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1. Summary

This paper deals with the asymptotic distribution of the vectorial least squares
estimators (LSE) for the parameters in multiple linear regression systems. The
regression constants are assumed to be known; the errors are assumed (a) to be
independent but not necessarily identically or normally distributed (section 3),
or (b) to constitute a generalized linear discrete stochastic process (section 4).
The latter part includes the case of regression for time series. Conditions are
studied under which the joint distribution functions (d.f.'s) of the vectorial
LSE's tend to a multivariate normal d.f. as the sample size increases. In the
proof a central limit theorem (CLT) for weighted averages of independent ran-
dom variables is used. In case (a), a theorem for large classes of linear regressions
is proved (theorem 3.2), whose conditions are in a certain sense also necessary.
The theorem simultaneously permits consistent estimation of the limiting co-
variance matrix of the LSE's. The results in case (b) are contained in theorems
4.2, 4.3, 4.4, 4.5, 4.6. They are not naturally of as closed a form as those pertinent
to case (a) because of the more complicated nature of the problem. Some use of
spectral theory is made. Several examples are discussed (section 3.3). The as-
sumptions made in this paper are weaker than those of results published earlier
in the literature. (For a more recent survey, compare [6].) Their structure is
quite simple so that they ought to be useful in applications. Section 4.4 contains
some remarks on multivariate regression equations.

2. Introduction (notations)

There exists a considerable number of publications dealing with the asymp-
totic normality of parameter estimates for linear regressions, many of which
deal with specific cases, however, or are unnecessarily narrow in the as-
sumptions made. The most general paper among these, and the one closest to
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the present note, seems to be [9]. In that paper vectorial regression equations
are considered while we are predominantly interested in scalar ones. For that
case, however, the assumptions of [9] are more restrictive than those of the
present note.
For the individual components of the vectorial LSE the asymptotic normality

was already proved under general assumptions in [1] for the case of independent
errors.
The system of (scalar) linear regression equations is denoted by

(2.1) yt = Xtil + * * * + Xtq3q + Et, t = 1, * , n,
n > q being the sample size. In matrix notation this becomes

(2.2) Y(n) = Xn3 + e(n),
where y(n) is the (column) vector of observations (n-dimensional), X. = (xtj),
the (n X q)-matrix of known regression constants assumed to be of full rank
throughout, ,B = (i,, - **, #3,)' is the vector of unknown regression parameters
('denotes the transpose), and e(n) = (el, - * *, en)' is the n-vector of error random
variables (r.v.'s) about which we assume throughout that
(2.3) Eet = O, O < EJ, < a>, for all t.
All quantities are real.

Let Pn = XnXn Then the vectorial LSE for ,B, denoted by b(n) = (bi(n),
... , bq(n))', become
(2.4) b(n) = Pn-;Xny(n) = f3 + P;nX.e(n).
The row vectors of Xn will be denoted by rl, * * *, rn, and the column vectors
by xl(n), * * *, x,(n). By F, we denote a (nonempty) set of d.f.'s whose elements
G have the properties

(2.5) J x dG(x) = 0, 0 <f X2 dG(x) < oo.

3. Independent nonidentically distributed errors

3.1. The asymptotic normality of the b(n). In order to find a limiting d.f., the
vectors

(3.1) b(n) - P= Xn'e(n)
have to be normalized by premultiplication by certain matrices Bn. Let

(3.2) In = cov E(n)e'(n) = diag (o-d, ... , n), d = var Ek,

be the covariance matrix of the error vector, and write

(3.3) B = P; XWnXnP;.
If Bn is the unique positive definite square root of Bn, the q-vectors

(3.4) Bn- Pn- Xn'e(n)
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all have expectation zero and covariance matrix I, (= q-dimensional identity
matrix).

Let 5(F) be the set of all sequences e {fl, e2, * * } of independent error
r.v.'s et (independent within each sequence) whose d.f.'s belong to some set F
subject to (2.5). For a given sequence e, the vectors e(n) have as components
the first n members of e, n = 1, 2, .

Theorem 1 of [4] then applies without further ado and yields the following
theorem.
THEOREM 3.1. The d.f.'s of Bn lP;nXte(n) tend to the q-dimensional normal

d.f. N(O, IJ) and the summands of Bn;1Pw1Xne(n), are infinitesimal both uniformly
for all sequences e {el, e2, *-* } E Y(F), if and only if the following three conditions
are satisfied:

(I) max rkP;'rk-0,
k=l *' *,n

(II) SUsp Jl21,x2 dG(x) -+0, as c -400,

(III) Finf X2 dG(x) > 0.GGF

(All limits throughout the paper hold for n -X00 unless otherwise stated.)
The fact that the assertion of the theorem holds for all sequences {et} e i!(F)

makes it particularly useful in practice, since one usually does not know the
error d.f.'s if they are not identical. It may also be pointed out that condition (I)
on the regression matrices does not necessitate any knowledge about the error
sequence present in a particular regression. Analogously, (II) and (III) concern
only the set F of admissible error d.f.'s. If the ordinary CLT were applied, one
would obtain conditions concerning, simultaneously, the error sequence and
the regression sequences. It is interesting that the consideration of the whole
class 9;(F) implies the necessity of the conditions (I)-(III). Condition (LI) means
uniform integrability of the variance integrals with respect to the class F.
As it stands, theorem 3.1 is still of limited practical use since the normalizing

matrices require the knowledge of the usually unknown error variances a*.
Applying a law of large numbers for nonnegative random variables ([5], p. 143),
this defect can be removed by replacing o by the square of the k-th residual

(3.5) ek(n) = yk- rkb(n) = ek- rkP;'Xn'e(n), k = 1, .-. , n.

