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1. Introduction

In a paper [1] read before the Fourth Berkeley Symposium in 1960, I communi-
cated the elements of a theory of spectral multiplicity for stochastic processes,
A related theory was given about the same time by Hida [5]. Since then, I have
developed the theory in some subsequent papers [2]-{4], the most recent of
which contains the text of a lecture given at the Seventh All-Soviet Conference
of Probability and Mathematical Statistics in Thbilisi 1963. Further important
work in the field has been made by Kallianpur and Mandrekar [6]-[8].

Many interesting problems arising in connection with this theory are still un-
solved. The object of this paper is to offer a small contribution to the investiga-
tion of one of these problems.

We shall begin by giving in section 2 a brief survey of the results of multiplicity
theory so far known for the simplest case of one-dimensional processes. I"or proofs
and further developments we refer to the papers quoted above. A major unsolved
problem will be discussed in section 3, whereas section 4 is concerned with some
aspects of the well-known particular class of stationary processes, which are
relevant for our purpose. Finally, section 5 is concerned with the construction of
a class of examples which may be useful in the further study of the problem stated
in section 3.

2. Spectral multiplicity of stochastic processes

Consider a stochastic process z(t), where z(f) is a complex-valued random
variable defined on a fixed probability space, while { is a real-valued parameter.
In general we shall allow ¢ to take any real values, and shall only occasionally
consider the case when ¢ is restricted to the integers. We shall always assume that
the relations

2.1) Ex(t) =0, Elz@)]? <=
are satisfied for all ¢.
We denote by H(x) the Hilbert space spanned in a well-known way by the
random variables x(f) for all ¢, while H(z, t) is the subspace of H(x) spanned
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only by the x(w) with u < (. The tail space H(x, — =) may be regarded as repre-
senting the “infinitely remote past’” of the process. If H(x, —«=) only contains
the zero element of H(x), the z(f) process is said to be purely nondeterministic.

All processes x(t) considered in the sequel will be assumed to satisfy the follow-
ing conditions (\\) and (B):

(A) the process is purely nondeterministic;

(B) the limits in quadratic mean z(¢t + 0) and x(t — 0) = 2(f) cxist for every (-
Under these conditions the space H(z) will be separable. We note that, in the
case of a parameter ¢ taking only integral values, condition (B) is irrelevant.

Let us now for a moment consider the case when ¢ is restricted to the integers,
so0 that we are concerned with a sequence of random variables z,, with n = 0,

+1, ---. Then there exists a sequence of mutually orthogonal random variables
2, with

A —_ v 2 . . e
(2.2) Lz, = 0, N 1 or O for cvery n,

Lz,z =0 for m £ n,
such that

"

(2‘3) X, = . 2 CouiZhy
b= — o
where the series
n
(2.4) el
k=—o

converges for every n, so that the expression for z, converges in quadratic mean.
The variable z, may then be regarded as a (normalized) innovation entering into
the process at time ¢ = n.

By analogy, we might expect to have in the case of a continuous paramter ¢
a representation of the form

(2.5) (t) = f_‘” g(t, w) dz()

where z(u) would be a process with orthogonal increments, the increment dz(uw)
representing the ¢nnovation element cntering into the x(f) process during the
time clement (u, w + du).

However, in general this is not true. The situation in the continuous case turns
out to be more complicated than in the diserete ea=e. In general the innovation
associated with a given time clement must be regarded as a multi-dimensional
or even infinite-dimensional random variable, <o that the representation (2.5)
ix definitely too simple.

In order to present the representation formula which in the general case takes
the place of (2.5), we must first consider the class C of all real-valued and never
decreasing, not identically constant functions F(f) which are continuous to the
left for all ¢£. A subelass D of C is called an equivalence class if any two functions
Frand Fyin D are mutually absolutely continuous. If Dy and D, are equivalence
clazses, Dy ix =aid to be superior to D, and we write Dy > Ds, if any Fo € D, is
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absolutely continuous relative to any I'y € Dy. Evidently, the relation Dy > Dy
does not exclude the case that the two classes are identical.

Consider now a finite or infinite never increasing sequence of equivalence
classes

(2.6) Di>Dy> -+ > Dy,

where N may have any of the values 1,2, .-+, =. Then .V will be called the
total multiplicity of the sequence. Irurther, let N(t) for every ¢ denote the number
of those classes in (2.6) for which ¢ is a point of increase of the corresponding
functions F. Then N(f) is called the multiplicity function of the sequence (2.6).
Like N, N(t) may be finite or infinite, and we have

2.7) N = sup N(1),

where ¢ runs through all real values.

