4+ wr) = 200/4.14 = 48.3

and the corresponding number of live births is 43.5 (522 per year). With a
contraceptive that reduces fecundability by 70 per cent the asymptotic monthly
fertility rate will be 27.8/1000 acceptors, and, if 50 per cent of the women are
acceptors, the asymptotic rate is 35.6 live births/1000 women in the population
per month.

These are, however, long term effects. Consider what might happen at the
beginning of a program. (This particular application was originally suggested
by R. G. Potter.) Assume that a contraceptive program, initiated at time o, is
accepted immediately by half the eligible women, and each woman permanently
becomes an acceptor or nonacceptor. The contraceptive reduces fecundability
by 70 per cent as above. Not all eligible women will be in the susceptible state
So at ty, however. In fact, assuming that an equilibrium has been approached,
we may estimate, from equation (3.9), that only about 24 per cent, on the
average, of the women who would eventually be eligible for the program would
be in S, at the time. During each of the next four months about 4.8 per cent of
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Expected increase in fertility as contraceptive program continues.
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women would become newly eligible for the program and another 4.3 per cent
for each of the 13 months after that. Assuming that 50 per cent of women
become acceptors when they enter Sy, the rate of conception during the first
month of the program and the live birth rate 9 months later would be about
20 per cent below the asymptotic levels to be reached eventually (figure 4).
Thus, early results would give a deceptively optimistic impression, to be followed
by a rise in these rates, disappointing if not expected.

Another illustration of how the models may be exploited is shown in table IV

TABLE IV

DisTriBUTIONS OF NUMBER OF BIRTHS IN 10 oR 15 YEARS OF CONTRACEPTIVE USE
Fecundability = 0.01; postpartum nonsusceptibility six months.

Fetal Mortality (per cent)
2

0 5
10 Year period
Probability of
0 births 328 437
At least 1 birth 672 .563
At least 2 births 253 .163
At least 3 births .051 024
At least 4 births .005 .001
Mean number of live births 0.982 0.751
Variance 0.761 0.620

15 Year period

Probability of

0 births 179 .280
At least 1 birth .821 720
At least 2 births 466 325
At least 3 births 173 091
At least 4 births 041 .016
At least 5 births .006 .001

Mean 1.508 1.214

Variance 1.161 0.949

Annual Fertility Rate/1000 105 81

(see also [43], [44]). Here it is assumed that, after achieving the size of family
they desire, couples resort to a contraceptive that reduces fecundability to the
constant monthly value of 0.01 and that the total lost time associated with a
live birth lasts an average of 15 months. If there were no fetal deaths (the first
column), the probability of avoiding any live births in a ten year period would
be only 32.8 per cent, and the probability of at least two births 25.3 per cent.
If such a contraceptive were used for fifteen years, the probability of at least
one birth would be 82.1 per cent and the probability of at least three births,
17.3 per cent.
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Results with a 25 per cent incidence of fetal death in such a population are
shown in the next column. Even in this case, there would be less than a 44 per
cent chance of avoiding any live births in a ten year period, and a 28 per cent
chance of success in a fifteen year period. There is, in fact, almost a 10 per cent
chance that, over a fifteen year period, three or more children would be born
to a couple with a fetal loss rate of 25 per cent and a 1 per cent chance of con-
ceiving in any month. With shorter nonsusceptible periods the results would be
more discouraging. Again, it is clear that a high level of contraceptive effective-
ness is necessary to ensure success in family planning.

Direct investigations of changes in fertility rates that would follow changes
in incidence of fetal death are also of interest, both because improved health
conditions may reduce this incidence and because induced abortion is a widely
used means of limiting the size of families. Such investigations have indicated
that the effects of a specified level of fetal loss are greater when fecundability is
low than when it is high [11], [32]. Hence, a relatively high incidence of induced
abortion may be expected to have an appreciably deflationary effect on birth
rates only in populations that are also using contraceptive methods with some
degree of effectiveness.

4.2. Limitations. Despite the considerable simplification involved, results
such as the foregoing seem to be meaningful and useful. It is, however, natural
to seek ways of making the models more realistic and applicable to empirical
data on human reproduction. As given, they are not likely to be suitable for
this purpose; in addition to the asymptotic character of many of the results,
the models involve the untenable assumptions: that the women in a sample
remain alive and fecund throughout the period of observation; that the intervals
between births after the first have identical distributions regardless of age and
parity; that the several parameters determining the distributions of the intervals
are identical for all the women; and that changes in the parameters, as by
contraceptive practices, are also uniform.

In what follows, two approaches will be explored to data for which such
assumptions might a priori be considered fairly reasonable, and modifications
in the assumptions considered.

