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1. Introduction

The question
Q(1) How does one construct all martingales X,?
is one that we have found (quite stimulating. Thotugh we have had little success
in answering this somewhat vague (qtuery, it does not seem inappropriate to call
attentioin to it and to several related (luestionis.

Sinice, for each subset Y' of the real line, the set Y1T0 of all distributions of
martingales X, for t e T is convex, the following related (luestions suggest them-
selves:

Q(2) How does one characterize the extreme points of JRT?

Q(3) How does one construct all extreme points of T7?

Q (4) Is every element of SlT a mixture of the extreme ones?

However, though every mixture of a finite number of elements of YIT is ani
element of MT, such is not the case for more general mixinig. This is so simply
because there are sequences 01, 02, * of probability measures of mean 0 on the
real line and positive iiumbers a,, a2, * * whose sum is 1 such that E ai0i has
no mean. It seems, therefore, that in studying Q(4), and possibly some of the
other queries, it may be desirable to shift attentioni from the set of martingales
to a closely related set.
The difficulty in answering the (lueries above varies considerably with the

parameter set T. If 7' is finite or has the order structure of the positive integers,
the queries are easy to answer. The martingales Xi, X2, *- whose distributiolns
are extremal are merely those that possess these two properties:

(i) X1 is a constant;
and

(ii) the conditional distribution of each X,, given the past up to time n - 1
is almost surely a two-valued distribution.

Moreover, as is easily verified, every martingale distribution parametrized by
the positive integers is a mixture of the extremal ones. Thus, if T is the set of
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positive integers, there seem to be satisfactory answers to the fouir (ueries above.
Moreover, the situation seems to be fairly similar if T is any well-ordered subset
of the real line.
However, if T is not well-ordered, our knowledge is far less complete. To take

the simplest not well-ordered set, the negative integers, though an anlswer to
Q(2) can be given, anid thouigh it m1ay not be difficult. to settle Q(-4), wve are
eonmpletely in the darkl with regard to Q(1) and Q(3).
The answer to Q(2) is here formulated as a formal proposition which will he

used anid proved later.
1l1nOPOSITION ]. 7'he distribution of a niartingale Xn, as n ranges over the

negative integers, or all the integers, is extremal among all such distributions if and
only if (ii) obtains, and every event in the tail o-field has probability 0 or 1.

(An event E is in the tail a-field if and only if, for every integer 1;, E is in the
a-field generated by the Xn for n < k.)
When T is the nonniegative real line we do not know even how to characterize

the extremal martinigale distributions. The situation is perhaps imore tractable
if attention is restricted to martiiigales with continuous paths, for, in addition to
other advantages, the result ini [1] and [2], (and in unpublished work of It() anid
Wataniabe) would seem to be applicable.

2. Symmetric martingales. A counterexample

If the coniditional distribution of each increment Xn+1 - X,, given the past is
symmetric about the origin, then the martingale X,, is symmetric. This definition
is applicable whether n ranges over the positive, the negative, or all, integers.
The position of the martinigales with continuous paths among all real-

parameter martingales seems similar to that of the symmetric martingales among
all martinigales with discrete tlime-parameter. Biut the only point in initroducing
the symmetric martingales here is to point out, by meanis of an example, a
distinctioni between symmetric martingales based on the positive iiitegers andl
those based on the negative integers. For the purposes of this paper, the require-
menit that the increments X,,+1 - X,, have a meani and the re(uiremeint that
the incremenits be summable in n are irrelevant and will therefore be dropped.
Therefore, of interest here are the symmetric processes {ODn , that is, the processes
such that for each n, the conditional distributioni of 1A, given the past is syml-
metric.

