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1. Introduction and summary

Let G be a group of one-to-one transformations of the sample space X onto
itself. A maximal invariant is a function constant on orbits and distinguishing
orbits. If G leaves a certain statistical problem invariant and an invariant pro-
cedure is to be selected, it is necessary first to solve the problem of how to obtain
the distribution of a maximal invariant, given any distribution on X. One of
the possible methods consists of writing this distribution as an integral over the
group G. This method has been promoted notably by Stein [10], [11], Karlin [6],
and James [5], but does not seem to have been used very much in the literature
(among the exceptions, see [3], [7]) in spite of the fact that the method has
several advantages. Unfortunately, although some specific problems have thus
been treated, there does not seem to exist much in the form of a general theory.
This paper is intended as a step in that direction. Some new theorems will be
presented and several examples given.
The principal tool used in this paper that makes things work is the so-called

cross-section of orbits, local or global (precise definitions of various terms will be
given in section 2). A global cross-section is a subset Z of X such that every orbit
intersects Z at exactly one point, in addition to a few other properties to be
defined in section 2. A local cross-section at x is a global cross-section for an open,
invariant neighborhood of the orbit passing through x. If a global cross-section
Z exists, it is possible to convert an integral fx p d1 (A is Lebesgue measure) into
an iterated integral of the form f zvz(dz) fG p(gz)vG(dg), where vz and vG are
certain measures on Z, G, respectively. For any global cross-section Z there is a
natural maximal invariant, namely the function that associates to every orbit
its intersection with Z. For any distribution P on X, with density p with respect
to Lebesgue measure, the distribution of the maximal invariant is then a distri-
bution on Z given by vz(dz) f p(gz)VG(dg). The exact nature of the measures vz
and VG will be given in sections 4 and 5.

In many statistical problems the primary interest is in the probability ratio
of a maximal invariant, given any two densities pi and P2. It is then not necessary
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to obtain a global cross-section; one can get by with a local cross-section at every
x, and the probability ratio at x is then given by f p2(gx)vG(dg)/f pi(gx)vG(dg).

There is another function served by a cross-section, global or local. If the
principle of invariance is invoked and statistical procedures restricted to depend
only on a maximal invariant, this amounts to demand that the procedures be
measurable with respect to the sigma-field W' of invariant measurable sets. There
is a priori no guarantee that this leaves the statistician with enough procedures
to choose from. An obvious situation of this kind arises if G is transitive on X,
for then X is one orbit and 2' is trivial. The same thing could happen without G
being transitive on X, if every orbit is dense in X. Such "misbehavior" of orbits
is excluded if a cross-section exists, and we have then a guarantee that W1 is
"rich" enough. This will be shown in more detail in theorem 5.
Among practitioners of invariance it is customary to choose the range space of

any maximal invariant to be Euclidean. On the other hand, if a global cross-
section Z exists, it is in general not Euclidean (it is an analytic manifold under
the conditions to be imposed presently). This seems contradictory, but, in fact,
the Euclidean choice is often possible only after removing from X a set of
Lebesgue measure 0. For example, let X be Euclidean n-space with the origin
deleted, that is, X consists of the points x = (xi, - * *, x.) $d 0. Let G consist of
the transformations x -* cx, where c runs through the positive reals. The orbits
are then the rays emanating from the origin. It is customary to choose as a
maximal invariant the function (xl/x,,, .* ..* X n_jxn sgn x.), but this is possible
only when the collection of rays with x. = 0 is removed from X. There are, of
course, many other choices of removal of a null set from X to make the maximal
invariant Euclidean. On the other hand, any (n -l)-sphere concentric with the
origin is a global cross-section and provides a natural maximal invariant that
does not suffer from the defect of the Euclidean maximal invariants mentioned
above.

Invariance considerations in statistics have been useful in parametric and in
nonparametric problems. In this paper, only the parametric case will be con-
sidered. In the bulk of applications to parametric problems X is Euclidean and
G is a Lie group consisting of translations and/or linear transformations. The
translations are trivial to deal with, so they will not be considered here. We shall
therefore make the following restrictions throughout this paper: X is a nonempty
open subset of Euclidean n-space En, and G is a Lie subgroup of the general linear
group GL(n, R) of n X n real nonsingular matrices. Thus, x S X is an n-vector
(taken to be a column vector), g an n X n nonsingular matrix, and the trans-
formation of X by g given by x -* gx. The subset X is called a linear G-space.