The matrix D2 PnV2B2pWn2 is then replaced by
2 p; 1/2Xn' XD1/2(3.6) Cn - n nXnP

with Sn = diag (el(n), * , e,(n)). This replacement amounts to an estimation
of the matrix D. in the sense of (3.9), as will be shown below. After this substi-
tution the estimator
(3.7) C; 1/2p-; 1X,y(n)
no more contains any unknown quantity. Without any new assumptions we
then obtain the next theorem.
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THEOREM 3.2. Under the assumptions (1), (II), (III) of the preceding theorem,
the d.f.'s of
(3.8) C-1 P;112(b(n)-13)
tend to N(O, Iq) uniformly for all error sequences e e Y(F).
For the proof we need a lemma on matrices whose entries are random vari-

ables.
LEMMA 3.1. A sequence of symmetrical random q X q-matrices An -+ I, i.p.

if and only if c'A.c -- 1, i.p. for all unimodular constant q-vectors c.
PROOF. The "only if" part follows from Slutsky's theorem. To show the

converse, first take c = Vk [= k-th unit vector], k = 1, * , q, and then c pro-
portional to Vk + vj, any pair k 5 j.
PROOF OF THEOREM 3.2. We show first

(3.9) Dn 'C,2Dn1 q i.p.
We introduce the vectors

(3.10) (ul(n), * , un(n))' = c'Dn;1Pn;2nX n = q, q + 1, ...

with some unimodular constant q-vector c. Then
n

(3.11) c'Dn1CnDn-'c = E u2(n)e2(n).
k=l

Since -k Uk(n)Ek = c'D; 1Pn 1/2 (b(n) -) is a sum of independent infinitesimal
r.v.'s whose d.f. for n -° Co tends to N(O, 1) as a consequence of theorem 3.1,
we have

(3.12) E_ uk2(n)ek-1, i.p.
k

by theorem 4 of ([5], p. 143).
Taking account of the second terms of ek(n) as given by (3.5), we have

(3.13) E(r'P;1X,e(n))2 < MrkP-'r;,
where the existence of M = SUPG f X2 dG(x) < oo is implied by (II). Putting
m = infG £ x2 dG(x)[> 0] and denoting by 11 11 the Euclidean norm, we have

(3.14) X, uk(n) = c'D,1c < m

Hence, by (I),
(3.15) E(, u2(n)(rkPn-'Xne(n))2) < (M/m) max rkPij1rk - 0,

k k

and consequently, Yk uk(n)(rkP;'XnE(n))2 -, i.p. Finally, _k u2(n)ek(n) 1,
i.p. for all unimodular vectors c. Because of lemma 3.1, this proves (3.9).
We now prove

(3.16) Cn- D -0, i.p.
Put En = c2 - Dn. By (3.9) there exists a sequence of events On with P -* 1
such that sup IEII -*0 where IIEnll= max j=j,.. l(En)ijl. In the following
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all quantities, and equations in quantities, showing the index n are considered
only on the event Qn n = q, q + 1, - - - .

Putting (D2+ E.)"I2 = Dn + E*, we then have to show IIEn*I- 0, that is,
according to our convention, sup,jjE.*1 -+0. Now E. = D.E.* + En*D + En2;
En*, being a real symmetric matrix, has only real characteristic values (c.r.), to
be denoted by XAn(tw) 2 XU(w) > ... > X,n(w), Co E On, and possesses q orthog-
onal real characteristic vectors (c.v.). Suppose SUpeQs^ XIn(c) A_An > 0 for an
infinite set r of naturals. We assume for simplicity that there exists a matrix
E*n(,.), Jw,n E 2,, that actually possesses An as a c.r. (otherwise we can always
find an E.* whose maximum c.r. differs arbitrarily little from An). Let v,, E Sq
(the unit sphere C Rq) be a c.v. of En*(cc) associated with An. Then at w = Wn
respectively,

(3.17) v,Envn = 2AnvnDnvn + An -+ 0, n e r,
since IIEnll -- 0 and the c.v. of Dn are bounded between the finite positive con-
stants m and M.
On the other hand, suppose inf,<s, Xqn(co) = X,n < 0 on some infinite set r'

of integers, and let un E Sq be a c.v. associated with Xn and a suitable matrix En*.
Then again unEnun = Xn(Xn + 2unDnun) -- 0, n E r', and hence either X,nO 0 or

X,A+ 2uWnDUnO>0 for some infinite sequence rF" C r'. But 0 < un(Dn + En) 12un
= unD,un(l- 2) + o(n) for n e rF" which is impossible. Thus all c.r.'s of E,*
tend to zero, which implies (3.16).

Finally, (3.16) implies Cn- Dn -* I, i.p., and premultiplication of

Dn- lpn- 1/2Xn,En
yields the assertion.

Uniformity in e E 5;(F) of (3.8) follows from the fact that the preceding proof
remains valid if instead of one and the same e for each n, we take for each n an
arbitrary E(n) E 9Y(F). Thus, (3.8) holds for all sequences of sequences e(n), and
this is equivalent with uniformity in e.

3.2. Remarks. (1) In practice, for finite n, one uses theorem 3.2 in the form

(3.18) d.f. (b(n)) - N(f3, C2n).
In certain situations this relation may save the trouble of computing the inverse
square root of Cn.

(2) Theorem 2 of [1] states the asymptotic normality of the single components
bj(n), after suitable normalization. We remark without proof that this theorem
also remains valid under unchanged assumptions if, as in section 3.1, the un-
known variances o in the normalizing factor are replaced by the squares of the
residuals (3.5). Thus, the additional assumptions given in theorem 3 of [1] are in
fact superfluous.
The progress of the present paper over [1] lies essentially in the determination

of the joint asymptotic d.f. of the vectorial LSE b(n) which was not possible by
the method used in [1]. Besides that, condition (I) of the present paper is
simpler than the corresponding condition in [1].
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(3) If F contains only one element, say G, then (II) and (III) reduce to
0 < f x2 dG(x) < o. The errors are, in this case, identically distributed.

(4) The assumptions (I), (II), and (III) are no longer necessary in theorem
3.2. However, since they are necessary in theorem 3.1, the necessary and suffi-
cient assumptions of theorem 3.2 presumably do not differ very much from
(I)-(III).

(5) Concerning the admissible sequences of regression matrices we prove the
following lemma.
LEMMA 3.2. Condition (I) implies

(3.19) Xmin(Pn) :

and
(3.20) max lXk,jl/llxj(n)ll -+0, j = 1, ..., q.

