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1. Introduction and summary

The compound decision problem considered here consists of a sequence of
component problems, in each of which one of two possible actions must be
selected. The loss structure is the same for each component decision problem.
Each component problem involves independent identically distributed observa-
tions whose common distribution function is unknown but belongs to some
specified parametric or nonparametric family of distributions (for example, the
family of all Poisson distributions with parameter X bounded above by some
finite number B). This family remains fixed for all component problems. It is
assumed that, at the time a decision is made in any particular component
problem, the available information includes the data obtained in all previous
component decision problems in the sequence.

Compound decision problems of this type arise in situations where routine
testing and evaluation programs are in operation. For example, in routine lot
by lot aceeptance sampling for quality control purposes, each lot of items is
sampled, and the lot is either accepted or rejected on the basis of the observa-
tions obtained. Another example arises in routine medical diagnosis where a
decision between two alternative treatments must be made for each of a con-
tinuing sequence of patients on the basis of results obtained from a diagnostic
test performed on each patient. In either of these examples records of all past
observations could certainly be accumulated.

In the compound decision problem as formulated here, no relationships what-
ever are assumed to exist among the distributions governing the observations
associated with different component decision problems (aside from the require-
ment that all these distributions are members of a specified general family).
A strietly “objective” approach to this situation appears, at first glance, to
require that each component problem be treated in isolation with the decision
for each problem being based on the observations obtained for that problem
alone. It has been known for some time, however, that for certain types of
compound decision problems, substantially better performance in terms of
average risk incurred for a number of component problems may be obtained
by using “compound decision procedures” which make explicit use at each
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stage of the seemingly irrelevant data from previous component problems. A
number of authors have investigated this aspect of compound decision problems,
notably Robbins [5], Hannan and Robbins [1], Samuel [8], [9], Hannan and
Van Ryzin [2], Van Ryzin [11], and Swain [10]. These references are cited
chronologically to indicate stages in the evolution of the subject and are not
exhaustive. In the earlier papers [5], [1], and [8] the space of “‘states of nature,”
that is, the family of distribution functions governing the observations, is as-
sumed to be finite, so that these models are not suitable for most applications.
In these papers, and in [9] as well, the main results are concerned only with
the convergence to zero of the difference between the average risk and a certain
“‘optimal”’ goal (discussed in detail below) as the number of component problems
becomes large. In two of the more recent papers ([2], [11]) the finite state
model has been retained, but stronger results involving bounds on the deviations
of the average risk from the desired goal and rates of convergence to “‘opti-
mality’’ are obtained. The papers of Samuel [9] and Swain [10] deal with
standard (infinite state) estimation problems with squared error loss, and their
results are therefore immediately relevant to applications. In all of these papers
except [10] the “optimal” goal asymptotically achieved by the average risk is
defined in essentially the same way. For each n, the average risk for the first
n component problems is compared to the Bayes optimal risk one could achieve
for a single component problem if the parameter of interest had a known a priori
distribution equal to the empirical distribution of the parameter values asso-
ciated with the first » component problems. This criterion does not, however,
represent the best that can be achieved by compound decision procedures, and
in fact, a variety of more stringent criteria may be defined which take into
account empirical dependencies of various orders which may occur in the
sequence of parameter values. At the suggestion of the present author, these
more stringent criteria were considered by Swain in [10] and were shown to be
asymptotically achievable for the compound estimation problem. Swain also
obtains bounds and rates of convergence for some cases.

The object of the present paper is to find bounds for the deviations of the
average risk from various optimal goals for the two-action compound decision
problem. Attention is confined to certain classes of loss functions and compound
decision procedures, and to the case of discrete-valued observations. Both
parametric and nonparametric models are treated and the convergence of the
bounds to zero is shown to be ratewise sharp. In order to state these results
explicitly, the problem must be presented more formally.

The compound decision problem consists of a sequence of component problems
where the j-th component problem has the following structure:

(a) The distribution governing the observations is denoted by F; and is a
member of a specified family F of distribution functions, each assigning prob-
ability one to a fixed denumerable set of numbers z;, ., - - -

(b) The statistician obtains k& independent observations with common distri-
bution function F;. The observations are denoted by the vector
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X = Xuj Xogy -+, X )j).