It will be understood throughout that all Lie groups of n X n matrices that
arise (including G) are endowed with the usual topology inherited from E"'.

2. Definitions and notation

The action gx of g E G on x e X was already defined in section 1. Then g E G
acts in a natural way on sets, families of sets, measures, and functions. That is,
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if A C X, define gA = {gx: x e A}; if 21 is a family of sets, define g2 =

{gA: A E 2[}; if P is a measure on 1, define gP on g2f by gP(gA) = P(A); if f
is a function on X, define gf by gf (gx) = f (x). We say that A C X is invariant if
gA = A for every g E G, and that f on X is invariant if gf = f for every g c G.
The orbit of x (more precisely the G-orbit of x) is Gx = {gx: g G G'. Thus, a
function f on X is invariant if and only if it is constant on each orbit. The space
of orbits, considered as an abstract space, is written X/G. If for any
x E X, Gx = X, we say that G is transitive on X. For any A C X, GA =
{gA: g E G}; GA can also be considered as the union of the orbits that
intersect A.

If Go is a subgroup of G, theil for any g G G, gGo is called the left coset of g
(relative to Go), sometimes written [g]. If g1 and g2 are in the same coset, we shall
sometimes write gl g2. The space of left cosets relative to Go is written GIGo.
The natural map sp: G -4 GIGo is defined by sp(g) = [g]. The group G acts in a
natural way on GIGo by g1 [g2] = [g1g2]. The isotropy group G, of x E X is
defined as G. = {g e G: gx = x}. It is easily verified that there is a one-to-one
correspondent between Gx and G/GX.
We shall denote by W the sigma-field of Borel subsets of X. Since for every

g G, x-gx is ahomeomorphism, g2f = 9. Define 2' = {A:A E W and A is
invariant}, then 91' is a sub-sigma-field of W. For any P on W, let P' be the re-
striction of P to 21. A maximal invariant is a triple (Z, 63, t), Z a space, 63 a
sigma-field of subsets of Z, and t a function: X -- onto Z such that if z =

t(x), x = X, then t-'(z) = Gx, and such that t-163 = 91'. Thus, t is invariant and
takes different values on different orbits. Consequently, Z is in one-to-one corre-
spondence with X/G. Furthermore, the sets of 63 are in one-to-one correspond-
ence with those of 21'. Given any distribution P on W, t induces on 63 the
distribution Pt-' = PIt-1, which we shall denote by PZ.

If G acts on two spaces, X and Y, then f: X -- Y is called equivariant if
f (gx) = gf (x) for all x c X, g e G (that is, f commutes with g). A map is a
continuous function. Before defining cross-sections, it is convenient to define first
the somewhat more general object of a slice. (A good reference is Palais [9],
who also gives references to earlier work. For references to cross-sections see [4]
and [8].) Definitions 1, 4, and 5 are taken from Palais [9].

DEFINITION 1. A slice at x is a set Z C X such that (i) x c Z; (ii) GZ is open
in X; (iii) there exists an equivariant map f: GZ -> G/GZ such that f-1(G) = Z.
A slice Z has the property that G,Z = Z, and if g f Gx, then gZ n z = 0.

However, an orbit may intersect a slice in more than one point. This is not
allowed in a local cross-section.

DEFINITION 2. A local cross-section at x is a slice Z at x such that if z G Z
and gz e Z for some g E G, then gz = z.

DEFINITION 3. A global cross-section is a local cross-section Z such that
GZ = X.

DEFINITION 4. A neighborhood V of x is called thin if the closure of
{g C G: gV n V - 0} is compact.
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DEFINITION 5. The space X is called a Cartan G-space if every x E X has a
thin neighborhood.
We shall say that a k-dimensional slice or cross-section is flat if it is contained

in the translate of a k-dimensional linear space. We shall denote n-dimensional
Lebesgue measure by ji,,, left Haar measure on G by JUG. Let Go be a compact
subgroup of G, Y = G/Go, and sthe natural map G -f Y. Then o induces on Y
the left Haar measure AY = AG4P-'. Finally, Igi stands for the absolute value of
the determinant of g, and the n X n identity matrix will be denoted In or e.