Here Xmin denotes the minimum characteristic value and 1 1 the Euclidean
norm. Regression vectors xj(n) satisfying (3.20) are called slowly increasing
(compare [7], p. 233).
PROOF. We introduce the q X q diagonal matrices

(3.21) D. = diag (Iixj(n)jI, * - I,jx,(n)II), n = 1, 2,
Since tr(Dn-'PnDn 1) = q, we have
(3.22) sup Xmax(Dn lPnDn 1) < q.

n
Now

(3.23) rkP;'rk = rkDn-1(Dn;1PnDn-l)-'Dn-'rk 2 q-1IDn-lrki2.
By (I), maxk IID; lrklI -+ 0 and thus (3.20) follows. Equation (3.20) implies
IIxj(n)II -> - for all j, which in turn implies (3.19).

(6) Sufficient for (I) is the relation (3.20) together with

(3.24) inf XAmin(Dn lPnDn-') > °,n
as can be seen from an inequality similar to (3.23). However, conditions (3.24)
plus (3.20) are, in general, not necessary. In particular, (3.24) is satisfied if
(3.25) Dn 'PnDn 1 R
where R is some positive definite q X q matrix.

3.3. Examples. We now discuss some examples of regression matrices and
check whether they possess property (I) or not.

(1) Polynomial regression. Let Xk,j = klc',cl > ... > c, > -2;j = 1,* q,
k = 1, 2, * - - . The c; need not be integers. Then (compare [2], p. 469) the x,(n)
are slowly increasing and Dn 1P,nDn1 -+ H where H is a positive definite sub-
matrix of the Hilbert matrix. Hence, (3.25), and consequently (I), is satisfied.

(2) Trigonometric regression. Let
(3.26) Xk,2jl = cos wjk, Xk,2j = sin wjk, j = 1, *-* , q, k = 1, 2, *
where the wj are such that rank Xn = 2q. Then (see [2], p. 477) the xj(n) are
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slowly increasing and n-lP -- I* where 1* is a diagonal matrix with diagonal
elements 1 or 2. Again (3.25), and thus (I), is satisfied.

(3) Mixed trigonometric and polynomial regression. Let

Xkj =ki, j =1,* ,q - with cl > *.*.* > C 2> ,-2
(3.27) Xkj = eiki j =q + 1, * ,Q

with 0 <wj < 27r, Wij ` Wk for j# k.
Again (3.25) is satisfied with a matrix R of the form

/H j O
(3.28) R = (------ )

\O I IQ-q
where H is as in example 1. In order to prove this, we observe first that

n
(3.29) n-1 E kceikw->0 for n--oo

k=1

if c = 0, 1, * and 0 < w < 27r. This can be seen by deriving _k ei =
eiw(1- eiw)/(1- eiw) repeatedly with respect to iw. In order to prove (3.29)
for nonintegers c, we derive the left-hand side with respect to c and obtain

(3.30) n-1 E_ keeikw ln (k/n),
which remains bounded for c> - as n -* o, since

(3.31) j(n)nd(n)In(dt)
and since we have proved (3.29) already for integers c, it holds also for non-
integers c >-.

Finally, because the matrix R is positive definite, property (I) holds.
(4) Analysis of variance case. Consider a one-way classification with q

classes having N1, * *, Nq observations respectively. The regression matrix is
given by
(3.32)

/1,---, 1, 0,---,I0, ... 0\

Xn' = o, ... I 0, 1, .

I 1, 0, ...* 0 n = N, + * - - + N,.
\o . .. O, 1, * ,1/ qXn

Then Pn = diag (N1, *- *, Nq). Condition (I) is satisfied if mini Nj -. oo. Hence,
in this case the LSE of the effects are asymptotically normally distributed for
every error sequence e E (F).

(5) Exponential regression. The regression vectors xj(n) with Xkj = cj' where
cl > c2 > ... > c, > 1, are not slowly increasing since

(3.33) _ / EC}k > > 0.

Therefore, by lemma 3.2, (I) cannot be satisfied,
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(6) Mlixed polynomial-exponential regression, Xkj = kcidj, di > 1, c; > 0. Again
the regression vectors are not slowly increasing, since llxj(n)l12 = O(n2c djn).

4. Dependent errors (regression for time series)

4.1. The case of one regression vector. Since for dependent errors the results
are not of as closed a form as for independent errors, we consider first the case
of only one regression vector (q = 1). This case already shows the main devia-
tions from the previous results.
System (2.1) reduces now to

(4.1) yt= Xt +et, t = 1, 2, n,
in vectorial notation y(n) = x(n)f3 + e(n). We assume, as is typical also for the
analysis of time series,

(4.2) e= E CA t+j = E Cj-t0j, t = 1, 2,
j=-X j= _c

where the sequence c -{c} of real constants is square summable, that is,
c E 12 (the Hilbert space of all square summable sequences of real num-
bers). In all of the previous publications the stronger assumption 57j= _ IcjI <
has been made (see, for example, [9]).
As is well known, the condition c e 12 is necessary in order that (4.2) holds as a

limit in quadratic mean. The r.v.'s -j are assumed to be independent with expec-
tations zero, but they need not be identically distributed. Let their d.f.'s, as in
section 3, lie in a set F where F satisfies (2.5) and conditions (II) and (III) of
section 3.1. Then each et is, in fact, defined as a limit in the mean of the sums
EJ% -n Cjqt+j for every sequence {qij} E f3(F) (see section 3.1). Random se-
quences {et} of this type have been called generalized linear processes ([3]). If
the -t are identically distributed, the et form a strictly stationary linear stochas-
tic process.
With Pn =jlx(n) 12, the (scalar) LSE's of , are

(4.3) b(n) = I1x(n)lj-2x'(n)y(n), n = 1, 2, .

In order to investigate the asymptotic normality of the sequence {b(n)}, put

(4.4) Rn= (var b(n))-f12(b(n) - 3)
= (var b(n))-"21 jx(n)lj-2x'(n)e(n)

j n= (var b(n))-t1211x(n)l1-2 E E xtcjt) 7j.

