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1. Introduction

Advanced integral calculus in infinite dimensions was initiated and developed
by R. H. Cameron, W. T. Martin, and their associates in a sequence of papers
beginning in 1944.

The underlying space for the integral calculus was the Banach space C con-
sisting of the continuous functions on [0, 1] which vanish at zero. The space C
carries the probability measure induced by a one-dimensional Brownian mo-
tion. The resulting measure space, generally known as Wiener space, has topolog-
ical, linear, and measure theoretic structures which are well related to one
another for the purposes of analysis over C.

The subset C’ consisting of the absolutely continuous functions in C with
square integrable derivative forms a Hilbert space with respect to the inner
product (z,y) = [} 2'(t)y'(t) dt. Here a prime denotes derivative. Although €’ is
a set of Wiener measure zero, the Euclidean structure of this Hilbert space
determines the form of the formulas developed by the above authors, and, to a
large extent, also the nature of the hypotheses of their theorems. However, it
only became apparent with the work of I. E. Segal [11], [12], dealing with the
normal distribution on a real Hilbert space, that the role of the Hilbert space C’
was indeed central, and that in so far as analysis on C is concerned, the role of
C itself was auxiliary for many of Cameron and Martin’s theorems, and in some
instances even unnecessary. Thus Segal’s theorem ([12], theorem 3) on the
transformation of the normal distribution under affine transformations, which
is formulated for an arbitrary real Hilbert space H, extends and clarifies the
corresponding theorem of Cameron and Martin [1], [2] when H is specialized
to C’. This is an extreme case in which consideration of the Banach space strue-
ture of C, as opposed to merely the Hilbert space structure of C’, contributes
little or nothing to a proper understanding of the above theorem. For some other
theorems, however, the role of C is not negligible, but nevertheless, it is the
relation between C and ¢’ which remains important. Specifically, C is the com-
pletion of C’ with respect to a norm (the sup norm) on C’ which is much weaker
than the Hilbert norm on C’: ||z||? = [§2'(t)2 dt and enjoys the property of
being a measurable norm on C’.

In this paper we shall abstract this relationship by replacing C’ by an ar-
bitrary real separable Hilbert space H and the sup norm by its generalization—

This work was supported by N.S.F. contract G. P. 3754.
31



32 FIFTH BERKELEY SYMPOSIUM: GROSS

a measurable norm on H. Our principal result asserts that on the completion
of H with respect to a measurable norm the normal distribution becomes
countably additive. Our interest in this type of study arose from consideration
of regularity theorems for potential theory on a Hilbert space. Such regularity
theorems will be studied elsewhere. It turns out that the measurable normns are
the right norms with respect to which one should define Hélder conditions.
Abstract Wiener spaces thereby enter naturally into this context.

2. Preliminaries

In this section we shall survey some of the basic notions concerning integra-
tion over locally convex vector spaces and Hilbert space in particular. Much
of the theory of integration over infinite dimensional linear spaces has been
surveyed by Prohorov [9]. Consequently, we shall restrict ourselves to material
needed in this paper and largely disjoint from that surveyed by Prohorov, and
we shall rely on his paper when necessary.

Let £ be a locally convex real linear space and £* its topological dual space.
For each finite dimensional subspace K of £*, we denote by 7k the linear map
of £ onto the dual space K* of K given by nx(a)y = (y, x) for z in £ and y
in K. Let ® be the collection of subsets of £ which have the form ¢ = =¢'(¥)
where E is a Borel set in K*. Such a set €' will be called a tame set (also known
as a cylinder set) and will be said to be based on K. The class ® is a ring and the
family Sk of sets in ® which are based on K is a ¢-1ing.

DerFinttioN 1. A real-valued nonnegative finitely additive function p on ® 1s
called a cylinder set measure on £ if u is countably additive on each of the o-rings
Sk and u(L) = 1.

DEerFINITION 2. A tame function on £ 1s an &t measurable function f such that
f = g mk for some finile dimensional subspace K C £* and function g on K*,
Such a function f 1s said to be based on K.

It is not hard to see that if f is a tame function based on K, then f has the
form f(z) = o(;(z), - - - , ya(x)) where y1, - -+, y» is any basis of K and ¢ is a
Baire function on R,.

