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1. Introduction

In this paper we shall discuss problems connected with tests of the hypothesis
that a theoretical distribution belongs to a given class, for instance, the class of
normal distributions, or uniform distribution or Poisson distribution. The sta-
tistical data consist of a large number of small samples (see rll).

2. Reduction to simple hypotheses

Let (9C, a) be a measurable space (9C is a set and a is a oa-algebra of subsets of
9). Let 6P be a set of probability distributions defined on G, let ('), a) be another
measurable space, and let Y = f (X), X E 9C, be a measurable mapping of ($, a)
into (yj, a). With this mapping every distribution P induces on a a correspond-
ing distribution which we shall denote by Qp. We will be interested in the
mappings (statistics) Y which possess the following two properties:

(1) Qp is the same for all P e 6'; in this case we will simply write Q'.
(2) If for some P' on a one has Qp = Qe, then P' E (P.
Sometimes it is expedient to formulate requirement (2) in the weakened form:
(2a) If P' c P' D P and QJy = Q , then P' c (P. In other words, we can assert

in this case only that the equation Qp = QX implies P' E (P for some a priori
restrictions (P' E d") on P'.

If Y is a statistic satisfying (1) and (2), then it is clear that the hypothesis
that the distribution of X belongs to class ( is equivalent to the hypothesis that
the distribution of Y is equal to Q6.

Let us consider some examples. In these examples (9C, a) is an n-dimensional
Euclidean space of points X = (xi, * * *, x,,) with the oa-algebra of Borel sets.
The distributions belonging to (P have a probability density of the form

(2.1) p(x1, O)p(x2, 0) ... p(xn, 0)
where p is a one-dimensional density and 0 a parameter taking values in a
parameter space.
EXAMPLE 1 (I. N. Kovalenko [2]). Translation parameter. Let p(x;0) =

p(x - 0), with -X < 0 < X (additive type). Here obviously it is necessary
to take the (n -1)-dimensional statistic Y = (xi - x", *---, x.- -xn).
Of course, we can take any uniquely invertible function, for example Y' =
(xl-x-, * **,Xn-x) where x = (1/n) F_1 Xk.
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In [2] it is shown that for n > 3, the distribution of Y determines the charac-
teristic function f (t) = f 00 eit" p(x) dx to within a factor of the form eitt, on
every interval where f(t) $- 0. In particular, if f(t) #! 0 for every t, then for
n > 3, the statistic Y satisfies conditions (1) and (2) of section 2. This is also
true if f (t) is uniquely determined by its values in some neighborhood of zero
(for example, if f (t) is analytic in some neighborhood of zero).
In this paper, for every n there is given a pair of distributions, not belonging

to the same additive type, for which the distribution of the statistic Y is the same
for samples of size n. In section 4 these results are extended to a sample from a
multidimensional population, and in section 5 to the case of a scale parameter.
REMARK. Let us assume that a distribution with density p(x) has four finite

moments: mi = 0, M2, M3, m4, and that p(x) < A. Let us denote by F(x) the
corresponding distribution function and let G(x) be another distribution function
such that the distribution of Y is the same for F and G. Then it can be shown
that

(2.2) inf sup IG(x) - F(x - O)1 < C(A, M2, M3, M4)
6xVn

That is, if the sample size n is large, all the additive types corresponding to a
given distribution of the statistic Y must be close to each other.
EXAMPLE 2 (A. A. Zinger, Yu. V. Linnik [3], [4]). Let 0 = (a, a),

-Xo < a <0o, a > 0, and let

(2.3) P(x, 0) a (x ra)
where y is a normal (0, 1) density. Here it is natural to take the (n - 2)-dimen-
sional statistic Y = (yi, * * , y.), yk = (xk -x)/s, where S2 = ,k (Xk-
s > 0. The sum of the components yk of the vector Y is equal to zero, and the
sum of their squares is unity. Thus the distribution of Y is concentrated on an
(n - 2)-dimensional sphere L yk = 0, E y2 = 1.

It is known [1], [3] that for p(x, 0) defined by formula (2.3) the distribution
of Y is uniform on this sphere. In [3] it is shown that for n > 6, the statistic Y
possesses properties (1) and (2) of section 2; that is, from uniformity of the
distribution of Y on the corresponding sphere it follows that the x's are normally
distributed. This result is extended to distributions different from the normal in
section 6.

It is clear for both examples cited that the choice of the statistic Y
is based on considerations of invariance. Namely, there exists a group of
one-to-one (or almost one-to-one) mappings of the sample space onto itself
(X = (Xi1... Xn) (X1- a, **,x - a) in the first example and X-
((xi - a)/), -- , (xn- a)/cv)) in the second) having the property that distri-
butions of "random elements" X and gX, g E g, simultaneously belong to or do
not belong to (P. In addition, for any two distributions P1 and P2 there exists
g X 9 such that for every at, P2(ct) = Pl(ga).