We have En = 0, var Rn = 1 for all n. Put
n

Anj = E xjcj-t,
(4.5) t-1

'Sn = E Anj
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Clearly, always S,, < oo. In ([3], p. 319) the following proposition, which also
holds in a more general context, has been proved.
THEOREM 4.1. Let Sn > 0 for all n. In order that (A): d.f. (¢N -+ N(O, 1),

and (B): the contributions of the summands of rn in the last expression of (4.4)
are infinitesimal, both for every {n,j} e 5Y(F), the conditions (II) and (III) of
theorem 3.1 and

(4.6) sup Ani/Sn 0
j=-x, .."oo

are jointly necessary and sufficent.
We do not emphasize the validity of the theorem for the whole class 9;(F).

We rather consider a sequence {X7X} E 5(F) to be given and shall now analyze
in detail the remaining condition (4.6).

Condition (4.6) may be verified directly for a given sequence c E 12 and a
given sequence x {x1, x2, * } of regression constants. It would be more
convenient, however, if for each c the class SC of all x's satisfying (4.6), or for
each x the class ex of all c's satisfying (4.6) were known. It then remains only
to be checked whether a given x belongs to Xc, or a given c belongs to ex. Since
in a regression problem x is known but c usually is not, the classes ex are of
greater interest. We shall, therefore, direct our attention mainly on ex. If we
are unable to determine a class ex completely, we shall try to find as large a
subclass as possible.

Let c(X) E L2 (the space of the complex valued functions over A =
{X: -2 < X < 2} whose moduli are Lebesgue square integrable) be such that

(4.7) C3 = J e-2,ic(C(X) , cCje2,jX,

and put
n

(4.8) Xn(X) = E xte2.-M
=1

Then for sufficiently large n,

(4.9) Sn = fA|xn(X)c(X)12 dX > 0

as is required in theorem 4.1; null sequences x and c are of course excluded.
Because of their importance in practical applications, one will not want to

exclude all finite sequences c from any e%. But if ex contains any finite nonnull
sequence, then (4.6) implies

(4.10) max IxkI/IJx(n)II --0,
k-l, * * ,n

as will be seen from lemma 4.3 (x is slowly increasing). In order to investigate
the behavior of the left-hand side of (4.6) under this additional assumption, we
prove the following lemma.
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LEMMA 4.1. Equation (4.10) implies

(4.11) sup tAn.jJ/JJX(n)I -0
for all c E 12.

Presumably, (4.11) (for fixed c) also implies (4.10), but we do not prove it
here, except for finite c-sequences (lenma 4.3).

PROOF. Choose mn < n, mn X-+ such that

(4.12) m. max IxkJ/IIx(n)JI -÷0.

There exists always an integer jn such that IAnjaI = supj IAn,jl. Put Jn.
{jn- n, in,*, -1} and split the sum

n
(4.13) A.j. = E xcj,-t = xjtt

into the sum a.n = ItEJnK.R xj.tct and into the remainder On; here Kn is the
index set {t: tI < [mn/2]}.
Now

(4.14) IAnJ.in < lan + I1nl < mn sup Ic.j max IXkI
+ !Jx(n)II( Cc2)112.

itI . [m,./2)

After division by IIx(n)JI, this tends to zero for n -÷ oo.
THEOREM 4.2. Let (4.10) be true and

(4.15) ess inf lc(X)I > 0.
)XEA

Then (4.6) holds, and consequently, statement (A) is valid.
PROOF. The proof follows from the preceding lemma and

(4.16) Sn > IJx(n)JJ2 ess inf IC(X)12.

For a large class of slowly increasing regression vectors, condition (4.15) is
not necessary. Assume, besides (4.10), that

(4.17) lim E xt+hxt/,Ix(n)112 = Rh h = 1, 2, **,
n-*0 t-1

exists. Put -h = Rh. Then {Rh} is a positive definite sequence, and there exists
a d.f. M(X), X E A, of finite variation such that

(4.18) Rh = fA e2.ihx dM(X)

([7], p. 233). We have M(') - M(-I) = 1 and

(4.19) 11x(n)l1-2 1-1/2 IXn(44)I2 d, =Mn(X) + M())
at continuity points of M(X).
Now let {I,, - * *, IK} be any partition of A into disjoint intervals, whose end

points are not jump points of M(X). Let
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(4.20) ess inf Ic(X) 12
Ik

denote the essential infimum of lc(X) 2 over Ik. Then
K

(4.21) Sn/lx(%)ll 2 2 _ ess inf jC(X) |2AMn(Ik)
k=1 Ik

where AMn(Ik) is the variation of Mn^(X) over Ik. Because of (4.19),
K

(4.22) lim inf Sn/IIx(n)jj2I> ess inf Ic(X) 2zJM(Ik).
n k=1 IA;

The relation remains valid if we take on the right-hand side the supremum
with respect to all admissible partitions with arbitrary K.
DEFINITION. The function Icl on A is called essentially positive at X if

(4.23) sup ess inf |ci > 0.
IE)x I

where I denotes on interval CA.
We now deduce theorem 4.3.
THEOREM 4.3. Let (4.10) and (4.17) be true, and let Ic(X) Ibe essentially positive

on at least one point of the spectrum of M(X). Then the right-hand side of (4.22)
is positive, and consequently (4.6) and statement (A) are valid.

For some sequences of regression constants it is possible to obtain a complete
characterization of the class e2.
EXAMPLE. Let xt = 1, for all t. Then (1) consists of all c E 12 with only a

small exceptional class characterized by lim n _J,= -n cj = 0 and convergence of
J7=o cj to T, say. The c's of this subclass satisfy (4.6) if and only if =-n

does not converge too fast to zero, namely, if and only if

(4.24)
N

( ci - T)2 + (1 Cj + T)') +
n=l \j=O \j=-n /

for N -- oo ([3], p. 325). If c-== C2= ... = 0, (4.24) reduces to
N (n Cj2(4.25) E E c3) - .
n=l j=O/

We conclude this section with a remark concerning the convergence properties
of the sequence of functions

(4.26) xn(X)c(X) -~F An je2ij)2
j=-co

Let dn(X), n = 1, 2, *--, -2 < X < 2, be any sequence of functions with
dn(X) E L2,

(4.27) dn (X) E dnje2tii
j=-oo

Then

(4.28) f dn(X)Xn(X)c(X) dX = EdnjA,j
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LEMMA 4.2. Let _j Id.,jl2 = 1, _j Id, jl2 converge uniformly in n. Then (4.6)
implies