3. Existence of local cross-sections

In section 4 it will be shown how to use local cross-sections in integration. Here
we shall deal with their existence. One cannot expect to be able to put a local
cross-section at every x; for example, any point that lies on an orbit of less than
maximum dimension has no local cross-section. For the purpose of integration
with respect to Lebesgue measure A.,, it would be sufficient to show that the set
of exceptional points is of A&n measure 0. Unfortunately, this is not so in general
[12]. The extra condition that makes things work is the assumption that X be a
Cartan G-space (definition 5). The following theorem is proved in [12].
THEOREM 1. If X C En is a linear Cartan G-space, there is an open linear

Cartan G-space XI C X such that Mn(X - X0) = 0 and there is a flat local cross-
section at every x E XO.

In order to apply theorem 1, it is necessary to verify the Cartan condition.
In many applications this can be done directly without difficulty, but in others
it could conceivably be troublesome. There are no known easy general sufficient
conditions (a necessary condition is, of course, that G. be compact for every
x E X (see definitions 4 and 5)). Fortunately, there is an important class of
applications of invariance to problems in multivariate normal analysis where the
Cartan property can be proved once and for all. This follows from theorem 2.
THEOREM 2. Let X = X1 X X2, where X1C En and X2 is a space of k X k

positive definite matrices, so that X2 C En2 with n2 = k(k + 1)/2. For any x e X
put x = (r, s), r E X1, s c X2, so that x is an n-vector, where n = n1 + n2. Let
G* be a closed subgroup of GL(k, R), F* a continuous homomorphism of G*, and let
a group G of linear transformations on X be defined by r -) Br, s -- CsC', C E G*,
B = B(C) e F*. Then X is a linear Cartan G-space.

PROOF. Let V = Vi X V2 be a neighborhood of (r, s). A simple argument,
using the continuity of B(C), shows that if V2 is a thin neighborhood of s for the
transformations s -* CsC', C E G*, then V is a thin neighborhood of (r, s).
Therefore, in the proof we may assume X = X2. Furthermore, it follows from
definition 4 that it is sufficient to give the proof for X being the space of all
k X k positive definite matrices. In order to show that every s e X has a thin
neighborhood, it is sufficient to show this for Ik, which we shall abbreviate
I. We have to show that there is a neighborhood V of I in X such that if
M = {C e G*: CVC' n V $ 0}, then the closure of M in G* is compact:
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equivalently (since G* is closed in GL(k, R)), that the closure of M in
GL(k, R) is compact. Take any 0 < a < 1 and define Cla = set of all k X k
lower triangular matrices whose elements are in absolute value less than a. Let
V = {(I + T)(I + T)': T E 3a}; then V is a neighborhood of I. If C e M,
then there exist T1, T2 E 3a such that (I + T2) (I + T2)' = C(I + T1) (I + T1) 'C'
so that there exists a k X k orthogonal matrix Q such that C(I + T1) =
(I + T2)Q2; that is C = (I + T2)Q(I + T1)-1. It can easily be verified that the
elements of (I + T)-1 are uniformly bounded for T E 3a SO that M is bounded.
Moreover, for T E 3a, (1- a)k < 11 + Tj < (1 + a)k so that ICl > (1 - a)2k > 0
if C E M. It follows that the closure ofM in GL(k, R) coincides with the closure
of M in Ek', which is compact as a closed, bounded subset of Ek'.
EXAMPLE 1. In the derivation of Hotelling's T2, r is the sample mean and s

the sample covariance matrix in a sample from a multivariate normal distri-
bution. The group G* = F* = GL(k, R) so that gx = (Cr, CsC'). Since theorem 2
applies, and therefore theorem 1, there is a local cross-section at almost every x.

4. Application of local cross-sections to the probability ratio of a maximal
invariant

It is proved in ([12], lemma 3) that if Z is a local cross-section at x, then
G2 = G2 for every z E Z. Putting Y = G/GX, every orbit intersecting Z is now
a copy of Y. Thus, there is a one-to-one correspondence between GZ and Y X Z.
THEOREM 3. Let Z be a flat k-dimensional (O < k < n) local cross-section at a

point xo c X such that G.2 is compact, and let p be a real-valued function on GZ,
integrable with respect to Ain. Then there exists an analytic, real-valued function i,6
on Z such that

(1) fGZ p(x)An(dx) = f| (Z) k(dZ) IG P(gz)1I91G(dg).
PROOF. Denote Y = G/IG,, (p the natural map G -- Y, and AY = 1G_'-1.

