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1. Introduction and summary

In applications such as life-testing and reliability, a useful characterization of
distributions is in terms of their failure rates. The failure rate q(t) of a distribution
F(t) having a density f (t) is defined by q(t) = f (t)/{1 - F(t)} for t such that
F(t) < 1. The probabilistic interpretation is that corresponding to a failure
distribution F(t), q(t) represents the conditional probability density of failure
given that failure has not yet occurred by time t.

It is easy to verify that the exponential distribution with density

(1.1) f (t) = ?e-'
has a constant failure rate X. Physically this might correspond to a situation in
which the object fails if a sufficiently large environmental stress occurs, such
stresses being distributed according to a Poisson process. It is assumed that the
object develops no greater propensity toward failure as time elapses.

In many physical situations the object does become more vulnerable to failure
with increasing age. This is characteristic of objects subject to wear-out-moving
parts, human beings past youth, and so on. In such situations one would expect
the failure distribution to be characterized by an increasing failure rate. Ex-
amples of such distributions are the gamma with density

(1.2) f (t) = X(Xt)a-leX, X > O, a > 1, t > O,
rF(a)

and the Weibull with density

(1.3) f (t) = Xata-le -i, X > 0, a> 1, t > 0.

In certain situations, however, it is reasonable to expect that the failure rate
will decrease, at least over a certain interval of time. Thus, during the early
months of human life, as a result of infancy diseases, the failure rate actually
decreases. For certain electronic components, manufacturing defects tend to
cause failure early in life, so that the failure rate may be higher during the initial
period of usage. Materials which become work-hardened may exhibit a decreasing
failure rate during a certain interval of time.

For both theoretical and practical reasons, it is important to distinguish
between the case of monotone nondecreasing failure rate (referred to hereafter as
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increasing failure rate, and abbreviated IFR) and the complementary case
(failure rate strictly decreasing over some time interval). Theoretically, knowing
that the failure rate is increasing, we may do the following:

(1) obtain bounds on survival probability as functions of the moments, much
improved over the usual Chebyshev bounds (see Barlow and Marshall [1]). We
may also obtain bounds on the renewal function (see Barlow and Proschan [3]);

(2) obtain inequalities on the moments;
(3) conclude that the survival probability 1 - F(t) has the monotone likeli-

hood ratio property in differences of t;
(4) show that certain basic operations, such as convolution and the formation

of order statistics, preserve the property of increasing failure rate;
(5) develop certain variation diminishing properties for 1 - F(t).
See Barlow, Marshall, and Proschan [2] for a discussion of (2), (3), (4), and (5).
For practical applications, a knowledge that failure rate is increasing is also

important, since under this assumption
(1) a policy of planned replacement of aging components may be more

economical (see Barlow and Proschan [5]);
(2) the computation of optimum spares kits becomes easier (see Barlow and

Proschan [4], chapter 6);
(3) the failure rate of certain types of systems composed of components with

increasing failure rate is itself increasing (see Esary and Proschan [9]); and
(4) we may obtain the maximum likelihood estimate of the failure distribution

(see Marshall and Proschan [17]).
It is clear that a test to determine whether a sample comes from a population

characterized by an increasing failure rate would serve a useful purpose. In this
paper, we propose and study the following nonparametric test. Let X.1, X"2,
*..*, X,n be a sample of independent observations from the common distribution
F, with density f, where f (t) = 0 for t < 0, and failure rate q(t). We wish to
choose between the following:

(i) Null Hypothesis, Ho: q(t) = X, X an unknown positive constant.
(ii) Alternative Hypothesis, H1: q(t) is increasing, but not constant.
The test statistic is computed as follows. Let T.,, < Tn,2 < ... < T,. be

the ordered observations, D,, = T,,,, Dn,2 = Tn,2- Tn,l,*... Dn,n = Tn,n-
T.,,,-, the spacings, and D,, = nDn,l, Dn,2 = (n - 1) Dn,2, Dn,n = Dn,ny
the normalized spacings. Let

(1.4) Vi,={=1 if T)nh i 2 TJ,J for i, j = 1, 2, * n,
fOotherwise.

The test statistic is
n

(1.5) Vn= E Vij.
ij= 1,i <j

We reject the null hypothesis at the a level of significance if Vn > Vn.a where vn.,
is determined so that P[Vn > vn,aIHo] = a.
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Heuristically, we may justify the test as follows. Under the null hypothesis,
Dn,l) Dn,2, ... ,* n,n are independently distributed, each with density Ae-X', as
shown in Epstein and Sobel [8], so that P[Vi,j = 1] = 2 for i, j = 1 2, ... ,n,
i # j. However, under the alternative hypothesis, P[Vi,j = 1] > 2 for i < j,
i, j = 1, 2, ... , n, as will be shown in section 3. Thus, each Vij, and con-
sequently Vn, tends to be larger under the alternative hypothesis, so that
rejection of the null hypothesis occurs for large values of V". Since under the null
hypothesis the distribution of Vn is known (see section 2), we have available vn.,.

In section 4 we show that Vn, suitably normalized, is asymptotically normally
distributed for a wide class of alternatives. In particular, under mild assumptions
when the underlying distribution is IFR, V. is asymptotically normally dis-
tributed. In section 5 we use the criterion of Asymptotic Relative Efficiency
(ARE) to compare the test based on V, with the likelihood ratio test for Weibull
alternatives and with the likelihood ratio test for gamma alternatives.
The results of the present paper are discussed in Pyke [18] and in Barlow and

Proschan ([4], appendix 2).