(4.29) n1/2f dn(X)xn(X)c(X) dX -O0

uniformly with respect to the functions d.(X) out of the considered class.
PROOF. Choose mn < n, mn -* o such that

(4.30) mn sup IAjlSn2 -0.
Then
(4.31) S K"2IZdAnJIj .2mn sup{A2n,In1/ 2 + ( Ej Idn 'j2)112-O

j lil 2mn

Let us now put -yz(X) = Sn '12 n(X)c(X), and assume -Yn(X) converges boundedly
in measure to an integrable limiting function y(X) on A. Let Re-y(X) be of one
sign in some interval CA and take all dn(X) = d(X), the characteristic function
of this interval. Then by the bounded convergence theorem,

(4.32) f d(X)4yn(X) dX Af d(X)y(X) dX.

By the above lemma the integrals on the left tend to zero under (4.6), so that
Re-y(X) = 0 [a.e.] on the considered interval. Repeating the argument for
Imy(X), we obtain y(X) = 0 [a.e.]. This, however, is in contradiction with
the fact that

(4.33) JI_yn(X)I12 dX = 1 for all n,

which implies

(4.34) IA 1y(X) 12 dX = 1.
The same argument holds if any infinite subsequence of {-Yn(X)} is taken or

any measurable subset of A is considered instead of A.
Thus we have the following: under (4.6), no subsequence of {-yn(X)} converges

boundedly in measure to an integrable function.
Let c(X) = 1. Then (4.6) is equivalent with (4.10). In addition, let (4.17) be

true, so that (4.19) holds. Assume M(X) possesses a bounded derivative M'(X).
Then the preceding proposition is somewhat surprising in view of the fact that

(4.35) -1/2 1Yn(MA)12 dM = lix(n)11-2 1-1/2 IXn(M)12 d - f-11/2 M'(t,) d,

for all X. One may guess that -Yn(X) must be increasingly oscillatory for n - ,

which may be due to the fact that -yn(X) is complex-valued.
Here the remark may be of interest that always

(4.36) E|xt| a, %
t=l ~ty=

if (4.10) holds so that, at least sometimes, the boundedness condition of the
convergence will be violated.
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4.2. One regression vector (errors are finite moving averages). For further study
of condition (4.6), we now restrict ourselves to finite c-sequences. Let ki < k2,
Ck,, ck, $ 0, cj = 0 for j < k, j > k2. Then
(4.37) An,= 0 for j < k, and j > k2+ n, n = 1, 2,

In
(4.38) An,j-Aj = CkXj_k if k2 < j < ki + n, n > k2-k1,

k=ki

ki+n k2+n
(4.39) Sn = , A; + A,2 n > k2- ki,

j=kh+l j=kl+n+l

with Aj = xlcjl + * + Xj_k, ck, for ki < j < k2. Since

(4.40) inf sup lA.,jl > 0
n j

(4.6) implies lim Sn = +oo, we have by (4.6)
k2+n

(4.41) F_ An'/S" 0
j=ki+n+l

Thus (4.6) also implies
n

(4.42) A?
j=ki+l

and it is equivalent to
2/ n

2(4.43) sup A +F Ai 0.

We have, moreover, the following lemma.
LEMMA 4.3. If c is a finite nonnull sequence, then (4.6) implies (4.10), and

(4.10) is equivalent to (4.11).
PROOF. We have maxj A2 .> 2kXn2. Since c(X) is now continuous, we have

sup) Ic(X)12 = y <0. Hence by (4.9),
(4.44) Sn < 'yIjx(n)112.
Thus
(4.45) sup A2 > yIx2/1jx(n)II2, 'y' > 0,

and (4.6) implies
(4.46) Ixnl/Iix(n)jI -0.
As seen above, (4.6) implies Sn -* o; hence,

(4.47) jIx(n)II -°.
However, this together with (4.46) is equivalent to (4.10), since otherwise,
with kn chosen such that
(4.48) IXk.1 = max IXkI,

k=l,* ,n

Ixk.1/IIx(kn)JI -* 0, in contradiction to (4.46).
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The proof of the equivalence of (4.10) and (4.11) is similar. (End of proof.)
If c(X), which is now a Fourier polynomial, has no zeros, and if (4.10) is true,

then we have asymptotic normality by theorem 4.2.
Condition (4.42) obviously is not satisfied (and thus we have no asymptotic

normality) if the sequence {xt} satisfies the recursive system
1c2

(4.49) E2 CkX_k = A j = 0, j> k2.

If the equation
(4.50) Ckltk2 kl + * + Ck2-lt + Ckh = 0

possesses a root of modulus one, but no larger ones (c(X) then has a zero in
[-, 2]), then {xt} satisfies (4.10), but (4.6) does not hold if (4.49) is true.
Thus the converse of the first statement of lemma 4.3 does not hold. A criterion
for the validity of (4.49) is that all the determinants

(4.51) ...

Xn, ,* X2ni1

vanish for n > k2- ki.
There are many cases of pairs (x, c) of sequences incompatible with (4.6)

that are of practical interest. For example, let xt = 1, for all t, and co = -cm = 1,
all othercj = 0. Then xt -xtm = 0, and t = m + 1, m + 2, * is a recursive
system.
From this example we see that a theorem of the type "If x is any element of

a class of regression sequences independent of c, and if c is any element of a
class independent of x, then asymptotic normality holds," is not desirable
because it excludes too many important cases. It is for this reason that we. en-
tered into a sharper analysis and tried to obtain the classes el.
For the case that c(X) has zeros, we can state the following: if (4.10) is true,

and if the sequence of functions

(4.52) ( max x0J1 Xxn(A)I d,, -1 < X < ,
j=i,...,n

X2 -11/22

or any subsequence thereof does not tend to a pure jump function whose jump
points are all zeros of c(X), then asymptotic normality holds.
About the estimation of the normalizing factors used in (4.4) some remarks

are made in section 4.4 (3).
4.3. Multiple regression (dependent errors). We use the notation of sections 2

and 3.1 with q > 1 and errors given by (4.2). Let B2 = cov (b(n)b'(n)). This
matrix has no longer the simple structure (3.3) because n in general is not
diagonal. In order to derive the next theorem, we introduce the q-vectors