(¢) For the parametric case the parameter of interest determines F; com-
pletely and is denoted by A;. For the nonparametric case, \; = Eh(X, ;), where
h(-) is a specified function.

(d) On the basis of the observations the statistician selects one of two actions
and incurs loss L,(A\;), a = 1, 2, if action a is selected.

A typical compound decision rule for the j-th component problem is repre-
sented by A;j(z), where EA;(x) is the probability of taking action one if X; = z.
For each value of the vector x, A;j(z) is a random variable depending on the
mutually independent random vectors Xi, X, -+, X;;. The risk for the
J-th problem is given by

(1.1) ri = (Li(\j) — Le(\))EA;(X;) + La(N))-
Letting p;(x) be the probability that X; = x, and
(1.2) a;(@) = (Li(\;) — La(\;)pi(z),
the average risk for the first n component problems is given by
Llea |
(13) Tn = 7—’1, jz:l Ty
1 2 1 a2
= .Zl 2 (L) — Le(\)E{A;(2)| X5 = 2} piz) + ;”Zl Ly(\)
i=l = =

= % i Z a,-(x)EAj(x) +’}' i L2()‘j)’
i=1 z nij=1

The “classical” goal that one attempts to achieve asymptotically, is defined
by considering a hypothetical Bayesian version of a typical component problem.
Suppose that for such a problem it is known that the sampling distribution ¥
is chosen randomly according to the discrete a priori probability measure on §
which assigns probability n~! to each element of the set {Fi, Fs, -+, Fy} of
sampling distributions arising in the first » component problems. If one uses
the decision rule 8(z) (based only on the observations obtained for the single
component problem under consideration), where 8(z) is the probability of taking
action one when z is observed, the risk incurred is

(14) =y B T @@+ 5 L.
Letting
(15) mi(@) = 3 i), i=1,2-,

it is easily seen that the Bayes optimal decision rule is given by

1, m,(x) <O,
(1.6) o*(z) = (=)

0, ma(x) = 0,
and the optimal Bayes risk is
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(17) o= 5 )+ 3 3 L),

where m,(x)~ indicates the negative part of m,(z).
The object is to disecover compound decision procedures having the property
that the resulting average risks 7, satisfy

(1.8) lox — 7| < b(n), for all =,
where b(n) — 0, as n — 0, and where b(n) is independent of the particular se-
quence Fy, F,, --- , occurring. Theorem 1 of section 2 gives conditions under

which a class of compound decision procedures will satisfy (1.8) with
b(n) = Kn™1/2 for a certain positive constant K independent of the sequence
of Fs. It is also noted that n~1/2 is the best possible rate of convergence for
this class of procedures. Typically, of course, neither 7, nor p} will themselves
converge to limits.

In section 3, specific compound decision procedures satisfying the conditions
of theorem 1 are presented for certain parametric cases (Poisson, negative
binomial, and so on) involving families of sampling distributions of exponential
type. The nonparametric case is also discussed and procedures satisfying
theorem 1 are given. A very simple loss structure is used throughout. In fact,
it is assumed that

(1.9) Li(A) — Lx(N) = ¢(x — b),

where b, ¢ are specified constants. It is also assumed that L,(A\) and Ls(\) are
bounded on any bounded interval of N’s. The particular loss functions

0, A<D,
(1.10) L) = {C()\ s,
cb —MN,A<b,
(1.11) L(\) = {0, N> b,

where ¢ > 0, clearly satisfy (1.9), and are quite reasonable for many two-action
problems of the one-sided hypothesis testing type. The arguments presented
extend almost without change to the case where Li(A\) — Ls()\) is any specified
polynomial in \. All of the compound decision procedures considered here are
based on the construction of consistent unbiased estimates for each z of the
quantities m;(x), 7 = 1,2, - - -, defined by (1.5). Action one is then chosen in
the j-th component problem if and only if the estimate of m; (X)) is negative.