2. Distribution under the null hypothesis

As mentioned above, under the null hypothesis, T)n,, Dn,2, * D., are
independently distributed, each having density Xe-)'. Thus, all orderings of
Dna1 Dn,2 ... Dn, n are equally likely. Let Pn(k) be the number of orderings of
)n,lx D)n,2*... DXnn with exactly k inversions of indices; an inversion of indices

i < j occurs when Dn,i > T)nj. As shown by Kendall [12] and Mann [16], Pn(k)
satisfies the recurrence relation

(2.1) Pn(k) = Pn-I (k) + Pn-1(k - 1) + *-- + Pn1(k - n + 1),
with Pn(k) = 0 for k < 0. Since P[Vn = k] = Pn(k)/n!, we may use (2.1) to
calculate recursively P[Vn = k]. Note that the distribution of Vn is independent
of X. Tables are given in both Kendall [12] and Mann [16] for P[Vn < k],
n < 10.
To obtain the generating function Hn(x) = X-k.o Pn(k)xk of the Pn(k), note

that 0 = Hn+l(x) - Hn(x) {1 + x + * + x"} so that
in

(2.2) Hn(X) = {1 + X + + xi-

Thus, except for the factor 1/n!, Hn(x) corresponds to the generating function
of X?- 1 Ui, where Ul, U2, *--, Un are n independent variables, with Ui being
uniformly distributed on the integers 0, 1, 2, * , i - 1. It follows that An, the
mean of Vn, is given by
(2.3) A = n(n-1)

4
and an, the variance of V., by

(2.4) r2 = (2n + 5)(n - 1)n(2.4) ~~~Ofnl 72
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These results are obtained by Mann using a recursion among the moments, and
by Feller [10] usinig a direct probability argument.
Both Kendall and Mann prove that the distribution of V. is asymptotically

normal by the method of momeilts. Also Daintzig [6] shows that solutions of a
general class of recurrence relations, of which (2.1) is a special case, converge to
the normal distribution. From (2.2), an immediate proof is obtained using the
Lindeberg-Feller normal convergence criterion (Loeve, [15], p. 280), by verifying
that for given E > 0,

(2.5) Mn(e) = £f x2 dFk -O 0 as n-oo,1n4k = 1ll J>ea,,

where Fk is the distribution function of Uk defined just above. Formula (2.5) is
readily verified by choosing no large enough to insure that
(2.6) e(2ng + 3n - 5no)/72 > no,
since for n > no, gn(e) = 0.

3. Unbiasedness of test

In this section we shall show that the test statistic Vn is unbiased, that is,
P[Vn . vn,aIHI] 2 a for 0 < a < 1, n = 2, 3, -.. . Moreover, we shall show
that under HI the V,,j are stochastically ordered, in that
(3.1) P[Vi,j = 11IHI] 2 P[Vk,t = 1jHJ] for i < k < t < j.
To prove that Vn is an unbiased test statistic, we make the transformation

(3.2) Xn= - ln P(Xn,i),
where F(X) = 1 - F(X). It follows that
(3.3) P[Xn > u] = P[ln F(Xn,i) < -u] = P['(Xn,i) < e-u] = e-u.

Thus each X'
,

is distributed according to the exponential distribution with ulit
mean. Moreover, since the Xn l,i X,n are independent, so are the
Nxl

,

Next let Tn,1 < Tn,2 < ... < Tt,n represent the ranked Xn,, XX2,** *,
so that Tt = -ln T(1t, i = 1, 2, * , n. Further, let

(3.4) ) TnT.,l= 1(3-4) D~n't = (n -i + l)(Tn,t-Tn,i-1) i-2, 3, * ,n.
According to Epstein and Sobel [8], the T)nh, are independently, identically
distributed according to the exponential distribution with unit mean.
Note that Tn,t is an increasing function of Tn,i. Moreover, as may be verified

readily, Tn, is a convex function of Tn,i, i = 1, 2, * , n. It follows that
nD' l D'.j implies Tn,i 2 Thnd for i < j, i, j = 1, 2, * , n. Thus, Vihj 2 V"'J,
i < j, i, j = 1, 2, * **, n, where Vtj = 1 if DTn.,t 2 Dn. Hence, Vn 2 Vn where
Vn = _i<j Vj'j, so that P[V. 2 vn,, IHi] 2 et, for 0 < ca < 1, n = 2, 3, by
Lehmann ([14], p. 73).
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To prove (3.1), we note that [T),i > Dj] = [Tn', > Ki,Dn',j] where Ki,j is
a random variable <1, for i < j, i, j = 1, 2, ..*, n, whereas [D.,k > T.,t] =

[DT.t > Kk,tn',], where Ki,j < Kk,t. Hence, (3.1) follows by Lehmann ([14],
p. 73).
The unbiasedness argument goes through for the more general class of statistics

given in the first paragraph of section 4 below.

4. Asymptotic distribution under an alternative hypothesis

We now show that V. when suitably normalized is asymptotically normally
distributed for a wide class of alternatives. Since no additional effort is necessary,
we shall in fact derive the asymptotic normality of a more general class of func-
tions of spacings, namely those of the form

n-1 n

(4.1) Gn = L_ Y q(h5n,i, Dn,j)
i=2 j=i+l

where g(x, y) is a bounded nonnegative function which is nonincreasing (non-
decreasing) in its first (second) coordinate. If g(x, y) is equal to 1 or 0 according
as x > y or x < y, then G. is essentially equal to V.. (The reason for the sum-
mation beginning at i = 2 instead of i = 1, is to allow for alternative distri-
butions whose support does not contain the origin.) For convenience, assume
O < g < 1. We remark here that if g satisfies certain differentiability conditions,
one may use a "Taylor's expansion" approach to prove the asymptotic normality
of Gn. However, such an approach does not work for Vn, the statistic of primary
interest in this paper. The more widely applicable approach used below is to find
another random variable which is asymptotically equivalent to Gn and whose
limiting distribution is more easily derived. Although the main interest of this
paper is in the case of alternatives with increasing failure rates, the proof of
asymptotic normality given below does not require monotonicity, but rather
differentiability (a.e.) of the failure rate function. The limit theorem of this
section generalizes the authors' theorem announced in Pyke [18].
The method of proof relies heavily upon a special construction of the random

variables under consideration. In this construction, all random variables are
functions of a sequence of independent exponential random variables. For
the case of uniform random variables, this construction was used by R6nyi
[19] to obtain the limiting distributions of order statistics and statistics of the
Kolmogorov-Smirnov type. In fact, as the last step in the proof of our theorem
we shall use, in the form of lemma 4.1, R6nyi's approximation of uniform order
statistics.
The construction is as follows: let {Yn; n > 1} be a sequence of independent

identically distributed exponential random variables with distribution function
H(y) = 1 - exp (-y) for y > 0. For 1 < i < n, set

i
(4.2) Yn,j = E Yj(n - i + l)-l, Uni = H(Yn,i) = 1 - exp (-Yi

j=1
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Then (Yn,,, Yn,2, - - , Y,) and (U.,,, U.,2, * - -, U,,,) are the order statistics
of random samples of size n from, respectively, the exponential distribution H
and the uniform distribution function on (0, 1).