A cylinder set measure is referred to by Prohorov [9] as a weak distribution
which terminology we shall use for an equivalent but somewhat differently
formulated concept. If u is a eylinder set measure on £ and y;, - - - , ¥ is a finite
set of elements in the finite dimensional space K C £*, then y, -+, y. may be
regarded as random variables on the probability space (£, 8k, u). Thus when
dealing with tame functions on £ which are based on a fixed finite dimensional
subspace of £*, one is in a countably additive situation. It is sometimes neces-
sary to deal with other functions, however, and the first step toward achieving
a suitable degree of countable additivity is to realize all the elements of £*
simultaneously, as random variables on a (countably additive) probability
space (@, m). More preciscly, this means constructing a lincar map F from £*
to the lincar space of random variables (that is, measurable functions modulo
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null functions) over a probability space (€, m) with the property that for any
finite set of elements y, - - - , y» in £*, the random variables F(y1), - -- , F(yn)
on Q have the same joint distribution as do y1, - - - , y. as random variables over
(£, &, u). The existence of such a map F is easily established in a variety of
ways (for example, take a Hamel basis ¢, of £* and apply Kolmogorov’s theorem
to the random variables e.). The space (@, m), and the map F, is of course not
unique, but any one with the above property will do. Morcover, given the
map F, the eylinder set measure u can clearly be recovered from it. Thus, a
cylinder set measure is equivalent to a weak distribution in the following sense
of this phrase.

DEerinITION 3. A weak distribution over £ 1s an equivalence class of linear
maps F from £* to the space of random variables over a probability space (Q, m)
(depending on F). T'wo such maps F, Fy are equivalent if for any finite set yi, - - - , ya
in £* the joint distribution of F;(yy), -- - , Fi(y.) in R, is the same for j = 1 or 2.

This definition is due to I. E. Segal [11].

Of the two equivalent concepts—weak distribution and eylinder set measure—
it is sometimes more convenient to use one and sometimes the other, and some-
times it is convenient to use both, as in this paper.

The weak distribution which will be of interest to us in the remainder of
this paper is the normal distribution on a real Hilbert space H defined as fol-
lows. If F'is a representative of the normal distribution, then for each element y
in H* F(y) is normally distributed with mean zero and variance liyll2. As is
well known, this implies that if y;, - - -, y, are orthogonal, then F(y), -- -, F(y,)
are slochastically independent. A tame set in H can be described as a set of the
form ¢ = P~'(¥) where P is a finite dimensional orthogonal projection on I
with range L, say, and F is a Borel set in L. The eylinder set measure » associ-
ated with the normal distribution is called Gauss measure on H, and for the
above {ame set ' we have

@.1) W(C) = 2m)2 [ emte do

where 7 is the dimension of . The set function v is not countably additive on &
when H is infinite dimensional.

We consider a fixed representative F' of the normal distribution. If f is a
tame function on H, then f(z) = ¢(y(2), -+, y.(2)) as noted above. Then
I'=oF(y), -+, F(y,)) is a random variable on Q such that fu fdv = fgfdm,
as follows readily from the definitions. The map f — J is an isomorphism from
the algebra of continuous (real- or complex-valued) tame functions on H into
the algebra of random variables on Q. The second step in achieving a useful
degree of countable additivity is to extend this isomorphism to functions other
than tame functions. This is our main objective in the remainder of this section.
This isomorphism does not extend to all continuous functions on H in a reason-
able manner. However, we shall describe a class of continuous functions to
which this isomorphism does extend. Tame functions play a basic role similar
to that of simple functions in general measure theory. If for a given function £



34 FIFTH BERKELEY SYMPOSIUM: GROSS

on H we wish to give meaning to f as a random variable on 2, we must approx-
imate f by a sequence f, of tame functions such that f, converges in some sense
on Q. Now if fis continuous, then one can manufacture a sequence f, of continu-
ous tame functions which converge to f on H by taking any sequence P, of
finite dimensional projections which converge strongly to the identity operator,
and define f,(z) = f(P.r). This appears to be the easiest systematic way of
constructing such a sequence. Unfortunately, the sequence f, of random vari-
ables need not converge in probability on Q. For example, if f(z) = exp [illzllz]
and the sequence P, is taken as an increasing sequence, then for n > m we have

2.2) [fa(@) — fm(@)| = lexp [{l(Pn — Pr)zll?] — 1],

and it is readily seen that the probability that this is greater than a given e
depends only on the rank of P, — Pn., and in fact, it approaches one as the
rank of P, — P, goes to infinity. Even when f, does converge, it may converge
to zero though f may be nowhere zero. This is the case with the function f(z) =
exp [— llzll2] for which a simple computation yields E(f(Pz)~) = 3/2 where m
is the rank of P and E denotes expectation.