In this case it is natural to take for Y a maximal invariant of the group 9.
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Obviously, for P E 6', Y possesses property (1) of section 2. The question of
when Y possesses property (2) is related to a number of very difficult questions
of analytic statistics. (See below for the problem of characterization of multi-
dimensional distributions; see also [5]).
EXAMPLE 3 (L. N. Bolshev [6]). In the case when xl, x2, *--, x., take only

values 0,1, 2, * * * with probabilities p(x, 0) = (0z/x!)e- with 0 > 0, the con-
siderations of invariance appear useless. Another approach based on utilization
of sufficient statistics appears suitable. This approach will be discussed in detail
in another paper.

3. Multidimensional location parameter
Now we shall consider the case of a family 6', given by formula (2.1) under the

assumption that the xj are e-dimensional vectors: xj = (xi"), * , xi'-) and
(3.1) p(x, 0) = p(x - 0)
where it is known beforehand that 0 lies in a k-dimensional subspace 7rk of the
space Rt. Without loss of generality we shall suppose that 7rk is defined by the
relations
(3.2) k±1=k2== * Ot = °-
As usual, we say that the density p satisfies the condition of Cram& if the
integral fR' e(h.Z)p(x) dx is finite for all h lying in some neighborhood of zero of the
space RW.
THEOREM 1. Let X = (x1,i.., x.) be a sample from the distribution (3.1)

with conditions (3.2). We let x' - (X'1), * * j,Xk), 0, * *, 0). Then the statistic
Y = (Y1, Y2) where Y1 = x1- x3, Y2 = X2 -X, satisfies conditions (1) and (2)
of section 2.
PROOF. Let t = (t('), * * , t(')), r = (TM1), * , T), and let t' and T' be de-

fined in terms of t and T in the same way that xj is defined in terms of x;. Let
f(t) = Eei(t-i).
We note first of all that Y -Y2 = X1- X2, and therefore the characteristic

function of xi - x2, that is If (t)12, is uniquely defined by the distribution of the
statistic Y. Now let fi and f2 be two different characteristic functions of the x's,
constituting a solution of the problem. Then the characteristic function of Y is
equal to

(3.3) E exp [i(t, X2 - X3) + i(T, X2 - X3)] = f.(t)f.(T).(tT+ T), u = 1, 2.
We take 6 > 0 so small that in a s-neighborhood of zero, the functions fu(t),
u = 1, 2, do not vanish. In what follows we will assume that t, T and t + r lie
in this neighborhood. For these t and T the principal value AU(t) of the argument
of the function f (t) satisfies the equation
(3.4) AU(t) + AU(T)- Au(t' + r') = given function.

Let us consider the corresponding homogeneous equation
(3.5) a(t) + a(r) - a(t' + T') = 0.
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We are interested in its real continuous solutions with a(O) = 0 (actually, from
the assumption of the theorem it follows that Au(t) is infinitely differentiable in
the neighborhood of zero which we are considering, and therefore it can be as-
sumed that a(t) is infinitely differentiable). We have a(t') + a(T') = a(t' + T).
Therefore,
(3.6) a(t') = E yjt(i)

jf-

Further, from a(t) + a(T') = a(t' + T'), it follows that a(t) = a(t'). In such a
way, in the neighborhood of zero which we are considering

k
(3.7) Al(t) - A2(t) = E Yjt(i)

j=1
and

(3.8) f1(t) = f2(t) exp {iE yj}t(i)
Because of the analyticity of fi and f2, this equation holds for all values of t.
REMARK. If f(t) $ 0 for every t, then equation (3.8) is obtained without the

condition stated in theorem 1.

4. Scale parameter in a multidimensional population
Now we shall consider the case of a family d', given by formula (2.1), under the

assumption that xi is an t-dimensional vector and

(4.1) p(x, 0) = p (x) 1
-

Let X = (xl, X2, ... , x") be a sample from the distribution (4.1) xj =
(xi' **, xjt)). The distribution of the 2 t-dimensional vectors

(4.2) V>= (ln xj('), **, ln lx(1I, sign *,xsign x5')
belongs to the 2 C-dimensional additive type with density
(4.3) q(v, 9) = q(v(') - . . ., v(t)9-, v(t+I), V* (2)
where I= ln 0. The following theorem is easily derived from the result of the
preceding section.
THEOREM 2. Assume that p(x) is bounded and satisfies Cramer's condition.

Then the statistic Y = (V1- V3, V2- V3), where V3. is defined in terms of V3
according to the rule of theorem 1 (with replacement of t by 2t and k by t), possesses
properties (1) and (2).
The proof consists of verifying that the distribution of V, satisfies the con-

ditions of theorem 1.