Being compact, Ga is conjugate to an orthogonal group [1]. It follows that
Ig,l = 1 for every go E G,,, so that g1 92 implies gil = 1g2l. The common value
of 1gl for all g E p-ly will be denoted lyl. Now the function (y, z) -+ gz, where g
is any member of (,-ly, is an analytic homeomorphism of Y X Z onto GZ ([9],
proposition 2.1.2, [12], section 2). This permits writing the integral of p over
GZ as an integral over the product space Y X Z, and the latter as an iterated
integral, using Fubini's theorem. The volume element ,.n(dx) is expressible as
Mn(dx) = 4'(y, z)Ay(dy)Ak(dz), ,t > 0 analytic. Making the transformation x -> gx
which transforms dx -9lgl dx and leaves Ay and z invariant, we readily deduce
4,(y, z) = Iy|,6(z), 4, > 0 analytic on Z. Thus we have fGz p(x),Mn(dx) =
fZ 41(z))k(dz) fY p(gz) lyl|Y(dy), in which g is any member of p-1y. The integral
over Y equals fG P(gz) Ig,Ja(dg), and the theorem is proved.

If p is the density with respect to n,, of a probability distribution P on X, then
it follows from (1) that
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(2) PZ(dz)/Ak(dz) = (z) fI p (gz)I gIM,G(dg)

is the density with respect to Ik of the maximal invariant defined locally by the
local cross-section Z.
THEOREM 4. Let X C En be a linear Cartan G-space, and let pi > 0,

fx pi(x)An(dx) = 1, i = 1, 2, be two given probability densities. Then for any
maximal invariant (Z, 6B, t) its probability ratio is for almost all (JAt) x given by

(3) ~~~dP2z dP2- f P2(9X)jgIsG(dg)
(3) dPI (t(x)) (x) pi= 14g(gdPl tx) dPl f pl(gx)IgjgG(dg)

PROOF. The first inequality in (3) is clear, and it implies that the probability
ratio does not depend on the choice of maximal invariant. If at x a local cross-
section Z exists we may take a maximal invariant defined locally by Z (with 6B
the Borel subsets of Z; the measurability question will be settled in theorem 5).
Writing (2) for P2 and P1 and taking the ratio gives (3). According to theorem 1,
we may exclude from X a set of ji,-measure 0 such that in the remaining XO there
is a local cross-section at every point x, concluding the proof.
Note that in (3) the extreme left member is constant along each orbit, so that

this ought to be true also for the ratio of integrals on the extreme right. That this
is indeed so can be verified directly by replacing x with gl 1x, for any fixed g1 e G;
then numerator and denominator are both multiplied by the same constant
gil A(g1), where A is the modular function.
One of the great advantages of the expression (3) is that it is not necessary to

find an explicit expression for a maximal invariant which in some cases may be
quite a hard problem. Expression (3) is especially useful in cases where G is not
specified completely so that it is out of the question to give an explicit expression
for a maximal invariant. Yet, even in such cases, (3) may give sufficient infor-
mation. For instance, when the pi also depend on an integer m, we may be able
to study the asymptotic behavior of (3) as m -X for arbitrary G (within the
restrictions imposed on G). An application of this kind to the question of termi-
nation with probability one of a certain class of sequential probability ratio tests
of composite hypotheses will be made in a future paper.

5. Global cross-sections

A global cross-section gives more but is also harder to come by than a local one,
and the theorems guaranteeing the existence of a global cross-section (theorems
6 and 7) are much more restricted in their generality than theorem 1 on the
existence of local cross-sections. First we shall deal with the measurability
question.
THEOREM 5. Let Z be a global cross-section; then Z is closed in X and is therefore

a Borel set. Let 6B be the sigma-field of Borel subsets of Z. Define t: X -- Z by
t(x) = Gx f Z; then t-'(B = WI so that (Z, (6, t) is a natural maximal invariant.
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PROOF. Let xo be an arbitrary point of Z. Then Z is a slice at xo. W ith x, in
definition 1, replaced by xo, letf be the equivariant map of defiinition 1. Suppose
xrn EZ, xm -> x; then Gx, = f (x,,m) -f(x) so that f(x) = Gz, proving x G Z.
Putting y = f (x), z = t(x), it follows from a result of Palais ([9], proposition
2.1.2; see also [12], section 2) that the one-to-one correspondence x - (y, z) is
a homeomorphism. Under this homeomorphism there is a one-to-one corre-
spondence between the Borel sets of X and those of Y X Z, and to the invariant
Borel sets of X correspond sets of the form F X B, B E 6P,, in Y X Z, proving
t-16 = WI.
The basic method for finding a global cross-section is to find another group H

