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1. Introduction

Let (X, 6, ,u) be a totally o-finite measure space and {f(*, ), w c Q} a family
of (generalized) density functions relative to (X, 63, ps). If a e Q and b is a
(randomized) decision procedure for the decision space 5D, we borrow Stein's [5]
notation and write

(1.1) K(a, b) f W(a, t)b(x, dt)f(x, a),(dx),
where W(a, t) is the measure of loss if t G a) is decided and a e s is the case.

In the sequel we will always suppose that Q and D are locally compact metric
spaces and will make suitable measurability assumptions about W, b, f. As is
known from the work of Wald [7], under fairly liberal assumptions an admissible
procedure b is Bayes in the wide sense. That is, we may find sequences {b,, n > 1}
and {X,i n > 1} such that if n > 1, bn is Bayes relative to X,, K(a, bn) < K(a, b)
for all a in the support of X,,, and limn:, f (K(a, b) - K(a, bn))Xn(da) = 0.
Under convexity assumptions on W one may suppose b = weak limnO, bn, as
is explained in the appendix.

If O = (-oo, oo) and (aW/dt) is well-defined, then with suitable hypotheses
the statement, bn is Bayes relative to X,) is equivalent to the statement, for
almost all x, for all t, in the support of bn(x, -),

(1.2) 0 = f (aW) (w, t)f(x, w)X(dw).

If t is vector-valued, (1.2) may be replaced by a system of equations.
Logically, given that b is Bayes in the wide sense relative to {b., n > 1} and

{X n > 1}, one would hope to determine a measure X(-) such that for almost
all x, for all t in the support of b(x, .),

(1.3) 0 f (dt) (c., t)f(x, co)X(dw).
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Since not every admissible procedure is Bayes, (1.3) cannot always be solved
using probability measures X(.).
Various people have observed that if X is allowed to be a-finite on Q, then

many decision procedures of interest are solutions of equations like (1.3). This
provided the basis for admissibility proofs in Karlin [3]. And it is strongly
suggested that if b = weak limn, b,n bn Bayes relative to X,,n then one might
always be able to choose constants {k., n > 1} such that a nonzero a-finite
X = weak limn,. kn lXn was defined for which (1.3) holds. Sacks [4] tried to
prove such a result but discovered that it is false.
The arguments used by Sacks required {f(., w), w E Ql} to be an exponential

family of density functions. In particular, if x, y e X and x $ y, then
f(x, w)/f(y, co) is a finite but unbounded function of c. It was observed by Sacks
that if one weakened the restrictions to allow f(x, w) = 0 for some (x, w) E X X Q,
then one could give counter examples to show no a-finite X could exist.

In this paper we reformulate the problem somewhat and thereby obtain a
theory including many examples not covered by Sacks [4]. In particular, one
can suppose f(x, c) > 0 for all x E X, w E Q and make the ratios f(x, w)/f(y, c)
very smooth. Yet the result remains false.

In order to consider weak convergence of sequences of measures, one needs
to compactify Q to Q*. Given a suitable compactification, one then easily finds
examples where mass escapes to the boundary Q* -Q. The reformulation of
the problem and discussion of such details as escape of mass to the boundary
constitute section 2.

Section 2 is an exposition designed to give a reformulation of the problem,
a compactification of Q, the "right" renormalization kn lAn of the measures X.,
n > 1. Late in section 2 the results are formulated in the theorem of section 2.
Lemmas 2.2 and 2.3 are intended as observations useful in various applications
of the theorem.

Section 3 gives a necessary and sufficient condition for admissibility in certain
estimation problems where strictly convex loss is used. This condition is similar
to a condition used by Blyth [1] and Stein [6] to prove admissibility. Suppose
b is admissible. To obtain a necessary condition, the main problem is to show
that one can pick a compact set E with the following property. Suppose
{bn, n > 1}, {Xn, n > 1} are any sequences such that b = weak liMn b.,
bn Bayes relative to Xn. There exists an integer N such that if n > N, then
Xn(E) > 0, and, for every compact set F such that E C F,
(1.4) lim sup Xn(F)/Xn(E) < oo.

n--

In lemma 3.2 we state sufficient conditions for such a result to be true. The
hypotheses of lemma 3.2 are satisfied by the examples studied in sections
4 and 5.

Related is the idea of a procedure being admissible outside every compact
parameter set. That is, if E C Q, E compact, then the procedure is admissible
relative to the parameter space U - E. Kiefer and Schwartz (to appear) have
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studied examples of Bayes tests for the independence of sets of normal variates.
These tests have the property that given any compact subset E C Q there is
a probability measure supported on Q- E, relative to which the given procedure
is Bayes.

In estimation problems using strictly convex loss, suppose E C Q, E is an open
set, and the procedure 5 is not admissible for the parameter space a - E.
Suppose f(x, w) > 0 for all (x, c,) e X X Q, and forl each x e X, f(x, *) is a
continuous function on Q. Then there is another procedure 5* such that
K(cw, 5*) < K(w, 5) for all w E Q- E, and if F C QI- E is any compact set,
inf.,EF (K(w, 5) - K(w, 6*)) > 0 (see lemma 3.1). If 5 is admissible, then we
may find sequences {5n, n > 1} and {AX, n > 1} such that An is Bayes relative
to X,n, n> 1, and

(1.5) lim (Xn(E))-' f (K(w, 5) - K(w, 5n))Xn(dc) = 0.
n-x

This is a consequence of results of Stein [5]. Let F be a compact set, E C F;
then F - E is a compact set. Since 5* is not Bayes, we find

(1.6) (Xn(E))-' f (K(w, 5) - K(w, 5.))X.(dw)

2 (X,(E))-l JE (K(, 5) - K(w, 6*))Xn(dw)
+ (Xn(E))- JRE (K(c, S) -K(co, 6*))X,,(dw).

The first integral is bounded, provided risk functions are bounded on compact
sets. The integrand of the second integral is strictly positive, and on F -E
is bounded away from zero. We find

(1.7) lim sup Xn(F)/Xn(E) < 00.
n--o

In the sequel we will see that a nonzero a-finite measure

(1.8) X(.) = weak lim (X,(E))-'X,(*)

is defined, and from the above it follows that

(1.9) Jf-E (K(w 6)-K(cw, 6*))X(dw) < 0o.
This shows that the "growth" properties of the measure X at infinity are limited
by the finiteness of these integrals.
The development in sections 2 and 3 depend on the general results of decision

theory. The results as formulated in the appendix have been developed by
Wald [7], Le Cam (unpublished), and others, and are widely known. But in
this case, the literature seems to be lagging badly behind the development of
the subject. It was therefore decided to put a few needed results in an appendix,
along with proofs.
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]Details of a number of examples have been worked out whei Q= O=
(-cc, oc). In section 4 we classify these examples inlto thr-ee groups, aiid wi-e
woork out the details for two groups of examples.

Details for the third group of examples are given in section o. Herc it will be
seen that in order to obtain the "right" result, the methods of section 2 apply,
but a different functional equation and a different type of normalization are
required.

Section 6 gives the construction of an example of an admissible piocedure b,
sequeilces {b,, n > 1} and {IX, n > I}, such that b = weak limn,,_ b,,, and for
the renormalized sequence of measures some mass does escape to the boundary.

In case IV(w, -) is a strictly convex function, w X Q, all Bayes procedures aiid
all admissible procedures are nonrandomized. F'urther, every admissible pro-
cedure will be a weak limit of Bayes procedures. One can then interpret the
results of section 4 as saying every admissible procedure solves a nonldegenlerate
functional equation; and the results of section o as saying every nonlinear
admissible procedure solves a nondegenerate functional equationi.

Using such functional equations and additional smoothness assumptions, one
can infer things about the continuity and differentiability of admissible esti-
mators. We do not pursue this subject here.

2. Formulation of the problem

It is not the primary purpose of this paper to prove complete class theorellms.
Consequeintly, inistead of starting by saying "Suppose 6 is admissible," we start
by saying "Suppose 6 = weak lim,,- 6g." Throughout we will suppose {65,, n > 1}
is a sequence of Bayes decision procedures, n,, Bayes relative to {X,,, n > 1},
with X,, supported on Q. And we shall restrict the study to those 6's which are
weak limits of such sequences. The meaning of weak limit, as explained in the
appendix, is as a sequence of bilinear forms acting on elements of a Bailach
space.

Noonetheless, in sectioii 3 we will use the results of this section to obtain a
complete class theorem. The result is about estimation of a vector parameter
using a strictly convex loss function.
The discussion of this section represents as much as anythiing an exposition

of a method or concept for treating a certain problem. This makes it difficult
to formally state results as theorems. Nonetheless, towards the end of the section
a theorem is stated. The statement assumes the preceding discussion as under-
stood.
Thloughout we suppose that to is a locally compact metric space and that

,- ), n > 1} is a sequence of decision procedures such that for each x e X,
n > 1, 6,,(x, *) is a regular Borel probability measure on tO.
By saying b6, is Bayes relative to X,,, we mean the followiing. We suppose

given k functions V1(', *), *---, Vk(-, .), and that each one is a continuous
real-valued function on S1 X tO in the product topology. Thus, in terms of the
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introduction, k = 1 and Vi(w, t) = (OIV/at)(co, t). We suppose for all x E X,
n > 1, that if t is in the support of the measure 8n(x, *), then

(2.1) 0 = f Vi(w, t)f(x, w)X,,(dc), i = 1, * , k.