5. One-dimensional linear type

We return to the one-dimensional case analogous to that considered in example
2, section 2. Let 0 = (a, b), -g < a <-,X b > 0 and
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(5.1) p(x, 0) 1 ( a)
We will call a type symmetric if it is possible to choose the function p to be even.
Let x, s, and yk keep the same meaning as in example 2, section 2. Let us denote
by P' the family of distributions (2.1) which corresponds to symmetric types.
THEOREM 3. If p is symmetric and bounded and satisfies Cramer's condition,

then for n > 6, the statistic

(5.2) Y.= [(y4 y3 y6-y6)2](5.2) ' ~~~~~Y2- Yl/\Y2 - YlI
possesses properties (1) and (2a) of section 2.
PROOF. We have
(5~~ ~~ ~y3)Y* (4 - Y3)2= (X4 -X3)2(5.3) _y2 - Yl X22 - Xj1

and an analogous equality for the second component Y2 of the vector Y*. Let
p' be a symmetric density, different from p and such that Q,* = QY*. From the
fact that p satisfies Cram6r's condition and is bounded, it follows easily that
In Yi* and at the same time ln (xn -x1)2 satisfy Cram6r's condition (both for
p and for p'). To the sample of size 3 made up of the variables In (x2 -x)2,
In (X4 - X3)2, ln (x6 - x6)2, one can apply what was said in the remark on
example 1, section 2. Consequently, the distribution of Y* determines the distri-
bution of ln (X2 - x1)2 to within a translation parameter, and the distribution of
(x2 - xI)2 to within a scale parameter. Since the variable x2 - x1 is symmetrically
distributed, its distribution also is determined to within a scale parameter. We
note that thus far we have not made use anywhere of the symmetry of p'. If, for
example, p is normal, then the distribution of x2 - xi under p' is normal, and
by Cram6r's theorem xi is normal. In the general case, for a symmetric density
p', the distribution of xi is uniquely determined except for a translation pa-
rameter by the distribution of x2 - xi. The theorem is proved.
Without the assumptions of symmetry, the formulation must be changed.
THEOREM 4. Assume that p is bounded and satisfies Cramgr's condition. Then

for n > 9, the statistic Y** = (Yt*, Y2**) where

Y = (ln|83 _YY1, In _ YY1, sign (y3- y), sign (Y2 - YO)
(5.4) Y / / /

Y2*= (In Y6 -Y4, In Y65 sY 2 sign (y6 - 14), sign (y5 - Y4))
Y9 -Y71 1/8 -Y71

possesses properties (1) and (2), section 2.
PROOF. The distribution of the vector (X3 - X1, X2 - x1) belongs to the

multiplicative type. Using a sample of size 3, namely (X3 - X1, X2 -X),
(X6 - X4, X5 - X4), (X9 - X7, X8 - X7), this multiplicative type is determined
uniquely by the distribution of the statistic mentioned in the formulation of the
theorem. Knowing the distribution of (X3 - X1, X2 - X1), we determine the ad-
ditive type of the distribution of x1. The theorem is proved.
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6. Property of stability

We shall consider now the question of continuity of the corresponidenice
X Q(p assuming that the statistic Y satisfies coinditioins (1) and (2). In order

to avoid unwieldy formulas, we will consider at first the case of the one-dimen-
sional additive type
(6.1) p(x, 0) = p(x - 0), - <K 0 <

and the one-dimensional linear type

(6.2) p(x, 0) = -p(x a).

Let us recall the concept of convergence of types. One says (see [7]) that a
sequence of types T(N) converges weakly to type T (T(N) => T) if there exist
9(N) E T(N) converging weakly to 5: c T.

In the case of linear types, one usually considers convergence to proper types
only.

Let p(N) and p be probability densities. Assume that T(p(N)) =X T(p). Then
from the property of weak convergence, it follows immediately that Q'(N) =X Q
where Y = (xi-x,,XI , xn-l- xI) for the case (6.1), and

(6.3) y = (xi-- zX-z)
for the case (6.2). The reciprocal assertion gives the following theorem.
THEOREM 5. For the situation described by (6.1) or (6.2), suppose that

(6.4) QY(N) => Qr,
where the type T(p) is uniquely determined by p. Then the sequence of types generated
by p(N) converges to the type generated by p: T(p(N)) == T(p). For the case of linear
types we assume in addition that we have a sample size n > 4.
PROOF. A. Additive type. From the convergence (6.4) follows, as is easily

seen, that If((N)(t)12I- If(t)[2, from which follows (see [8]) "shift compactness"
of p(N). (This means that for appropriately chosen ON the sequence of distributions
with densities p(N)(X- ON) is weakly compact.) Now if the distributions with
densities p(Nk)(x - ON) converge weakly to the limit distribution with density p',
then

(6.5) Qy = QY(Nk) => Qr
from which we obtain p'(x) = p(x - 0).