We proceed to describe a class of functions for which the associated sequence
(f » P,)~ always converges in probability to a random variable f such that the
map f— f has suitable isomorphism properties. All of the following is taken
from [4]. Some of the above material has also been surveyed in [6].

DerFINtTION 4. A seminorm lxlly on H s called a measurable seminorm if for
every real number ¢ > 0 there exists a finite dimensional projection Py such that
for every finite dimensional projection P orthogonal to P, we have

2.3) Prob (IPzll5 > ¢ < e

where | P\l denotes the random variable on Q@ corresponding to the tame function
IIPzll,, and Prob refers to the probability of the indicated event with respect to the
probability measure m associated with the normal distribution.

We note that the condition (2.3) can also be written »({z: IIPzll, > €}) < €
where » is Gauss measure on H.

A measurable norm is a measurable seminorm which is a norm.

ExampLE 1. If A is a trace class operator, that is, nuclear operator, on H
and is nonnegative, then llzll; = (Ax, r)'/? is a measurable seminorm. It is a
measurable norm if Az = 0 implies z = 0. This type of norm has proven sig-
nificant in harmonic analysis on a Hilbert space [5], [9], [10].

ExampLE 2. Let H be the Hilbert space C’ described in the introduction.
If lzll, = sup {|z(£)]: 0 < ¢ < 1}, then llzll; is a measurable norm on C’. The
completion of €’ in this norm is identifiable with Wiener space C.

Denote by § the directed set of finite dimensional projections on H directed
by inclusion of the ranges. The significance of measurable seminorms for the
proposed extension of the above described injection f — f is contained in the
following two theorems and definition.

TrueoreM. If llzll, s a measurable seminorm on H, then the net 1Pzl con-
verges in probability on Q as P converges to the identity through 5.
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We denote the limit in the theorem by lizllT.

The topology 3. on H determined by all measurable seminorms is called the
measurability topology.

DEFINITION 5. A function f on H is called uniformly continuous near zero in
Sm(u.c.n.0 in 3,,) if there exists a sequence llzl', of measurable seminorms such thal
llzll,” converges to zero in probability, while f is uniformly centinuous in the topology,
Imon {x: lzll, < 1} for each n.

In a finite dimensional space this definition reduces to ordinary continuity
since llzll is measurable in that case, and any continuous function is uniformly
continuous on each of the sets {z: llzll/n < 1}.

TuEOREM. If f is a complex-valued function on H which is u.c.n.0 in Jm
then the net (f - P)~ of random variables on Q converges in probability as P — I
through &. If f denotes the limit, then f = 0 a.e. if and only if f(x) is identically
zeroon H.

The map f — f from the algebra of bounded real functions on H which are
u.c.n.0 in 3, to random variables is an algebraic isomorphism. Thus the ex-
pectation of f with respect to the normal distribution may be defined as the
integral of f over Q:

2.4) E(f) = [ fwym(dw).

The expectation of f thus defined is clearly independent of which representative
of the normal distribution is used.

It is a fairly immediate consequence of the definition of measurable seminorm
that if there exists a measurable norm on H, then H must be separable.

3. Abstract Wiener spaces

Let H be a real separable Hilbert space and denote by lizll; a measurable
norm on H. Let B be the completion of H with respect to Il-ll,. Then B is a
Banach space, and H is dense in B. If y is in B*, the topological dual space of B,
then the restriction of y to H is continuous on H, since a measurable norm on H
is always weaker than the H norm by corollary 5.4 of [4]. Moreover, if y = 0
on H, then y = 0 on B. Hence, restriction to H is'a one-to-one linear map of
B* into H*. We shall thus identify B* with a subset of H*, but to avoid con-
fusion, we will not identify H* with H. The space B* is dense in H* since B*
separates points of H.

The normal distribution on H induces a weak distribution on B simply by
restricting the defining map F to B*. The weak distribution on B so obtained
defines a cylinder set measure u on the ring ® of tame sets of B.

TaEOREM 1. Let H be a real separable Hilbert space. Let |lxll; be a measurable
norm on H and denote by B the completion of H in this norm. Let u be the cylinder
set measure on the ring ® of tame sets of B induced by the normal distribution on H.
Then u 1s countably additive on ®.