Basically we wish to prove that if {&o, n > 1} are Bayes and if

(2.2) weak limrn =8,
n--

then the probability measures Xn can be renormalized so that the renormalized
sequence converges weakly on compact subsets of U. This description will prove
to be inadequate, and much of the sequel is about compactification of U.

In order to compactify U, we assume that there is a positive continuous real
valued function V(-) defined on Q, which we call the normalizing function,
satisfying the following.

(i) If E is a compact subset of E, then

(2.3) sup sup IVi(c1, t)j/V(CX) < oo, 1 < i < k.
.eQ tGE

(ii) If E is a compact subset of 0D, then Vi(co, t)/V(w) is a uniformly contin-
uous function of (w, t) E Q X E.

It may be helpful to consider the example Q = (-oo, oo), W(co, t)
(w- t)a, k = 1, Vi(co - t) = (aW/lt)(w - t) = -a(w -t)a-1. A suitable choice
of V(-) would be V(-) = I&K-1 + 1.

In addition we assume
(iii) Q is a locally compact metric space, and
(iv) the topology on Q is such that for all x E X, f(x, *) is a continuous func-

tion of its second variable. Since each f(., w) is a density function, (iv) implies

(2.4) lim f f(x, co) - f(x, coo)!,I(dx) = 0.

We find it necessary to assume
(v) for all x E X, co e Q that f(x, w) > 0.
The main reason for this assumption is to ensure that
(vi) for all x, y E X, f(x, co)/f(y, w) is a bounded continuous function on com-

pact co sets.
The basic set of equations studied is

(2.5) 0 = f Vi(cv, t)f(x, cv)X)(dw)

= f [Vi(w, t)/V(w)][V(w)f (x, w)/k.(x)]X.(dw), 1 < i < k.

We introduce the normalization

(2.6) kn(x) = f V(c)f(x, Cv)X(dv), x e X, n > 1,

and define a sequenice of probability measures on Q by

(2.7) kn(x)vn(x, E) = f V(c)f(x, w)X)n(dw), x e X, n > 1.
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In common examples, to each t E D we may find a compact subset Ct C Q
such that inf.,Zc, W(w, t)/V(w) > 0. When this is the case, for any Bayes pro-
cedure 8, Bayes relative to X, with finite Bayes risk, it follows by Fubini's
theorem that

(2.8) f V(w)f(x, w)A(dw) < for almost all x E X.

Throughout the remainder of this paper, we suppose that these integrals are
finite, this assumption being the analogue of the supposition that a Bayes
procedure has finite Bayes risk.
Then (2.5) may be written as

(2.9) 0 = f [Vi(w, t)/V(w)]1',(x, dw), 1 < i < k, n > 1.

The problem is now phrased in terms of integration of bounded continuous
functions by probability measures. And we wish to establish results about the
weak convergence of {f,,(x, *), n > 1}. To do this we need to have these act
on a compact space. Below we compactify Q to Q*. Then we may compute
weak lim,,, vn(x, *) = v(x, .), x E X. The embedding used is such that Q is
a Borel subset of Q. In the general case v(x, Q*-Q2) > 0 is possible, and one
can construct examples where v(x, Q* -Q) = 1 for all x E X. In the special
case considered by Sacks [4], the only possibility is v(x, Q* -Q) = 0 for all x.
We will show below that with suitable restrictions,

if t is in the support of 6(x, *), then there are t,n
(2.10) t4 is in the support of 5.(x, ), and

t = lim tn.
n-*c

Further,

(2.11) 0 = lim f [Vi(., tn)/V(c)]vn(x, dw)
n-*

= f [V(c,o, t)/V(c-)]v(x, dw), 1 < i < k.

To obtain the compactification of Q, we map Q into a product space as follows.
Let p(-, *) be a metric on Q which gives the topology of Q and which satisfies
P(01w, W2) < 1 for all w, e fQ, Wo2 E R. Take countable dense subsets {wi, i > 1}
of Q and {ti, i > 1} of 5D. Then for each co E Q, we associate the value 4(w)
given by
(2.12) +(w) = {p(w, wi), Vj(w, t,)/V(co), 1 < i, 1 < p, 1 < j < k}.
This is a one-to-one continuous mapping into a product space (with a countable
number of coordinates). Therefore, the set +(Q2) is a Borel subset of the product
space (in the product topology), and the closure Q* is a compact subset of the
product space (see Hausdorff [2]). We may, and do in the sequel, identify Q
with (Q2). The functions V&(., t,)/V(.), 1 < p, have continuous extensions to
R* which are coordinate mappings (projections). The assumption (ii) allows us



BAYES PROCEDURES 89

to approximate each V&(*, t)/V(.), 1 < j < k, t e X, uniformly by coordinate
mappings, so these functions also have unique continuous extensions. The se-
quences {Xn, n > 1} and {v,,(x, *), n > 1, x c X} are extended to the Borel
sets of Q2* by Xn(E) = Xn(En Q), vn(x, E) = Vn(x,EnQ), n > 1, x G X. To
study the question of convergence, the following lemma is basic.
LEMMA 2.1. Let X - F C X be the set of x such that for every t in the support

of .(x, *) there is an integer sequence {ni(x, t), i > 1} and a real number sequence
{t(x, t, ni(x, t)), i > 1} such that t(x, t, ni(x, t)) is in the support of nij(z,t)(x, *),
limi,. ni(x, t) = x, and limi,. t(x, t, ni(x, t)) = t. Then F is a (B-measurable
set and ,u(F) = 0.

PROOF. Let {Ui, i 2 1} be a countable base for the open sets of D. Let

(2.13) F(i, m) = {xl8(x, Ui) > 0, 5,(x, Ui) = 0, n > m}.
We will show that F = Utm-1 F(i, m).

Let x E F. Then for some t in the support of 5(x, *), t is bounded away from
the support of a5(x, -) for n sufficiently large. That is, there is a Ui in the count-
able base, and an integer m, such that t e Ui, and if n> m, the support of
bn(x, *) is disjoint from Us. Therefore, if n 2 m, bn(x, Ui) = O_and 5(x, Ui) > 0.
Thus x e F(i, m).

Conversely, if x E Urm= 1 F(i, m), then x E F(i, m) for some i, m. Since
6(x, U1) > 0, there is a number t e Ui, t in the support of B(x, .). If n > m,
then Sn(x, U1) = 0 so the support of bn(x, ') is bounded away from t by Ui.
Hence, t cannot be a limit of a subsequence as described, and x E F follows.

Let Ui be given and gi(.) a real valued continuous function on D such that
gi(t) = 0 if t q Ui, gi(t) > 0 if t E Us, 1 < i. Then, by the meaning of weak
limits (see appendix),
(2.14) 0 = lim ffF(i) g1(t)bn(x, dt),u(dx)

= ffF(i,m) gi(t)6(x, dt)M(dx).
Since 5(x, Ui) > 0 for all x E F(i, m), it follows that ,u(F(i, m)) = 0. Since this
holds for i > 1, m > 1, it follows that ,u(F) = 0. The proof of lemma 2.1 is
complete.
THEOREM. Let a = weak limn-. an. Let {XAn, n > 1} be a sequence of regular

Borel probability measures defined on the subsets of U. Suppose that if n > 1,
x e X, and if t is in the support of 8.(x, *); then

(2.15) 0 = f Vi(, t)f(x, W)Xn(dw), 1 <i<k.

Let the compactification Q* and the probability measures {vn, n > 1} be as above.
Let {ni, i 2 1} be an integer sequence such that for almost all x[,u], v(x, *) =
weak limix vni(x, .). Then there exists a (B-measurable set F such that ,u(F) = 0.
If x ¢ F and t is in the support of b (x, *), then

(2.16) 0 = f [Vi(w, t)/V(.)]v(x, dt), 1 < i < k.
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PROOF. We will suppose that the subsequence {nj, i > 1} is the entire se-
quence. This involves no loss of generality. Let F1 be a 63-measurable set such
that if x ¢ F1 then {vn(x, *), n > 1} is weakly convergent. Here ,i(Fj) = 0 and
we write v(x, *) = weak lim, X vP,,(x, .). Choose x t F, and let t be in the sup-
port of B(x, *). Let F2 be chosen in accordance with lemma 2.1 relative to the
sequence {f, n > 1}. Then if F = F1 U F2 and x ¢ F, there are sequences
{ni, i > 1} and {t,,j, i > 1} such that limin ni = oo, limi-O t,1i = t and t,, is in
the support of 8ni(x, *), i > 1. Therefore,
(2.17) 0 = f [Vi(w, tni)/V(w))]v.(x, dw), 1 < j < k.