The fundamental proposition of multiplicity theory for stochastic processes
is the following. To any x(f) stochastic process satisfying conditions (A) and (B),
there is a uniquely determined sequence of the form (2.6) such that the following
properties hold. For every n = 1,2, --- | N, there is a process z,(t) of orthogonal
inerements, such that

Eza() =0, Lz = F.() € Dy,

(2.8) Ezn(D)z,(u) = 0 for m # nand all ¢, «,
~

H@, t) =2 H(zut) for all ¢,
1

where the last sum denotes the vector sum of the orthogonal subspaces H(z,, ¢).
We then have for every ¢ the representation

2.9) () = $ [* . 0t w) e,

where the g, are nonrandom functions such that

Nore
(2.10) > f_,, lga(t, )2 dFA(u) < .

It is important to observe that the D, sequence (2.6) is uniquely determined
by the z(f) process. Thus, in particular, the multiplicity function N(¢) and the
total multiplicity N are also uniquely determined by x(t). Accordingly, we shall
say that the D, sequence, as well as N (¢) and N, are spectral multiplicity charac-
teristics of the stochastic process x(t).

On the other hand, the g,(f, u) and 2,(u) occurring in the representation (2.9)
are not uniquely determined by the z(t) process. Thus, for a given z({) we may
have different representations of the form (2.9), all satixfying the relations (2.8).
However, the D, sequence (2.6), as well as the multiplicity characteristics N (¢)
and N, will be identical for all these representations.

According to the representation (2.9), we may say that the multiplicity fune-
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tion N(f) determines the dimensionality of the innovation element [dzi(u),
dzy(u), - - -.] entering into the process during the time element (u, u + du).

It has been shown that the multiplicity characteristics of a given stochastic
process z(t) are uniquely determined by the covariance function of the process

(2.11) r(t, w) = Ex(d)z(u).

We finally remark that the multiplicity theory as outlined above can be di-
rectly generalized to stochastic vector processes of a very general kind. We shall
however, not deal with these generalizations in the present paper.

3. Processes of total multiplicity N = 1

According to the above, we know that any given stochastic process z(t) satisfy-
ing (A) and (B) has multiplicity characteristics which are uniquely determined
by the process, and even by the covariance function r(f, u) of the process.

On the other hand, so far we know very little about those properties of the
process, or of the corresponding covariance function, which determine the actua]
values of multiplicity characteristics like N(f) and N.

In the discrete case it follows from the above that, by analogy, it can be said
that the total multiplicity is always N = 1. In the continuous case, the important
class of (second-order) stationary processes has even N(f) = 1 forall {, and conse-
quently N = 1, as follows from well-known properties of these processes to be
presently recalled.

In view of these examples, it might well be asked if there exist any stochastic
processes with a total multiplicity exceeding unity. The answer to this question
is that such processes do, in fact, exist. It can even be shown that, as soon as we
proceed from the class of stationary processes to the more general class of har-
monizable processes introduced by Loéve, any prescribed multiplicity properties
may ocecur. In fact, it has been shown in [4] that, given any D, sequence (2.6),
there exists a harmonizable process z(t) associated with this given D, sequence.
However, the example of such a process given in [4] is of a very special kind,
and the corresponding representation (2.9) contains functions g.(f, u) having
rather pathological properties, not likely to occur in applications to any physical
problems.

Accordingly, it seems to be a problem of some interest to study more closely
those properties of a stochastic process which determine the actual values of the
multiplicity characteristics. In particular, it would be interesting to be able to
define some fairly general class of processes having total multiplicity N = 1,

A natural approach to this last problem might be to start from the class of
stationary processes, which always have N = 1, and then try to generalize the
definition, still keeping sufficiently near the property of stationarity to conserve
the multiplicity characteristic N = 1. We propose to give in the sequel an exam-
ple of a generalization of this type. In order to do this, we must first recall some
of the relevant properties of stationary processes.
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4. Stationary processes

Let z(¢) be a (second-order) stationary process, satisfying (A) and (B). It then
follows that the covariance function -

(4.1) r(t) = Ex(t + h)z(h)
is everywhere continuous, and has the spectral representation
(4.2) r(t) = [_‘: 0 f(\) dA

with a spectral density f(A) > 0 for almost all X (Lebesgue measure), such that
f()‘) € Ll(—wy °°)7 and

(4.3) /_: l‘l’gf(;;) d\ > —o.

The random variable z(¢) has the corresponding spectral representation
(4.4) 2(t) = /_”“ e dw()),

where w()) is a process with orthogonal increments such that

(4.5) E dw()) =0, E| dw()) |2 = f(\) dA.