Plainly, a distribution of a real-valued random variable D is symmetric if and
only if it is the distribuitioni of a product of a nonnegative random variable s with
an indepenident random variable b that assumes the values 1 and -1 with proba-
bility - each. (For s one can always choose IDI; unless D is 0 with positive
probability, D/JDI can be chosen for b.) Likewise, as is analogous to the theorem1
in [2], any symmetric process can be similarly factored into two processes, olne
of which is nonnegative real-valued, and the other is a fair-coin process. For
simplicity, assumae henceforth, for all processes {Dn} to be conisidered, that
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ID,,j > 0 almost sturely for all n. To 'D1,' associate the process b((D4,,) = {b,
where b,, = I or- I, aeordinig as D,, > 0 or D,, < 0. Plainly, the convex set E
of distributioils of symmetric processes is a subset of the convex set 63 of all
distributions of stochastic processes {Dn} such that {bn} is the fair-coin distribu-
tion (that is, the b,, are independent and b,, = 41 with probability 2 each).

If u E 63 and, under ,, the conditional distribution of the sequence D.* ,l .*
given the sequence * - , bn, - - is degeinerate or, equivalently, if each Dn is a
functioin of the sequence *.. ,b*, .* * , then p is pure. As is not difficult to verify,
u is an extreme point of (3 if and only if A is pure. I'lainly thein, if p is pure and
A e 1, then A is an extreme poiInt of X. As is also not difficult to verify, if the
time-parameter set T is the set of positive integers, then every symmlietric process
is a mixture of the pure ones; so a process is extremal if and only if it is pure.

Ani example will now be given which shows that when T is the set of negative
initegers, there is a process that is extremal amiong the symmetric ones and yet is not
pure.

Let a and b be two distinct positive iium-bers and define the process thus. Let
1D- be a, -a, b, and - b with probabilities ' each. Giveni D-1, D-2, * * D., the
coniditional distribution of D,,- puts weight 2 onl each of the values a and -b
whien IDnI = a, anid weight - on each of the values -a anid b when IDnI = b.
Thus defined, {°D, n = * -2, - 1} is a stationiary Markov process, and

its forward transitioin probabilities (which are easily obtained from the stationary
distribution and the given backward transition probabilities) are: the conditional
distribution of D,+, given ** *, Dn,_, Dn puts weight 2 onl each of 4a when D.
is a or -b, and weight 2 oni each of ±b wheni Dn is -a or b. Clearly, the process is
symmetric, and has property (ii). Furthermore, sinice the variables Dm preceding
aily D,, are indepeiident-niot just coiiditionially inidepenidenit-of the Dj follow-
i1ig D,, all eveiits ill the tail field have probability 0 or 1. As will be evident from
the proof of proposition 1, the two coniditions given there also characterize the
extreme poinlts of I. Therefore, the distribution of {Dn} is an extreme poinlt of I.
flowever, {Dn} is not pure: the distribution of {ID,1& given {bn} gives weight
2 each to two sequences, one of which ends with ID-11 = a, anid the other with
ID-,I= b.

3. Proof of proposition 1

Tlhroughout this section, the parameiter space is the set of all initegers, or of the
negative integers.

(a) Let a be the distributioni of a martiiigale {X/,}. Let A anid Ac be two
comiiplementary events in the tail field, such that a(A) > 0 and a(AC) > 0. The
conditional distributions of the process, given A and given Ac, are easily seen to
be martingales as well, and their average, weighted by a(A) and a(Ac), is a.

(b) Let p be the distributioii of a martingale suchi that for some m, the evenit
@ = {The conditionial distributioni of Xm given the past is not two-valued} has
positive prohahility. As is well knowii, a distribution with finiite mean that is niot.
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two-valued, can be expressed as the average of two distinct distributions with
the same mean, aiid as is not difficult to verify, the two can be chosen to depend
measurably on the given distribution. Clearly, such a decompositioni yields a
decomposition of ,B as an average of two martingale distributiolns, each defined
by adopting d off B, while on B, the joiilt distribution of (Xn n < m} as well
as the conditional distribution of (X,,, n > m} given {X,,, n < m' are as under
/, aind the conditional distribution of Xm giveI {X,,, n < m is one of the two
components of the decompositioni.
The "only if" part of proposition 1 follows from (a) and (b).
(c) lIet yi and 7Y2 be two distributions of {X,,l, such that for some event C in

the tail field, -yi(C) $4 y2(C). Theni, for -y = 2(71 + 72), 0 id _Y(C) $ 1.
(d) Let 61 and 62 be two martingale distributions of {X,,}, and put 3 =

12(61 + 62)- If, for every n G T, the conlditional 3-distribution of X,, given the
past, is two-valued almost surely, then the conditional distributions of X" ulnder
61 and 32 are supported by the same two values, and since, furthermore, the meai
of both conditional distributions of XI, is X,,_1, they are equal to each other.