Since by (ii)
(2.18) lim Vj(w, t-R)/V(W) = Vj(c0, t)/V(co)

uniformly in co Q, and since weak limi,. vni(x, *) = v(x, .), it follows that

(2.19) 0 = f [Vj(aw, t)/V(w)]v(x, dw), 1 < j < k.

That completes the proof of the theorem.
The discussion so far has not used (v) or (vi). The above theorem is therefore

valid quite generally. In practice the hypothesis that there be a single integer
sequence n > 1 on which {vn(x, .), n > 1} is weakly convergent for almost all x
is difficult to verify. In the examples we explore, (v) and (vi) are used to verify
this hypothesis. It will also appear in the exposition of examples that one will
want the ratios f(x, w)/f(y, w) as functions on Q-- (0, oo) to have continuous
extensions to functions on Q* [0, oo ]. In order to achieve this, one may have
to modify the construction of Q* to have the form

(2.20) O(&,) = {p(W, Wi), Vj(co, tp)/V(W), f(xi, co)/f(yk, W),
1 < < p, 1 < j, 1 < k}

taken over suitable countable dense subsets (see (2.12)).
We now prove several lemmas which are useful in verifying the hypotheses

of the theorem.
LEMMA 2.2. Suppose for all x, y G X that sup,,Gof(y, co)/f(x, co) < o and

that f(y, *)/f(x, *) has a unique continuous extension to Q*. Let xo c X, and let
{ni, i > 1} be a sequence of integers such that limi ni = co and v(xo, .) =
weak limi- vni(xo, *) exists. Then v(y, *) weak limi- vni(y, *) exists for all
y e X. For every Borel set E in Q2*,

(2.21) v(y, E) = JE [f(y, .)/f(xo, .)]v(xo, dw)/f [f(y, w)/f(xo, w)]v(xo, dw).
If for some xo e X and for some sequence {ni, i > 1},
(2.22) v(xo, *) = weak lim v,i(xo, -) and v(xo, Q) = 0,

then

(2.23) v(y, *) = weak lim vni(y, *)
j-
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exists for all y e X and v(y, Q) = 0. If t is in the support of 6(y, *), then

(2.24) 0 = f [Vi(w, t)/V(w)]v(y, dw)

= f [Vj(,w, t)f(y, ,)/V(w)f(xo0, c.)]v(xo, dw), 1 < j < k.

PROOF. We may considerf(y, *)/f(x, *) as being a continuous function on Q*.
Then

(2.25) lim kni(y)/kj(xo) = lim f [f(y, w)/f(xo, &)]1vi(xo, dco)
j-0-

= f [f(y, c)/f(xo, c)]v(xo, dw).

If g(-) is a bounded continuous function on Q*,

(2.26) lim f g(&J)vn (y, dw)

llim [kni(xo)/knj(y)] J [g(w)f(y, w)/f(xo, W)]Vni(xo0 dw)
i -+

ff [g(w)f(y, w)/f(xo, (,)]v(xo, dc,)If [f(y, w)/f(xo, c)]v(xo, dw).
A standard approximation argument proves (2.21). The proof of the remainder
of the lemma is obvious.
LEMMA 2.3. Given the hypotheses of lemma 2.2, suppose that

(2.27) v(x, *) = weak lim n(X, *) for all x E X.

Suppose v(x, Q) > 0 for all x. If E C Q is an open set having closure 77, and if
7i C Q and v(x, 7 - E) = 0 for all x E X, then for each x E X the sequence of
measures Xnj( )/kni(x) converges weakly when restricted to E, and if X(x, *) is the
limiting a-finite measure on Q,

(2.28) fi V(w)f(x, w)X(x, dco) = v(x. ?).
PROOF. If g(*) is a continuous real-valued function defined on E, we let g*(*)

be a continuous extension of g(-) to all of Q*, such that g*(.) has compact
support. (Note that by lemma 2.2, the measures {v(x, *), x e X} are mutually
absolutely continuous with respect to each other.) We have

(2.29) lim fE g(.)j(dw)1kni(X) = lim fZ [q*(c)/V(0)f(X,-)]vni(x, dtt)

= f [g*(.,)/IV(.)f(x, w)]v(x, d(o)

= fE [g(.)/V(.)f(x, .)]v(x, dco).

This shows that the limit exists for each such g(-), establishing weak con-
vergence. Choose g(w) = V(w)f(x, co) for w G W. The conclusion of the lemma
follows.
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3. A necessary and sufficient condition for admissibility

In this section we will suppose Q = D is Euclidean n-space and that for each
X e Q, the measure of loss W(w, *) is a strictly convex function, for each t e 3D,
W(., t) is a continuous function. We suppose W(w, t) > 0 for all (w, t) E Q X D.
To apply decision theory results we need to assume that if C is a compact
subset of Q, then
(3.1) lim inf W(w, t) = Xo.

t£-*oo wEC

We consider only procedures having bounded risk on compact Q2 sets.
We shall suppose the hypotheses (i)-(vi) and (2.4)-(2.8) of section 2 hold,

where the V, are the partial derivatives of W, and in particular, we will make
heavy use of (v), that f(x, w) > 0 for all (x, w) e X X U. We consider a fixed
procedure a and suppose the following can be proven.

Let {5,6 n > 1} and {X n > 1} be any sequences such that 5,. is Bayes rela-
tive to X, n > 1, such that a = weak limnO S,a and Xn(Q) = 1, n > 1. For
every such sequence it must follow that there exists an integer sequence
{ni, i > 1} such that for almost all x, y[1A],
(3.2) 0 < lim kni(x)/k,j(y) <00,
and
(3.3) P(X, *) = weak lim vPn(x, *) exists.

We suppose v(x, Q) > 0 for almost all x[us] necessarily follows.
The examples considered by Sacks [4] satisfy these hypotheses. Several later

sections of this paper consider examples where these hypotheses are satisfied.
In the sequel we write K(w, 5*) for the risk of 5* evaluated at w.
THEOREM 3.1. Suppose the hypotheses made above hold. A necessary and suffi-

cient condition that a non-Bayes procedure a shoula be admissible is that there exist an
open set E with compact closurehand sequences f{n, n > 1}, {AX, n > 1} such that

(3.4) a = weak lim S.;n-x+
(3.5) B. is Bayes relative to the probability measure X.(-), n > 1. If Cn is the

support of Xn(.), then X C Cn C C.+, C £, n > 1. The sets Cn are com-
pact, n > 1;

(3.6) for almost all x E X, lim X,(E)/k.(x) exists, finite and positive;

(3.7) lim (Xn(7))-T f (K(w, 5) - K(w, 6.))X.(dw) = 0.

We will need the following lemma in the proof of sufficiency. We consider
only nonrandomized procedures.
LEMMA 3.1. Suppose 5* is as good asS. Let A1 = {xlS(x) F 6*(x)}, and suppose

,u(A1) > 0. Let C be a compact parameter set. Then there exists a real number 7 > 0
such that if w e C, then
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(3.8) y + K(w, (6 + 6*)/2) < K(w, 6).
PROOF. By hypothesis of this section, if B e (B, then ,A(B) > 0 if and only if

fB f(x, w)M(dx) > 0 for all Xc U. We set

(3.9) A2(a) = {x| if X c C, then a + W(w, (6(x) + 6*(x))/2)
< (2) (W(w, 6(x)) + W(cw, 6*(x))}.

Since W(w, t) is strictly convex in t and continuous in w, if 6(x) # 6*(x), then

(3.10) 0 < inf {1(W(w, 6(x)) + WV(co, 6*(x))) - W(w, (6(x) + 6*(x))/2)}.
WEC

Therefore, Al = Un'=1 A2(1/n). If n > 1, then A2(1/n) C A2(1/(n + 1)), so it
follows that

(3.11) fA f(, co)(dx) = lim fA2(1/ f(x, w)M(dx).
By Dini's theorem this limit is uniform in X E C, since all functions involved
are continuous functions of w. Further, since 0 < infFec fA, f(x, w)1i(dx), it fol-
lows that we may find an integer n such that if w E C, then

(3.12) fA2(1/n) f(x, c)bi(dx) > 1/n.
If we take Py = (1/n)2, the lemma now follows.
PROOF OF SUFFICIENCY. If 6* is as good as 6, then by lemma 3.1 we may

suppose K(w, 6*) + y < K(w, 8) for all co EX where -y > 0. Then we must have

(3.13) ,YX(') < fE (K(w, 6) -K(co, 6*))Xn(dc.)

< f (K(w, 6) -K(w, 6n))Xn(dw).