Further, there exists a complex-valued function A(A) € Ly(—, ) and a process
2(t) of orthogonal increments such that

(4.6) Ede(t) =0, Elde(t)|?=adt, [RQ)] =),

while the Fourier transform g(f) of A(\) reduces to zero for ¢t < 0, and we have
the representation

4.7) z(t) = /_‘w g(t — u) dz(u)
with
(4.8) H(z,t) = H(z, 1)

for all t. The functions h(A) and g(f) are uniquely determined, up to a constant
factor of absolute value 1. Comparing this with the general representation for-
mula (2.9), it is seen that the stationary process z(f) has the multiplicity charac-
teristics N = 1 and N(f) = 1 for all ¢.

B. A class of harmonizable processes with N = 1

We shall now define a class of harmonizable processes containing the stationary
process z(t) given by (4.4) or (4.7) as a particular case, and such that the multi-
plicity characteristics are the same as for z(t), that is N = 1 and N(¢) = 1 for
all z.

Let Q(p) be a never-decreasing function of the real variable p such that @ has
a jump of size 1 at p = 0, whereas Q(—=) = 0, Q(4+=) < 2, and

(5.1) Q) + Q(—p) = Q(+x)
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in all continuity points p of @. The Fourier-Stieltjes transform of @ will then be
real and positive, so that we may define an everywhere positive, continuous and
bounded function ¢(u) by the relation

(5.2) [a()]? = [~ e aQ(o).
We now define a stochastic process X () by writing
- . ¢
(5.3) X = [*, gt — wetw dew),

where ¢(t) and z(u) are the same as in (4.7). As ¢(u) is bounded, and
g(t) € Ly(0, ), the integral in (5.3) exists as a quadratic mean integral. When
is identically constant except for the jump at p = 0, it is seen that X(¢) reduces
10 the stationary process x(t) given by (4.7).

We shall now first show that X (¢) has the required multiplicity characteristics.
According to (2.8) and (2.9), we have to show that H(X, t) = H(z, t) for all &.
As it evidently follows from (5.3) that H(X, t) C H(g, t), it will be sufficient
to show that the opposite inclusion relation is also true. If, for some ¢, this were
not so, there would be a nonzero element in H(z, t) orthogonal to X (u) for all
u < t. Now every nonzero element in H(z, t) is of the form

(5.4) f_‘_} m(v) de(v),

with a quadratically integrable m(v) not almost everywhere equal to zero. If this
is orthogonal to X (u) for u < t, we have

(5.5) [ aw = eyt do = 0

for all u < ¢. However, since ¢(v) is bounded and positive, it would follow that
there is a nonzero element in H(z, {) orthogonal to z(u) for all u < ¢, in contradic-
tion with the relation (4.8). Thus our assertion is proved.

We now proceed to prove that X (¢) as defined by (5.3) is a harmonizable
process, and to deduce an expression for its spectral distribution. Irom (5.3) we
obtain for the eovariance function R(s, t) of X () the expression

(5.6)  Ris, ) = EXEXD = [ gls — 05— ) [e@] du
= _/_2 g(s — w) gt — ) du /_: e~ dQ(p).

As g(t) = 0 for t < 0, and g(t) € Ls(0, =), it follows that the double integral ix
absolutely convergent, so that

5.7 R(s, 1) = f_: dQ(p) /_: e~rrg(s — w)g(t — u) du.
By the Parseval formula, this gives

(5.8) R(s, 1) = f_: /_: N (NN T p) A dQ(p).
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Substituting here p for X + p, it will be seen that this is the expression of a
harmonizable covariance function. The corresponding spectral mass is distributed
over the (A, u)-plane so that the infinitesimal strip between the lines g = X + p
and g = X\ + p -+ dp contains the mass dQ(p), whereas the distribution within the

strip has the relative density hA(A\)h(k). Again we see that, in the particular case
when @(p) is identically constant except for the jump at p = 0, the whole spec-
tral mass is situated on the diagonal A = g, so that we have the covariance func-
tion of a stationary process with speetral density |h(A)|2 = f(A). As soon as Q(p)
has some variation outside the point p = 0, we have the two-dimensional spectral
distribution of a harmonizable covariance.

Thus the covariance function of the X(¢) process, given by (5.3), is harmoniza-
ble, and it then follows from known properties of harmonizable processes that
X () itself is harmonizable; that is, we have

(5.9) X@t) = [_”w et AZ (),

where the covariance function EZ(N\)Z(u) is obtained from the expression (5.8)
with g = X 4 p. At the same time, we have seen that the harmonizable process
X (¢) has the multiplicity characteristics N = 1 and N(f) = 1 for all ¢
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