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1. Introduction

The question
Q(1) How does one construct all martingales X ,?

is one that we have found quite stimulating. Though we have had little success
in answering this somewhat vague query, it does not seem inappropriate to call
attention to it and o several related questions.

Since, for each subset T of the real line, the set 9y of all distributions of
martingales X, for ¢t € T is convex, the following related questions suggest them-
selves:

Q(2) How does one characterize the extreme points of My?
Q@3) How does one construct all extreme points of Myp?
Q4) Is every element of My a mixture of the extreme ones?

However, though every mixture of a finite number of elements of 917 is an
element of M7, such is not the case for more general mixing. This is so simply
because there are sequences 6y, 8, - - - of probability measures of mean 0 on the
real line and positive numbers ay, as, - - - whose sum is 1 such that 3_ «8; has
no mean. It seems, therefore, that in studying Q(4), and possibly some of the
other queries, it may be desirable to shift attention from the set of martingales
to a closely related set.

The difficulty in answering the queries above varies considerably with the
parameter set 7. If 7' is finite or has the order structure of the positive integers,
the queries are easy to answer. The martingales X, X», - - - whose distributions
are extremal arc merely those that possess these two properties:

(i) X 1s a constant;
and

(ii) the conditional distribution of each X, given the past up to time n — 1
is almost surely a two-valued distribution.

Moreover, as is easily verified, every martingale distribution parametrized by
the positive integers is a mixture of the extremal ones. Thus, if T is the set of
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positive integers, there seem to be satisfactory answers to the four queries above,
Moreover, the situation seems to be fairly similar if T is any well-ordered subset
of the real line.

However, if T is not well-ordered, our knowledge is far less complete. To take
the simplest not well-ordered set, the negative integers, though an answer {o
Q(2) can be given, and though it may not be difficull to settle Q(H), we are
completely in the dark with regard to Q(1) and Q(3).

The answer to Q(2) is here formulated as a formal proposition which will be
used and proved later.

Prorosition 1. The distribution of a martingale X,, as n ranges over the
negative integers, or all the integers, vs extremal among all such distributionsif and
only +f (ii) obtains, and every event in the tail o-field has probability 0 or 1.

(An event E is in the tail o-field if and only if, for every integer &, E is in the
o-field generated by the X, for n < k.)

When T is the nonnegative real line we do not know even how (o characterize
the extremal martingale distributions. The situation is perhaps more tractable
if altention is restricted to martingales with eontinuous paths, for, in addition to
other advantages, the result in [1] and [2], (and in unpublished work of It and
Watanabe) would seem to be applicable.

2. Symmetric martingales. A counterexample

If the conditional distribution of each increment X,,; — X, given the past is
symmetric about the origin, then the martingale X, is symmetric. This definition
is applicable whether n ranges over the positive, the negative, or all, integers.

The position of the martingales with continuous paths among all real-
parameter martingales seems similar to that of the symmetric martingales among
all martingales with discrete time-parameter. But the only point in introducing
the symmetric martingales here is to point out, by means of an example, a
distinction between symmetric martingales based on the positive integers and
those based on the negative integers. For the purposes of this paper, the require-
ment that the inerements X, — X, have a mean and the requirement that
the increments be summable in 7 are irrelevant and will therefore be dropped.
Therefore, of interest here are the symmetric processes {D,.}, that is, the processes
such that for each n, the conditional distribution of D, given the past is sym-
metrie.

Plainly, a distribution of a real-valued random variable D is symmetric if and
only if it is the distribution of a product of a nonnegative random variable s with
an independent random variable b that assumes the values 1 and —1 with proba-
bility 1 each. (For s onc can always choose |D|; unless D is 0 with positive
probability, D/|D| can be chosen for b.) Likewise, as is analogous to the theorem
in [2], any symmetric process can be similarly factored into two processes, one
of which is nonnegative real-valued, and the other is a fair-coin process. For
simplicity, assume henceforth, for all processes {D,} {o be considered, that
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[D,| > 0 almost surely for all n. To {D,} associale the process b({D,}) = {b.}
where b, = 1 or —1, according as D, > 0 or D, < 0. Plainly, the convex set 3
of distributions of symmetric processes is a subset of the convex set ® of all
distributions of stochastic processes {D,} such that {b,} is the fair-coin distribu-
tion (that is, the b, are independent and b, = +1 with probability 3 each).

If 4 € ® and, under p, the conditional distribution of the sequence - -+, D, - - -
given the sequence -- -, b,, --- is degenerate or, equivalently, if each D, is a
function of the sequence - -+ , b,, - - -, then u is pure. As is not difficult to verify,
u 1s an extreme point of & if and only if u is pure. Plainly then, if u is pure and
u € 2, then p is an extreme point of Z. As is also not difficult to verify, if the
time-parameter set T is the set of positive integers, then every symmetric process
is a mixture of the pure ones; so a process is extremal if and only if it is pure.

An example will now be given which shows that when T' is the set of negative
integers, there is a process that is extremal among the symmelric ones and yet vs not
pure.

Let a and b be two distinct positive numbers and define the process thus. Let
D_,be a, —a, b, and —b with probabilities  each. Given D_;, D_,, - -+ , D,, the
conditional distribution of D,_; puts weight § on each of the values ¢ and —b
when |D,| = a, and weight } on each of the values —a and b when |D,| = b.