5. An analysis of animal data

The number of litters born to 200 pairs of mice mated for 118 days under
controlled conditions [45] is shown in table V. It was desired to examine the
hypothesis that the observed variation in number of litters and in intervals
between litters could arise in a group of mice with equal fecundity, against an
alternative of varying fecundity, the term including all biological functions that
affect the process. Given a renewal process for a homogeneous group of matings,
asymptotic values for the mean and variance of the number of litters expected
in ¢ days are given by the expressions [46]
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G1) O
2uf1  pn
and
(5.2) Var [N1(8)] ~ (uf? — ph)t n [5(,; @) 2 W@ ]
. M’?l 4“11 3”11 2“11
ol )
#h e pn

where u§? and u{? represent the rth moment about zero of the first and sub-
sequent mtervals respectively, and the means do not carry superscripts. Values
TABLE V

DistriBUTION OF 200 PAirs oF MicE, BY
NuMBER oF LiTTERS BorRN IN 118 Davs

Number of Litters Number of Matings
n with n Litters
0 2
1 5
2 0
3 12
4 28
5 143
6 10
Mean Number of Litters/Mating = 4.6; Variance = 0.96

for (5.1) and (5.2) were calculated with the moments of the observed intervals
to the first litter and between litters 1 and 2 and 2 and 3, namely,

M1l = 21.4 da.ys, Mol = 22.9 days,
(5.3) u? = 480.0, wd = 592.0.
u = 11610,

Fort = 118, the results were estimated EN (t) = 5.0 and estimated Var N(t) =
0.44, the latter value being less than half of the observed variance (table V),

It is known [12], however, that the exact values of the mean and variance
for finite ¢ tend to fluctuate around (5.1) and (5.2). Consequently, the mean
and variance of the cumulative number of litters per mating observed on each
day of the experiment were calculated, as shown in figure 5 together with the
regression lines (5.1) and (5.2).

The relatively good agreement of observed results and ‘“‘expected’” values in
the earlier part of the experiment of course follows from the calculations; the
“test” is the fit in the latter part of the experiment. As time goes on, the ob.
served means seem to be a little low. The observed variance is appreciably in
excess of the theoretical asymptotic results. Although results for a longer period
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Mean and variance of the cumulative number of litters per mating
compared with their estimated values from (5.1) and (5.2).

would be desirable, the data suggest that the hypothesis of a homogeneous,
stationary process should be rejected. It should, however, be noted that the
appropriateness of the values (5.3) may be questioned, since they are based on
only 198 first intervals and 193 second intervals. A possible alternative is anal-
ysis of the subgroup of matings formed by discarding the seven who had fewer
than three litters, using the distributions of their intervals. This analysis does
yield a better fit, as reported elsewhere [47]. The exact distribution of N () for
t=1,2, ---, 118, on similar assumptions is also being investigated.

In general, this preliminary analysis would seem to indicate that:

(a) though it may be possible to derive an impression about the suitability
of these models for a specific set of data, improved methods of examining such
a hypothesis are needed;

(b) in this group of 200 pairs of mice, which come from a random imating
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stock derived from the cross of four inbred lines, the evidence raises doubts
about the existence of a homogeneous stationary process.

6. Conception delays in a heterogeneous human population

6.1. The data. The skepticism already expressed about the suitability of the
assumptions in homogeneous stationary models for human reproductive data
suggests a first approach to only part of the process. Consequently, we will here
confine ourselves to data on conception delays [14]. Such data are important
in their own right, since they provide a means for studying fecundability,
whether natural or as affected by contraceptives [29].

It is customary, with some substantive justification, to assume, as was done
in section 4, that, within a homogeneous population, the conception delay (X)
is distributed geometrically, that is, N(z) = p(1 — p)*. Available evidence, how-
ever, raises doubts about the assumption of homogeneity, not only for women
using contraceptives, but even for apparently noncontracepting women. For
example, the data in table VI refer to 342 women in such a population [37],

TABLE VI

DisTrIBUTION OF ESTIMATED CONCEPTION DELAYS IN 342 WOMEN

Delay in Number of Women Number Proportion of Eligible
Months Still Eligible Conceiving Women Conceiving
0 342 103 .301
1 239 53 222
2 186 43 231
3 143 27 .189
4 116 30 259
5 86 9 .105
6 77 12 .156
7 65 9 .138
8 56 6 107
9 50 8 .160
10 42 10 .238
11 32 5 .156
12 27 2 .074
13 25 6 .240
14 19 1 .053
15 18 1 .056
16-53 17 17 —_
Mean Delay 3.75 Months; Variance = 30.47

who had a live birth at least nine months after marriage and who denied having
an intervening pregnancy. In an attempt to select a homogeneous group, women
aged above 25 years at marriage were excluded. The conception delay was es-
timated by subtracting nine months from the interval between marriage and
the first live birth. The last column in table VI shows the estimated proportion
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of women conceiving in each successive month, out of those still at risk. (I am
indebted to Dr. Arthur G. Steinberg of Western Reserve University for these
human data.)