The compound decision problem is closely related to the “empirical Bayes”
problem where an actual unknown a priori distribution is assumed to exist.
The empirical Bayes problem corresponding to the compound decision problem
considered here is discussed in the nonparametric case by the present author
in [3], and in the parametric case by Robbins [6] and Samuel [7]. With the
exception of the necessity for a certain amount of auxiliary randomization, the
compound decision procedures exhibited in section 3 are essentially the same
as those suggested for the corresponding empirical Bayes problems.
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The “classical” goal for compound decision problems described above may
be generalized to produce a sequence of more stringent goals by extending the
definition of the hypothetical Bayes decision problem. Instead of assuming that
the present sampling distribution F is selected by a uniform a priori measure
over Fy, Fs, --- ,F,, one may assume that the vector (Fy, Fy, ---, F,) of
sampling distributions corresponding to the ¢ — 1 most recent component
problems and the present problem respectively, is a random vector with a
discrete a priori probability measure on the ¢-fold product F X § X -+ X &,
which assigns probability (n — ¢ + 1)~ to each of the vectors

(1.12) (Fi—tyr, Fi—gy -+ -, F)),

j=tt+1,---,n The optimal Bayes decision rule for such a problem must
involve the observations obtained in the { — 1 most recent component problems
as well as the present one. If the resulting Bayes risk is denoted by pf, it is
intuitively plausible that this quantity should be decreasing in ¢ since advantage
is taken of possible empirical dependencies of higher order as ¢ is increased.
Theorem 2 of section 4 shows that for each ¢ > 1,

(1.13) pit1n < pin + &

where £, = 0(n~1). For “most” sequences of F;’s one would expect pfy1,» to be
significantly smaller than p}, when ¢ is small, since “most’”’ sequences will
exhibit substantial empirical dependencies of small order. In section 4 certain
“t-fold” compound decision procedures are considered and the attainment of
the goal pf, is discussed. Illustrations of specific ¢-fold compound decision
procedures are given for the problems considered in the ‘“classical’”’ case in
section 3.
Some suggestions for further generalizations are given in section 5.

2. General results

In this section we assume the existence for each z of an estimator &(x), which
for any element F of & is an unbiased estimator of a(z) = (Ly(A) — Ly(\))p(z),
where ) is the parameter value and p(z) the probability mass function associated
with F. The estimator ¢(x), which may be randomized, must depend only on
observations having F as their common c.d.f., and is assumed to have a finite
third absolute moment for each z. For each z, let ¢2(x) = var (@(x)) and
v} (z) = Ela(z) — a(=)|®

We now introduce two conditions which impose certain restrictions on  and &.

ConDITION 1. There exists a finite number B and a function po(x) such that
(a) X.pd2(x) < o, and for each element of § the corresponding N and p(zx)
satisfy (b) |\| < B, and (c) p(z) < po(z) for all z.

ConpiTioN 2. There exists a finite number C > 0 and a positive function
e(z) < 1 such that (a) >, e(x) < C, (b) X, po(x)e*(x) < C, and for each element
of § and each z, (¢) &(x) < o%(x) < C(e2(x) + po(z)), and (d) ¥*(zx) < C.

For any sequence Fy, Fs, - - -, of elements of § and for each z, let &,(z), o7 (z),



468 FIFTH BERKELEY SYMPOSIUM: JOHNS

and v3(z) represent &(x), o%(x), and v*(z) respectively for the sampling distri-
butions F;, j = 1,2, --- . It is apparent that for fixed z, the sequence &;(x),
j=12,---, is a sequence of independent random variables, provided that
any randomization involved is performed independently for each j. For each z
andforj=1,2,---,let

2
2.1) S;(z) = EI &i(z).

=
We observe that ES;(z) = m;(z), and denote the variance of S;(z) by s¥(z) =
Y i1 o?(x). The compound decision procedure to be evaluated is given for 7 > 1
by

_ 17 Si—l(x) < 0)
@2 4@ = {0, Sia(@) > 0.

The decision rule A;(z) for the first component problem may be arbitrary. We
now state and prove the following theorem.

TaeorREM 1. If conditions 1 and 2 are satisfied, then there exists a finite con-
stant K such that the average risk for the compound decision procedure (2.2) satisfies

(2.3) |7Fn — o3| < Kn1/2,
Jor all n, for every sequence of elements of &.
Proor. Recalling (1.3), (1.7), and (2.2) we have

@4 -l <T z ;@) P{S;a(z) < O} + £(&) — malz)~)

where {(z) represents the contribution to the risk due to the arbitrary decision
rule A;(z) used in the first component problem. Since by condition 1 and (1.9)
>z |£(x)| is bounded, it will be ignored in the subsequent argument. We now
consider an arbitrary fixed value of  and suppress this value whenever it
appears as the argument of a previously defined function. Letting ®(-) repre-
sent the c.d.f. of a standard normal random variable, we know by the Berry-
Esseen theorem (see, for example, [4], p. 288) that there exists a constant C,
such that