LemMma 1. Let lizll; be a measurable norm on H. Let {a;};=o0,,... be an arbitrary
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scquence of strictly positive real numbers. Then there exists a sequence {Q;};=0,1,.--
of mutually orthogonal finite dimensional projections on H with sum equal to the
identity operator such that the sum > ;-o a;llQ;xlly converges pointwise on H to a
measurable norm lzll,.

Proor. We remark that the interest in this lemma lics in the case where
the a; approach +cc,

Let @ denote the measure space of some representative of the normal dis-
tribution on H. From the definition of measurable norm there exists for each
integer n > 1 a finite dimensional projection I’, on H such that

3.1) Prob (I1PzlT" > 1/(as2%)) < 3*

whenever P is a finite dimensional projection orthogonal to P,. Moreover, the
projections P, may be taken to be increasing and to converge strongly to the
identity operator.

Let @ = Pyand Q, = P,y — P.forn = 1,2, --- . Then the projections Q.
are mutually orthogonal finite dimensional projections and > 7o Q; = I. More-
over, for n > 1, @, is orthogonal to P,; so

(3.2) Prob (a,lQ,xll7 > 27%) < 277, n=12 -
If e > 0and 2% < ¢ then

(3.3) Prob( 3 alQualy > e) gProb( T @l > 3 2—n>
1 k+1 n=k+1

n=k+ n=k+

< S Prob (alQully > 2-7)

n=k+1
< 2k
< e

Hence the series Y 7-o @.1Q, 2!l converges in probability. Let 2 denote the sum.

In view of corollary 4.4 of [4], it suffices to show that the essential lower
bound of 4 is zero in order to show that the series 3 7o a.l@.zll, converges on I{
to a measurable seminorm lizll,. Let e be a strictly positive real number. For a
sufficiently large integer N, we have Prob (L .>w» a.lQ.xllT < €/2) > 0. Let
=Yoo~y aullQuliy and let a = Prob (f < ¢/2). Let g = X 3-0 a./lQ.2/IT” and
let b = Prob (g < ¢/2). Then b > 0, since g is a seminorm based on a finite
dimensional subspace of H. Since the projections @, are mutually orthogonal,
the random variables f and g are mutually independent. Moreover, h = f + g.
Thus,

(3.4) Prob (h < ¢)

Prob (f+ 9 L)

Prob (f < ¢/2 and g < ¢/2)
Prob (f < ¢/2) Prob (g < ¢/2)
ab

> 0.

\%

1l
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Finally we note that llzll; is & norm, for if z # 0, then for some j, @;z # 0 and
consequently, llzll, = 0.

LeEMMA 2. Let lizll; be a measurable norm on H and let B be the completion of H
in this norm. There exists a measurable norm lzlly; on H such that for each real
number r > 0, the closure in B of the set S, = {x € H: llzlly, < r} s compact in B.

Proor. Let {a;};-0,,... be a sequence of strictly positive real numbers such
that 370 a; ! is finite. Let llxll, = 37 a;lQ,zll; where the @; are those projec-
tions given in lemma 1.

It suffices to show that if x, is a sequence in H with llz,ll; < rforn = 1,2, ---,
then some subsequence is Cauchy with respect to Il Il,. Now the restriction of
IIQ;xll; to the range K; of the finite dimensional projection @; is a norm on K;
equivalent to the Euclidean norm, and since 11Q;z,}l; < ra;* for all n, there is
a subsequence of the sequence z, such that @;z, is Cauchy with respect to Ii- ..
By diagonalization and dropping to a subsequence, we may assume that Q;r.
is Cauchy for all j. A measurable norm is strongly continuous by corollary 5.4
of [4]. Consequently, llz, — z,.ll, < 370 1Q;(x, — x,)ll. Each term of the
sum goes to zero as n and m go to infinity and is dominated by 2ra; !. Hence,
e, — xully — 0.