Thus defined, {D,,n = ---, —2, —1} is a stationary Markov process, and
its forward transition probabilities (which are easily obtained from the stationary
distribution and the given backward transition probabilities) are: the conditional
distribution of D, given --- , D,.1, D, puts weight 3 on each of =@ when D,
is @ or —b, and weight 3 on each of &b when D, is —a or b. Clearly, the process is
symmetric, and has property (ii). F'urthermore, since the variables D,, preceding
any D, are independent—not just conditionally independent—of the D; follow-
ing D,, all events in the tail field have probability 0 or 1. As will be evident from
the proof of proposition 1, the two conditions given there also characterize the
extreme points of Z. Therefore, the distribution of {D.,} is an extreme point of =.
However, {D,} is not pure: the distribution of {|D.|} given {b,} gives weight
! each to two sequences, one of which ends with |D_;| = @, and the other with
|Do| = b.

3. Proof of proposition 1

Throughout this section, the parameter space is the set of all integers, or of the
negative integers.

(a) Let o be the distribution of a martingale {X,}. Let A and A° be two
complementary events in the tail field, such that a(4) > 0 and a(4°) > 0. The
conditional distributions of the process, given A and given A¢, are easily seen to
be martingales as well, and their average, weighted by «a(4) and «a(4°), is a.

(b) Let 8 be the distribution of a martingale such that for some m, the event
B = {The conditional distribution of X,, given the past is not two-valued} has
positive probability. As is well known, a distribution with finite mean that is not
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{wo-valued, can be expressed as the average of two distinct distributions with
the same mean, and as is not difficult to verify, the two can be chosen to depend
measurably on the given distribution. Clearly, such a decomposition yields a
decomposition of 8 as an average of two martingale distributions, each defined
by adopting 8 off B, while on B, the joint distribution of {X,, n < m} as well
as the conditional distribution of {X,, n > m} given {X,,n < m} are as under
B, and the conditional distribution of X, given {X,, n < m} is one of the two
components of the decomposition.

The “only if” part of proposition 1 follows from (a) and (b).

(¢) Let v; and 2 be two distributions of {X,}, such that for some event C in
the tail field, v1(C) # v2(C). Then, for v = 3(y1 4+ 7v2), 0 # v(C) # 1.

(d) Let 8, and & be two martingale distributions of {X,}, and put § =
1(6, + 8,). If, for every n € T, the conditional é-distribution of X,, given the
past, is two-valued almost surely, then the conditional distributions of X, under
5; and &, are supported by the same two values, and since, furthermore, the mean
of both conditional distributions of X, is X,_;, they are equal to each other.

(e) As an application of martingale convergence shows, two distributions of
fX,) that have the same projections on the tail field and the same conditional
distributions of X, given the past are identical.

The “if”’ part of proposition 1 follows from (¢), (d), and (e).

4. Two consequences of the counterexample

(a) Continuous martingales. Let the parameter space 1" be the set of non-
negative reals. As [1] and [2] establish, every continuous martingale {X,} can
be transformed into standard Brownian motion by a path-dependent transfor-
mation of the time scale. If this transformation almost surely maps distinet paths
of {X,) into distinct paths of the Brownian motion, the martingale is pure, and
its distribution is an extreme point of the set of all distributions of continuous
martingales. There is, however, a martingale which vs not pure, and its distribution
is extremal among all distributions of continuous martingales. The following is an
example.

Let B(, ») be a standard Brownian motion process and let - - -, D_s(w), D_i(w)
have the distribution of the counterexample in section 2. Furthermore, the
following two additional requirements on the joint distribution of {D,} and
{B(f)) are compalible with their distributions, and suffice to specify their joint
distribution: (i) forn = ---, —2, —1, D, and the Brownian motion increment
B(n["") — B((In| + 1)=!) have the same sign; (ii) |D_y| is independent of {B()} .
Now let 7(+, w) be the unique continuous function whose value at 0 is 0, whosc
derivative in the open interval ((|n| 4+ 1)}, |n|~") is |Da|, and whose derivative
in (1, ) is 1. Let 6(-, ) be the inverse function of 7(-, w), and define Y (¢, w) =
B(0(t, ), »). As is now easily verified, {Y (¢, -)} is a continuous martingale whose
distribution is extremal, yet {Y(¢, -)} is not pure.

(b) Randomized strategies. In the theory of games, where moves are made
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only at time ¢ = 1, 2, - - - , randomization can be achieved in one of two ways:
(i) by letting moves at certain times depend not only on the information avail-
able at that time to the player, but also on a random device; (ii) by “mixing pure
strategies,” that is, choosing at random a pure strategy for the entire game. When
the available information does not decrease in time, the two methods of randomi-
zation arc equivalent in the sense that they induce the same set of distributions
of the history of the game [3], [4], [5]. (Incidentally, [5] contains the essential
ideas for answering questions (1) through (4) for discrete well-ordered time.)
But, as shown in the next paragraph, this equivalence does not generalize to
games with continuous time.

Consider a player in a game. The information available to him at time ¢ > 0
consists of his past moves and the sequence of values of {b;, 7 < —¢'}, where
{b,} is a fair-coin tossing process. His moves occur at times {, = —n=,, n =

-, —2, —1, and consist of choosing one of the positive numbers a or b. Let d,
be the number chosen at time ¢,. One way of choosing is to let the products
{b;d;} be distributed as {D,} in the counterexample. This is a randomized
strategy, in that, given the b, for ¢ < —{!, the totality of moves made before
time ¢ is independent of the future information, that is, of the b; for ¢+ > —¢-1.
However, this distribution of {D,} cannot be achieved by mixing ‘“pure”
strategies, if the latter are defined as strategies that determine the moves of the
player in the time interval [0, ] as a function of his information history during
that time interval.
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