(.5) ,éz a;P{8j1 <0} — Zn:z a® <_%})

8j—1
e <o ()
< z 2 —( -2
Z lazl { ;1 Sj-1
<y 3 2SR,
i= 2sj 1|i=1

We seek a bound on the second sum on the left-hand side of (2.4) under the
assumption that m, = 0, that is, m, > 0. For any particular sequence

F,, F,, - -- , such that m, > 0, for y > 1, let
(2.6) my) = mi + aj(y —Jj + 1), J—1<y<y,
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Sj-1y I —1< <'_‘-2’
(2.7) s(y)={ b . TSy
sia + 7%s; — 8ia)y — 7+ 7579, J—J <y <y
forj = 2,3, --- . Thus, we have
) J
@8) fj_l me (- )Y =9 T ) ¥

Also, since ®(-) is monotone and bounded by one, and m(y)/s(y) is monotone
on the interval (j — 1,7 — j~2] for each j > 1, we have

Jrt (5o -2 (-32)
Hence, letting ¢(+) = ®'(-),

oo (52) - [ mon (<558 o
Eale(-32)- Lo (-5 )

(2.9)

(2.10)

Y
< i |aj|<1>(——"l’;) — @(—mj—l> +2 3 levjl 7=
i=2 $j—1 Sj-1 i=2
o M) _ ( laxs| ) .
< % oo (o) - @ (—go )| + 2 5 ol

<o) 3 42 z lasli* = R§P.

=281
We must now bound the integral appearing on the left-hand side of (2.10)
uniformly in all functions m(y) and s(y) corresponding to sequences Fy, Fy, - - -,
such that m(n) > 0. Let h(y) = (m(y)/s(y)) so that m'(y) = s'(y)k(y) + s’ (y)
(except at the points y =j — 1, 7 —j2 j=2,3, .-+, where m'(y) is not
defined). Let

@i1) I= ﬁ e (—m(y)) dy

s(y)

= /1 nS’(y)h(y)‘b(—h(y)) dy + ﬁ ns(y)h’(y)fb(-h(y)) dy.

Integrating the first expression by parts and integrating the resulting expression
by parts again, we have
(2.12)
I = s(n)h(n)@(—h(n)) — s(HR()S(—A(1)) + f s (Y)e(—h(y)) dy
= s(n)h(n)®(—h(n)) — s(n)e(—h(n)) + fl s’ @e(—hy)) dy
+ s(1)e(—h(1)) — s(DR(1)(—h(1)).
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Now, observing that maxzso Z&(—Z) = C;®(—C;), where &(—C,) = Ci¢(Cy),
we have

(2.13) 17| < (s(n) + s(1))(Cip(Ch) + 2¢(0)) = RE”.
Combining (2.5), (2.10), and (2.13) we see that for any fixed x, the summand

on the right-hand side of (2.4) is bounded by R{® 4+ R$” + R for any case
where m,(x) > 0. The same result holds when m,(x) < 0, since then

2.14) 3 aP(Sin <0} —mi = ¥ a(P{Sim <0} — 1)

= - .il &P{S;1 > 0},
=

and essentially the same argument applies.

We now reintroduce the suppressed variable 2 and undertake to demonstrate
that the quantity Y . (B (z) + R’ () + R’ (z)) is bounded by Kn!/? where
K is independent of the sequence Fy, F,, --- . Letting C, = ¢(B + |b]) and
recalling (1.2), we see that by condition 1 (b) and (c), |a;(z)| < Cyp;(x) < Cypo(z),
for each x and j. Thus, referring to (2.5), we have by conditions 2 (b), (c), and (d)

@15 T RP@ < 00l TP 3 (5 — 1)1 < 20,0i0min,

é(z) /=2
Similarly, referring to (2.10), we have
@16) TR < eO@ TR § (- 04 20, i) 55
T z i= z J=
< 2¢(0)C3Cn "2 + 2C,Cs,
where C; = Y7, 7% For R},(z) given by (2.13), we note that for each s,
s(n) = s.(x), so that by condition 2 (c)
(2.17) sa(x) < CV2012(2(x) + polx))'/2.
Hence by conditions 1 (a) and 2 (a)

(2.18) X salz) S OV L (e(z) + po*(2)) < CVA(C + Bon'”,

where By = Y. po'/2(x). This completes the proof of the theorem.

