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1. Introduction and summary

In his booklet on ergodic theory [1] Halmos raises the question of the existence
of p-th roots of measure-preserving transformations, and more specifically the
question of the existence of p-th roots of the N-shifts (see problem 4 on page 97).
On page 56 of the same book he indicates that if N = k2, then the N-shift has
a square root. Clearly, essentially the same argument shows that if N = k»,
then the N-shift has a p-th root.

The main purpose of this paper is to show that the one-sided N-shift has a
p-th root if and only if N = k» for some positive integer k. The problem of the
existence of roots seems to be more difficult for the bilateral N-shift than for
the one-sided N-shift. At least our methods involve the many-to-one nature of
the one-sided N-shift and its roots, and cannot be used on the bilateral shifts.

2. Notation

The following symbols will be used:
is a positive integer;
= {w = (wl,wg, ---)Iwie {O, 1, ,N —_ 1} forallz};
is the smallest o-field containing all sets of the form {w|w; = k};
is a probability measure on (2, Z) defined so that the sequence {w:}
of coordinate projection random variables is an independent se-
quence, and so that P{wjw; =k} = 1/Nfork=0,1,--- ,N —1
and all 7;
T is the one-sided N-shift defined by T(wi, we, - -) = (ws, w3, +++);
2% is the subcollection of 22 consisting of all subsets of sets (in =) of
measure zero;
>* = {E, + E;|E, € 2 and E, € 2%. This is a o-field;
P* s the completion of P to Z*;
w+j/N = (wl,ws, -++) where w = (w, wp, ---), 0 < wf <N —1, and o] =
w; + 7 (mod N).
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3. Results

For our first two lemmas we state some relatively well-known facts about T'.
LemMma 1. The one-sided N-shift T satisfies the following relations:
1) A€ZE*)=TA € Z(Z*) and T4 € 2(Z%);

(ii) T is onto;

(iii) T is measure preserving (that 1s, A € Z* implies P*(A) = P*(T-14));

(iv) P*(4) = 0 implies P*(TA) = 0 and P¥(A) = 1 implies P*(TA) = 1;

(v) T s ergodic (that s, A € Z* and A = T4 implies P*(4) =0 or
P*(4) = 1).

Lemma 2. If Ae€2* EcZ* P¥E) =1 and ENT'A CA, then
P*(4) = 0 or P*(4) = 1.

Proor. Set A, = Us-0 Ni-2 T-%A. One shows that P*(T—*4 A A) = 0 for
all k, from which it follows that P*(4, A A) = 0 or P*(4) = P*(A.). Note that
A, is invariant (namely, 714, = A.) so that P*(4,) = 0 or P*(4,) = 1.

Suppose U and V are point transformations from € into € which are Z-meas-
urable (that is, U2 C 2 and V2 C Z), or Z*-measurable (U~12* C Z* and
V—12* C =*), and which are nonsingular (namely, 4 € Z*¥ and P*(4) =0
implies P*(U-14) = 0 and P*(V-14) = 0).

Lemma 3. If U and V are Z-measurable, then they are also Z*-measurable.

Proor. If E € Z* then we can assume that £ = E, + E, with E, € 2 and
E, C E°where E® € 2, P(E®) = 0. Now E; C E° — E;and P(E° — E;) = 0. It
follows that U-Y(E) = U~Y(E,) + U~Y(E,) with U-'(E,) € 2, U"(E® — E)) € 2,
P[U-Y(E®* — E,)] = 0, and U~Y(E,) C U"Y(E® — E;). Thus U~'E € =* and sim-
ilarly, V-1F € =*.

Now let Dy = {w|UV(w) = VU(w) = T(w)} and note that D, is in *. Define
(1) D = Dy N\ U-Dy N V-1D,.

We assume that P*(D,) = 1. It follows from the nonsingularity of U and V
that P*(D) = 1 also.

Lemma 4. If w € D, then TU(w) = UT(w) and TV (w) = VT(w).

Lemma 5. If P*(E) = 1,then UE € Z* VE € =* and P¥*(UE) = P*(VE) = 1.

Proor. First UE O UV(D N V-E) = T(D N V-E). However,

@ PHT(D N V-'B)] = PO N V-B) = 1,
so UE has inner P* meagure 1. Thus UE € =* and P*(UE) = 1. The remaining
conclusions follow by interchanging U and V in the above argument.

Lemma 6. The transformations U and V are measure preserving.

Proor. We will show that U is measure preserving. The proof that V is
measure preserving is identical and omitted.