Let F be a given alternative distribution function. Throughout most of this
section we will use the following weak assumption.
AsSUMPTION 1. The function F is absolutely continuous and its support is an

interval (finite or infinite). Moreover, there exists a density function f of F which is
continuous on the interior of this interval.
The assumption that the support of F is an interval is natural for theorems

on spacings, since if the support of F is disconnected, there will always be a fixed
number of spacings which do not converge to zero. With assumption 1 in mind,
let F-1 denote the inverse of F. Define Tn,i = F-'(H(Y.,i)) = F-'(Unf,). Then
(Tn,l, Tn,2, ... , Tn,n) are the order statistics of a random sample on F. Let K
denote the composed function F-1H, so that Tn,i = K(Yn,i). Under assumption
1, F is continuously differentiable. Let k and h denote the derivatives of K and
H, respectively. Then for all v > 0, k(v) = h(v)/f (K(v)). Since h = 1 - H on
(0, 00), it follows that if we set k(H-'(u)) = r(u), then

(4.3) r(u) = (1- u) ) 1
f(F-'(u)) q(F'1(u))

for all 0 < u < 1. This is to say that r is the reciprocal of the failure rate after
it is transformed, by means of F-', onto the unit interval. The function r is the
key function in the analysis to follow. (For notational convenience, we shall
most frequently write r. for r(u).)
With the above construction of (Tn,,, Tn,n), one obtains

(4.4) Tn,i = (n - i + 1)(T,i,-T-,i_l)
= (n - i + 1)[K(Yn,) -K(yn,i_l)I

Therefore, by the mean value theorem

(4.5) D.,i = (n - i + 1)(Yn,i- Yn,i-1)k(Ofl,i) = Yik(On,i) = Ytr(An,i)
where An,i = H(in, ) E [U.,i-1, Un,i] and On,i is the appropriate number in
[Yn,i-1, Y,i]. Since An,i lies between the (i - 1)-th and i-th order statistics from
a uniform - (0, 1) sample, and since U, i - U,i-i is 0,(n-1), it seems natural to
expect that in (4.5) one might hope to replace An,i with Un,i without affecting
the limiting distribution of Gn. This substitution turns out to be possible. On the
other hand, it is known that U, i approximates i/n in the sense that U,,i- i/n
is 0,(n-"12). Therefore, one might expect that in (4.5) one may replace An,i with
i/n without affecting the limiting distribution of Gn. This substitution, however,
cannot be justified.
For 0 < u < v < 1, set

(4.6) L(u, v) = E[g(Yiru, Y2rv)]
where Y, and Y2 are independent exponential random variables of mean 1. For
a > 0, define
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(4.7) T(u, v: 5) = sup L(x, y)
lu-xi <5.lV -vl <5

and define L(u, v: 5) accordingly as the infimum of L over the same region. (It
should be understood that only values 0 < x < y < 1 in the domain of L are
considered when taking its supremum and infimum.) Write L+ = ;- L and
L- = L - L to denote the upper and lower oscillations of L. Define

(4.8) X+(5) = J1 f L+(u, v: 5) dv du

and define X- similarly in terms of L-. Set X = X+ + X-.
For most of the remaining results of this section, we require the following

assumption which permits the passage of a limit inside an integral and provides
an integrable absolute bound on certain integrands which arise.
AsSUMPTION 2. The derivative r' of r exists a.e. and is continuous a.e. Moreover,

(4.9) lim 6-'X+(5) = lim f1X-(5) = f0J K(u, v) dv du <0X

where the integrals are Riemann integrals and where

(4.10) K(u, v) = E{g(Ylru, Y2r,)[(Y, - 1)lrv'/rv + (1 - Y2)IrU'/ru]}
whenever ru and r' are defined.
We remark at this point that if one defines r(u: 5) = suplu_l <ar(x) and defines

r(u: 5) as the analogous infimum, then due to the monotonicity of g one obtains
I(u, v: 5) = E [g(YIT(u: 5)), Y2v(v: 5)] where one uses the natural interpretation
when r = +X0. Moreover, to motivate the definition of K in (4.10), observe that
whenever Iu < oo and r- > 0,

(4.11) L+(u, v: 5) = i: fo0 e--z[g(yf, zrv) - g(yru, zrv)] dy dz

= fo f g(s, t) [(Tr.)-' exp (-s/Tu - t/rv)
-(rur,)-' exp (-s/ru - t/r,)] ds dt.