Data on conception delays usually show a marked tendency for the monthly
incidence of conception among eligible women to decrcase with time [13], [16].
Table VI does not do so unequivocally, but a suggestion of such a trend is
present. Since a simple geometric distribution observed for { months is equiv-
alent to a two state Markov chain undergoing ¢ transitions, the hypothesis Hy:
Mzx) = p(1 — p)* is equivalent to Hy: pij(x) = pij for 4, 7 = 1, 2. It has been
shown that, under H,, if the data in a Markov chain with s states are arranged
to resemble an s by ¢ contingency table, the numbers in state 7 at time x being
treated like numbers in independent samples, the statistic calculated as a contin-
gency chi square is distributed asymptotically as x*> with (s — 1)(¢ — 1) degrees
of freedom (d.f.) [48]. Further, this statistic can be broken down into single
independent values distributed as x* with one d.f. [49]. Using this test, Hp is
rejected, at the P < .05 level on the data for months 0 and 1 in table VI.

Furthermore, since in a homogeneous geometric distribution, with a mean
waiting time (conception delay) Z, the variance is expected to equal Z(Z + 1)
[14], [38], the variance in this case would be expected to be approximately
(3.75)(4.75) = 17.81, a value considerably below the observed variance of 30.47.

Such findings may be due in part to the method of estimation, or to reporting
errors with respect to dates or intervening pregnancy wastage. More important,
fecundability may vary from one month to the next in one woman, even in a
relatively short period, and is likely to vary between women. We shall now
examine the consequences of this last possibility.

6.2. A model for conception delays in a heterogeneous group. Assume that the
monthly probability of conceiving p is constant for each woman during the
period of observation, but varies between women, being distributed as ¢(p) dp,
and the conception delay X being a random variable given by the compound
geometric distribution [50]

6.1) M) = [ pg7o(o) d,

where ¢ = 1 — p. It has been shown [14], that in such a distribution, the
expected “hazard rate,” or monthly probability of conception for the sample
as a whole is a decreasing function of time, and maximum likelihood estimators
of the moments of g have been derived from the numbers conceiving in successive
months. In general, compound distributions have been studied by the method
of moments [51] which has been applied to compound negative binomial dis-
tributions in [50], [562], and [53]. The moments estimated in these works are,
however, moments not of ¢ or p but of variables that correspond to ¢/p, though
the notation varies. Published results include expressions corresponding to (6.3)
and (6.4) below and a discussion has been given [54] of the characteristics of
the estimators in an analogous compound exponential distribution.



POPULATION POLICIES: DATA ANALYSIS 131

Let

p be the fecundability, distributed as ¢(p) dp;

¢g=1-p;

Y = q/p;

EY" be the expected value of the r.v. Y7 and VY its variance;

m; be the rth factorial moment of a variable;

K the corresponding cumulant;

X the conception delay;

s2 the variance of the conception delays in a sample of size n, that is,

§ = Xi-1 (@ — 2%/ (n — 1);

¢ be the mean value of v in a sample, that is, ¢ = 371 (1 — p;)/pn;

¢® be the variance of v in a sample, defined as [> v§ — (Ev;)%*/n]/n.
From (6.1), the probability generating function (p.g.f.) of X is

©2) 2@ = [0~ a0 tele) o

Successive differentiation of (6.2) with respect to s, and evaluation at s = 1,
gives the generalized factorial moment of X, in agreement with [50] and [53], as

(6.3) mp =EXX—-1)---X—r+1) =rlEy
and consequently, as in [14],

EX = Ey,
6.4) EX? = 2Ey* + Ev,

VX =2Vy + Ev(Ey + 1).

Assume that in a random sample of » women, the jth woman has parameter
p; and the corresponding parameter v; = ¢;/p;. The observations from such a
sample are conception delays X;. The moments of each X are as in (6.4) with
E~} = vj. Since the conception delays X; are mutually independent, the p.g.f-
for the sum of X; in the sample is

(6.5) ¥(s) = jr;il o1 — qi8)

The factorial cumulants of the sum, obtained by successive differentiation with
respect to s of log ¥(s) and evaluation at s = 1 [55], are given by

(6.6) KX X;) = (r — 1)1j§1 -
Hence, for a given sample,

6.7 EEXX)]=X+v+Zv+(EZ1)=nlc®+c+ (n+ 1]

Conditional on the sample, from (6.4) and (6.7), the variance of the conception
delays is
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(6.8) E(s|sample)

[i @7 + ) — L En?. OF + )
j=1 nj=1

n—1

_2n—1 [zﬁ_@nv_f)z]_kcu_co

The unconditional expectation, since Ec®® = (n — 1)Vy/n and Ec* = (Evy)* +
Vv/n, is

(6.9) E(si) = 2Ev* + Ev — (Ev)* = 2Vy + Ex(Ev + 1).

