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1. Introduction

Let X1, * * *, X. be n symmetrically dependent random variables defined on
a probability space (Q2, fY, P). By symmetrically dependent it is meant that the
joint distribution of X1,i , X. is invariant under permutations of the random
variables.
The present paper is concerned with relations between the distributions of

several functions of the variables X1, * *, Xn.
The notion of symmetrically dependent random variables is closely connected

to the concept of interchangeable random variables introduced by de Finetti [1].
De Finetti, however, assumes the existence of an infinite sequence of random
variables, such that each finite subsequence is a set of symmetrically dependent
random variables. It is easy to show by examples that there exists for each n
a set of n random variables, which are symmetrically dependent, but such that
it is not possible to extend the set to an infinite sequence of interchangeable
random variables.

For interchangeable random variables it has been proved [1] that the dis-
tribution is a mixture with positive weights of distributions of independent,
identically distributed random variables. This result does not hold in general
for symmetrically dependent random variables as the following example shows.

Let X1, X2 be symmetrically dependent random variables such that
P(X1 = 1, X2 = 0) = P(X1 = 0, X2 = 1) = 2; then no mixture with positive
weights of distributions of pairs of independent, identically distributed random
variables yields the distribution of X, and X2.

2. Symbolic convolutions and their relations

The symmetrically dependent random variables X1,i , X. will be called
basic random variables. All other random variables will be defined in terms of
these basic ones.
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The basic random variables map Q iInto Rn. This mapping induces a measure
P' defined on the Borel sets of Rn. Since all random variables, which we shall
consider, are functions of the basic random variables, we may consider (Rn, 371, p')
as our basic probability space. For conveniienice, we shall from Inow on1 write
P for P'.

Let )', *--, Yk be random variables; we shall then deniote the probability
distribution of YI, --, Yk by Pyl, * Y, such that Py,, *--, lk(A) =
P((Yl, - - *,,lk) e A) for A c (Bk.
When Y anid Z are definied respectively as funcetionis of Xi,, * *, i, anld

Xj, - * -*, j, and the two sets of indices ii, * , i, anid ji, - *, iv are disjoint, theni
we shall define a symbolic convolution of Py and Pz by Py * Pz = Py+z. If
Y and Z are not defined oIn disjoint sets of basic random variables, but , + v < n,
then we can extend the definition of the symbolic convolution. Let Z =
f(Xj,, * - *, j,) and definie Z' as f(Xk,, * * *, k.), where ki, * * *, k, and ii, * * *, i,
are disjoinit. Evidently, Pz = Pz'; we therefore define P1 * Pz as Py+z'. This
is possible since the probability distribution of Y + Z' is indepenident of the
choice of ki, * * *, k,. We shall also use the symbolic convolution for vector-
valued random variables ) and Z.

In the case where the basic random variables Xi, *, X,, are independenlt,
the symbolic cotuvolution is the usual convolutioni of probability distributions.
We shall be interested in the followinig ranldom variables defined in terms of

the basic random variables:
(i) S,.= X1+ * +X.,m= 0, n,
(ii) Rm,k = the k-th order statistics of S0,o , Sm, for which Rm,o <

Rm., < ... < Rm.m,
(iii) I?(l})k = the k-th order statistics of the random variables Sj+i - Sj,

i = 0,***,m.
THEOREM 1. For m = 0, 1, ***,nand k == 0, 1,***,nwe have

(1) PR.,k,S. PRk,k,S. * PR,-k,O,S.-k-
P'ROOF. Equation (1) is trivial for k = 0 and k = m. We use inductioni with

respect to m and assume that (1) is true if m is replaced by 1, 2, * * *, or m -1.
Using the notations Y+ and Y- for max (0, Y) and min (0, Y), we have

(2) PI+,z + Py-,z = PI-z + Po,z.
If, furthermore, we adopt the coiivenitionis that 1'+z = Pr+,z, P3i,z = Py-,z,
theti (2) may be wvritteni as

(3) Piz + PYlz = PI-,z + PI,z.
We note for later use that these operators working on P have the property that
if Y2 < 0, then

(4) (Py,,z1 * PY,2Z)+ = (P+;z * PY2Z)+
and if Y2 > 0, then
(5) ( *, (J ;.Z *
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For the proof of (4) wc remark that the operator + throws the probability
mass of the points where Y, or the "sum" of Y1 and Y2 is negative into 0; when
Y2 is nonpositive, it therefore makes no change if in the left-hand side of (4)
we replace Y, by Yi+. The proof of (5) is analogous.