Application of (3.7) leads to the contradiction that y = 0.
We will need the following lemma in the proof of necessity.
LEMMA 3.2. There exists an open subset U of Q having compact closure (in Q)

with the following property. Suppose {6n, n > 1} is a sequence of decision proce-
dures, An is Bayes relative to X,A, n > 1, and Xn(Q) = 1, n > 1. Suppose
6 = weak limn- 8n, and kn(x), n > 1, is defined as in (2.6) for the sequence
{An, n > 1}. Then
(3.14) 0 < lim inf Xn(U)/kn(x) < lim sup Xn(U)/kn(x) < °°.

n-- n -

(The given open set U is to have this property for all choices of sequences {6n, n > 1},
{Xn,n > 1}.)
PROOF. If the lemma is false, let {Un, n > 1} be an increasing sequence of

open sets with compact closure, Q = Un= 1 Un. Corresponding to each Un there
are sequences {6m,n, m > 1} and {Xm,n, m > 1} such that the hypotheses of the
lemma are satisfied, yet limm-- Xm,n(Un)/km,n(x) = 0. On the basis of the
assumptions made in section 2, limmn. X,mn(Un)/km,n(X) = 00 is impossible.
We take countable dense subsets {fi, i > 1} of L1(X, (B, 1A) and {g1, i > 1}
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of C(l*). Choose x0 e X. For each n > 1 we may choose an integer Nn such
that if m > Nn, then for all 1 < i, j < n,

(3.15) Ifi(x)gj(t)3(x, dt)A(dx) - ffi(x)gj(t)63,n(x, dt),u(dx) < 1/n,
and

(3.16) Xr,n(Un)/km,n(Xo) < I/n.
If we interpret 3m,n as a bilinear form (, )r,n, then I(f g)m,nl < llfll llgll for all
f e L1(X, (B, A), g e C(JO*). Using this it is easy to show
(3.17) 6 = weak lim 6N,nn.

nf-

If we choose a subsequence {ni, i > 1} on which for almost all x, y E X,

(3.18) 0 < lim kN.ni(x)1kNn.,-(y) < °° I

which is possible by hypothesis, and such that for almost all x,

(3.19) v(x, *) = weak lim VNni( *),

then for every g(*) continuous on Q with compact support,

(3.20) lim 9((W)VNn,ni(y, dw) = |g(w)v(y, dw)

exists for all y. Our construction is such that if Nn > m, then,

(3.21) XN.,.(U.)IkNn,-(XO) < 1INn.
Consequently, if g(X) = 0 outside of Urn, it follows that f g(w)v(y, dw) = 0 for
almost all y E X. Since we may take m large enough that the support of g(.)
is contained in Urn, it follows that f g(w)v(y, dw) = 0 for all g(*) having compact
support contained in U. Since we suppose Q is open in Q*, Q = Un= Un, it
follows that v(y, Q) = 0 for almost all y E X. This contradicts the basic hypoth-
esis of section 3 that v(y, Q) > 0 for almost all y e X. This contradiction shows
that the lemma must be correct.
PROOF OF NECESSITY. In view of the lemma, we may suppose an open set U

is given having compact closure such that U has the property stated in lemma 3.2
relative to the admissible procedure 6. We now apply a theorem on admissibility
due to Stein [5]. To adapt Stein's notation, if a e Q and b is a decision procedure,
we set

(3.22) K(a, b) = J W(a, t)b(x, dt)f(x, a),(dx).

With a minor modification of Stein's proofs and results, we may prove the
following. Let t be a probability measure supported on U. Relative to -y > 0
and the risk function

(3.23) f (K(a, b) - K(a, 6))t(da) + -y(K(a, b) - K(a, 6)),

let b, be a minimax procedure. Let
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(3.24) -ee = sup {f (K(a, be) - K(a, 6))t(da) + -y(K(a, b,) - K(a, 6))l
be the minimax risk of b,. Then Stein shows lim,-o E7 = 0. The weak compact-
ness condition used by Stein is satisfied in our problem. See theorem 2A of the
appendix.

Since b, is minimax, for all a e Q,

(3.25) f K(a, 6)4(da) + -yK(a, 6) > f K(a, b,) (da) + -yK(a, be).

If we divide by -y and let y -z oo, we find

(3.26) lim sup K(a, b,) < K(a, 6).

For each -y we choose a compact parameter set C., satisfying the following.
If -Yl < 72, then C., C C02, and U, >o C, = U. If by is minimax for a E C, rela-
tive to the risk

(3.27) f (K(a, b) - K(a, 6))t(da) + -y(K(a, b) - K(a, s)),
and Bayes relative to *, then the minimax risk of b* is > - 2E,. We are using
here theorem A4 of the appendix. We find that if a E C., then

(3.28) 0 > f (K(a, by) - K(a, S))t(da) + -y(K(a, b) - K(a, 6)),
so that as above, if a e Q,
(3.29) lim sup K(a, by) < K(a, 6).

If we write the above as follows,

(3.30) 0 > (1 + y) {f K(a, b*)t(da)/(l + -y) + -y f K(a, b*) (da)/(1 + -y)

- K(a, 6)t(da)/(1 + -y) - y f K(a, 6)t*(da)/(l + ry)}
> -2e,

then we find by to be Bayes relative to the risk K(a, b) and the probability
6M/(1 + Y) + e*y/(l + Y) = te.

Since we assume strictly convex loss, and since we suppose a is admissible,
it follows from (3.29) and theorem A3 of the appendix that

(3.31) a = weak lim b.

Thus (3.4) and (3.5) hold. Equation (3.7) follows from (3.30). If E is the closure
of an open subset E of Q, and if U C E, then

(3.32) te(Th 2 t(U) > 1/(1 + -y).
Therefore, by (3.30),
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(3.33) lim (,(k))-T J (K(a, b*) - K(a, 5))%(da) = 0.

We will complete the proof of the theorem by verifying (3.6). Take -Y = n
where {ni, i > 1} is an integer sequence on which for almost all x,

(3.34) v(x, ) = weak lim vni(x, *).

We take E to be an open subset of Q with closure kr C Q, such that U C 7
and such that v(xo, T- E) = 0. This implies v(x, E-E) = 0 for almost all
x E X. Then it follows that for almost all x,

(3.35) lim Xnj(77)1knj(x)
i DX

exists. We use here (2.26). By lemma 3.2, this limit must be positive. It follows
from the construction of section 2 that the limit is finite.
The proof of the theorem is complete.

4. Estimation of a real parameter

We suppose Q = = (-oo, co) and examine some of the common examples.
We will restrict the discussion to functions Vj(-, *) and V(.) satisfying
(4.1) lim VI(w, t)/V(c0) = 1, lim Vi(w, t)/V(W) -1.

Many typical loss functions W(w, t) = w(w - t) have this property, where
V,(w, t) = - (dw/dx)=@,-t.
As was suggested in section 2, the analysis depends on the ratios

(4.2) {f(x, *)/f(y, .), x c X, y e X}.
We define sets

(4.3) Al = {xI lim f(x, W)/f(y, w) = a, lim f(x, W)/f(y,I ) = }.

We consider in this section the following cases.
Case Ia. For all y, ,u(X - AY.,) = 0.
Case lb. For all y,

(4.4) X = U Aa,
a>O,3>O

and

(4.5) U({xl lim f(x, W)/f(y, w) # lim f(x, w)/f(y, oW)}) > 0.

Case II. For all y, X = AS,. U AV,o and

(4.6) ju(Aox,) > O, ,u(Ay.o) > O.

Case II includes the examples considered by Sacks [4], as well as including
rrany examples of monotone likelihood ratios. The family of Cauchy densities
falls in case Ia.

In terms of the construction of section 2, the compactification *= [-, 00].
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Consequently, if a limit measure v puts mass on the boundary, we have only
P+(x) = v(x, {oo}) and P_(x) = v(x, {-o}4) to consider.
Suppose a is given, {lb, n 2 1} and {Xn, n 2 1} are given, and

(4.7) 5 = weak lim bn.
n-x

In case I, we may use lemma 2.2. According to this lemma, we may pick an
integer sequence {ni, i 2 1} such that for all x e X, weak limi, vni(x, *) =
v(x, *) exists. Consequently, we may apply the theorem of section 2. If t is in
the support of 6(x, *) (except for x E F, an exceptional set, I.(F) = 0),

(4.8) 0 = fJQ [Vi(w, t)/V(w)]v(x, dw)

= P (X) - P+(X) + fL [Vi(w, t)/V(w)]v(x, d@).
By lemma 2.2,

(4.9)
P+(Y)/P-(Y) = ]> [f(y, w)/f(x, w)]v(x, dw) / f| [f(y, w)/f(x, w)]v(x, dw)

lim f(y, w)/f(x, w)

lim_f(y, )/f(x, ) (P+(x)/P_(x)).

Therefore, in case Ia, P+(y)/P_(y) = P+(x)/P_(x), except for a set of measure
zero, whereas in case Ib, P+(y)/P_(y) 5 P+(x)/P_(x) on a set of positive
measure.