It may then be shown that

(4.12) K(u, v) = IL,(u, v)I + 1L2(u, v)I
where LI(L2) denotes the partial derivative of L with respect to the first (second)
coordinate. One may check that (4.10) and (4.12) are compatible by observing
that

(4.13) Ll(u, v) = (ru/ru)E[g(Yjru, Y2r.)(1 -Y)],
L2(u, v) = (r'/rv)E[g(Yjr., Y2r.)(1 -Y2)],

whereas the expectations in the above expressions are respectively negative and
positive due to the monotonicity properties of g. Observe also, that due to the
boundedness of g, it follows from (4.12) and (4.13) that the integrability of
K(u, v) is equivalent to f10 (d/du) Ilog r(u) du < X
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For 1 < i <j < n, set
(4.14) Gn.i,j ="(5n,i Dn,j), Sn,i,j = (gYiriln, Yjri/n),

Tn,i.3 = Gn,i,j - Sn,ij
and
(4.15) Rn,i,j = (Un,in- L1 + (Uni-jL)L2('j)
Let Gn, Sn, Tn, and Rn denote their respective sums over 1 < i < j < n. We
shall show first that Gn is asymptotically equivalent to Sn + Rn in the sense that
32(Gn- Sn - Rn) " 0. We then show that n-312Rn- R* P 0 where Rn is

defined in (4.55), and then derive the limiting distribution of n-312Sn + R*. The
choice of Rn can be motivated by observing that L(An,I, An,j) - L(i/n, j/n)
would be equal to the expectation of Gn,i,j - Sn,iJ with respect to Yi and Yj
if it were true that (An,i, An,j) and (Yi, Yj) were independent. They are in fact
dependent, but a basic step in the proof below is to show that the degree of
dependence is negligible. The definition of Rn,i,j given above is then a natural
Taylor's expansion approximation to L(An,j, An,j) - L(i/n, j/n).
THEOREM 4.1. Under assumptions 1 and 2, n-312(Gn - Sn - Rn) A0
PROOF. Throughout the proof we shall tacitly assume that r' exists and is con-

tinuous at the points {i/n: 1 < i < n, n > 1}. This can be done without loss of
generality since the proof holds for any other partitions, tn,l < tn,2 < ... < tn,n,
for which Itn,i- i/nj < 1/n and the desired properties are satisfied. This is
clear since the only role played by these points is in the formation of approxi-
mating sums to certain Riemann integrals.
By a well-known theorem of Kolmogorov [13], one may find for each e > 0

a positive number b, such that for all n, P(Bn(b.n-?12)) > 1 - e where

(4.16) Bn(8) = [i- Un,i-1 < by Un,i--< 1; 1 < i < ni-Ln nUnii~ ni5 1 _ 1
It therefore suffices to show that n-312(Gn - Sn - Rn) converges to zero in
probability when restricted to the event Bn B (bn-r12) for all sufficiently large
b; that is, to show that n-312(Gn - Sn - Rn)IBn P o where IA denotes the indi-
cator function of the event A. We shall assume b to be fixed throughout the proof.
For notational convenience, let us replace summations by integrals. To this

end, define
Gn(u, v) = n1/2Gn,id, Sn(u, v) = nl/2Sn,i,jy

(4.17) Tn(u, v) = n12Tn,i,j, Rn(u, v) = n12Rn,idj
for i - 1 < nu < i, j - 1 <nv < j and 1 <i < j< n. Define the functions
to be zero elsewhere. Write

(4.18) An = n-/32(Gn- Sn- Rn) = f JI [Tn(u, v) - Rn(u, v)] dv du.

To prove that An A 0, we shall show that E(A\nIB) -- 0. Observe first of all that
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(4.19) E( nIB.)

= f 1 f1f 1 E{[Tn(u, V) - R.(u, v)][T.(x, y) - Rn(x, Y)]IB.} dy dx dv du.

We wish to show that the limit as n - oo may be passed inside these integrals.
On Bn, jR.(u, v)I < bK(u, v) by definitions (4.12) and (4.15). To get a bound

on Tn(u, v), set f,n,, = r(i/n: bn-1/2) and rn,j = tr(i/n: bn-1/2). Let T+(u, v) and
T; (u, v) denote the positive and negative parts of Tn(u, v), and set

Tn+t,>= 9(yii YjIr,n) - S.,i,
(4.20) Tn,t,> = Sn,ij- (YXn,i, Y-,J),

Tn++(u, v) = nlI2Tt+f, Tn -(u, v) = n 12T.-,
for all 1 < i < j < n, i-1 < nu < i and j - 1 < nv < j. On the event
Bn, rn,i < r(A,,i) < fn,i. Therefore,
(4.21) 0 < Tn+(u, V)IB, < T++(u, v), 0 < T; (u, V)IB, < T -(u, v).
Set

(4.22) Tn++ 1 101 Tn++(u, v) dv du, Tn- = 11 Jf T- -(u, v) dv du.

We wish to show that the limits of E(Tn++) and E[(Tn++)2] exist and may be
passed inside the integral signs. By direct computation,
(4.23) var (Tn+ +) = n-3 * {E[Tn+Tn.T,m] - E(Tn+,+)E(T,k,+m)}
where E_* denotes summation over all values of 1 < i < j < n and 1 < k <
m < n with the restriction that there are at most 3 distinct values among i, j, k,
and m. (The summation over 4 distinct values is zero by independence.) Since
the summands are bounded and converge to zero as n -X co and as i/n, j/n, k/n,
and m/n converge to values in (0, 1), it follows from the Lebesgue dominated
convergence theorem that the variance of Tn+ + converges to zero. To show that
E(Tn++) converges to a finite limit, we compute using (4.7) that

(4.24) E(Tn++) = n-3/2 , L+ (ix j: bn-l12)(<jn n

= fi/2 f f Ln+(u, v: bn-w12) dv du

where Ln+(u, v: bn-l12) is defined to equal L+(u, v: bn-w/2) when i - 1 < nu <i
and j - 1 < nv < j. However, since L+ = I-L and

(4.25) ILn+(u, v: 6) - L+(u, v: 6)I < L+(u, v: a + n-1)
- L+(u, v: 6) + L+(u, v: n-1),

it follows from assumption 2 that

(4.26) lim n1/2 f1 |' [L+(u, v: bn-c2) - L+(u, v: bn-1/2)]dv du = 0.

Hence, again by assumption 2, it follows from (4.24) that
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(4.27) lim E(T,+ +) = lim nll2X+(bn-12)

= b 10 | K(u, v) dv du <m

Similar results may be shown to hold for the first two moments of Tn; -. If we
now apply these results to the integrand in (4.19), we obtain that

(4.28) E(n2IBn) < J f 'o 1 E{[T++(u, v) + Tn--(u, v) + bK(u, v)]

X [T,++(x, y) + T; -(x, y) + bK(x, y)]} dy dx dv du

and that the limit of the integral on the right-hand side of (4.28) exists and equals
the integral of the limit, namely,

(4.29) 9b2{Jo f| K(u, v) dv du} < .

