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1. Introduction

Let X, -+, X, be n symmetrically dependent random variables defined on
a probability space (2, F, P). By symmetrically dependent it is meant that the
joint distribution of X, - - - , X, is invariant under permutations of the random
variables.

The present paper is concerned with relations between the distributions of
several functions of the variables X3, - -+ , X,.

The notion of symmetrically dependent random variables is closely connected
to the concept of interchangeable random variables introduced by de Finetti [1].
De Finetti, however, assumes the existence of an infinite sequence of random
variables, such that each finite subsequence is a set of symmetrically dependent
random variables. It is easy to show by examples that there exists for each n
a set of n random variables, which are symmetrically dependent, but such that
it is not possible to extend the set to an infinite sequence of interchangeable
random variables.

For interchangeable random variables it has been proved [1] that the dis-
tribution is a mixture with positive weights of distributions of independent,
identically distributed random variables. This result does not hold in general
for symmetrically dependent random variables as the following example shows.

Let X;, X, be symmetrically dependent random variables such that
PXi=1,X,=0) = P(X: =0, X, =1) = %; then no mixture with positive
weights of distributions of pairs of independent, identically distributed random
variables yields the distribution of X; and X,.

2. Symbolic convolutions and their relations

The symmetrically dependent random variables Xi, - -+, X, will be called
basic random variables. All other random variables will be defined in terms of
these basic ones.
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The basic random variables map @ into EB*. This mapping induces a2 measure
P’ defined on the Borel sets of RB». Since all random variables, which we shall
consider, are functions of the basic random variables, we may consider (R, ®&*, P’)
as our basic probability space. For convenience, we shall from now on write
P for P'.

Let Yy, ---, Y% be random variables; we shall then denote the probability
distribution of Yy, ---, Yy by Py, ---, v, such that Py, -,y (4) =
P((Yy ---,Yy) € A) for A € ;.

When Y and Z are defined respectively as functions of X, ---,4 and
X, + -, j, and the two sets of indices 7y, - - - , 7, and jj, - - - , j, are disjoint, then
we shall define a symbolic convolution of Py and Pz by Py * Pz = Py,z. If
Y and Z are not defined on disjoint sets of basic random variables, but p 4+ » < n,
then we can extend the definition of the symbolic convolution. Let Z =
f(X;, ---,;) and define Z’' as f(Xy, --+ , 1), where ky, -+ , k, and 4, -+ , %,
are disjoint. Evidently, P; = Py ; we therefore define Py * Pz as Pyyz. This
is possible since the probability distribution of ¥ 4 Z’ is independent of the

choice of ki, ---, k,. We shall also use the symbolic convolution for vector-
valued random variables } and Z.
In the case where the basic random variables X, - - -, X, are independent,

the symbolic convolution is the usual convolution of probability distributions.

We shall be interested in the following random variables defined in terms of
the basic random variables:

HDSw=X1+ - +Xuym=0,---,mn,

(i1) R = the k-th order statistics of Sy, ---,8m, for which R, <
Iﬂm,l S M S Rm,m,

(i) RYx = the k-th order statistics of the random variables Sj.; — S;,
1=0---,m

THEOREM 1. Form =0,1,--- ,nand k= 0,1, --- , m we have
(1) PR»-,;,S... = PR;,».S; * PR.._k.o,qu-

Proor. Equation (1) is trivial for & = 0 and k = m. We use induction with
respect to m and assume that (1) is true if m is replaced by 1, 2, --- ,or m — 1.
TUsing the notations Y+ and Y~ for max (0, Y) and min (0, Y), we have

(2) Py+z + Py-z = Pyz + Doz

If, furthermore, we adopt the conventions that Pfz = Py+z, Pyz = Py-z,
then (2) may be written as

3) Piz+ Pyz = Pyz+ Poz.
We note for later use that these operators working on P have the property that
if ¥, <0, then

(4) (PYx,Zl * PY2,22)+ = (P;'_x,Z: * PY:,Z?)+}
and if V. > 0, then

<'.)) (I))'l,Zl * 1))';,Zz)7 = (l);x,Zx * ]))':,Z-:)‘:
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For the proof of (4) we remark that the operator 4+ throws the probability
mass of the points where Y, or the “sum” of Y, and Y, is negative into 0; when
Y, is nonpositive, it therefore makes no change if in the left-hand side of (4)
we replace Y, by Yi". The proof of (5) is analogous.