If (4.8) holds and v(x, Q) = 0, then we find P+(x) = P_(x) = 2. By lemma 2.2,
if v(x, Q) = 0 for a single x, then v(x, Q) = 0 for all x, implying P+(x) = P_(x) =
2 for all x.
We shall show in section 5 that in case Ia this is indeed possible. We have

already seen that in case Ib this is not possible.
LEMMMA 4.1. In case Ib, if a = weak limn,- 6n, An is Bayes relative to Xn, n > 1,

then there exists an integer sequence {ni, i > 1} such that
(4.10) v(X, *) = weak lim vPn(x, *) for all x and v(x, Q) > 0 for all x.

Using lemma 4.1 and lemma 2.3 one can prove at once the following theorem.
THEOREM 4.1. In case Ib, if a = weak lim,,O an}, Sn Bayes relative to Xn, n > 1,

then there exists a nonzero o-finite regular Borel measure X(.) defined on the real
line and a real-valuedfunction p(*) such that for almost all x[,u], if t is in the support
of 6(x, *), then

(4.11) 0 = p(x) + f V1(w, t)f(x, w)X(dw).

In section 6 we give an example of an admissible estimator a for which (4.10)
holds and p(x) #6 0.
The main result mi case II is as follows.
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THEOREM 4.2. Suppose in case II that a = weak limn, 5n, An Bayes relative
to X,n. Thenfor all x, y, lim infn , kn(x)/kn(y) > 0. There exists an integer sequence
{fn, i 2 1} such that for all x e X,
(4.12) v(x, *) = weak lim vni(X,)

j-4

exists. v(x, Q2) = 1 for all x. There exists a nonzero a-finite regular Borel measure
X(-) such that for almost all x [,t], if t is in the support of e (x, *), then

(4.13) 0 = f Vi(w, t)f(x, w)X(dw).

The proof of this theorem involves considerable detail. This is broken down
into several lemmas.
LEMMA 4.2. Given the hypotheses of theorem 4.2, for all x, y,

(4.14) lim inf kn(x)/kn(y) > °-
n-e

PROOF. We suppose to the contrary that for some xo, yo, and sequence
{ni, i > 1}, that limi-. knj(xo)/k,j(yo) = 0. That is,

(4.15) 0 = lim J [f(xo, w)/f(yo, @)]nK(yo, dw).

Under the conditions of case II we must have either subease A:

(4.16) lim f(xo, )/f(yo, a)) = 0,
or subcase B:
(4.17) lim f(xo, c)/f(yo, co) = 0.

Subcase A. Let x' be such that lim^, - f(x', w)/f(yo, w) = oo. We will show
that vPn(x', *) -- P(x', *) satisfying v(x', {m}) = 1.

In subcase A, lim., f(xo, co)/f(yo, c,) = oo. Therefore, for every integer N,
1 = limi,. vni(yo, [N, oo]). We use this in the calculation.

Let g9, g2 be nonnegative real-valued continuous functions on Q* satisfying
the following. For some integer n, if w > n, then g2(c) = 0, and if co < n
g1(co) = 0. If X > n, then g1(co) > 0 and gl(oo) = 1.

Let {mi, i > 1} be a subsequence of {ni, i > 1} on which
(4.18) weak lim vmi(X', *) = v(x', .)

exists. Then

(4.19) f g1(co)v(x', d@) / f g2(CW)P(x', d@)

[kmi(x')]-l f gi(w)V(c)f(x', w)Xmi(dw)
= lim

i [kmi(x')]-l f g2(X)V(co)f(x', )Xjm(dco)

J [f(x', co)/f(yo, o)]gi(co)vm/y8o, dco)
= lim = 00.

- f [f(x', co)/f(yo, co)]g2(c)vmj(yo, dco)
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Since f gi(co)P(x', dco) < o, this can happen only if f g2(w)v(x', dco) = 0. Since
the choice of 92(-) is arbitrary subject to 92g(CO) = 0 if X > n, n arbitrary,
v(x', {oo}) = 1 follows. This argument shows that every limit point of the
sequence {vfp(x', )} is the same. Therefore, weak limi,Pv"i(x', *) = v(x', )
where P(x', {oo}) = 1.
By definition of case II,

(4.20) Ao°. = {xl lim f(x, co)/f(yo, c) = oo}

has positive ,u measure. Suppose x E Ayo'0 and t is in the support of 6(x, ).
By lemma 2.1, for almost all such x we may find a subsequence (depending on x)
{mi, i > 1} of {ni, i > 1} and real numbers tmi in the support of Smi(x, *), i > 1,
such that t = limi,o tmi. Then we obtain

(4.21) 0 = lim f [Vm(w, tmi)/V()1]vm,(x, d@)

f [V(c, t)/V(co)]v(x, dw) =-1.

This contradiction shows that subcase A cannot happen.
Subcase B is dual to subcase A, and similar arguments lead to a similar

contradiction. That proves lemma 4.2.
LEMMA 4.3. Suppose for some x e X and integer sequence {ni, i > 1} that

weak limni Pvni(x, *) = v(x, *). Then v(x, {-oo} U {oo}) = 0.
PROOF. Suppose v(x, {oo }) > 0. Choose y such that lim.- f(y, co)/f(x, w) =

oo. Then

(4.22) lim kni(y)/k.i(x) = lim f [f(y, co)/f(x, W)]vni(x, dco) = oc.
t°O i X

Contradiction. The supposition v(x, {-mo}) > 0 leads to a similar contra-
diction of lemma 4.2.
LEMMA 4.4. Choose xo E X and an integer sequence {ni, i > 1} such that

limi, ni = oo and for every continuous function g having compact support,

(4.23) lim J g(w)X.i(d.)/kni(xo)
i bX

exists. Then the weak limi- X),i( .)/kni(xo) = X(.) is a nonzero a-finite measure.
Further, weak limni vPn(xO, *) = v(xo, *) exists, andfor every integrable real-valued
function g(-),

(4.24) f g(w)v(xo, dw) = f g(w)V(.)f(xo, w)X(dw).
PROOF. Let g(.) be continuous with compact support. Then if E is the sup-

port of g(.), inf,,eE V(w)f(xo, c) > 0. This implies

(4.25) sup f g(c0)Xn(dw)/kn(xo) < o.

By considering a countable subset of g's (dense in the continuous functions
vanishing at +Xoo) with compact support, we may choose an integer sequence
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{ni, i > 1} such that for every continuous function with compact support,

(4.26) lim f g(w)X.j(dw)/k.j(xo)
t-X.

exists. Use a diagonalization argument. Let X(.) be the limiting a-finite measure
determined by these limits.

If g(-) is a continuous function with compact support, then so is

(4.27) g(.)V(*)f(xo, *).
We find
(4.28) lim J g(w)vni(xo, dw) = lim f g(w)V(w)f(xo, w)X.,(dw)/kni(xO)

= f g(,w)V(,w)f(xo, w)X(dw).

If we choose from {ni, i > 1} a subsequence {mi, i > 1} such that v(xo, *) =
weak limi, vmi(xo, *) exists, then for every compact set E C Q, (4.28) uniquely
determines v(xo, E). By lemma 4.3, v(xo, {mo} U {-Xo}) = 0. Therefore, v(xo, *)
is uniquely determined by (4.28), which proves that weak limi-. vn(x0,0) =
v(xo, *) exists. By lemma 4.3, (4.28), and a standard approximation argument,
(4.24) follows.
LEMMA 4.5. Let xo, {ni, i > 1} and X(-) be as in lemma 4.4. Then for every

y E X,
(4.29) v(y, *) = weak lim vPn(y, *) exists.

In addition,
(4.30) lim kni(y)/kni(xo) = ff(y, w)V(w)X(dw),

and for every v integrable Q* measurable g,

(4.31) f1g(.)v(y, d) f gg(,w)f(y, w)V(w)X(d,)/ff(y, )V(,)X(d,).

PROOF. Let {m1, i > 1} be a subsequence of {ni, i 2 1} such that v(.) =
weak limi. vmi(y, *) exists. If g(.) is a function having compact support, then

(4.32)

J g(co)v(dw) = lim f g(w)vmj(y, dw)

= lim [| g0w)[f(y,c)/ff(xo' (0)]mj(xo, d@)] [k.j(xo)1k.j(y)].

= [f g(w)f(y, ,)V(.)X(dw)] [lim kmj(xo)/kmi(y)].

By lemma 4.3, v4(2) = 1. Using a standard approximation argument, we obtain

(4.33) lirn km.(y)/kji(xo) = ff(y w)V(w)X(dw).
j-400 f(y2 .VwXd)
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Since this holds on every subsequence {mi, i > 1} for which {vmi, i > 1} has a
weak limit, (4.30) follows.

Since the value of the limit in (4.32) is independent of the subsequence
used, (4.31) follows. For continuous g(*) having compact support, since
v(y, {-cc} U {x}) = 0, these functions are dense in the L, space of v(y, *),
which proves (4.31).
PROOF OF THEOREM 4.2. We may pick an integer sequence {ni, i > 1} with

limi,. ni = °o such that for every x G X, weak limi- v,i(x, *) exists. There-
fore, the theorem of section 2 applies. For almost all x, if t is in the support
of 6(x, .), then

(4.34) 0 = f [Vi(w, t)/V(.)]v(x, dcw)

= f Vi(&,, t)f(x, Co)X(d@-).
Thus (4.13) is proven and the proof is complete.