Proor orF tueorEM. The proof follows a by now well-known pattern. The
set function p is countably additive on ®& if and only if it is continuous from
below at B. For a cylinder set measure, the measure of a tame set can be approx-
imated from above by open tame sets. Consequently, u is countably additive
if and only if for every covering of B by a sequence of open tame sets T, there
holds 3 n-1 u(7.) > 1. In order for this condition to hold, it is sufficient that
for every real number ¢ > 0 there exists a weakly compact set C. in B such that
w(T) < e for any tame set 1" disjoint from (.. Indeed, if T, is a covering of B
by a sequence of open tame sets, then since the T, are also weakly open, a
finite number, say 71, - -+, T, cover (', and consequently,

3.5) > () 2 il u(T)

n= n=

N
S

N
1 — y(B Y Tn>

n=1

v

1 — ¢

which in view of the arbitrariness of €, implies that > ;- u(7.) > 1.

Before proceeding further, we remark that the preceding argument is the
basic one used in much of the literature [3], [7], [8], [9], [13] to prove countable
additivity of cylinder set measures. When the underlying space B is itself a dual
space of a Banach space or nuclear space, the sets C. are then taken as closed
balls in B. However, in the present case, B is not necessarily a dual space, since
example 2 of the preceding section shows that Wiener space is a speeial casce



38 FIFTH BERKELEY SYMPOSIUM: GROSS

of the space B. Our proof from here parallels Wiener’s proof [13] of the countable
additivity of Wiener measure. The sets C. will be strongly compact.

Let lizll; be the measurable norm on H whose existence is asserted in lemma 2.
Given e > 0, choose r such that Prob (lizll;” > r) < e. Let C, be the closure in
Bof {xe H:llzl; <r}. By lemma 2, C. is (strongly) compact in B. Let T be a tame
set of B disjoint from C. and suppose that T is based on the finite dimensional
subspace K of B* The set K is also a subspace of H*. Let L be the finite dimen-
sional subspace of H which corresponds to K under the usual isomorphism be-
tween H and H* induced by the inner product on H. Then L is naturally iso-
morphic to K*, and in fact, the isomorphism is an orthogonal transformation
between these Euclidean spaces and is given by the restriction to L of the
map 7x defined in the preceding section.

In particular, Gauss measure in L is carried by wk|L into Gauss measure
in K*, Thus, if T = 7x'(E’) where E’ is a Borel set in K* and if E is
the unique Borel set in L with 7x(E) = E’, then we have T' "N\ L = E. Hence,
w(T) = v(E) = v(T N\ L) where v is Gauss measure in L. But T N L is dis-
joint from C. N L. Therefore, (T N L) < 1 — »(Cc N L). Furthermore, C. N
L D {z € L: lizll; < r}. Denoting by P the projection of H onto L we have
»(Ce N L) > Prob (IPxll5” < r). Hence, u(T) = v(T N L) < Prob (IPzliz” > r) <
Prob (lizllz” > r) by theorem 5 of [4]. Thus u(T) < e. This concludes the proof
of the theorem.

COROLLARY 1. In the notation of theorem 1 let m denote the countably additive
extension of u to the Borel field 8 of B. The identity map on B* regarded as a densely
defined map of H* into random variables over the probability space (B, 8, m) extends
to a representative of the normal distribution over H in a unique manner.

Proor. If yis in B*, then by the definition of u and m, y is a normally dis-
tributed random variable over (B, 8, m) with mean zero and variance liyil?
where the norm of y used is the H* norm. Thus the linear map Fo: B* C H* —
L*(B, 8, m) is continuous on a dense set in H*. Its unique continuous extension
F to H* again assigns to each y in H* a random variable F(y) over (B, 8§, m)
which is normally distributed with mean zero and variance llyll2. This character-
izes F as a representative of the normal distribution. Since any representative
of the normal distribution on H over (B, 8§, m) is continuous from H* to
L*(B, 8, m), the asserted uniqueness of the extension of the identity map on B*
follows.

Remark 1. Corollary 1 may be regarded as an abstract extension of the
stochastic integral. For if H is specialized to C’ as in example 2 of section 2,
then a function y in L%(0, 1) defines an element of H* = (C')* by means of
(y, ) = f(‘) y()2'(f) dt. Although this expression defines a continuous linear
functional on C if and only if y is of bounded variation, nevertheless, it exists
as a stochastic integral for all y in L2(0, 1).