If {fn} and {9n} are sequences of measurable functions on some measure space
and if g,-+ g (a.e.), fn-+f (a.e.), Ifl < gnand f g. - f g < 0, then f f, - ff.
This is a direct consequence of Fatou's lemma applied to the functionsgn - fn
and gn + fA. Therefore, if we replace the integrand in (4.19) by f. and the
integrand on the right-hand side of (4.28) by gn, it follows from this remark and
the above results that to prove E( nIBR) -O 0, it suffices to show that fn -O 0
(a.e.); that is, to show that
(4.30) lim E{[Tn(u, v) - Rn(u, v)] [Tn(x, y) - Rn(x, y)]IB,} = 0

for almost all points (u, v, x, y) with 0 < u < v < 1 and 0 < x < y < 1.
Equivalently, we will show that each of the four cross-products in (4.30) con-
converges to the same finite limit. In what follows, consider (u, v, x, y) to be
fixed, and set i = [nu], j = [nv], k = [nx] and m = [ny]. The dependence upon
n of the indices i, j, k, and m will not be reflected in the notation, but no con-
fusion should result.
To show (4.30), observe first that if (Yi, Yj, Yk, Yin) could be considered to be

independent of all other random variables appearing in (4.30), then Tn(u, v) and
Tn(x, y) could be replaced by their expectations with respect to (Yi, Y,, Yk, Yi),
namely n12[L(Ani, AnJ) - L(i/n, j/n)] and nl'2[L(An,k, An,m)- L(k/n, m/n)],
respectively. It would then be a straightforward matter to show that the limit
in (4.30) exists and is zero. Although (Yi, Yj, Yk, Y.) is in fact not independent
of the other random variables in (4.30), the degree of dependence is sufficiently
negligible, as we shall now show.

According to the construction of the random variable Un,i given in (4.2),
1 - Un,i = exp {- Fl Y,/(n - m + 1)}. For any set of nonnegative
integers J, define UJ by
(4.31) 1 - Un S = (1 - Un i) exp { E Y./(n - s + 1)}-

Clearly, {Uj: 1 < i < n} and {Y,,: s E J} are independent sets of random vari-
ables. If, moreover, J is finite, then
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(4.32) n(U,i- U.J) = (1 - Un,j)[exp { , Y /(n-s + 1} -ln

is convergent in probability. In the discussion which follows, we set J=
{i, j, k, m}. (Actually, J depends upoll n since i, j, k, and m do.)
For all s, U.,. - An,s < Un,8 - Un,al Moreover, from Chebyshev's in-

equality, using third moments, one obtains that nP[Un, - Un,-,, > en-"2] -O0
for all e> 0. Similarly, one can show that nP [U., - UJ, > en-1/2] -O0 since
U',s > Un -4. These statements can also be shown to hold for i, j, k, and m
simultaneously. Therefore, one obtains that for any e> 0 there is an event C .j
such that on Cj, Un,- UWj,I < e for all s E J and such that nP(CC ..) -O0.
Consequently, each of the four terms in (4.30), when restricted to the com-
plement of Cn,,j, converges to zero. It therefore remains to show that
(4.33) lim nE{ [Tn(u, v) - Rn(u, v)] [Tn(x, Y) - Rn(x, Y)]IBnIc.,,} = 0.

n -x
For s - 1 < nu < s, write Zn(U) = nl/2(Un,8- s/n), ZJ(u) = nl'2(U, - s/n),

and let Rn,j(u, v) be defined in the same way as Rn(u, v), except that ZJ replaces
Zn; that is
(4.34) RnA,(u, v) = Zn(u)Lj(u, v) + Zn(v)L2(U, v).
Set Rn,2 = R- Rn,1. Then on Cn,
(4.35) IRn,2(U, v) < eK(u, v).
Also, let TnJ,(u, v) be the same as Tn(u, v) except that An i and Anj are replaced
by UJt and U.j; that is,
(4.36) Tn,l(u, v) = n1/2 [g(Yir(Un,i), Yjr(U',j)) - Snij]-

Set T,12 = Tn- Tn,1. Then on Cn,J;
(4.37) n- l(T.,2(U, v))+ <9(Yir(Un.t: en-l) Y2(J:En-l)

- g(Yjr(Un,), Yjr(U.j))
with an analogous inequality for the negative part of Tn,2. If one now substitutes
Rn = Rn.l + Rn,2 and Tn = Tnj, + Tn,2 into (4.33) and multiplies out the
product, one is faced with the problem of evaluating limits for several terms of
which two are given by
(4.38) an = E[Tn,2(u, v)Rn,(x, Y)IB.nc...]
and
(4.39) bn = E[Tn,(u, v)Rn,1(x, Y)IB.nc.A]-
We shall study only these two terms since the other terms may be treated
similarly.

First of all, upon splitting both T.,2 and Rnjl into their positive and negative
parts and using (4.37), one obtains

(4.40) an < nhI2E{[L+(U'i, UnJj en-12)
+ L(U, Un,j: En-1/2)]2bK(x, y)I.,}
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where

(4.41) B. C B.j = [flI2ut | < b + 3n-2; 1 < i < n]
since (Yi, Yj) is independent of all other random variables includinig IB,,. Be-
cause of (4.11), the random variables nlI2L+ and nl/2L-, which appear in (4.40)
are bounded when restricted to B.j for sufficiently large n. Moreover, each of
these random variables converges in law to EK(U, v), whereas IB,., converges in
law to IB where B[jZ(t)l < b: 0 < t < 1] and where {Z(t): 0 < t < 1} is a
tied-down Wiener process. (These remarks follow from the fact that the ZJ-
process converges weakly to the Z-process and that 5-lL+(u, v: 5) -+ K(u, v)
uniformly in a neighborhood of (u, v) since r' is assumed to be continuous at u
and v.) It therefore follows that the expectation in (4.40) also converges, so that