5. Estimation in case Ia

We will suppose that for all x, y in X,
(5.1) lim f(x, C)/(y, w) = lim f(x, W)/f(y, w) = 1.

In keeping with section 4, we suppose Q = D = (-oo, oo). The results of this
section depend on assuming X is Euclidean p space.

In case Ia one can give examples of sequences {8,6 n > 1} which converge
weakly, 5,,n Bayes relative to X,; n > 1, and such that weak limn,+ vn(x, *) =
v(x, *) exists for all x, yet v(x, Q) = 0 for all x. We give such an example, where
X = (-cc, c).
Let W(co, t) = (c,- t)2, -o < t, w < a:, andf(x, o) = c/(1 + (x - o)4), the

constant c being appropriately chosen. Let An,(-) put mass 2 at n and mass 2

at -n. A direct calculation shows that the (nonrandomized) Bayes estimator is

(5.2) a =(=
8x3n + 8xn4

2 + 2x' + 12X2n' + 2n4

For given x, limn- 68A(x) = 4x, which implies weak limn- An(x) = 4x. For
given n, limx- bAn(x) = 0 and limx,- An(x) = 0.
The parameter X is a location parameter. An easy direct calculation shows

that estimators 6(x) = ax are inadmissible estimators of a location parameter
if a > 1. In particular, 6(x) = 4x is not admissible.
The limiting procedure in case Ia depends on the asymptotic behavior of the

first and second partial derivatives of W(-, *) on its second variable and upon
the asymptotic behavior of the first partial derivatives of f(., *) with respect
to its first variable x. We suppose for w E X that W(c, *) is a strictly convex
function. In the sequel we write W2 and W22 for the first and second partial
derivatives of W on its second variable. Further, if x = (xi, * * *, xp), then we
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write fi(x, w) for the partial derivative of f with respect to xi evaluated at
(x, c), 1 < i < p.
The "right" normalization in case Ia is not the normalization discussed in

section 2. Instead, one wants a normalizing function V(.) satisfying the following.
If E is a compact D set, then

sup IW22(W, t)I/V(@W) < °;
tEEE,colEn

(5.3) lim W22(W, t)/V(W) = 31 > 0 uniformly in t E E;
Il-C0o

W22(W, t)/V(W) is uniformly continuous in (w, t) E Q X E.
We then define

(5.4) k'(x) = J V(w)f(x, w)Xt(dw) x C X, n > 1,
and

(5.5) 4n(x, F) =F V(w)f(x, w)X.(dw)/k' (x)

for Borel subsets of U.
THEOREM 5.1. Given the regularity conditions stated below there exist constants
.2.- * - , OP), f3 with the following property. Let {ni, i > 1} be an integer sequence

for which v'(x, *) = weak limi,. v'i(x, *) exists for all x e X (see lemma 2.2).
Then v'(x, Q) = Ofor all x or v'(x, Q) > Ofor all x E X.

If v'(x, Q) = 0 for all x E X, then 3(x) = (-#3/#,8) _Pf 1 2()xi, where
X = (Xi, * * , Xp).

If v'(x, Q) > 0 for all x E X, let a = (al, ap,a,) be any p dimensional row
vector of Euclidean p-space. The pair .5(x), 6(x + a) satisfies the functional equation

(5.6) 0 = f W2(w, 6(x + a))[f(x + a, c) - f(x, w)]/[V(w)f(x, w)]v'(x, dw)

+ f [(W2(w, 6(x + a)) - W2(w, 3(x)))/V(w)]v'(x, dw).

We first define the constants 2), 1 < i < p, 3, and give the regularity condi-
tions needed. We suppose

Wfi(t, w) wfi(t, c'-)- ,1 i.

(5.7) lim ' = lim _f(t < < p,W,-X f(t, @) < (,
uniformly in t in compact subsets of X, and

(5.8) sup |wfi(t, w)| < °° < i< p,

for every compact subset K of X. We suppose for compact subsets K of D that

(5.9) lim (sgn w)W2(w, t)/(l + IlwV(w)) = 33 > 0,

uniformly in t e K, and
(5.10) sup W2(W, t)I/(1 + IWIV(W)) < oo.

coEWtEK
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We suppose for compact subsets K of D that
(5.11) sup f(tl, W)/f(t2, C) <

ti,t2 K

and
(5.12) lim f(tl, W)/f(t2, w) = 1 uniformly in ti, t2 e K.

I-l-O

The theorem is proven from the relation, for all x, a in p-space,

(5.13) 0 f W2(,, 6.(x + a))f(x + a, w)XA(dcw),

= f W2(,, S.(X + a))[f(x + a, .) - f(x, c8)]Xn(dcw)

+ f [W2(W, 8i(X + C)) - W2('W, 6(x))]f(x, w)X,(dw).
In case v'(x, Q) > 0 for all x, the final part of the theorem is simply the result
of taking weak limits. We note that if weak lim f(.) V(w)f(x, w)XA(dw)/kn(x)
does not exist for all x, then by lemma 2.2, we may find a subsequence on which
this limit does exist for all x. We therefore suppose, without loss of generality,
that this is the entire integer sequence. Using lemma 2.1, given x and a, we
choose a subsequence on which

(5.14) lim 6ni(x) = W(x), lim 5ni(x + a) = S(x + a).
i-*oo ij-4V

The argument will not be affected by supposing this is the entire sequence.
On the assumption that v'(x, Q) = 0 for all x e X, using (5.4) and (5.5),

the mean value theorem, and (5.3), we find for the third integral in (5.13), after
normalization by (kn(x))-f, and after letting n -* o, the limiting value
1li(6(x + a) - 6(x)).
To evaluate the second integral in (5.13), write

(5.15) (kn(x))-1W2(w, 6n(X + a))[f(x + a, w) -f(X, W)]n(dw)

- (k'(x))-1 f W2(w, 6((x + a))V(w))knX) J 1 + IwIV(W) (

,afi(n1i(X, cW), 0)f(77iR(X, W), W))fx )And-

The numbers 1i(x, co), * , qp(x, co) are determined by the use of the mean value
theorem, and qi(x, w) lies in value between xi and xi + ai, 1 < i < p. Use of the
given regularity conditions and passage to the limit gives for the limiting value

53I' 1 aigl(".
From the two limiting results obtained, the first part of the theorem follows.
In order to get some feeling about sizes, we consider location parameters,

and p = 1. Suppose
(5.16) f(x - W) = c/(1 + Ix - co[I'), 12 < 0.
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Then (af/lx)(x -W)/f(x - W) 12 as w -c oo. We take W(co, t) = O - tla and
V(X) = 1 + lw - tla-2. Then #1 = a(a - 1) and 13 = a.

In order that 5(x) = [(-132)/(a - 1)]x have finite risk, we require 1 > a + 32-
It is therefore not possible to attain- 3213/131 = 1 and have an estimator with
finite risk. As previously observed, estimators of a location parameter with
-12/a - 1 > 1 are not admissible.

6. An example in which some mass escapes to the boundary

By taking examples in which X, Q, D are compact, and W(-, *), fQ, ) are
jointly continuous, it is easy to construct examples, by removing a point from
02, in which a sequence of probability measures on Q in the limit puts mass on
the boundary, and yet the Bayes procedures converge to an admissible procedure.
We now consider an example for which W(., *) is unbounded, Q = (0, oo),

and in the limit mass is placed at +oo in the sense of section 2. We suppose
X is compact, A(-) is a probability measure defined on the Borel subsets of X,
{f(., w), w e Q} is a family of generalized probability measures relative to II(.).
If xo E X, we suppose for all x e X that f(x, w)/f(xo, w) is a bounded uniformly
continuous function of x E X, w E Q, and lim.,x f(x, w)/f(xo, w) = 1, uniformly
in x.
We suppose W(., *) is a strictly convex function of its second variable and

write W2(., *) for the partial derivative of W(-, *) on its second variable. We
want W(t, t) = 0 for all t > 0, limt0 W2(w, t) > 0, and -1 = lim.,0 W2(w, t),
t > 0, wC> 0. For example, W2(co, t) = 4O(t - w) for suitable 0. We take the
normalizing function V(w) = 1, 0 <w < m.

In order that mass move to +oo, let {a., n > 1} be a nonnegative real number
sequence such that limnIn-* anf(xo, n) = 1. In view of our assumption about
f(-, *), lim... anf(x, n) = 1 for all x E X.

Let X(-) be a probability measure on the Borel sets of U. We will need to
assume X, W satisfy (6.5) given below. Define {Xn(.) n > 1} by Xn(E) = X(E)
if n ¢ E, Xn(E) = X(E) + a. if n E E, n > 1. Let An(-) solve the equation

(6.1) 0 = f W2((O, 5.(x))f(x, w)X(dw) + W2(n, bn(x))f(x, n)aC.