(4.53) t(n) = Bn Pn-'Xne(n) = BnPn-1 E (, rtcj-t) nj,

which all have expectation zero and covariance matrix I,. (The vector r/, was
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defined as the k-th column of X'. The matrices Pn(n > q) are assumed non-
singular.)
Now

(4.54) d.f. (r(n)) -N(0, I~)
if and only if

(4.55) d.f. (d'(n)v(n)) -*N(O, 1)
for all sequences of constant q-vectors d(n) with d(n) C Sq (the unit sphere
in Rq). For

(4.56) d(n) = BnP.f(n)IIBnPnf(n)IjI f(n) e Sq,
we have

(4.57) d'(n)r(n) = IIBnPnf(n)I-I E (Y' f'(n)rtcj_t) .j
j t=1

Here {-jl} c 5(F), F subject to conditions (II) and (III) of theorem 3.1.
We now have reduced the problem of finding conditions asserting (4.54) to the
one-dimensional case. By theorem (4.1), (4.55) holds if

(4.58) sup A'
-, SA 2j j=Sn,

where now
C)-

n

(4.59) j= f'(n)rncj_ = f'(n)Xn

e=1 (Cl-n

Relation (4.54) holds if (4.58) holds for every sequence {f(n)}, f(n) c Sq.
That is the case if and only if

(4.60) sup [sup (f'Xnc(j, n))2 k_ (f'X'c(k, n))2] 0;
JfEsq I k=-A;

here c(j, n) = (ci-1, Cj_n)., Putting

Cj+kC = Rk = R_k,

(4.61) /Ro, Rn1
R(n) = . .I. ,

Rn_-1 ** Ro
the denominator in (4.60) becomes

(4.62) Sn = f'Xn'R(n)Xnf.
In analogy to (4.60), we also have, with

n
(4.63) Xn(X) = E f rte2ritX,

t=1

(4.64) Sn =AIX.N(C(XI' dx.
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Suppose
(4.65) ess inf lc(X)2I= yo > 0.

Then

(4.66) S. 2.of0fPPn X= nXn,
and (4.60) holds, according to lemma 4.1, if

(4.67) max sup (f'rt)2/f'Pnf -*0.
t fGSq

This is equivalent to
(4.68) max sup (f'P;n 2r,)2 = max r'P;1r -0.

t feS, t

Hence, the following theorem holds.
THEOREM 4.4. If

(I) maxrtPnrtO-0

and ess infx Ic(X)I > 0, then (4.54) holds.
As in section 4.1, assumption (4.65) may be weakened by assuming that the

regression matrices Xn allow for a harmonic analysis. Generalizing (4.17), we
assume

(4.69) max x2/IIxj(n)Ii2 -0 for j = 1, q,
tn-,n

(4.70) Y Xt+k,,xt,8/,IIx(n)jI 11x.(n)jI -Rh , SO 1,' ,
Then R(h) = RhT'S, and the (q X q)-matrices Rh = {R<8s} admit the spectral
representation

(4.71) Rh = JAe2.ihxdM(,), h = 0, a1,

where the elements of the (q X q)-matrix M(X) are functions of bounded varia-
tion and M(X2) - M(X1) is positive semidefinite for every X2, XI, -2 < Xl <
X2 < +2 (see [7], p. 233). The set of all points X with M(X2) -M(X1) positive
definite for all Xl < X < X2 is called the spectrum of M(X).
We assume

(4.72) Ro = dM(X) = AI() -M(-4) M

to be nonsingular and put
(4.73) D.= diag (I!xj(n)Ij, x,lxq(n)jj).
Then ([7], p. 238)

(4.74) DnPt-Xn'R(n)XnPt1Dn'.-M f1 c(X)2 dM(X)M- M.

Now from (4.62), for n -oo*

(4.75) Sn = f'Xn'R(n)Xnf = f'PDn'AlDn- Pnf 2 X,qIDn-'PnfI12
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where we have put Xq =, min(M). Since by (4.70) Dn 'PnDn1 flo, we have in
the limit S. > -y IDnf 112 with some new constant ry that is positive if X, > 0.
We now assume X, > 0 and have (4.60) if

(4.76) sup sup (f'D.DnD;Xnc(j, n))2/IIDnf I12
= sup sup (f'D -Xnc(j, n))2 0.

j fGSq
Choosing f = Dn1Xnc(j, n)/llDn-1Xnc(j, n)lI, we see that

(4.77) sup IlDn-jXnc(j, n) II 0,
or that

n

(4.78) sup E xtkcj-kl/Ixk(n)I- 0 for all k = 1, ... , q
i k=1

is sufficient for (4.60). The latter, however, is true because of (4.69) and lemma
(4.1).
A condition implying X, > 0 is that fA IC(X) 2 dM(X) be nonsingular in case

this integral is defined and is the limit of the corresponding finite approximations.
It is the higher dimensional generalization of (4.22).
In summary, the following holds.
THEOREM 4.5. Let (4.69) and (4.70) be true, and let Ro be nonsingular. Let

c(X) be essentially positive on at least one point of the spectrum of M(X). Then
(4.54) holds.
Concerning the estimation of the normalizing matrices B, the reader is

referred to section 4.4 (3).
Finally, it may be noticed that ess inf XeA lc(X) > 0 can always be achieved by

simply adding to the yt's independent random variables of an artificial sequence
{Pt}, which are also independent of the qj. The function c*(X), associated with
the new combined error sequence Pt + et, always satisfies ess inf XeA lC*(X) > 0.
This method may be considered as a particular type of prewhitening. It always
implies, however, an increase in variance of the LSE b(n). A similar proposal has
been made by Hannan [9].