REMARK 1. The result of theorem 1 is ratewise sharp since the conditions
of the theorem do not, for example, exclude sequences Fy, Fs, - - - , F, such that
\; = b (that is, a;(x) = 0) for j < n — n'/?, and A\; = by > b (that is, o;(z) =
c(by — b)p;(x)) for n — n'/2 < j < n. For such sequences the contribution of
the terms 2> 71 a;(z)P{S;=:(z) < 0} appearing in (2.4) will typically be of the
order of 7!/ and positive for each z. Many sequences having this property may
be constructed, and such sequences can occur in both the parametric and non-
parametric applications discussed in the next section. The constant K appearing
in the statement of theorem 1 is defined implicitly in the proof and the value
so determined is not “best” in any sense.

REMARK 2. The maximization of the integral I, defined by (2.11), over the
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class of all bounded continuous differentiable functions m(y), may be viewed
as a classical variational problem whose solution would yield valuable insight
concerning ‘‘least favorable” sequences Fi, F, - -- . Unfortunately, the varia-
tional problem is singular and cannot be solved by standard methods.

3. Applications

A. The parameiric case. The parametric families for which estimators &;(x)
satisfying the conditions of theorem 1 can be constructed are essentially those
for which the compound estimation problem is tractable (see, for example, [9]).

The first example, which includes the Poisson and negative binomial families
as special cases, is the exponential family with probability mass function

3.1) p(x) = g(@)BNN, for z=0,1,---,

where g(z) > 0 and g(z)/g(x + 1) is bounded for all # > 0. The family ¥ con-
sists of all distributions having probability mass functions of this form for a
given g(z) with 0 < A < B, where B and B, > B are chosen so that
> . g(x)Bf < ». For this example, we confine attention to situations where a
single observation is obtained for each component problem, that is, X; = X ;.
This observation may be regarded as the value assumed by a sufficient statistic
perhaps based on a larger number of observations.
For each = and j let

% + Zi(z), for X;=z+41,
(32) 4i(z) = —cb + Z;(x), for X; =gz,
Z(x), otherwise,
where for each , Z1(x), Zs(z), - -+ , is a sequence of independent random vari-

ables independent of the X’s, such that EZ;(z) = 0, EZ;*(z) = €*(z), and the
third absolute moments of the Z;(x)’s are bounded uniformly in z and j. The
significance of the Z,(z)’s which represent auxiliary randomization is discussed
in remark 3 below. It is evident that for each z and 7, E@;(x) = c(\; — b)p;(x) =
a;(z), e(z) < oi(x) < C(e&(x) + p;(x)), and v3(z) < C, for some suitably chosen
C. Letting po(x) = g(x)B=/9(0), and noting that g(0) < -, g@@)»* = B7'(N), we
see that for each z, po(z) > p(x) for all elements of F and X, po(2)!/? < o since
3. g(x)Bf < o for B; > B. Condition 1 and conditions 2 (¢) and (d) are
therefore satisfied by estimators of the form (3.2). To show that theorem 1
holds for these estimators, it remains to exhibit Z;(x)’s satisfying conditions 2 (a)
and (b) with py(x) as defined above. For fixed 6 > 0, let
z 4 1)-a+d with probability = 3,
(33) zj<x)={(+) i 1th probablity = 2
—(z + 1)~a+d, with probability = 3
Then EZ;(x)? = e(z) = (z + 1)~20+ and condition 2 (a) is satisfied. Since
3. g(x)B% converges for B; > B, it follows that 2. (z + 1)*@*¥py(x) converges
and condition 2 (b) is satisfied. ,
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Operationally, only one randomization need be performed at each stage since
for fixed j, the Z;(x)’s need not be independent for different z’s and may be
computed on the basis of the outcome of the same randomization experiment.