In the sequel we prove that limn- An(x) = 6(x), where 5(x) solves (6.6), uni-
formly in x e X and that 5(.) is admissible.

First, we show (6.1) is solvable. Since W2(w, *) is strictly increasing, by the
monotone convergence theorem,

(6.2) lim [f W2(W, t)f(x, w)X(dw) + W2(n, t)f(x, n)an]

= f W2(w, O)f(x, w)X(dco) + W2(n, O)f(x, n)an < 0,

whereas
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(6.3) lim [f W2(w, t)f(x, w)X(dco) + W2(n, t)f(x, n)an]

= f W2(w, oo)f(x, w)X(dw) + W2(n, oo)f(x, n)a. > 0.

Therefore, (6.1) is solvable for each x e X, n > 1.
To prove lim74, An(x) = 5(x) uniformly in x, suppose {x", n > 1} and

{tn, n > 1} are sequences such that if n > 1, then xn E X, tn > 0, tn = A(Xn),
lim7n, xn = x (recall that X is compact) and limn,7 tn = t (we allow t = +00).

Case I. Limitn-+- tn = °° and tn > n infinitely often, say on the sequence
{tni, i > 1}. Since W2(ni, t,,) > 0, and since (using the bounded convergence
theorem)
(6.4) lim f W2(W, tnY)f(xi4, w)X(dco)

= lim f W2(w1, tni)[f(xni,, w)/f(xo, w)]f(xo, w)X(dco)

= f W2(w, oo)f(x, w)X(dw) > 0,
equation (6.1) is not solvable for large values of ni.

Case II. Limitn, tn = 00 and tn < n except for a finite number of
values of n. Note that 0 > W2(n, t4) > W2(n, 0). Our hypothesis was that
limn,- W2(n, 0) = -1. Therefore, lim infn:, W2(n, tn)f(xn, W)a7n > -1. Since
limn,- f W2(W, tn)f(xn, w)X(dw) = f W2(w,w,;)f(x, w)X(dw), (6.1) will be unsolv-
able for large values of n if we assume

(6.5) f W2(,w, oo)f(x, w)X(dw) > 1, x e X.

Case III (t < 00). Using the bounded convergence theorem

(6.6) 0 = f W2(co, t)f(xn, w)X(do) + lim W2(n, 4,)f(xn, n)a7n
n-+

= f W2(w, t)f(x, w)X(dw) - 1.

This equation has a unique solution. Therefore 6(x) = limn,- 6n7(xn) as was to
be shown.
We now prove that the risks converge. That is,

(6.7) 0 = lim f [W(, 6(x)) - W(w, bn(x))]f(X, w)M(dx)X(dw)

+ lim an f [W(n, S(x)) -W(n, 6n(X))]f(x, n)j,(dw).
n--+

The limit b(x) solves (6.6). From this it follows at once that sup, 6(x) < .
Since limnln An(x) = 6(x) uniformly in x, there is a K > 0 such that
SUpzex,n>l 167n(X)I < K. Since sup,,g jW2(w, t)l < oo, it follows that
(6.8) sup IW(w, 6(x)) - W(co, 874(X))l < 00

wO,X
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and
(6.9) lim IW(o, 6(x)) - W(co, 6,(x))l = 0.

Therefore, using the bounded convergence theorem,

(6.10) 0 = lim f [W(CO, (x)) - W(w, Sn(x))]f(X, c)X(dco).
n-x

Since supz, f(x, w)/f(xo, co) < o0o and limn- a,nf(xo, n) < o, it follows that
SUPnl,x1,zEX a.f(x, n) < o. Since limn-,O W(n, 6(x)) - W(n, 6,n(x))l = 0 uni-
formly in x, and since 1A(X) < oo,

(6.11) 0 = lim a,, f [W(n, 6(x)) - W(n, bn(x))]f(x, n)M(dx) = 0.
n-x

That proves (6.7).
To prove that 6(.) is admissible, suppose 6'(.) is as good as 6(.). Let K(w, 6),

K(wt, 6'), and K(w, 6n) be the risks of 6, 6', and 6n evaluated at W. Since 6n is a
Bayes procedure,

(6.12) 0 < f (K(w, 6) - K(w, 6'))Xn(dw) < f (K(w, 6) - K(w, 5n))X(dw)

+ a,n f (K(w, 6) - K(w, 6n)).
As n -- oo, the right-hand side of (6.12) tends to zero. Since the loss function
is strictly convex, using lemma 3.1 of section 3, the admissibility of 6 follows.

APPENDIX. DECISION THEORY

Parts of this paper lean heavily on the interpretation of statistical decision
procedures as continuous bilinear forms on certain pairs of Banach spaces. This
interpretation is well known, but necessary details do not seem to be available
anywhere. We will first discuss bilinear forms abstractly and then discuss
statistical procedures.

Let F1, F2 be Banach spaces. Given are norms llxlll of x E F1 and IIYII2 of
y E F2. A bilinear form (-, *) on F1 X F2 is a real-valued function of two var-
iables such that to each x E F1, (x, *) is a linear functional on F2, to each
y E F2, (., y) is a linear functional on F1.

If a bilinear form is continuous in each variable, then using the uniform
boundedness theorem one easily shows there is a constant K satisfying
(A.1) K = sup I(x, y)i/iIxIi1iiyIl2.

zEFi,y EF2

The constant K is the norm of the bilinear form. Conversely, if a bilinear form
satisfies an inequality of the form

(A2 Kx y)l?Q1 < K x ll .{12
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for all x E F1, y E F2, then the bilinear form is a continuous linear functional
in each variable.
The space F12 of continuous bilinear forms on F1 X F2 is a Banach space under

the norm defined above. The weak topology in F12 is the weakest topology such
that for each pair (x, y) E F1 X F2, the mapping (-, -) -- (x, y) defined on F12
to the real line is a continuous mapping. A standard argument of embedding
F12 in a product space will show the unit ball of F12 is compact in the weak
topology.

Generally, in most decision theory discussions, the assertion that a set of
decision procedures is compact is the assertion that a set of bilinear forms is
weakly compact. We develop this idea here.

In the context of this paper, 3D is the set of decisions, and we assume that O is
a locally compact Hausdorff space and that V is the one point compactification
of 0O. We suppose F2 = C(5O*), the set of bounded continuous real-valued func-
tions on V. We take F1 = L1(X, (B, I). If 3(., *) is a statistical decision pro-
cedure, then for every Borel subset A of D*, 5(., A) is a bounded measurable
function, and, if x E X, then 6(x, *) is a probability measure on the Borel
subsets of V. We now state and prove a converse to this.
THEOREM Al. Suppose F1 = L1(X, (6, IA) and (X, 63, ,u) is a totally a-finite

measure space. Suppose D* is a compact metric space. Let F2 = C(D*). If (-, *)
is a continuous bilinear form on F1 X F2 of norm K, then there exists #(., *) satis-
fying the following:

(i) to each x E X, S(x, *) is a countably additive finite measure on the Borel
subsets of V*;

(ii) to each Borel set E C 5)*, 3(-, E) is a bounded 6B-measurable function;
(iii) if f(.) E L1(X, , ,u) and g(.) E C(5D*), then

(f, g) = ff f(x)g(t)S(x, dt)A(dx);
(iv) for all x e X and Borel subsets E of *, [6(x, E)I < K.
This theorem is known. An unpublished proof, different from the proof given

below, has been given by Le Cam.
PROOF. The space C(O*) is a separable metric space. We take a countable

dense subset {gn(.), n > 1} of C(D*). By discarding some of these functions,
we may find a subset {gn(.), n > 1} which are linearly independent over the
rational numbers, and such that every g9(.) is a linear combination of functions
in {gn(*), n > 1}, n > 1.

Since (,gn) is a continuous linear functional on L1(X, (,j,), and since (X, M, ,u)
is a totally a-finite measure space, we may find a bounded 63-measurable func-
tion #(-, gn) satisfying
(A.3) (f, gn) = f f(x)S(x, g.)u(dx)
for allf E L1(X, M, ,u), and
(A.4) sup 13(x, g,)l < Kllgn||2.

x
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Let CR(D*) be the linear span of {9n, n > 1} over the rational numbers. I
9G CR(a*), we represent g(.) uniquely as a finite sum

(A.5) g(.) = rigi(*),
and define for all x E X,
(A.6) 5(x, g) = E rib(x, gi).
Then if f e L1(X, 63, ,I),

(A.7) f f(x)b(x, g).(dx) = E, ri(f, gq) = (f, g) < Kllf|Jijjgjq2.
Since this holds for allf E L1(X, 63, ,A),
(A.8) ess sup I6(x, g)I < K11g9f2, for all g E CR(D*)-

We may then find a set N E 63, /.(N) = 0, such that if g E CR(D*), then
supx,ZN I6(x, g)# < K11g9j2. This is possible since CR(D*) is countable.