that also acts on X and such that the combined action of G and H is transitive
on X. Then, under certain additional conditions to be specified in theorems 6 and
7, any H-orbit is a global cross-section.
THEOREM 6. Let G and H be two commuting Lie groups of linear transfor-

mations on X, and xo a point of X, such that the following cond(itions are fulfilled:
(i) G., and H., are compact; (ii) if g E G, h e H, then gxo = hxo only if gxo =
hxo = xo; (iii) the dimensions of the orbits Gxo and Hxo are positive; (iv) GH is
transitive on X. Put Y = G/Gx,o Z = H/Hxo, and identify Z with Hxo. Then Z is
a global cross-section, and if the real-valued function p is p,-integrable on X, we have

(4) f P(x)Mu(dx) = c f|hl| zz(dz) f P(yhxo) g A G(dg),

in which h is any member of H such that [h] = z, and the constant c is given by the
Radon-Nikodym derivative

(5) c = /In(dx)/gy(dy)l.Lz(dz) evaluated at xo.

PROOF. Let SPG be the natural map G -* Y, and similarly, (pi,: H -* Z. Suppose
x has two representations: x = ghxo = glhlxo; then, using the commutativity of
G and H, we have gl 1gxo = h-lhlxo. Since gl 1g G G, h-1h1 e H, it follows from
(ii) that gllg E Gx, h-1h1 E Hx,, that is, g gi and h h1. Consequently, there
is a one-to-one correspondence between Y X Z and X given by (y, z) - ghxo,
where g is any member of pG ly, h any member of Hzlz.
We shall show now that it is an analytic homeomorphism. It is sufficient to do

this in a neighborhood of xo. Let {K,, a in a finite set of integers, be a basis for
the Lie algebra of G such that Klxo, *--, Kkxo are linearly independent and
Kaxo = 0 for the remainingoa's. Similarly, let {L,} be a basis for the Lie algebra
of H such that Lixo, Lcxo are linearly independent and Loxo = 0 for the
remaininig f's. By (iii), k > 0, f > 0. If TV is any submanifold of X (such as Y,
Z, or X itself), we shall denote by TWr the tangent space to TV at x. With a slight
abuse of notation, any tangeiit vector at xo to a submanifold of X is of the form
E vi a/lxi, where the vi and xi are the components of vectors v, x, and the dif-
ferentiations are to be performed at xo. For convenienice of notation, however,
we shall identify such a tangent vector with v. With this convenition, the tangent
space Yx, at xo to Y = Gxo is spanned by the vectors Kixo, *--, Kkxo, Zx0 by
Lixo, . , Itxo, (GHx,)x. by Klxo, - - *, Kkxo, Lixo, ... , Lexo, whhile Xxo is all of E .
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Although by (iv) GHxo and X are the same set of points, we have not shown
that they are the same analytic manifold, that is, carry the same analytic
structure. Actually, we shall only need to know that GHxo as an analytic mani-
fold has dimensiQn n. To show this, suppose dim GHxo = m < n (for the follow-
ing argument I am indebted to R. L. Bishop and N. T. Hamilton). Each element
of GH has a neighborhood V small enough that Vxo is homeomorphic to an
m-cell, so that Vxo is a Borel set of An-measure 0 (since m < n). The group GH
can be covered by a countable family of such neighborhoods V since the topology
of GH is the relativized topology of En' (see section 1) and has therefore a
countable base. Then GHxo is covered by a countable family of sets of the
form Vxo. It would follow that ,n(GHxo) = 0 which is impossible since GHxo = X
as a point set, and p. (X) > 0.