Since the random variables Xi + RTl Lk, k = 0, * * ,m - 1 are the order
statistics of the sums Si, * , Sm, we obtain, usiIg SO = 0,

(6) Rm+k = (X1 + RMT1Ll.kl)+
atid

(7) Rin,k = (XI + RK1-#,k)m
From these equationis we obtain, USillg PRM( 1k = PR.-,,k, the equations

(8) = (Px1,xl * PR._lk_1,Sm_J)+
and

(9) PRmkS. = (PX,x,Y * PRI_i,k,S.l).-
From the iniduction assumptions follow

(10) = PRki,k-1,Sk-1 * PR.-k,0,S.-k

atid

(11) PRIm-l,k,Sm-l PR -k-l,O,S.-k-1 * PRk,k,Sk-
These expressionis may be introduced in (8) aiid (9). We shall onily treat (8),
sinice the treatment of (9) is analogous.

Using Rm-k,O < So = 0, we obtain by (4)
(12) PR+.k,-i;m (PXi,Yi * PRk-1,k-1,Sk-1 * PR.-k,O,S.-k)+

= ((PX1,X, * PRk-1,k-1,Sk1)± * PR._,O,S.-k) -

If in (8) we let m = k, theti we obtain

(13) PR+k,k.sk = (PXI,xl * PRk-1,k-1,Sk_1)+7

anid Usinig Rk,k > 0, we have

(14) PRA,k,Sk = PRik,ksk-

We therefore obtain from (12) the equationi
(15) PRL.s, = (PRk.k,Sk * PR-ko,sO,Sk)+-

Similarly, (9) yields
(16) PR-.,,,m = (PRk,k,Sk * PRKmk,O,Sm.k)T-

The addition of (15) and (16) and the subtraction of Po,s. give, by using (3),
equation (1). The proof by induction is completed.
We shall use theorem 1 to derive the followiing theorem.
THEOREM 2. For m = 0, * , n we have

(m) m* 1
(17) PRm,SM. t va!
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and
(in) M* 1

(18) PRm,OS. = E v-a;! (PSV-SI)
where , denotes the summation over those a,, a2, * for which a,, > 0 and
la1 + 2a2 + * = m, where II* denotes the symbolic convolution of measures,
and the exponent a,* denotes the symbolic convolution of a,. measures.

PROOF. In the case where the finite sequence of symmetrically dependent
random variables Xi, * * *, X. can be extended to an infinite sequence of inter-
changeable random variables, the use of generatiing functions leads to a rather
simple proof of theorem 2. We shall, however, give a proof which does not
need this extra assumption.
We first remark that it follows from theorem 1 that

m m

(19) F, PRk,,Sk * PR._k,o,S._k = E PRmj,k,S.) m = 0, *-* , n.
k= k=O

Since the order statistics Rm,k, k = 0, * , m are locally in the sample space a
rearrangement of the sums Sk, k = 0, * , m, we have

m m m
(20) E PR k,S,, = E PSk,sS. = E2 PSk,Sk * POS,-A; m = 0, * , n.

k=O k~~I=Ok=

For the proof we need the following lemma.
LEMMA. For m = 0, * n we have

m (k) k* 1 * (m-k) m-k 1

(21) k E III a (Ps+,s8,.)a*
m

E Ps,,s * Po,S-k.
kJ=O

Before we prove this lemma, we shall use it to prove theorem 2 by induction.
Equations (17) and (18) are trivially true for m = 0. Assume that they are true
also for 1, 2, * , m - 1. We may then in all terms of the left-hand side of
(21), except the first and the last one, replace the ,(k)-.. and _(m-k)... expres-
sions by PR&,&,S, and PRm_k,O,S_k-. Using (20) we may replace the right-hand side
of (21) by the left-hand side of (19). After these changes in (21), corresponding
terms on the left and the right-except the first and last terms-cancel out,
and we obtain