Since the random variables X; + Rya’ix, k=0, -+, m — 1 are the order
statistics of the sums S;, - - - , S,, we obtain, using S, = 0,
(6) Riv= X1+ Raax—1)*
and
) RBor = (Xi+ RS- 1x)~
From these equations we obtain, using Pr(h = Pg,._.., the equations
8) Pipssn = (Pxuxi * PRossaSes)t
and
9) Pruisn = (Pxuxi * ProisSna) ™
From the induction assumptions follow
(10) PRoisrSnt = PreisiSici * PhuioSm
and
(11) ProiiSns = Phoi1oSnia * PRisse

These expressions may be introduced in (8) and (9). We shall only treat (8),
since the treatment of (9) is analogous.
Using Rn_i0 < So = 0, we obtain by (4)

(12) PI;-,.,;,,S,.. = (PXth * PRh-l.k—l,Sh—l * PRm_k.o,Sm_h)+
= ((P.‘(x,Xx * PRkvl.k—dySk—-l)-'_ * Plfm—k,n,Sm_h)+'

If in (8) we let m = k, then we obtain

(13) Phoas = (Pxuxi * Prissasi)™
and using Ry, > 0, we have

(14) Priss. = Phsse
We therefore obtain from (12) the equation

(15) Piise = (Presse * PrornSwi) T

Similarly, (9) yields
(16) P;l-m,k.sm = (PRkJ:,Sk * PRMAk.l\,Sm—E)—'

The addition of (15) and (16) and the subtraction of Pz, give, by using (3),
equation (1). The proof by induction is completed.

We shall use theorem 1 to derive the following theorem.

THEOREM 2. For m = 0, - -+, n we have

(m) mx 1

(17) PRomsn = 2

*
II P + .5, x,
G v=1v*a,! (Psr )%
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and
(18) P (m) mx *
a
RmSn = (az’ o v"'a 1 (Ps;.s.)%,
where Y3 denoles the summation over those au, as, - -+ for which a, > 0 and
lay + 202 + - -+ = m, where TI* denoles the symbolic convolution of measures,

and the exponent o denotes the symbolic convolution of a, measures.

Proor. In the case where the finite sequence of symmetrically dependent
random variables X, --- , X, can be extended to an infinite sequence of inter-
changeable random variables, the use of generating functions leads to a rather
simple proof of theorem 2. We shall, however, give a proof which does not
need this extra assumption.

We first remark that it follows from theorem 1 that

m m
(19) kgo PRE,I:,Sk * PRm—k.OySm—h = kZO PR..,»,S»-, m = 0) RN (%
Since the order statistics Rnx, £k = 0, - -+ , m are locally in the sample space a
rearrangement of the sums Sy, k = 0, - - - , m, we have
(20) Z PRm,hSm = z Psk.Sm = Z PSI:,SI: * PO,Sm—k) m = 0) RN (D
k=0 k=0 £=0

For the proof we need the following lemma.

LEMMA. Form = 0, --- , n we have
@) Z0 %) w=1 u"“a ! (P S“) wr Z H vﬂ'ﬁ vAB,! (Psys)f

= Z PSI:,SL- * PO.Sm—k'
k=0

Before we prove this lemma, we shall use it to prove theorem 2 by induction.
Equations (17) and (18) are trivially true for m = 0. Assume that they are true
also for 1,2, --- ,m — 1. We may then in all terms of the left-hand side of
(21), except the first and the last one, replace the 3_®--. and >_*®... expres-
sions by Pg,.s and Pg, ,.s., Using (20) we may replace the right-hand side
of (21) by the left-hand side of (19). After these changes in (21), corresponding
terms on the left and the right—except the first and last terms—cancel out,
and we obtain

(22) (‘Zj) i (Psp, 5% + Z o

(o) p=1 ”‘a‘laﬂ! (ap) u=1 “dpa '

(PS_Q;.)I‘_PRGI Sm+PRm0Sm

In (22) the first term on both sides is a probability distribution on the plane
which places all the probability mass in the part of the plane where the first
coordinate is nonnegative. The last term on both sides places all the probability
mass on the part of the plane where the first coordinate is nonpositive. It
follows that the first terms are equal and that the last terms are equal. We
have thus obtained (17) and (18), and the proof of theorem 2 follows by
induction.
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ProoF oF LEMMA. The left-hand side of (21) can be rearranged as