It was shown above that dim GHxo = n. Since dim GHxo = dim (GHxo)2,, the
vectors K1xo, - * *, Lixo must span n-space (so that k + t > n). We shall show
now that the vectors are actually linearly independent (implying k + t = n).
Suppose the contrary; then there exist K = Sk aiX, and L = F_( b,Lj with
Kxo $ 0, Lxo $ 0, and (K - L)xo = 0. For any real t we have then et(K-L)xo = Xi,
or e-tLetxxo = xo (making use of the commutativity of G and H), or e'Kxo = etLxO.
Now etK e G and etL E H, and then it follows from (ii) that e'Kxo = e'Lxo = xo
for every t. Using the latter of these two equalities, it follows that Lxo = 0, which
is a contradiction.
We have shown now that Klxo, * , Kkxo, Lixo, * , Ltxo is a basis for En.

Remembering that Klxo, * , KkxO is a basis for Yr,, Llxo, - * *, Lexo for Zx0, and
keeping in mind that (Y X Z)z0 = Y., X Z,0 and Xi,, = En, we have established
that (Y X Z)x. and Xz, are linearly isomorphic. It follows then from ([1], prop-
osition 3, p. 80), that Y X Z and X are locally analytically homeomorphic
at xo, as was to be proved.
With the correspondence x -* (y, z) define f by f(x) = y; then f is continuous

by the above result, f is equivariant (for G), and f-1(G2,,) = Z. Therefore, f can
be taken as the function f in definition 1 (with x in definition 1 replaced by xo).
We conclude that Z is a slice at xo. But Z also satisfies definition 2, because

the orbit of x intersects Z in the unique point hxo, where h is any member of
.O17z. Therefore, Z is a local cross-section at xo, and since GHxo = X, Z is a global
cross-section. The proof of (4) and (5) rests on the fact that 4n(dx) =

cjgjAy(dy)jhjLgz(dz) (g any member of G ly, h any member of PHilz) and is es-
sentially the same as the proof of theorem 3.
REMARKS. 1. If the conditions of theorem 6 hold for some xo, they hold for

every xo E X so that every H-orbit is a global cross-section for (X, G). Further-
more, the statement of the theorem is symmetric in G and H, so that every
G-orbit is a global cross-section for (X, H).

2. If p in theorem 6 is the density with respect to pn of a distribution P on ,
then (4) gives the density of PZ with respect to Mz(dz) as clhl f p(ghxo)jgjAG(dg).

3. In many applications Hx. = {e} in whieh case Z = H.
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4. To determine c by (5) amounts essentially to differentiation. Alternatively,
c can be determined by integrating the right-hand side of (4), with p any manage-
able function, and setting the result equal to the left-hand side (which equals 1
if p is a probability density).
Some of the examples that follow have also been treated by Karlin [6], using

integration over invariant measures on groups and arriving at the same results
along a slightly different path.
EXAMPLE 2 (ratio of two variables, noncentral t). Let n = 2, x = (XI, X2)',

X = {x: X2 > O}. Let G consist of the matrices g = aI2, a > 0, with /IG(dg) =
da/a and Igi = a2. Let H be the group of 2 X 2 triangular matrices with l's on
the diagonal and b above the diagonal, -oo < b < oo. Then jAIu(dh) = db and
jhl = 1. Clearly, G and H commute, and it is easy to check that GH is transitive
on X. Choose xo = (0, 1)' so that x = ghxo = (ab, a)'; G., and Hx. are trivial, so
Z = H, and gxo F# hxo, unless g = h = e. Therefore, all conditions of theorem 6
are met. We compute c from xi = ab, x2 = a, so that at a = 1, b = 0 we have
dxi = db, dx2 = da so dx1dx2 = ,UG(dg)yuH(dh); hence c = 1. Substitution into (4)
gives f p(x)tu2(dx) = f' db fo p(ab, a)a da. We observe that a maximal in-
variant under G is X1/X2 = b. If x1 and X2 are considered random variables, p their
joint density with respect to A2, then we read off the density of x1/x2 at b with
respect to ,ui as f0 p(ab, a)a da. In particular, if xi is the sample mean, x2 the
sample standard deviation in a sample from a normal distribution, we get an
integral for the noncentral t-density.
EXAMPLE 3 (noncentral Wishart). Consider all k X n matrices £ that are of