Accordingly, (6.10) and (6.11) provide estimators of the variance of 4 within
a sample and in the universe, as

—1
(6.10) 60 = g1 1 —FE+ 1),

Py = 5l — 3@ + DI,
as in [14]. The estimators (6.10) are biased, an unbiased estimator being

6.11) Vry = %[" Tle-=- 5]
In a homogeneous population, under the assumption of a simple geometric
distribution, the expected value of (6.11) is, of course, equal to zero.

6.3. Applications to the data. From (6.4) and (6.11) Evy=+ its standard error
i 3.75 & 0.27 and V*y = 6.37. The harmonic mean p is estimated as 1/(3.75 +
1.00) = 0.211. The estimator of the arithmetic mean of p is equal to the propor-
tion of women conceiving in the first month, that is, to 0.301, while the variance
of p may be estimated [14] from the proportions conceiving in the first two
months as

6.12) Po = 301(1 — .301) — 25 — 0.055.
342

Thus, it appears that, even for this group of women in the relatively short
period of observation, the data depart from a simple geometric distribution of
conception delays. Not only are both the mean conception delay and its variance
considerably in excess of what would be expected from the proportion conceiving
in the first month, but the variance appreciably exceeds that expected in a
simple geometric distribution with a mean conception delay of 3.75 months.
Hence, we may expect the reproductive performance of this sample to have a
lower mean and greater variation than would be predicted from a geometric
distribution with parameter 0.211.

More general inferences about the effects of heterogeneity on birth rates are
suggested by the fact, as indicated in equation (5.1), that the expected parity
of a homogeneous group in time ¢ is a function of the reciprocal of the mean
interval between successive births. Suppose that in a heterogeneous population
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with varying mean intervals between successive births, the arithmetic mean
interval is g and the harmonic mean u’. Then the average parity might be
expected to be a function of 1/x/, which is greater than 1/a. Further investiga-
tions into the effect of heterogeneity on birth rates are clearly indicated.

7. Summary and conclusions

A class of mathematical models for reproduction has been formulated for a
homogeneous cohort of women on the assumption that the process is independ-
ent of age and parity. A summary is presented of these models, as developed
in collaboration with E. B. Perrin. Despite simplification in the models, the
results provide a useful means of investigating the approximate magnitude of
the changes in birth rates that may be expected to follow various patterns of
contraceptive practice or changes in abortion rates. Hence, they may be useful
both in the formulation of population policy and in efforts to evaluate the
effects of a specified program. Illustrations of such applications are given.

The assumptions in these models are, however, believed to be too restrictive
for direct application of the results to human data. An attempt is presented to
fit a similar model to reproductive data from a simpler organism, the laboratory
mouse (from experiments performed in collaboration with D. P. Doolittle and
M. New). While the test is not definitive, the results suggest that the reproduc-
tive performance of this sample of a random mating stock of mice derived from
a cross of four inbred lines does not conform to a stationary homogeneous process.

Another set of data presented consist of the estimated conception delays to
first conception in 342 noncontracepting women (data obtained through the
courtesy of A. G. Steinberg). It seems clear that an assumption that all these
women have the same constant monthly probability of conception is untenable.
A model is presented for the distribution of coréception delays in a group where
this probability remains constant for any women but varies between women in
an unspecified manner, and the moments of the underlying distribution are
estimated.

In summary, models for which explicit analytic solutions are at present avail-
able have led to valuable insights into many questions relevant to the formula-
tion and evaluation of population policy. There is a need, however, for more
realistic, less restricted models. One avenue of investigation into such more
general formulations lies in pursuing and extending the implications of less
restrictive assumptions by mathematical analysis. Another method of studying
these more general situations lies in the exploitation of computer models.

In addition to acknowledgments made in the text, I should like to thank my
colleagues Agnes Berger and Ruth Z. Gold for discussing some of these problems
with me and for their suggestions. At the University of Pittsburgh where much
of the work drawn on in this paper was done, Peter Amergis, Helen Chun and
Arthur le Gasse wrote computer programs, and Irene Nicholson assisted with
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data analysis, and Sylvester Cureton and Melvon Martin performed daily exam-
inations on the mice.
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