4.4. Concluding remarks. (1) As is well known, the Gauss-Markov estimators

(4.79) bG(n) = (X.'n 'X.) lXnYn ly(n)
are the minimum variance linear unbiased estimators for ,B, whether the Et are
correlated or not. One may, therefore, try to use bG(n) instead of the above
considered LSE b(n). However, in the first place, the covariance matrix En
usually is unknown, and a useful estimate for En l (or for the functions of

n-' that occur in (4.79)) cannot be obtained from a single sequence of observa-
tions {yt}. Instead, it appears to be more appropriate to use a distribution free
method. In the second place, there is not much point in preferring bG(n) to
b(n), because it is known that both are equally efficient asymptotically for a
rather large class of error sequences {et} and of sequences of regression matrices
{X.1 [7].
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(2) The results of the preceding sections can be extended to the case of
vectorial or multivariate regression equations
(4.80) Yt = xt1/3 + . + xtqf3tq + et
where now yt = (y', , ykC)I, Xtj = (x1l,, * x )', Et = (e, * E)' are k-vec-
tors and the f3j are scalars as before ([9], for a review see [11]). Sometimes
vectorial regression equations are expressed in the form
(4.81) yt = Bq5t + et
where the vector ot = (Otl, * , 4 tp)' contains the known regression constants,
and the (k X p)-matrix B contains the unknown regression constants. However,
(4.81) is a special case of (4.80), as is seen by putting

o+, O0, * * * O\0

(4.82) (Xti, *t**,x = K

,0, 4t
where the zeros represent zero row vectors of p dimensions. With q kp, both
sides are (k X kp)-matrices. We get the row vector 1 by placing the rows of B
one behind the other.

If the k-vectors et are independent for different t with possibly dependent
components for each fixed t, and assuming Eet = 0, we have almost the case
considered in section 3, except that the error sequence (El, . * , e, 4, * *,e *
now is k-dependent. We might apply a CLT for k-dependent r.v.'s. However, it
appears to be almost as easy to appeal directly to the CLT for independent
r.v.'s. For this purpose, let

(i) R be a nonempty set of strictly positive definite (k X k)-covariance
matrices,

(ii) F be the set of d.f.'s defined in section 2,
(iii) 9(F, R) be the set of all sequences {et} of independent k-vectors et with

cov (ftel') G R and d.f. (eJ) E F for all t, j,
(iv) b(n) be the vectorial LSE for 1,

(4.83) b(n) = Pn Xn'y(n).
Here now Xn = (Xtj; t 1, , n, j = 1,* ,q) is a (kn X q)-matrix, Pn =

X, X,, and y(n) = (y1, .*X ykt yl, *.* *X y, *.**, Yn)'. Similarly, e(n) is defined.
Furthermore,
(4.84) Bn = cov (b(n)b'(n)) = Pn lXnnX.Pn

n
= P.1 E XpjxjPn

j=l
with

(4.85)
Xj = (Xjl, Xjq)kX.
pj = E(EjEj)kXk.
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Let r. be the m-th column vector of X', m = 1, * , kn. Finally, let Xk(p) be
the smallest characteristic root of p e R. Then we have
THEOREM 4.6. The d.f. (Bn-1(b(n) - ,B)-- N(O, I,) for all {,Et} e q(F, R) if

(I) max r'Pnrrm-*O,
m- 1,- * *,kn

(II) suEpf|l1l>C X2dG(x) --O for c oo,

(III) inf Xk(P) > 0.
pER

We indicate the proof only for q = 1. By (4.83) we have

(4.86) Bn 1(b(n) - BP)= B n- xej
j=1

where Xjfj = xjiX1ej are independent r.v.'s. Putting infpeRXk(p) = X and
max1,..= ,k (x)2P;kl = Kn j, we obtain

(4.87) Bn 2 P;2X
-

11x112 - XP.
j=1

Now for any 6 > 0,
(4.88) P(IB-'P;lxj,Ejl > 3) < P(Bn IPn-lllxjll 11ejill > 3)

< p (11,EfjI |2 > Xb2/ (kK ,i) )
k

< P((EjI)2 > 12,i2/(k2Knxj))

< k2KF,J x2 dG (x)
X=16 X2>X52/(k'.i)

((k2Kn),j)
where G = d.f. (ej) and 4(c) = SUPGEF fl > x2 dG(x). Now t_lI Kn,j < Pn/Pn
= 1. Putting Kn = max,..,..n.,, Kn we finally have

(4.89) ; P(Bn-'P;1x;e,I > 6) < k3X-163- ((k)5) )
j1=1k2K

by (II). Hence, the CLT holds.
The case where the random k-vectors et are generated by a moving average

process et = E_. - A,1t_1 with independent and identically distributed random
vectors 1j of r components and with constant (k X r)-matrices Ai has been con-
sidered by Hannan [9]. There it is assumed that

). E (\max(A>Aj)) t~/2 < 00,
j--a

and that the regression matrices allow for a generalized harmonic analysis in
order to derive the asymptotic normal distribution of the LSE. Although the
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results are likely to be true under more general conditions similar to those of
sections 4.1 to 4.3, we do not discuss this possibility here.

(3) An estimation of the normalizing constants Bn = var b(n), or of the
normalizing matrices Bn in multiple regression, for an unknown sequence of
dependent errors e with unequally distributed residuals 7j (see (4.2)) seems to
be impossible if only a single sequence {yt} of observations is given. By estima-
tion of Bn we mean a relation like (3.9) with a suitably adapted statistic Cn.
The reason for the difficulty lies, first of all, in the admission of nonidentically
distributed residuals qj in (4.2) which, together with the unknown cj's, intro-
duces to many unknown parameters.