A second parametric example involves the family of distributions with prob-
ability mass functions of the form

(3.4) p(z) = g(@)BO) (

a+)\)

where q, is a specified positive constant,

a@+1)--- @+ @—1)

(3.5) g(z) = :l:' x 1,2, )
g(0) =1, and
(3.6) s = (25)"

This family possesses the interesting property that EX = ) for all \. These
distributions are actually reparameterizations of negative binomial distributions.
For each z and j let

carg(x) = = ...

g(:c+t)+Z(x)’ X;=z4+¢t=12 ,
3.7) @) =1 _p 4 Z;(z), X, =z,

Zi(z), otherwise,

where the Z;(z)’s are defined as in the previous example. Again E&;(z) = o;(z),
and under the same conditions on the \’s as in the previous example, and with
an analogous definition of po(z), it is easily verified that theorem 1 holds for this
example also.

The important case of the binomial distribution is treated below as a special
case of the nonparametric problem.

B. The nonparametric case. We now consider the situation where the prob-
ability mass functions p(z) corresponding to elements of § are not assumed to
have a known functional form and are not necessarily in a one-to-one relation-
ship with the values of . For this case, A = Eh(X), where k(-) is a specified
function and X is a typical observation having probability mass function p(x).
Thus, for instance, A might be EX as in the second parametric example above.
Other possibilities are A = E(X — )2, or A = P{X < ¢} for some specified ¢.

Since so little is assumed about the probability structure of the problem, it is
not surprising that the goal which is attainable in this case is slightly less strin-
gent than that achieved in the parametric case. Specifically, if ¥ observations
are obtained for each component problem, the procedure discussed below will
satisfy the conditions of theorem 1 with p} interpreted as the optimal risk for
a hypothetical Bayes problem involving only k¥ — 1 observations. Thus, one
observation is sacrificed in the interests of generality or as the price of ignorance.



COMPOUND DECISION PROBLEMS 473

For the case of k observations (k > 2), p(z) = p'(z)p’(x2) - - - p’(x+), where
x = (&1, %, - -+ ,xx) and p’(-) is the probability mass function for a single
observation. Letting 2’ = (x4, 2, - - - , zx_1) and recalling (1.2) and (1.3), we
see that if a compound decision rule A;(z’) based on z’ is used, then the expression
for 7, remains unchanged except that x is replaced by 2’ throughout. We there-
fore seek a suitable estimate of «;(z’). Let y(z') = (y1, ¥s, - - , Yr—1), Where
y1 L ys £ ¢+« < yra are the ordered values of the components of z’. For
t=1,2,---,k and all j, let X}’ = (X1jy Xogy 0y Xeery Xegrg, -+, X
Finally, for each j and 2’ let

c(h(X:,5) — M) + Z;(2'), for y(X7) = y()
(3.8) Q;(x") = and t=1,2,---,k
Zi(z)), otherwise

with M(z’) = (my!ms! -+ - mu!)/k!, where m; is the number of components of
z’ having the ¢-th smallest distinct value. Even though it is possible for y(X§")
to equal y(z’) for more than one value of ¢, &;(x’) is still well defined since
X, ; will have the same value for each such case.

If EZ(z') = 0, it is evident that E&;(z') = a;(z’). If we assume that
Er(X)]* < C < =, for any single observation X with probability mass func-
tion corresponding to an element of ¥, and if we assume the existence of a
function pi(-) dominating each p’(-) corresponding to an element of ¥ and
satisfying >, po(z1)!/2 < o, we see that condition 1 is satisfied with z’ replacing
z. The choice of the randomizing Z;(z’)’s so that condition 2 is satisfied depends
on the particular denumerable set of values which the observations may assume.
If this set is the set of integers, then letting

k=1
— 1 |2 + 3[~9+9, with probability = %,

=

(3.9) Z(=') = .
I |z; + 3~0, with probability = 3,

i=1

for some § > 0, we see that condition 2 is satisfied with z replaced by z’ provided
Yoo |22 9pi(z1) < . Under such circumstances, the result of theorem 1 holds
with the interpretation of p% given above. It should be noted that the case of
the binomial distribution is included in this framework if we allow only the
values zero and one for each individual observation, and set h(x) = z so that
A = p'(1) = 1 — p’(0). This case is not really “nonparametric” since the value
of A determines the distribution of the observations.

RemARk 3. If the N’s are bounded away from zero in the two parametric
examples discussed in part A of this section, it is easily verified that condition 2,
and hence theorem 1, holds without the introduction of the randomizing Z;(z)’s.