CoroLLary 2. Continuing the notation of corollary 1 let llzlly be an arbitrary
measurable seminorm on H. Let C be the closure in B of the set {x € H: llzll; < r}
where r is a posttive real number. Then m(C) > Prob (llzllz” < r).
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Proor. The set C is the closure of a convex set, hence is itself a closed convex
set in B. Since B is separable, the complement of C is a countable union of
closed balls B,, which may be obtained, for example, by taking a dense se-
quence z, in the complement of C and taking B, to be the ball centered at z.,,
and with radius equal to half the distance from z, to C. Each ball B, can be
separated from C by a continuous linear functional y, on B. It follows that C
is the intersection of a sequence T, of tame sets (in fact half spaces), and
B — NY_1 T, is a tame set disjoint from C. Thus, if a = Prob (lzlly < 7),
then, as shown in the proof of theorem 1, we have m(B — Ny T,) <1 — a.
In view of the countable additivity of m, we thus obtain m(B — () <1 —a
upon letting N — «, and consequently, m(C) > a.

ReEmark 2. For any separable real Banach space B, there is a real Hilbert
space H and measurable norm |- ll; on H such that B is (isometrically isomorphic
to) the completion of H in this norm. For since B is separable, there exists an
increasing sequence of finite dimensional subspaces F, of B such that F, is
n-dimensional and such that K = ;-1 F, is dense in B. Let 2, 23, - - - be a basis
for K such that z;, - -+ , z, is a basis for F,. Let S be the open unit ball of B.
We construet by induction a sequence of positive real numbers «, and a new
basis y, of the form y, = an.2,,n = 1,2, - - - such that > 7_; 8;4;is in S whenever
> 7.1 87 < 1. Choose a; such that y,; is in 8. Having chosen oy, - - - , an_; such that

7210 87 < 1implies Y721 B;y;isin 8, we observe that the map f: (84, - - - , Ba) —

721 B5y; + Brnzn is continuous from E, into B and that f~1(S) contains the
closed disk D: {(B1, - -+, Ba): L1 ' 67 < 1, B, = 0} and therefore, also a neigh-
borhood of D. In particular, for some positive number a, f~'(S) contains the
closed set Y 7=/ 87 + (B./a.)? < 1. Thus «, has been satisfactorily chosen.
The space K is a pre-Hilbert space in the inner product for which y,, ., - - - is an
orthonormal set. If llzll” denotes the norm on K associated with this inner prod-
uct and llzll; denotes the given B norm, then clearly llzil; < llzll’ for 2 in K. If
{B8;} is a sequence of real numbers such that 3 7, 87 < «, then the sequence
of partial sums of Y ;. 8,5, is Cauchy in II- I’ norm, hence also in |-} norm.
Thus the series converges in |- |l; norm to an element of B. Hence the comple-
tion of K may be identified with a subset H’ of B; H' is a separable Hilbert
space. Let A be a one-to-one Hilbert-Schmidt operator on H'. Its range H is a
Hilbert space in the norm llzll = lA~l’, and moreover, H is dense in B. Since
lzll; < llzll” = Azl and since llzll” is a measurable norm on H, so is llzll,
which concludes the proof of our assertion.

In the following we shall use the representative of the normal distribution
constructed in corollary 1. Thus for suitable functions ¢ on H, § denotes a
random variable on the probability space (B, 8, m). Suppose that f is a tame
function on B. Then f has the form f(x) = ¢(y1(x), - - - , yo(x)) where y; is in
B* j =1, ..., n. Since the y; are also in H*, the restriction ¢ of f to H is also
a tame function on H. Moreover, § = f since ¥y = y; by definition. This being
said it is natural to ask whether § = f for functions f other than tame functions
on B where ¢ is again the restriction of f to H. We showed that this is the case
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for Wiener space ([4], p. 390) where the proof was facilitated by the existence
of a suitable sequence of finite dimensional projections converging strongly to
the identity operator on Wiener space. It is not known whether such a sequence
exists in a general Banach space such as we are dealing with here (see remark 2),
and the proof that § = f (as random variables) must be modified somewhat.

CoroLLARY 3. Let f be a continuous real- or complex-valued function on .
Let g be the restriction of f to H. Then g is u.c.n.0 1n 3, and § = f almost everyichere
with respect to m.