(4.42) lim sup a. < 46bK(u, v)K(x, y)P(B)
n ¢

which bound converges to zero as E -+0. Similar arguments may be applied to
show that each of the other terms in (4.33) which involve either Rn,2 or T" 2
converges to zero.
The other type of term which must be considered is like bn in that neither

T.,2 nor Rn,2 appears. Each term of this type can be shown to have the same
limit so that the resultant sum of these limits, with the appropriate signs, is zero
as required. The proof of (4.33), and hence of the theorem, will then be complete.
To evaluate the limit of b., one first uses an argument similar to that used

above for a. to show that

(4.43) bn-E{T,,(u, v)R,I(x, y) [IB.,, - IB.nC3,,l} -+0.
For this, one uses the fact that P(Bn,ABn) -+0. On the other hand, consider

(4.44) btn _ bn + bt = E{Tn,1(u, v)Rn,l(x, Y)IB3,,}

= E (n 12 [L(Uj, UJJ)- L (n ) RnX,(Y)IBx,
the latter equation resulting from taking expectations with respect to (Yi, Yj).
It follows from (4.11), (4.15), and (4.41) that the random variable inside the
expectation in (4.44) is uniformly bounded for all n and converges in law to
R(u, v)R(x, y)IB where B is as defined above and

(4.45) R(u, v) = Z(u)Ll(u, v) + Z(v)L2(u, v).
Hence, the limit may be passed inside the expectation sign to yield
(4.46) lim b" = E[R(u, v)R(x, y)IB].

nf-4w

The proof of theorem 4.1 is therefore complete.
In order to complete the derivation of the asymptotic normality of Gn, it only

remains to derive the limiting distribution of n-312 [Sn + Rn - E(Sn)]. It should
be observed that the asymptotic normality of S. can be derived straightforwardly
by the method of moments, since Sn is a sum of random variables {S ,i.,} which
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are independent unless one or more subscripts are the same. Also, the asymptotic
normality of R. can be derived immediately using the weak convergence of the
Zn-process to the Z-process. However, since we are interested in the limiting
distribution of their sum S. + R., it is necessary to know something of the joint
behavior of S. and Rn. This joint behavior may be explicitly described by making
use of the following lemma: if we write

(4.47) W.(u) = nl'2Wn,i = n1/2(1 - U) (Yk - 1)(n - k + 1)-1,
kc=1

for i - 1 < nu . i, this lemma will enable us to replace Z.(u) in the definition
of R. given in (4.7) with Wn(u).
LEMMA 4.1. For all i = 1, 2, ** n,

(4.48) E IU,i - wn,Wti| < cn-l

where c is a constant independent of i and n.
PROOF. Since Wn r = 0 and E(1 - Unn) = (n + 1)-1, we can restrict at-

tention to values of i < n. Because of (4.2), one may write

(4.49) E[Un,i- i/(n + 1) -Wn,i = var (Un,i) + E(Wn,t)
+ 2E[Wn,i exp (-Y,i)].

Clearly, var (Un,i) = i(n - i + 1)/(n + 1)2(n + 2), and

(4.50) E(Wffj) = (1- ) (n - k + 1)-2.

Moreover, straightforward computation yields

(4.51) E[Wn ,i exp (-Yni)]
Yk - 1

= (1 - ) E{E k+E 1 e-Yk(n-k+)- II e-Yj(n-i+1)
n kl n - k + 1 j=1,JOk

=(1 k= ~
= (1t ) (-1)(n-k + l)-'(n-k + 2)-I(n -i + 1)(n + 1)-'

since E[exp (-aY)] = (1 + a)-' and E[aY exp (-aY)] = (1 + a)-2 for an
exponential random variable Y with mean 1. Therefore, (4.49) becomes

(4.52) i(n 1i+1)2 + - LY (n-k + 1)2(n + 1)2(n +2) \ n/k=i

-2 (1-) (n-i + 1)(n + 1)-1 Li (n-k + 1)-1(n-k + 2)-1.

However, upon approximating the sums in these expressions by integrals, one
obtains

(4.53) (n + 1)(n-i + 1)
<

k=1 (n-k + 3 n(n - i

and
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(4 ) (n+2)n54) < L (n-k + 1)-1(n-k + 2)-1 <

The proof may now be completed by direct computation.
As an application of lemma 4.1, one may prove the following lemma.
LEMMA 4.2. Under assumption 1 and 2, n-312Rn- Rn* 0 as n -X 00, where

(4.55) R* = Jo1 1' [W.(u)Lj(u, v) + Wn(v)L2(U, v)] dv du.

PROOF. This is immediate, since by definition,

(4.56) n-312Rn = f'| [Zn(u)Lj(u, v) + Zn(v)L2(U, v)] dv du,

and since by lemma 4.1, EZn(u) - Wn(u) < cn-2.
The coefficient of n-12(yk -1) in (4.55) is straightforwardly checked to be

fl(k/n - 1/n) where ,B is defined by

(4.57) (1 - w)j3(w) = f| f| (1 - u)Ll(u, v) dv du

+ f f (1- v)L2(u, v) du dv.

Therefore, theorem 4.1 and lemma 4.2 state that n-312 [Gn- E(Sn)] has the same
limiting distribution function as

(4.58) 77n-3=2[Sn- E(S.)] + R*

= n-3/2[Sn - E(Sn)] + n-'12 F_ (yk~)k=2 n n)

whenever it possesses one. But nmay be written in the form qn = n-312 Ei < j 7n,i,j
where ,q i,j and tn,k,m are independent random variables (with mean zero) when-
ever i, j, k, and m are distinct. This leads one to the main theorem of this section,
namely theorem 4.2.
THEOREM 4.2. Under assumptions 1 and 2, n-3/2[G. - E(S.)] converges in

law as n -* oo to a normal random variable with mean zero and variance o.2 where
a2 = as + 2as,R + AR, os is given by (4.62) below,

(4.59) -R=- L|(u, v)r. + L2(U, v)r dv du
and i~~~~ ~~O [ ~ruj3(u) r',(v)Jand

(4.60) ° 101 [#(u)]2 du.