For A € =* define u(Ad) = P*(U~'4). We see that u is a probability measure

which is absolutely continuous with respect to P*, since U is nonsingular. Note
that lemma 4 implies D N U~'T-'A = D N T-'U-'A. Thus
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3) p(4) = P*(U-14) = PX(T-'U-'4) = P*(D N T-'U-'4)
= P¥D N U'T-14) = P¥(U'T'A) = u(T-1A)

so that T is measure preserving with respect to u.
. The remainder of the proof is similar to that of theorem 1 and corollary 1
of [2].
Let A be a maximal positive set for the signed measure P* — u as guaranteed
by the Hahn decomposition theorem. The set

@) Ad.= U N T+
n=0k

n

can be shown to be a maximal positive set for P*¥ — u. But A, is invariant,
hence P*(A,) = 0 or 1. But since u is absolutely continuous with respect to P*,
we have P*(4,) = 0 implies u(4,) = 0, and P*(4,) = 1 implies P*(4%) =0
implies u(A%) = 0 implies u(A4.) = 1. In either case (P* — p)A, = 0. Similarly
P* — 4 can be shown to be zero on a maximal negative set so P* = u. Thus
P¥(U-14) = P*(A) for A € Z*.

Lemma 7. If E € =*, then P¥(T-'E) = P¥(U-'W—E) = P*(V'U'E).

ProoF. The lemma follows from the observations that D N U-'V-E =
D N V-U'E = D N T-'E and that P*(D) = 1.

TeeEOREM 1. If U and V are measurable (T or Z*) point transformations from
Q into Q@ which are nonsingular, and such that P*{w|UV(w) = VU(w) = T(w)} =1,
then there exist positive integers n and m such that

(i) mn = N,
(i) P* { exactly m out of the collection } -1
“lUw), U+ 1/n), -+, Ulw + (N — 1)/N) equal U(w)S ~

exactly n out of the collection

(iii) P* {w V(w), Ve + 1/N), -+, V(e + (N — 1)/N) equal V(w)} =1

ProoF. Let

exactly & members of the collection
5 A = - )
(5) k wU(w),U(w+J—l\7),---,U<w+NN l)areequalboU(w)}

exactly & members of the collection
V@, v (ot 5) -7 (o

) are equal to V(w)}

Note that >_7-1 4r = X.¢-1 B: = @ and that the A,’s and B)’s are measurable
sets. Let m be the smallest integer such that P*(4,,) > 0, and let n be the largest
integer such that P*(B,) > 0.
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Let
N-—-1

‘°’°’+zlv""""+ €D N [AnUAnn U -+ U 4,]
) G =10|Uw) €B, ’

V@), U + 3, -+, Uw) + YL e UD
and note that G; C U-'B, and P*[U~'B, — G1] = 0 so that P*(G;) > 0 and
G, % ¢. Suppose w € G1. Exactly n members of the set

®) {0, 0@ + 3, -, U6 + T

are such that V[U(w) + (a/N)] = V[U(w)]. Suppose these are u;, - - - , u,. Now
U= (u;) N D = ¢ for each u;, say x; € U~(u;) M D. Since

9) T—I[T(w)] = {le(y) = T(w)} = {w, w + ]%7’ R NJ; 1},

we see that x; € A, U - -+ U A, so that there are at least m points in the set
{w,w+ (1/N), ---, 0 + (N — 1/N)} which have the same image under U as
z; does, namely ;.

Thus T« has n preimages under V (namely v, - - -, u,) such that each one
of these has at least m preimages under U which are in D. We see that Tw has
at least nm preimages under VU = T which are in D, hence nm < N.

Let

r V(w),V<w+]%),---,V(w+]%)GD ]
1 N-1
1) G={u[* W T SPAEU U BH
Viw) € An
V(w),V(w)+]lV,---,V(w)+N];1eDmVD

P

Note that G; C V-'4,, and P*[V-14, — G:] = 0 so that P*(G;) > 0 and
G2 = ¢. Suppose w € G, Exactly m members of the set

(1) [P, 7@ + -, V) + N_;_l}

are such that U [V(w) + k/N] = U[V(w)]. Suppose these are v, - - - , vn. Now
Vi) N D = ¢, say yx € V-1 () N D. We have

e 1. N-1
(12) Tmm—@m+N, Jo+ 2

and since 3 € D N V-1V (w), we see that y, € T-(Tw). However,
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(13) w,w-l-]lv,---,w-l- 631U - UB,,

soyr €BU --- UB,.
Thus there are no more than n preimages of each v, which are in