rank k, k < n, and let x be the kn-vector obtained from X by writing the elements
of £ in some arbitrary but fixed order (note that the n in our general theory is
replaced by kn). Let X be the totality of all such x. Let G correspond to all
transformations £-> Q, with Q an n X n orthogonal transformation. Haar
measure on G can be chosen normalized so that 1G(G) = 1. Furthermore,
lgl = 1. Choose H to be the group corresponding to all transformations x Tx,
with T a k X k lower triangular matrix with positive diagonal elements,
then lhl = ITIn. For left Haar measure on H we may take /.H(dh) =
d(TT')/ITT'I(k+1)/2 (here d(TT') is short for the product of differentials of the
elements on, and on one side of, the diagonal of the symmetric matrix TT').
Choose xo to correspond to to = (I, 0), where I = Ik and 0 denotes a k X (n - k)
matrix of O's. We have then X = Txog. All conditions of theorem 6 can be verified
to hold. In particular, Hx. is trivial so that Z = H. Since there is a one-to-one
correspondence between h = T and TT', we may take as maximal invariant
TT' = It'. This is the Wishart matrix if the columns of X form a sample from a
multivariate normal distribution with 0 mean vector, and (4) provides an easy
way to evaluate the Wishart density. If the columns of £ are independently
multivariate normal with common covariance matrix but arbitrary means, then
(4) yields an integral for the noncentral Wishart density.
In order to compute c using (5) note that Y corresponds to all k X n matrices
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which have orthonormal rows, that is, Y is the Stiefel manifold of k-frames in
n-space [5]. Writing an element of this manifold as a k X n matrix A, with rows
al, an invariant differential form on Y is given by James ([5], (4.39)), as

n-k k

(6) I[I ][ bj dai H aj' dai,
j=1 i=1 i<j<k

where the bj form with the ai an orthonormal set. At xo this form reduces to
]I daij where the product is over all (i, j) with i < j < k and all (i, j) with
j > k. It should also be noted that in order that A + dA has orthonormal rows,
we must have dA = (dl, dC) with d2 skew-symmetric and dC arbitrary.
Taking the normalization factor into account, taken from ([5], (5.10)), we find
at xo

(7) I/y(dy) = 2-k[ IIk1 7/2r(v/2)] I daij.

In order to find i.z(dz) = ;iH(dh), let dT be a lower triangular matrix with
elements dtij i > j. Then at xo (where T = I),

(8) AH(dh) = ][I (dT + dT')ij = 2k HI dtij.
i>j i>j

Finally, we obtain Vun(dx) in terms of the dtij and daij as follows: xo + dx =
(I + dT)((I + d2, d), so that dx = (dT + d2, dC), omitting higher order
differentials which will not contribute to the exterior differential form. We get
(9) g.(dx) = dxi = dij = dtsi HI (dtij + doij) ] doij II dcij.

i>j i<j
Now

(10) II (dtij + do-i1) I doij = rI dtij 11da
i>j i<j i>j i<j

since doi3 =-daji and any exterior differential form with a repeated differential
is 0. Therefore,
(11) /n.(dx) = I dtij H daii H cij = I dtij 11 dai.

i>j i<j i>j

Substituting all this into (5) yields c = HI=--k+1 7r"12[r(v/2)]-1.
The value of c in example 3 can of course be obtained much more simply by

relating it to the known multiplicative constant of the central Wishart density.
The point of the above computation is to illustrate how (5) can be used directly
to compute c, even in a fairly complicated case. In such cases the use of exterior
differential forms may be of some practical advantage over the type of computa-
tion that uses Jacobians.
A special case of example 3 arises when k = n. In that case (4) provides a

decomposition of an integral over all k X k nonsingular matrices into an integra-
tion over the orthogonal group and an integration over the identity component
of the lower triangular group. This decomposition was also derived by Stein
in [10] by a different method.
There is no guarantee that in every problem one is successful in finding a

group H such that the hypotheses of theorem 6 are satisfied. The following
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theorem gives a result similar to (4) (but not as easy to apply) under weaker
conditions. Specifically, it is no longer required that G and H commute.
THEOREM 7. Assume the same conditions as in theorem 6, except that the com-

mutativity of G and H is replaced by the following conditions: G is closed in GH,
for each h e H, hGh-1 = G (that is, G is a closed normal subgroup of GH), and
hGU,h-1 = G0r. Then Z is a global cross-section, and for any ni-integrable p we have