If x ¢ N, then 5(x, *) is a continuous linear functional defined on CR(J*).
It has a unique continuous extension to C(aD*). So, if x ¢ N, g E C(5D*), we
write 6(x, g) for the extension and have |b(x, g)l < Kj[g9|2.
Now if g E C(D*), we may find a subsequence {gni, i 2 1} in CR(JD*) such

that limi DX suptE* 19ni(t) - g(t) = 0. Then if x ¢ N, 6(x, g) = limi, 6(x, g9j).
Therefore, b(-, g) is a 63-measurable function.
By the Riesz representation theorem, the continuous linear functional 6(x, *)

is representable by a countably additive measure. For Borel sets E of D, we
write b(x, E) for the value of the measure. Then if x $ N, for all Borel subsets E
of V, 16(x, E) < K.
We now show that for each Borel set E, 6(., E) is a 63-measurable function.

Let e be the set of all Borel subsets of V for which this is true. The set e is
clearly a monotone class, and by considering monotone sequences of continuous
functions, one easily shows e to contain all compact sets. Therefore, e contains
all Borel sets. (This type of argument works even if the measures are signed
measures.)
One may show at once, using the bounded convergence theorem, that in

extending a from CR(V*) to C(a*), we have for all f E L1(X, 63, ,u), g E C(5)*),
(f, g) = f f(x)b(x, g)j.(dx).
From the form of the Riesz representation,

(A.9) (f, g) = Jf f(x)g(t)6(x, dt),t(dx).
The integral is absolutely convergent. That completes the proof.
A statistical decision procedure is a bilinear form satisfying (v) if

f G L1(X,63,uI), f(x) . 0 for all x E X, g G C(D*), g(t) . 0 for all t C V,
then (f, g) 2 0; (vi) if f C L1(X, 6, IA), then (f, 1) = f f(x),u(dx). It is easily
checked that the set of bilinear forms satisfying these conditions is a weakly
closed subset of the unit ball of F12.
COROLLARY. Let (X, 3, I) be totally o-finite, let L1(X, (6, IA) be a separable
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Banach space, and suppose 5)* is a compact metric space. Then the set of statistical
decision procedures is sequentially compact.

In the usual statistical problem a set Q of density functions is given, if f E Q
then f e L1(X, , ,u). The set of decisions D need not be compact, but we
suppose D has a compactification V containing D as a Borel set. For each
f E Q, t E 3D we suppose a measure of loss W(f, t) 2 0 is given. We assume
W(f, *) has an extension to D such that for each f e Q, the extended function
is lower semicontinuous.
THEOREM A2. Suppose {65, n > 1} is a sequence of statistical decision pro-

cedures. There exists a subsequence {,ni, i 2 1} and a procedure 5 such that for
all f E Q,

(A.10) f W(f, t)6(xpl)f(x),u(dx) <' lim inf f W(f, t)bnin(x, dt)f(x),u(dx).
i-.

It may be that t5(x, -D*-5) > 0 for some x.
PROOF. Extend an to D* by 6n(x, D*- ) = 0 for all x E X, n 2 1. Choose

a subsequence such that a = weak limj_. 5,,i. Let WN(f, *) be an increasing
sequence of continuous functions on VIY* satisfying limN..4 WN(f, t) = W(f, t)
for all f e Q, t e 5)*. Then

(A.11) lim indf|W(f, t)bni(x, dt)f(x),u(dx) 2 lim f WN(f, t)6.j(x, dt)f(x)iA(dx)

= f WN(f, t)b(x, dt)f(x),u(dx).
Let N - oo and apply the monotone convergence theorem. The result follows.

In some applications D is a finite dimensional space, and for each f E Q,
W(f, *) is a strictly convex function. If limt,. W(f, t) = o, then we obtain the
following result.
THEOREM A3. Let {5n, n > 1} be a sequence of decision procedures; let a be an

admissible procedure, and

(A.12) lim sup f W(f, t)Sn(x, dt)f(x),I(dx) < f W(f, t)b(x, dt)f(x)IA(dx)

for all f e Q. Let S* be a weak limit point of {fn, n > 1}. Then for all x,
6*(x, D*- D) = 0, and if A = {xlj(x, *) $ 6*(x, .)}, then fA f(x),u(dx) = Ofor
all f E Q.
PROOF. Let 6* = weak lim^z S,ni for some subsequence. By theorem A2,

(A.13) f W(f, t)b*(x, dt)f(x),u(dx) < f W(f, t)a(x, t)f(x)m(dx).
Since S is admissible, 6 must be nonrandomized; therefore, we write

(A.14) J W(f, t)b(x, t)f(x),u(dx) = f W(f, 5(x))f(x)4(dx).
Further, we set S*(x) = f tb*(x, dt) and obtain by Jensen's inequality that

(A.15) f W(f, S*(x))f(x),i(dx) < J W(f, S(x))f(x)j(dx).
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Since 6(*) is admissible, if f E Q, this must be equality. Let

(A.16) Al = {x18*(x, {a*(x)}) # 1}.
Since W is a strictly convex function, fA,f(x)g(dx) = 0 for all f E U. Again,
since W is a strictly convex function, if A = {xl(x) 0 3*(x)}, then

(A.17) fA f(x) (dx) = 0

for all f E U. That completes the proof.
We consider here the minimax theorem in the context needed for section 3.

We suppose W( , *) is bounded on compact Q X D subsets, W(w, *) is lower
semicontinuous for each X e Q, and W(*, t) is continuous for each t E 5D. We
assume that W(co, t) > 0 for all (cw, t) G Q X X, and if C C Q is a compact
set, then

(A.18) lim inf W(w, t) = oo.
t-0 CO ECC

We suppose that we are given a family {f(-, w), w G Q} of density functions
relative to the a-finite measure space (X, B, ,u), and to each x E X, f(x, *) is a
continuous function on U.
THEOREM A4. Let r(.) be a nonnegative lower semicontinuous function on Q,

and C a compact parameter set. Assume sup,x,ec r(w) < oo. Relative to the measure
of loss W(w, t) - r(w) there exists a minimax procedure 8 (w is restricted to C)
which is Bayes relative to X supported on C and

(A.19) minimax risk = ff (W(w, t) - r(w))6(x, dt)f(x, w)A(dx)X(dw).
PROOF. If a is an admissible procedure for cw e C, then the values of a lie

in a compact subset of D. Indeed, take ao c a). By hypothesis we can find a
compact subset E of a) such that aO G E, and if a ¢ E, then sup.ec W(w, ao) <
inf,,ec W(w, a). Therefore, one always does better to decide ao than a.

Consequently, we may suppose there is a constant K such that for all co e C,
all x E X, and all t in the support of 6(x, .), W(w, t) < K. It follows that

(A.20) K(w, 6) = ff W(., t)8(x, dt)f(x, w)4(dx)
is continuous in w and that K(., 8) - 8(.) is upper semicontinuous.
We let R1 be the set of real-valued upper semicontinuous functions on C such

that if g e R1, then for some 6, g(w) = K(c,, 8) - r(w) for all co e C. Then R1 is
a convex set of functions. We let R2 be the set of real-valued continuous func-
tions such that if g2 c R2, there is a g1 c R1 such that for all w E C, g1(w) < g92(o).
Then R2 is a convex set of continuous functions, and each g, G R1 is the limit
of a monotone decreasing sequence of functions in R2.
We apply the now classical construction. Let R(e) be the set of all real-valued

continuous functions on C such that if g E R(e), then sup,,Ec g(co) < E. Then
for each e, R(E) is a convex subset of the continuous functions on C, and R(e)
has an interior point in the sup topology. Further, if sup, c r((co) < 00, there
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exist E such that R(E) and R2 are disjoint. We consider the functions in R2 as
restricted to C. Since R(Eo) = UE< OR(e), there is a largest E such that R(e)
and R2 are disjoint.
The convex sets R(E) and R2 may be separated by a hyperplane. By the Riesz

representation theorem there is a finite countably additive measure t on the
Borel subsets of C and a number a such that if g e R(e), then f g(w)t(dw) < a;
if g c R2, then f g(w)t(dw) > a. For integer N > 1, if C' C C is a compact
subset of C, we may approximate -Nxc' by monotone limits of functions in
JEl + R(E). This implies -Nt(C') < a + lEll(Q). Let N -x oc and obtain ((C') > 0
for every compact subset of C. Since 0# 0, we may suppose t is normalized to
be a probability measure.

Since functions in R1 may be approximated from above by functions in R2,
it follows that the hyperplane determined by {, a separates R1 and R(E). Further
if ,B > 0 and (e + ,B)1 is the constant function of value e + f, then R1 contains
a function g satisfying g(X) < e + , for co e C.

Since R1 has the weak compactness property of theorem A2, R1 contains the
risk function of a minimax procedure satisfying

(A.21) sup g(W) < e; f g( )t(dw) = E.
"'c

Since every procedure a which is Bayes with respect to t gives rise to a risk func-
tion in R1, and since every such procedure must therefore have Bayes risk > e
relative to (, it follows that g is Bayes relative to t and the class of all procedures 6.
That completes the proof.
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