(e) As an application of martiiigale convergence shows, two distributions of
-,XI,-} that have the same projections on the tail field anid the same conditional
distributionis of X,, given the past are idenitical.
The "if" part of proposition 1 follows fromi (c), (d), anid (e).

4. Two consequences of the counterexample

(a) Continuouts martingales. Let the parameter space 1' be the set of nion-
negative reals. As [1] anid [2] establish, every contiinuous martinigale {Xt, can
be tranisfornmed inito standard Browniani motion by a path-dependenit transfor-
matioii of the time scale. If this tranisformiiationi almost surely maps distiiict paths
of {X,l inito distinct paths of the Browniiani motioni, the martingale is pure, anid
its distribution is ani extreme poinit of the set of all distributionis of continiuous
miartinigales. T'here is, however, a martingale which is not pure, and its distribution
is extremal among all distributions of continuous martingales. The following is anl
example.

Let B(t, co) be a stanidard Browniian motioni process anld let , D-2(w), D_1(c)
have the distribution of the counterexample in sectioni 2. Furthermore, the
followinig two additionial re(luirement s on the joinit distribution of -'D,,' anid
{B(t)' are conmpatible with their distributions, anid suffice to specify their joinit
distiribut ioI: (i) foir n = * -2, - 1, D,, anid thle Browiiai Ilot ioII increment

B(In-') - B((InI + I)-') have thle samiie sigll; (ii) JD_,I is inidepenidenit of {B(t)' .

Now let T(-, w) be the uiii(lue continuous funictioin whose value at 0 is 0, whose
derivative in the open interval ((mln + 1)-1, 1ni-1) is lD,l, and whose derivative
in (1, o ) is 1. Let 0(-, co) be the inverse function of T(-, Co), and define Y(t, w) =
B(O(t, w), co). As is now easily verified, {Y(t, )} is a coIntinluous martingale whose
distribution is extremal, yet {Y(t, )' is not pure.

(b) R?andomize(l strategies. Iii tlhe theory of games, whlere imoves ale miade
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only at time t = 1, 2, * *, randomization can be achieved in one of two ways:
(i) by letting moves at certain times depend not only on the information avail-
able at that time to the player, but also on a random device; (ii) by "mixing pure
strategies," that is, (hoosing at random a pure strategy for the entire game. When
the available iniformationi does not decrease in time, the two methods of raiidomi-
zat ioi are equivalent in the senise that they iniduce the same set of distributionis
of the lhistory of the game [3], [4], [5]. (Inicidenitally, [5] containis the essential
ideas for aniswering questions (1) tlhrough (4) for discrete well-ordered time.)
13ut, as shown in the iiext paragraph, this equivalence does not generalize to
games with continuous time.

Consider a player in a game. The information available to him at time t > 0
consists of his past moves and the sequence of values of {bi, i < -t-1}, where
{bil is a fair-coin tossinig process. His moves occur at times t, = -n-1, n =

2, - 1, anid conisist of choosing one of the positive numbers a or b. Let d,,
be the niumber chosen at time t,,. Onie way of choosing is to let the products
{bidi} be distributed as -Di' in the counterexample. This is a randomized
strategy, in that, giveni the bi for i < -t-1, the totality of moves made before
time t is inidependenit of the future information, that is, of the bi for i > -t-1.
However, this distribution of {Dn} cannot be achieved by mixing "pure"
strategies, if the latter are defined as strategies that determine the moves of the
player in the time interval [0, t] as a function of his information history during
that time initerval.
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