(14) {w,w+§,--~,w+——}

It follows that Tw has m preimages under U (namely #, - - - , v») such that each
of these has at most n preimages under V which are in D, so that we have at
most nm of these preimages. These are all preimages under T, and if they are
all such preimages, then N < nm. We are done if V (w + k/N) € {v1, -+ , vm}
for each k. If this is not the case, then either

a5 V(o+y) e{T@ V@ + g V@ + T = oy 00
(which contradicts T' (w 4 £/N) = T'(w)), or else

a6 V(otg) e {VE, Ve + g, V@ + T
But since V(w) and V (w + &k/N) € D, we have

VUV () =V[TW]=V ['-" (‘° + 1%)]

V[UV (w + z%)] = T[V (w + %)]

Thus both V(w) and V (w + k/N) are in D, and preimages of T'(V(w)) under
T, hence V (w + k/N) = V(w) + j/N for some j. We have already seen that
these circumstances imply V (w + &k/N) € {v1, * - , vm}.

Now that we have shown that mn = N, let us look again at the points in Gh.
We saw that if o € Gy, then T'w has n preimages under V, and that each of these
had at least m-preimages under U which are in D. Since mn = N and Tw has
the N preimages w,w + 1/N, --- ,w + (N — 1)/N (in D) under UV = T, it
follows that each preimage under V of Tw has exactly m preimages (in D) under
U. In particular, U(w) is a preimage under V of Tw, and therefore has exactly
m preimages (in D and thus in w,w + 1/N, - -+ 0+ (N — 1)/N) under U, hence
w € Ap. Thus G, C A

Similarly, looking at G, we argue that if w € G, then V(w) has exactly n

i

7) T(V(w))

preimages (inw, w + 1/N , -+ ,w 4+ (N — 1)/N) under V, and hence w € B,.
Thus Gz C Bn.
We have shown that
(18) B, D G, 2= V14, D V-G, && V-1U-1B,
and

(19) An D G 22 U-B, D UG & U~'V-14n.
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An application of lemma 7 shows that B, &% T-1B, and 4, 2 T-'4,. An ap-
plication of lemma 2 shows that P*(4,) = P*(B,) = 1 and completes the proof
of the theorem.

TaEOREM 2. The one-sided N-shift has a nonsingular and measurable p-th
root 8 (in the sense that P*{w|T(w) = S7(w)} = 1) if and only if N = k? for some
positive integer k.

ProoF. Suppose N = k? and let X = {1, --- , k}. The following is hinted
at on page 56 of [1]. Define

(20) Qx={r=(z, - ,2)|xe€X for ¢=1,.--,p}.

Let ¢ be any one of the N! distinct mappings of {0, ---, N — 1} onto Qx.
Define x4 = (1%a, - - , p%e) for a € {0, --- , N — 1} by z., = ¥(a). Now sup-
pose w = (wy, ws, -+ +) € @ and that z,; = (1w, ey *** 5 2Tai)-

Define

21 Sw = [ oTw, *** 5 pZury 1Tun), ¢_l(2xw*z; oy o lxwl)» -

In order to obtain Sw, one encodes each digit w; of w using ¢ to find the cor-
responding p-tuple z,; = ¥(w;). Then one eliminates the first digit in the coded
version of w;, namely, 1z, and one regroups into p-tuples. This amounts to a
p-shift of the encoded version of w. Finally one decodes each digit: S is Z and
Z* measurable, measure preserving, and is a p-th root of T everywhere (namely,
S?w = T for all w).

Now suppose P*{w|S?(w) = T(w) = 1} and that S is measurable and non-
singular. Let U = S*~1and ¥V = 8. From theorem 1 there exists some positive
integer k such that

N-—-1

|exactly k& out of the collection
(22) P*4u 1
S(w)’S(w+]TI>’ ,S(w + >are equal to S(w)

It is almost obvi.us that S? is k»-to-one almost everywhere. (A rigorous proof
of this fact involves a little effort with sets of measure zero but will be omitted
because the difficulties are of the type encountered in theorem 1.) Since T is
N-to-one everywhere it follows that N = k».

4. Some remarks on generalizations

It is clear that the results given here are valid, not only for the one-sided
N-shift, but for other ergodic transformations which are essentially N-to-1 as
well. The essentials seem to be that there exists a transformation ¢ such that
on a set of measure one, w, ¥(w), - -+ , ¥"1(w) are all different and v = ¢¥(w);
that ¥ be measurable and nonsingular; and that 7'(w) = T(w’) if and only if
o' = Y¥*(w) for some & (provided we have restricted « and «’ to some set of
measure 1). We have used the fact that the one-sided N-shift is bimeasurable.
It would be interesting to know whether it is necessary that 7" have this property.
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It would also be interesting to know about roots of 7" in the case where ¢ is of
finite period for almost all w but the period is a function of w.
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