PROOF. As mentioned above, n-1/2[Gn-E(Sn)] will have the same limiting
distribution as tqn where tq is given by (4.58). Let ds and dR denote the limiting
variances of the first and second terms, respectively, in the right-hand side of
(4.57). Then it is immediate that R is given by (4.60). Moreover, d < , since
from (4.57) it follows that for all w, ,8(w) S 2 fo fu K(u, v) dv du, which is finite
by assumption 2. To compute s2, consider
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(4.61) var (n-312 [Sn- E(Sn)])
= n-3 F* {E(Sn,i,jSn,k,m) - E(Sn,j,j)E(Sn,k,m)}

where _* denotes summation over all values of i < j and k < m with the
restriction that there are at most 3 distinct values among i, j, k, and m. [The
summation over 4 distinct values is zero by independence.] Since * =
2 Ei <jE, <k + Ei <j -i <k + Ei <j,k <j and since the summands represent
bounded Riemann-integrable functions, one obtains that the limiting variance of
n-312S is

(4.62a) ol = f Ju | [H1(u, v, w) - L(u, v)L(u, w)] dw dv du

+ 2 fPf| [H2(u, v, w) - L(u, v)L(v, w)] dw dv du

± |0 f |0 [H3(u, v, w) - L(u, w)L(v, w)] du dv dw

where
Hj(u, v, w) = E[q(Yiru, Y2rv)g(Yir., Y3rw)],

(4.62b) H2(u, v, w) = E[g(Yiru, Y2rv)g(Y2rv, Y3rg)],
H3(u, v, w) = E[g(Yiru, Y3r.)g(Y2rv, Y3rg)].

The limiting covariance term OfS,R may also be computed directly from (4.58)
and (4.13) to be that given in (4.59).
The proof of the asymptotic normality of 'In may now be completed by the

method of moments. By using the independence of qni,ij and l7n,k,m when the
subscripts are distinct, one may show that all terms in the s-th moment of
n-312[,n- E(7n)], s > 2, involve either less than (when s is odd) or less
than or equal to (when s is even) 3s/2 different subscripts in the product of
?77n,ii,j?7n,it,Jt ''- 10n,i, Since there is a factor of n-3s12 multiplying each such
product, the s-th moment converges to zero when s is odd and to ass!2-/2/(s/2)!
when s is even, as required.

In this paper we are primarily interested in the case of a nondecreasing failure
rate function, or equivalently of a nonincreasing r. For this case, r' is non-
negative, and some simplifications are possible in the statement of the assump-
tions of theorem 4.2. When r is nonincreasing, L(u, v) is nonincreasing in u and
nondecreasing in v. Hence, T(u, v: 5) = L(u - 6, v + 5). This enables one to
check that (4.9) of assumption 2 holds. Moreover, since Ir' I = -r' and
K(u, v) = L2(u, v) - L1(u, v), one obtains

(4.63) Jo lo K(u, v) dv du = f1 [L(u, 1) - L(O, u)] du.

We therefore have corollary 4.1.
COROLLARY 4.1. If r is nonincreasing (IFR) and r' exists and is continuous

a.e. on (0, 1), then the conclusion of theorem 4.2 holds.
The conditions of this corollary are satisfied by the examples considered in
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the following section. We also remark that among IFR distributions, (4.63)
equals zero only when r is constant.

It should be observed that if r is piecewise constant, then r' exists and equals
0, a.e. Hence, even if there is a countably infinite number of disjoint open
intervals in (0, 1) on each of which r is constant, one still has r' = 0, a.e., and
hence n-'2Rn --P 0. This indicates the difficulty that would arise if one attempted
to prove the limiting normality of G. for general r by first proving it for piecewise
constant failure rates and then using these to approximate a general r.
We conclude this section by evaluating the several quantities which appear

in the above analysis, for the special case ot the statistic Vn; that is, the case of
g(x, y) = 1 or 0 according as x > or < y. For this case,
(4.64) L(u, v) = P[Yiru > Y2r,] = r.(ru + r,)-1,
(4.65) LI(u, v) = -L2(v, u) = r,ru(ru + r)-2,
(4.66) Hi(u, v, w) = P[Ylru 2 Y2re, Yiru > Y3r.,]

= ru(ru + r,)-l- rw(rw + ru)-l + rvrw(rvrw + rurv + rurw)-1,
(4.67) H2(u, v, w) = P[Yiru > Y2r. > Y3rw]

= ru(ru + r,)-l - rurw(rurw + rurv + rwrv),
(4.68) H3(u, v, w) = P[Ylru 2 Y3rw, Y2r. > Yer]

= rurv(rur, + rurw + rvrw)-l.
All of the results and proofs of this section have centered upon r, the transformed
inverse of the failure rate function q. For applications it is desirable to transform
the results back into q. For example, the asymptotic mean which will be of
central importance in the following section is

(4.69) p = f ' f| L(u, v) dv du = i: | q(y) [q(x) + q(y)-'f(x)f(y) dy dx.

5. Asymptotic relative efficiency

In this section we use the criterion of Asymptotic Relative Efficiency (ARE)
to compare the test based on V. to two other possible tests. For some specified
set of alternatives indexed by 0, say, the ARE of one sequence of tests based on a
sequence of asymptotically normal test statistics {Tn} against a second sequence
of tests based on the asymptotically normal test statistics {rn} is defined as
(5.1) { [par(0o)] f[} 'a(Oo)l - 1

214(O) J (0)f
whenever it exists. In (5.1), pT(0) and AT(0) denote the limiting mean and
variance respectively of {TJ}, ,.T denotes the derivative of lIT with respect to 0,
and 0o denotes the null hypothesis. A similar interpretation is understood for the
notation in the denominator relative to r.