The author knows of no examples within the context of the present paper
(parametric or nonparametric) for which randomization can be demonstrated
to be necessary for the result of theorem 1, provided the conditions unrelated
to randomization are satisfied. It is conjectured that such randomization is not
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essential, although because of the form of the Berry-Esseen bound, it is required
for the method of proof used here.

4. The t-dependent case

In this section criteria based on generalizations of p¥ are introduced.

Consider a hypothetical Bayes decision problem in which one of two actions
is chosen on the basis of k-dimensional vectors of observations X;, Xs, - -+ , X,
having a random joint probability mass function p(xy, s, -, 2s) =
Pi(xy)Po(xe) -+« - Pe(x:), where the p.(-)'s are random functions whose structure
is described below. Note that z; now stands for a k-dimensional vector and not
a real component as was the case heretofore.

Now suppose that the vector of random probability mass functions
@1(-), P2(+), - -, P(+)) corresponds to the random vector of sampling distri-
butions (F,, Fy, - -+ , F,), chosen according to the discrete a priori probability
measure on the ¢-fold product space § X § X -+ X & which assigns probability
(n — t 4+ 1)~1to each of the vectors (F;_iy1, Fj_ty2, -+, Fj), 7=t t+1,---,n
Assuming that the losses depend only on the value of the parameter A\, asso-
ciated with §,(-), the risk incurred if the arbitrary decision rule é(z;, 2, + -+ , )
is used, is given by

1 n
(4.1) Pt = 2 ) 8(z1, T3y -+, T0) Ztat,i(xl, Toy 0, Te)
j=

'n—‘t+l(a:1.za-- s

+ Z L2()\J))

t +1;
where, for j > ¢

(4.2) @i T, Ty, 0y 2) = (La(N) — Le(\))pi—er1(@0)pi—sra(Xs) - - - pilxe).
Letting

J
4.3) My, j(T1y Ty + o+, Tp) = Z‘ a2z, T2y -0, 20,
i=

for j > t, the optimal Bayes risk is clearly given by

1
* e +
(44) Ptn n {1 (mz_; = mt,n(xly T2, ’ xt) t | 1

and is achieved by the decision rule

Z L2()‘ ))

(4.5) *(zy, 2, - - 5 30) = {1’ oy 2 e, 2) <O,
0, otherwise.

If the sequence §:(-), P2(-), - - - , were a function-valued stochastic process
with known probability structure involving dependencies of order ¢ + 1, one
would expect the Bayes risk based on ¢ 4- 1 vectors of observations to be smaller,
in general, than that based on only ¢ vectors of observations. In the present
case, the hypothetical a priori probability measure changes as ¢ changes, but
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an analogous result holds as is shown by the following elementary theorem.

TuEOREM 2. If |[L,(\)] < Ko <

, 1 =1, 2, for all N's corresponding to

elements of F, then there exists a finite number K, such that, for

(4.6)

Prrin L pfn + Ki(n — 7!

for any fixed t and n > 1, for every sequence of elements of F.

Proor.

The proof is based on the elementary fact that for any by, bs, - -

% bﬂ’

(Z3-1b;)~ > T7-1 b . Thus
(4.7)
Pi+1n — Pin
1 n _
Tt sz) Z az+1,,-(x1, Ty Tap)
1 n _
_n—t( Z )( _Z atj(xl,...,xt)-l-at,,(xl, “')xt)) +2K0(n—t)"1
Tl z ) (, S ; aui(@y, o, xm))

R
n—1 (xl.'z",x:) j=§:‘l'1

< 4Kin — )7,
since 3z, aupr,i(ay, <o+
result.

As was remarked in section 1, it is to be expected that many sequences of
sampling distributions will exhibit regularities that are equivalent to empirical
dependencies. Such sequences will tend to yield values of pfy1» substantially
smaller than those for pf,, especially when ¢ is small.

We now consider the use of compound decision rules of the form

,x:)‘} + 2Ko(n — )7!

at»i(xl; et ’xt)) - at,t(xl) e

, Xi41) = o (e, -+, Teys). This establishes the desired

Ari(@jmepay * o, T5)
for the j-th component problem for j > ¢. It is understood that A, ;(-) may
depend on observations obtained for component problems prior to that with in-
dexj — ¢t + 1,and fori < j < ¢, A, ;(+) is arbitrary. Letting 2¥ = (21, s, -+ - , 72)
for notational simplicity, the average risk for the ¢-th to the n-th component
problems then becomes

1 "
S h—iF1 JZ”Z s (2 EA, () + t T 1 Z Lx(\j).