B. Linear type. Let X"'), y(N), * be values of x, y, and so on, with distri-
butions generated by p(N). From the convergence (6.4) follows convergence of
the distributions of
(6.6) l N(x v) X(N))
to the distribution of
(6.7) y*=ll (X4-x3 2

X2 - X1
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From this follows, as is easily seen, the "shift-compactness" of the distributions
of In (x2(f-) )2. We shall take now an arbitrary sequence Nk T of natural
numbers and choose from it a subsequence Mk for which the distributions of

(6.8) In X2M - X(Mi))2 bk > 0,

converge weakly to a limit distribution. Then the distributions of
X(Mk) 2(AA)(6.9) x2 _xi
bk bk

also form a weakly convergent sequence, and the sequence of distributions of
(xiMk))/bk iS "shift-compact." From this it is obvious that the convergence (6.4)
implies relative compactness of the sequence of types T(p(N)). The proof can now
be completed in the same way as in part A.

7. Characterization of multidimensional linear types
We shall say that the distributions of random vectors x and y belong to the

same type if there exists a nonsingular matrix A and vector b such that
(7.1) gx = Ax + b
has the same distribution as y.

Let p(x) be any 4-dimensional density and 0 = (A, b). We denote by (P =
T(p) = {pe} the linear type generated in the obvious manner by the density p.
All presently known results on characterization of multidimensional distri-

butions have been obtained under the assumption that the distributions con-
sidered belong to the class (P', defined in the following manner. The distribution
of an C-dimensional random vector x belongs to class GI' if in some coordinate
system its components are independent. The group 9 of all transformations (7.1)
induces a group g of transformations gX = (gx1, - * ,* gxn) in the n4-dimensional
space of vectors X = (xi, * * *, xn). A maximal invariant Y of the group g can
be expressed in terms of the determinants
(7.2)
X,i, ** *, it = [xi * xi, where x = (1/n)(xi + + xn)
and where [z1, * * *, ze] denotes the volume of the oriented parallelepiped con-
structed on the vectors z1, * * * , Zt.

Let us assume that the sample size n > 6U. We shall take vectors zj = X2j-
X2j_1 with components zj"), k = 1, 2, * - *, t. Let
(7.3) 6k = [Zk?+1y ... , Zk4t]2 k = 0, 1, 2

(7.4) 1 = ln "' £2 = ln 62,
60 so

(7.5) = (2k, 2).
It is clear that 2 is a function of a maximal invariant Y of the group q. The
following theorem (see [5]) holds.
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THEOREM 6. If a density p satisfies Cramer's condition and if it is bounded,
then the statistic Y possesses properties (1) and (2a) with respect to the class 6" of
distributions of random vectors x which can be transformed into vectors with inde-
pendent, identically distributed, symmetrical components by a transformation of the
form (7.1).
The proof of this theorem is based on a lemma which has independent interest.
LEMMA. Let Vj', (i, j = 1, *--, 4) be independent random variables with the

same distribution function V(x), and let WY", (i, j = 1, . . . , t) also be independent
and have a distribution function W(x). If all moments of V(x) exist and the distri-
bution of the determinant A = det IlV5(')l coincides with the distribution of the
determinant a = det W`1 If, then V = W.

8. Application to testing hypothesis

The classical method of testing the hypothesis that the distribution of a sample
belongs to a given parametric family (2.1) consists in the construction, based on
the results of observations, of an estimate 0* for 0 and in the subsequent test of
the significance of the deviation of the empirical distribution from the theoretical
with 0 = 0*. Another statement of the problem will interest us.
A large number s of small samples Xi, * * *, X. of sizes ni, . . ., n,, respectively

is given. The null hypothesis Ho is that for every j the distribution of Xi is in the
family (2.1). If there exist statistics Y1, *- -, Y.; Yj = fj(Xj), satisfying prop-
erties (1) and (2), then the composite hypothesis Ho is replaced by the simple
hypothesis Ho: for every j the distribution of Y, is equal to QYi. Let the dimen-
sionality of the statistic Yj be equal to mj. With the proper transformation one
can translate Yj into zj, Yj = 46j(zj), where zj has a uniform distribution on the
unit cube in m,-dimensional Euclidean space. This transforms the hypothesis Ho
into the equivalent hypothesis H': the components of the (mi + * + mi)-
dimensional vector Z = (zi, ... , z8) are independent and uniformly distributed
on the interval [0, 1]. In this way one can give a standard form to the hypothesis
Ho. Of course, the first question which arises in connection with such transfor-
mations concerns the form taken by the alternative hypotheses. From this point
of view the transformations mentioned must be "sufficiently smooth" so that
they transform the "alternatives close" to Ho iiito the "alterniatives close" to Ho'.
For now we shall postpone the corresponding analysis.
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