It should be remarked that before one may actually relate (5.1) to the limiting
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ratio of the sample sizes required by the two tests to achieve the same power
(which is the usual definition of ARE, due to Pitman (see, for example, Fraser
([11], chapter 7)), one must know that the asymptotic normality of the test
statistics is uniform in 0 as 0 -* 00. In order to obtain a uniformity result like
this for V., one would require something analogous to the Berry-Esseen theorem
for double sums of random variables like (4.58), as well as uniform bounds on the
several estimates made in the proof of theorem 4.1. With this proviso in mind, it
is believed that (5.1) is a useful preliminary measure of the comparative merits
of tests. It is computed in what follows for V. against the likelihood-ratio test
for Weibull alternatives and against the likelihood-ratio test for gamma alter-
natives.

(a) Likelihood-ratio test for Weibull alternatives. Suppose that Ho is as before,
but H1 is specialized to the case in which the underlying distribution is given by
the Weibull formula with increasing failure rate:
(5.2) F(x) = 1-e-, X> 0, 0 > 1, x > 0,
with X assumed known. The likelihood ratio test is to reject the null hypothesis if

r n n I n\
(5.3) max [ 1nOn(I Xn,.)'-I exp(nXE X > Ca.

0>1 I i=l i=li=

For 0 close to 1, after simplification, this is equivalent to rejecting if the test
statistic Tw > c', where

n

(5.4) Tr= L (1- XXn,i) ln Xn,i.
i=l

Thus

(5-5) pw(0) = f' (1-Xx) (ln x) Axx-le -' dx,
so that

(5.6) uw(1) = f| {1 + ln x - Xx ln x} {(1 - Xx)(ln x)Xe-"z} dx

= (ln X + y - 1)2 + - where y = .5772156649 *- - .6'

Similarly, we may compute Aw(1) = (ln X + y -1)2 + 7r2/6. Hence,
fAw(1) I = (In X + y 12 + r-(5.7) 24(1)}=

For the test statistic V. we compute

Jojq(x +q(y)(5.8) (@ | | (x)+Y ( Y) @;Xy1-1e-11'X;x1-1e-1xdy dx

where the failure rate of the Weibull, q(x) = Ax9-'. After simplification, we find
(1)= 4 ln 2. From section 2 we see that o2(l) = 1/36. Hence,

{59(1}2 =_9
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Thus from (5.1), the AREw becomes

(5.10) AREw = "(ln 2)2/{(ln X + -y- 1)2 + }

1.0809
(In X - .4228)2 + 1.6449

Note that as X -- 0 or o, AREw -+ 0. For all X > 0, AREw < .6571; equality is
attained for ln X = .4228.

(b) Likelihood ratio test against the gamma distribution. Next assume that H1
is specialized to the case in which the underlying distribution is the gamma with
increasing failure rate; the corresponding density is

(5.11) f(x) = X6x61e) 0 > 1.

The likelihood ratio test is to reject the null hypothesis if

(5.12) max{ne(III Xni) exp ( E x [i)/Er()]n}
(5.12) 0>1 i=1 - (- i=1 V > ca;

Xne exp X_ i)
or, equivalently for 0 close to 1, if TG = ISt- in Xn, > c'. A similar calculation
to that in (a) yields ({JG (1)}2/o(1)) = 7r2/6.
For the test statistic V., we compute

(5.13) A(0)= f L q(y) f(x)f(y) dydxq(x) + q(y)

fa fa y0'e-x'y .LO t9-l1e_)t dt .20(xy)0-le-X(z+Y)
=

L {XOlez0]2{X-Xe df t f

, dx dy.
Jo [()] e-t dt + y'e-l" J tO-le-et dt}

After a good deal of calculation, we obtain ,u'(l) = Iin 2 - ". Thus,

(5.14) 9 (In 2-2 )2

Hence,

(5.15) ARE09 (in 22/6 2) = .2040.

(c) Likelihood ratio test against the gamma when the true distribution is the
Weibull. Next let us compute the ARE of the test statistic Ta = St- lln Xn, i
when the distribution is Weibull, equation (5.2), under H1. Recall that Ta is
the asymptotic likelihood ratio test against the gamma distribution.

Since

(5.16) AG,W(O) = lo (In x)X0x9-1e-I' dx,
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after simplification we obtain AG',w(9) = y + In X. Also we obtain o-G,w(1) = 7r2/6.
Hence,

(5.17) AREG,W = 6(-y ±lnX)2
72<{(lnX+y- 1)2+ 6}

For X = 1, AREG,W = .1111. Thus for X = 1, the Vn test is considerably
better since the corresponding value of AREw is .5927. However, in general, the
ratio

AREGW 6(,y +lnX)2
(5.18) AREw 1.0809r2
may be larger than 1; in fact, for X sufficiently large, the ratio becomes arbitrarily
large. This implies that for large X, the statistic V. will be considerably inferior
toT.

(d) Likelihood ratio test against the Weibull when the true distribution is
the gamma. Next let us compute the ARE of the test statistic T:' =
Et-l (1 - XXn,i) In X,, i when the distribution is gamma, equation (5.11), under
H1. Recall that Tw, is the asymptotic likelihood ratio test against the Weibull
distribution. Since

(5.19) Aw,G(O) = (1 -Xx)(Inx)r(o) e-x dx,

we obtain after simplification I.Lw,G(O) = In X + y. We also obtain a.G(O) =
(In X + y - 1)2 + 1r2/6. Thus we have

(5.20) AREw,G = r + y6(lnX + _1)2
At X = 1, AREw,G = .1111. Thus for X = 1, the V,, test is better than Tf since
the corresponding value of AREw = .2040. However, in general, the ratio

(5.21) AREw,G _ 36(ln X + y)2
AREG

=

.2040{w4 + 67r2(ln X + -' - 1)2}
may be made greater than 1 by taking X sufficiently large. In fact, as X -m oo,
the ratio approaches 2.98.
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