TFor j > 2t we assume that there exist estimators at,,-(-) of a;;(-) which are
unbiased and which depend on the vectors of observations Xy, X3, -+, X
Let

(4.8) Tin

4.9) Suiat) = =22 8uad),

for j > 2t. For j > 2t we consider compound decision rules of the form
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1, Sz} <0,
(410) At,j(xt) — ’ L c(dl.;)
0, otherwise.

Fort < j < 2t, A,,;(-) may be arbitrary.

The problem as formulated thus far appears to be essentially the same as
that considered in section 2. However, an additional difficulty arises from the
fact that, for all cases of interest, the sequence &;s:(-), Qe2e41(:), +-+ ,isa
t-dependent sequence of random functions. That is, &;;(-) and &.7(:) are
independent only if |j — j'| > ¢.

The author has been able to show that if compound decision rules of the
form (4.10) are used, then there exist an ¢ > 0 and a finite K such that for all n

(4.11) [Femn — plal < Kn—e,

for all sequences Fy, F,, - - - . The conditions for this result to hold are straight-
forward generalizations to the {-dependent case of conditions 1 and 2. The
proof of (4.11), which is rather complex, will not be reproduced here since the
author is convinced that, in fact, (4.11) holds with ¢ = 1. A “proof” of this
conjecture has been produced which requires a suitable version of the Berry-
Esseen theorem for t-dependent random variables. Unfortunately, no such
theorem seems to be available.

The parametric and nonparametric estimators of the o’s given in section 3
are readily adaptable to the {-dependent case. This is illustrated by considering
the simplest parametric case, that is, the case of the geometric distribution.
For this case a single observation having probability mass function p;(x) =
N —=2X),z=0,1, ..., is obtained for the j-th component problem. Thus,
recalling that «f = (x5, o, - -+ , 24),

(4.12)  ap (@) = e\ — NNz -0 (L — M) <+ (1 — ).
For j > 2t let

¢+ Z;(xh), Xi=z2.+ 1L, X;0=24, , Xjt1 = @y,
(4.13) Q@) =3 —cb+Zixl), Xij=zoX- 2=z, Xjimpn =24,
Zi(z¥), otherwise,
where for some § > 0,
~ 1T (i + 1)~ with probability = 3,
(4.14) Zia) =4 7
II (x; 4+ 1)~@+d, with probability = 3.

i=1
If we restrict the possible values of A to 0 < A\ < B < 1, then (4.11) holds for
the compound decision rule (4.10) based on these & ’s. The other parametric
and nonparametric cases are disposed of in a similar fashion.

ReMARK 4. Since the {-dependent case involves the ‘“‘matching” of ¢ vectors
of observations with sequences of ¢ consecutive past observation vectors, it is
clear that, if ¢ is much greater than one, the number of component problems
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must be quite large before good results can be expected. This consideration,
together with the fact that the improvement in p},, compared with p}, tends
to be greatest when ¢ is small, indicates that in most cases one should use values
of ¢ on the order of one, two, or three.

5. Conclusion

As is customary in papers in this area, we take note of the fact that when
the number of component problems is small, the procedures suggested will be
relatively ineffective. Thus, as a practical matter, it is necessary to provide
some means of orderly transition from “classical’’ decision procedures to com-
pound decision procedures as the number of component problems increases.

Hopefully, the results of the present paper can be generalized in at least two
directions. First, it would be very desirable to find similar results for finite
action problems with more than two possible actions. Often such formulations
conform more closely to real situations. Furthermore, greater flexibility in the
choice of the loss structure can be obtained even under the restriction that the
pairwise differences in the loss functions be linear in the parameter of interest.

A second important generalization would be the extension of the present
methods to cases involving continuous random variables. Some such results
are obtained for both the parametric and nonparametric compound estimation
problems in [9] and [10]. It is conjectured that, for sufficiently sophisticated
methods, bounds of order arbitrarily close to n~'/2 on the difference between
the average risk and the appropriate goal can be obtained in the continuous case.
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