93 m (k) (m=k) kx m—ks 1 * *

—_—_— - a — B

( ) Z %) B am1 sl /J.““'a“!vﬂ'ﬁ,.! (PSF"'.S:') » ¥ (PS" .S-) v
i (k) (m—=k) mx 1

* &
- L (Pers)mx (Ps- )
oy & it p'a"+p"ap!3u! ( Sy ,Sp) L4 ( SI" .Sn) H

Introducing v, = a, + By, u = 0, + - - , m, we see that v, > 0 and 1y, 4+ 2v: +
- + mym = m. We may therefore rearrange (23) as

Mok 1 .
ey (vie — cvir) ] @ Y R
(24) ’rz}t) augo am=0 p=1 #‘haul('yﬂ _ a“)’ (PS:'.S,.) ¥ (Pb” ,S,‘) v,
{m) 1 Mk Y
= (%) wrypl oo aﬂZo (7u> (Ps+ s,) " (Ps— 5) = )t
pe
>t (P + Ps—s)%
Gy eyl oy S S
(m) 1
- Z (PS"‘S" + PO Su)’yﬂ)

Gy wryn! o=

since Ps:,s,, + Ps“-,s,, = Pg, s, + Pos,. After this change we may perform the

rearrangements in inverse order. We then obtain for the left side of (21) the
expression

\ NI WD L P
(25) 20(%,.:),‘1;[1#“"01'( 8050) % ¥ Z Z_,; rﬂvﬁl( 0.5)%.

We now consider

(k) kx
(26) L

(Ps.s,) .

(o) p=1 “a,.a“!

Since the S,’s are sums of the basic random variables, we get

(27) 1 (PSn Su)a = Hl PSpa +Spa, PS»,S&-
a=
Using
® k1
(28) =1,

(op) p=1 #a“au!
we obtain for the expression (26) the value Pg, s, Equation (28) may be proved

by a combinatorial argument or by comparing the coefficients of z* in the left-
and the right-hand terms of

(29) IjIexp (% x") = exp (éj %x") =exp (—In(l — 2)) =

An analogous argument shows that
(m—k) m—lx

(30) (Po s.) v = Posps

1I
®By) v=1 Vﬁvﬁ'
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Using these results we obtain from (25) the right-hand side of (21). This com-
pletes the proof of the lemma.
From theorem 1 and theorem 2 follows a corollary.

CororLarY. Form =0,--- ,nandk =0, --- , m we have
(k) kx 1 x (m—k)m—kx ] *
31 Py, = —— (Ps+,5,)% * —— (Ps-.s5)%.
(31) R 5, Sm (g‘;) “1;[1 pra,! ( S ,5,) “ - 2B, ( S, 5)Py

In order to show the connection between theorem 1 and theorem 2 and results
obtained by Wendel [3] and Spitzer [2], we shall now assume that there is
given an infinite sequence X;, Xs, -+ of interchangeable random variables.
Defining for |{s| < 1, || < 1 the generaling functions

(32) pls) = Zo Prpns.s"s

(33) (](3) = ])ll’y.,v,Sn'S”J
n=0

34) 5,0 = 5 % Prepnss'l,
n=0m=0

. |

(35) a(s) = 22 = Pstss",
n=1M "

ot 1

(36) bis) = X = Ps—ss"
n=1M1 "

it follows from theorem 1 that

(37) (s, ) = p(st) * ¢(s),

and from theorem 2 that

(39) p(s) = e,

(39) q(s) = b,

Equation (37) follows using the multiplication rule for power series. In order
to prove (38) (the proof of (39) is analogous), we write

(40) €™ = exp ( > 1]’S+,sns"> = II* exp (l P.<+.g,‘s">
n=1"7 n n=1 n n
Oy 0 1 1

*
— > YY1
= - o

n=1 an=0 an! nen (1 “n 58 ) "
= (k) k

> I

k=0 (an) n=1 na,a"!

It

*
(1)5"2',3',,)“718]:.

If the random variables X, X5, --- are independent, and we change from
probability distributions to characteristic functions, then (37) goes into Wendel’s
formula [3] and (38) goes into Spitzer’s formula [2].
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