(12) f p(x),u.(dx) = c f 4'(h)IhjIuz(dz) f p(ghxo)191aG(dg)
in which c is given by (5) and 4p(h) is the Radon-Nikodym derivative
(13) 4,(h) = AY(dy)/1uY(hdyh-1) evaluated at y = Gxs.
PROOF. It can be checked algebraically as in the proof of theorem 6 that

there is a one-to-one correspondence x - (y, z). It is still true that a G-orbit
transforms into a G-orbit under the transformation x -> hx, but it is no longer
true that y remains constant under this transformation. The hypothesis
hGh-1 = G implies that each h E H acts on G by g -* hgh-1, and the hypothesis
hGU,A-1 = G_o implies that each h even acts on G/Gxo, by h [g]h-I = [hgh-1]. It is
immediately verified that to x -- hx corresponds (y, z) -÷ (hyh-1, hz). The proof
of theorem 7 is the same as the proof of theorem 6, except for the factor A/(h)
and the proof of the linear independence of the vectors Klxo, * * *, Ltxo.
To establish (13), let dy and dz be "small" neighborhoods of [e] in

Y, Z, respectively. Then the volume element is A2n(dx) = c,uy(dy)Az(dz). Under
the transformation x -- hx, A.(hdx) = Ihj,Ly(dx) = clhj,.y(dy),Az(dz). On the
other hand, under this transformation dy -* hdyh-1, dz -÷ hdz, so An(hdx) =

cjhIl4(h),Ay(hdyh-1)Az(dz), where we have made use of the left invariance of ,uz.
Equating the two expressions for ,An(hdx) yields (13).

In the part of the proof of theorem 6 where the linear independence of
Klxo, * * *, Llxo was established we used the fact that et(K-L) = e-tLetK. This is
no longer true in general if G and H do not commute. However, the proof goes
through in exactly the same way after we have shown that et(K-L) = e-tLg for
some g E G (g may depend on t). In order to establish this fact, denote by A(G)
the Lie algebra of G; A(H) and A(GH) are similarly defined. Then A(GH) con-
sists of allK + L, K e A(G), L E A(H). Let sobe the natural map: GH -+ GHIG,
that is, (p(hg) = hG. The differential d4p maps A(GH) onto A(GH)/A(G) ([1],
p. 115, proposition 1; [2], p. 132, theorem 6.6.4). More specifically, if
M E A(GH), then dp(M) depends on M only through its residue class mod A(G)
([1], pp. 114-115). That is, if K G A(G), then
(14) dtp(M + K) = dp(M).
Furthermore, if M E A(GH), we have (see [1], p. 118, proposition 1; [2],
p. 129, (26))
(15) p(eM) = ed<(M)
Taking in (14) M = L E A(H) and in (15) first M = K + L and then M = L,
we obtain
(16) p(eK+L) = qp(eL).
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Now eL E H, so f(eL) = eLG. Substituting this into (16) we get f(eK+L) = eLG,
so that eK+L = eLg for some g. If t is any real number, replacing K by tK, L by
-tL, we have et(K-L) = e-tLg for some g G G, as was to be shown. This concludes
the proof of theorem 7.
EXAMPLE 4. Consider all (p + q) X (p + q) positive definite matrices x,

partitioned as

(17) Sl S122]
in which Si, is p X p positive definite, S22 is q X q positive definite, S12 =
is p X q, and let x be the corresponding n-vector, where n = p(p + 1)/2 + pq +
q(q + 1)/2. Let G correspond to the transformations CX', where

(18) I, I

and C runs through all q X p matrices. We can take IAG(dg) = II dCij where the
Cij are the elements of C. If we take xo corresponding to xo = I,+q, then G.0 is
trivial, so Y = G. Define H by the transformations x -DZ tD', where D =

diag (A, B), and A runs through GL(p, R), B through GL(q, R). All conditions
of theorem 7 can be verified to hold. We shall pursue this example only to the
extent of computing #,(h). For notational economy, denote by (C)* a (p + q) X
(p + q) matrix that has C as its last q rows and first p columns, and zeros other-
wise. Then if dy = dg corresponds to (dC)*, and h to diag (A, B), hdgh-'
corresponds to diag (A, B)(dC)* diag (A-', B-') = (BdCA-1) *. We have then
/G(dg) = I dCij and IIG(hdgh-') = H (BdCA-')ij = IBIPJAI-q I dCij. Thus,
+(h) = lAlqlB-P.
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