Proor. Iet llzll; be a measurable norm such that for all » >0, 8, =
{x € H: llzll, < r} is precompact in B. Then f, and hence g, is uniformly con-
tinuous on S, for each r with respect to llzll,. Since (lixll;/n)~ goes to zero in
probability as n — «, g is u.e.n.0 in 3,.. Thus § makes sense as a random vari-
able on (B, 8, m). Let I; be a sequence of finite dimensional projections on
H converging strongly to the identity operator and such that P.H C B* k =
1, 2, --. when I and H* are identified in the usual way. In this case each
P, extends 1o a continuous projection Q. of B into I’.H, as may be seen hy
taking an orthonormal basis e, --- , e, of P.H and noting that the map =z —
> 7.1 (x, ej)e; on H is continuous in II-ll,. Now fo @ is a tame function on I3
whose restriction to H is exactly f - P’;, which is by definition ¢ - /’;. Thus by
the discussion preceding the corollary, we have (g o Pr)™ = fo Qs

We cannot assert that f. Q.(x) — f(x) for each z in B because the @ can-
not be arranged to converge strongly to the identity operator. It suffices how-
ever to show that f - Q. converges to f in prohability. Choose n so large that
Prob (llzli;” > n) < ¢/3. Let C be the elosure in B of {x € H: llzll, < n}. Then
C is compact in B, and by corollary 2, m(C) > 1 — (¢/3). Since f is uniformly
continuous on C, there is a number § > 0 such that |f(z) — f(y)| < e when z
and y are in C and llz — yl, < 8. By corollary 5.1 of [4], (I — Pi)xll;” con-
verges to zero in probability as k — «. Hence, for some integer ko, the relation
k > ko implies Prob (I(I — Py)zll;” > 8) < ¢/3. Let Dy be the closurc in B of
{xe H: I(I — Pyzll; < 8}.Itis easily seen that Dy = {r e B: (I — Qx)zll, < 6}
Again by corollary 2, m(Diy) = 1 — (¢3) for k > ko. Iinally, let €, =
{x € B: Qwx € ('}. Since (' is closed and contains {xr € If: IPxll, < n} and
since Prob ([Pl > n) < ¢/3, it follows that m(Ch) > 1 — (¢/3). Thus
I7(x) — f(Qur)|] < ¢ when x is in C N Ci N Di. Hence, m({x € B: |f(x) —
f@ix)| < €}) > 1 — € for k > ko, which concludes the proof of the corollary.

COROLLARY 4. The measure m assigns posttive measure to open sets in 3.

Proor. If U is an open set in B, then there exists a nonnegative somewhere
positive bounded continuous function f on B with support in 7. Since H is
dense in B, the restriction g of f to H is somewhere positive on H. By the pre-
ceding corollary, § = f a.e. By corollary 5.5 of [4], § is not the zero random
variable. Hence, f > 0 on a set of positive measure and m(U’) > 0.

The next corollary is significant for regularity theorems in potential theory
over H. However, technically it belongs here.

COROLLARY 5. Let A be a bounded operator from B into B*. Denote by © and j
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the injections of H into B and B* into H* respectively. If I = jA4, then the sym-
metric part of E (identifying H* with H) is a trace class operator. and the skew
symmetric part is of Hilbert-Schmidt type.

Proor. let C = (E + E*)/2 and D = (E — E*)/2 The m]ectlon 118 a
compact operator since for some real number r, the unit ball of H is contained
in the ball of radius 7 of the measurable norm constructed in lemma 2, and the
latter set is precompact in B. Hence, £ is a compact operator and so are C
and D. Thus there is an orthonormal basis of H, ey, ¢z, - - - such that Ce, = \.e,
for all n. Now the function f(x) = (Ax, «) is a continuous function on B. Hence,
by corollary 3, if g is its restriction to H and P is the projection of H onto span
(e1, +++ , €n), then (g o Pi)~ converges in probability as k£ — «. But for z in
H, g(x) = (Cz, z). Hence, g - Pr(x) = Y5_1 M2 where z, = (2, ¢,). Thus if
£, = (x, €,)”, then the £, form a sequence of independent normally distributed
random variables with mean zero and variance one, and moreover, (g « Py)~ =
>k 1 Mgk Thus 3°F N\.£2 converges in probability, and therefore, with probabil-
ity one. Moreover, since the basis ey, €;, - - - can be rearranged arbitrarily without
affecting the convergence of (g - Pi)~, it follows that Y ., N.£2 also remains
convergent after any rearrangement. Hence from the three-series theorem, it
follows that 37 |\s| < ». Thus C is trace class.

Now in view of the identification of H* with H, the operator A2 is meaningful
as a bounded operator from B to B*. Its restriction to H is (C + D)? whose
symmetric part is C? + D2 Hence, D?is a trace class operator, and consequently,
D is of Hilbert-Schmidt type.
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