(m)m* 1 * (m) m* 1 *
(22) EII a (Ps+S.)a, + E II (ps ,)a = PR&,,Sm + PR.,.,S.-

(a,.) ..=1 l,Uo A. (ao) A =1 Ajs i. A

In (22) the first term on both sides is a probability distribution on the plane
which places all the probability mass in the part of the plane where the first
coordinate is nonnegative. The last term on both sides places all the probability
mass on the part of the plane where the first coordinate is nonpositive. It
follows that the first terms are equal and that the last terms are equal. We
have thus obtained (17) and (18), and the proof of theorem 2 follows by
induction.
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PROOF OF LEMMA. The left-hand side of (21) can be rearranged as

( (k) (mr-k) k* m-k* 1 * *

k-O (ag) (0) A-l -1 A I

mn Ck) (rn-k) rn* 1**
-F2 E H, (Ps+,8.)a A* (PS,'S.)11A.
k=O a) (1) p-i,a,+1a!t3! A A

Introducing y, = a, + ,3, ,i = 0, * * *, m, we see thaty.> 0 and 1yj + 2Y2 +
* + m-yi = m. We may therefore rearrange (23) as

(In) 'yl Y- M(24) Ym al
..

m* 1 (s a, P-)

(-y5) 0giO am=O =,1,U "a,a(,Yu-aM)! *au

-w) 7[! iI1 a-O (a:) (PS+,s^)'*(Pc,8*)(YI-a^)(-YA) IL I=1~ ap=Oal
(m) 1 m* *

- 'YM! H1 (PS+,S' +Ps8 ,S)7y
(m) 1 m* *

-^r) II>7,!, (Ps8,S + Po,s)
since Ps+,s. + Ps- s,, = Ps,,sS, + Po,s,. After this change we may perform the

rearrangements in inverse order. We then obtain for the left side of (21) the
expression

m (k) k* 1 (m-k) m-k* 1 *

(25) F- Y' H[,raLl I (Ps,54) E* ,B s,)

We now consider
(k) k* 1

(26) E HII, la!

Since the S,'s are sums of the basic random variables, we get
k* A;**

(27) II (PSS,s) p II PSp.,Si¶^ :- PSk,Sk.

Using
(k) k 1

(28) (E^ =1,
(a,.) A= I aaA

we obtain for the expression (26) the value PSk,Sk. Equation (28) may be proved
by a combinatorial argument or by comparing the coefficients of Xk in the left-
and the right-hand terms of

(29) II exp (- xZ) = exp F,- x) = exp (-ln(1-=-ix

An analogous argument shows that
(r-k) m-k* 1

(30) F, vII ,.! (P0,,S)'v = PO,S-k.
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Using these results wve obtain from (25) the right-hand side of (21). Tlhis coini-
pletes the proof of the lemma.
From theorenm 1 and theoremi 2 follows a corollary.
CO}ROLLARY. For m = 0, * , n and k = 0, *, mn we have

(k) k* 1 * (rn-k) mn-k*1*
(31) 1 ]?.k,S = Y II ! (P+S)a * Z I1I- !(

In order to show the coniiectioni between thleorem 1 anid theorem 2 anld results
obtained by Wendel [3] anid Spitzer [2], w-e shall now assume that there is
given an infinite sequenice XI, X2, of initerchanigeable ralndom variables.
Definiing for Isl < 1, Itl < 1 the generatiing funcetions

(32) p(s) =

3 q(8) = Z /
71 =0

(34) r(s, t) = PZ 1?--s8"t"',
n=0 rn=0

(35) a(s) = --)ss+ ?L,

(36) b(s) = p-
n-2 n

it follows from theoremii 1 that

(37) ? (s, t) = p(st) *y(),
anid from tlleoreiii 2 that

(38) p (s) = a(

(39) q(s) = cb(S).
E'(luation (37) follows usinig the multiplicationl rule for polvel series. It order
to prove (38) (the proof of (39) is analogous), wve write

(40) e = exi) (CX1 !-IS±>.s) = Iex) (- Is+s?L)

- 0a ,o i a-

x (k) k 1

k0 (a=)n-i

If the random variables Xl, X2, are inidependent, and we change from
probability distributions to characteristic functionis, theni (37) goes inito lrenidel's
formula [3] an)d (38) goes inlto Spitzer's formnula [2].
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