Therefore, we restrict ourselves in the following to strictly stationary error
sequences (ft}, that is, we assume the qj to be independently identically distributed
with variance one (besides E-.j = 0). In fact, it suffices to have only identical
variances of the -qj not necessarily equal to one. We also restrict ourselves to
simple regression (q = 1). Then
(4.91) B = ljx(n)jj-4E(x'(n)e(n))2 = IIx(n)II-4x'(n)R(n)x(n)
where

Ro, R1, * *, Rn-1\
(4.92) R(n) = E(E(n)e'(n)) = Ri, Ro * , Rn-2

Rn-_, Rn-2, * , IRo
is the covariance matrix of the et with

(4.93) Rk= R-k = E(etet+k) = E CjCj+k, k = 0,1, * .
j= _0

Putting
n-k

(4.94) Rk,n = R_-k, = ||x(n)12 E XtXt+k, k = 0, 1, * , n - 1,
t=i

we obtain
n-1

(4.95) B-= IIx(n)11|2 , RkRk,n = ||x(n)11 4Sn
k= -n+i

where Sn was defined in section 4.1.
In order to estimate Bn, we introduce first the sample covariances of {Et},

(4.96) Rk,n = n-lkl k = 0, i,-1 ,- ki h=i Eh'Eh+lkI,
and, as an estimator for Bn,

(4.97) Bn,. = Ijx(n)j12 E Rk,nRk,n
k n+i

(later we shall replace the Eh by the known residuals eh(n)). Since ERk,n =Rk,
then EB2 = B2.
We now introduce the additional assumption

(4.98) E Rk <00.
k=-co
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Then ([10], p. 16) with some y < co,

(4.99) var Rk,n < -y/(n - Ikl).
By Schwarz's inequality,

n-1
(4.100) var B2 < Ilx(n)11-4 E Rk2,n var Rk,n

k= -n+1
n-1

-||r(n)l4k2ZRk,/(n - Iki).

We have to divide var Bna by Bn and need the ratio tending to zero. We assume

(4.101) S. > y'jjx(n)j 2, for some y' > 0.
This is, for instance, the case under the assumptions of theorems 4.2 and 4.3
where the asymptotic normality of the LSE b(n) for the regression parameters
is proved.
Now with (4.95), (4.100), and (4.101),

(4.102) Bn4 var Bn= Ilx(n)118S;2 var Bn,a

(n-1 n(n= F-( n k,n/(n- kl))
k==-n+1

If a regression sequence {xt} has the property that the last expression tends to
zero, then B 2B ,a is a (strongly) consistent sequence of estimators of one.
This is certainly true if

n-I
(4.103) sup ka,n <cX

n k=-n+1

since because of the slowly increasing character of {xt} there exists a sequence
of integers mn -X such that

n-1
(4.104) E k,n/(n-k) 0,

k=mn
and also

n

(4.105) E7 k-I 0.
k =n-m.

Now estimate the central part of
n-1

(4.106) E Rkn/(n- Ikl)
k=-n+l

for k = -mn, , mn by Schwarz's inequality. Because of (4.103) and (4.105),
it tends to zero. The rest of the sum tends to zero by (4.104).
As pointed out before Bn,a is not yet an estimate of Bn, since Bn ,. contains the

error r.v.'s et. We now proceed to replace them by the residuals
(4.107) ek(n) = Yk -xkb(n) = ek - Ix(n)Lj-2xkx(n)E(n).
Iet

1 n-lkl
(4.108) k,= 1_ lERic,n - iki hi eh(n)eh+lkI(n).
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Putting

(4.109) Rk ,n = (n - lkl)llx(n)114 h=1

(x'(n)E(n))2
(n -Ik)ljx(n) 12Rk.n,

(4.110) Rf= (n -xkI)I(n) nlk2 (EhXh+lk + Eh+lkljXh),
h=i

we obtain
(4.111) Rk,n = Rk,n + Rk', - Rk,n
Consider now,

(4.112) n= lx(n)l2 E Rk,nRk,n = Bn + Bn _ Bno
k= -n+1

where
n-1 n-

(4.113) Bg= IIx(n)j12 _ (kn-I
k=kn+l

n-1
xII(n) II(xI(n),(n))2 E (n - lklY-'R?,2,,n

k n+i

(4.114) Bn,y = jIx(n) 1-2 nR-,iRk,n.
k= -n+1

Now
n-1

(4.115) Bn-2EBn,3 = F (n - Lkl kR,n 0,
k=-n+1

making use of our assumption concerning (4.102). Since Bn, > 0, this implies
(4.116) B;2Bn - 0, i.p.
Concerning Bn,y, we proceed as follows. First,

(4.117) Rk,n = (n - Jkl)-'Ilx(n)l1-2 Anj(An-1kl,-kl
j,t=-o

+ Aa - Alkite)Vilt.
After some straightforward computations, we obtain
(4.118) E(F An,jAn-lkl,-Ijklj1jflt)2 < const SnSn-lkl,

2,{~~~~~~~~~~)
and similar relations hold for the other terms of E(Rk,n)2. Hence,

2 ~~~~~~~~~~~1 n

EAn , < const 1|x(n)|I|8Sn E Rk2n n- (Sk + Sn Sn-k)k,
(4.119) Iln ? kIic..

1nB-4EB2,y < const 2R - Ik -IIx(n)1-2 F k-1(llx(k) 12
jklj<n Ik 1xnJIk11

+ Ix(n)Il 2 - lIx(n - k) 112).
This tends to zero, and hence Bn2Bn,., -*0, i.p., if we assume
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(4.120) 1Ix(n)LI-2 max X2 = 0(n),
ts1,.* *,n

besides what we have assumed previously. In summary we have the following
theorem.
THEOREM 4.7. The d.f.'s of the statistics (An')-1(b(n)-,8) tend to N(O, 1) if

{et} is a strictly stationary linear process, if ess infx lc(X) > 0 and (4.98) holds,
and if the regression sequence satisfies (4.120) and

n-1

(4.121) E FRk2 (n - |jk |)-1 0
k= -n+l

Condition (4.120) is satisfied, for example, for polynomial regression se-
quences xt = te, x > - . However, (4.121) is not satisfied at least for some
polynomial sequences. A slightly weaker assumption than (4.120) that is suffi-
cient is

(4.122) 1ix(n)Jh-2 L x2 ln (n/t) = 0(1).
t=1

In this subsection it was not our aim to achieve the utmost in generality,
we rather wanted to indicate one possibility of replacing the normalizing
constant Bn by a statistic. The assumptions on the regression sequence, in
particular (4.121), can be weakened considerably, if stronger assumptions are
imposed on the admissible error sequences {fej, such as

(4.123) 2; IRkl < ,
k=-x

and if instead Of n, a different estimator is used, for instance,

(4.124) A = ||x(n)|12 E _ Rk,nFk,n-
Ikl < 'Vn

Clearly, (4.123) is satisfied, for example, for finite c-sequences.
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