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1. Introduction and summary

This paper deals with the distribution of the lifetimes of comets, and the way
in which this distribution of lifetimes affects the total population of observable
comets regarded as a function of the age of the solar system.
The energy per unit mass of a comet is -yM/2a, where -y is the constant of

gravitation, M is the mass of the sun, and a is the semimajor axis of the comet's
elliptical orbit. In the present work it is convenient to change the sign of this
energy, and to work with a quantity z = c/a, where c is a positive constant
chosen to simplify the notation. The first part of this paper, by R. A. Lyttleton,
explained how the value of z is perturbed by Jupiter each time the comet visits
the neighborhood of the sun and planets, and how, when successive perturbations
eventually lead to a negative or zero value of z, the comet is lost from the solar
system along a hyperbolic or parabolic orbit. The lifetime of a comet, brought
into the solar system with an energy z0 = x and having values of z equal to
Z0, Z1, * * ZT-1 at successive orbits up to the moment of loss, is therefore

(1.1) G(X) = V(zo) + V(zi) + -- + V(ZT-1),
where V(z) is the time taken to describe an orbit with energy value z. Kepler's
third law states that V(z) is proportional to Z-31/2, and this relation is used in
various parts of the work. But in other parts of the paper it causes little extra
work to treat an arbitrary nonnegative function V(z). One possible advantage
of this extra generality is that it will still permit the theory to be applied if, for
example, it should turn out that the influence of stellar perturbations upon comets
with very long periods can be approximated by some modification of Kepler's
third law. Apart from this possibility, however, no account is taken in the pres-
ent work of the influence of stellar perturbations.

Section 3 of the paper provides the theory for the distribution of the lifetime
G(x), when the distribution of successive perturbations yg = Zt- zt- has a
given arbitrary form P(y). We permit P(y) to be improper at -xo, and thereby
allow for losses of comets due to disintegration. Section 2 provides the analogous
theory when the perturbations are replaced by a continuous process, namely
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Brownian motion, and the sum in (1.1) is replaced by an integral. Effectively,
sections 2 and 3 deal with generalized first-passage theory, and may be read
independently of the present application to cometary lifetimes. Indeed the
theory has other applications which are briefly mentioned.

Section 4 gives the numerical results on cometary lifetimes obtained by apply-
ing sections 2 and 3, and also by utilizing Monte Carlo methods.

Section 5 studies the birth and death process associated with the population
of comets, and shows that the size of this population should vary as the cube
root of the age of the solar system. One of the main interests of this approach is
that it enables one to make an estimate of the total size of this population, which
does not depend critically (as other estimates do) upon correctly specifying the
period of a typical long-period comet. It appears that the total number of comets
at present in the solar system may be somewhere between half a million and
forty million, though these figures would probably be reduced by a factor of
two or more if losses by stellar perturbations are important.

2. Generalized first-passage theory for Brownian paths

2.1. Statement of results. Let t _ 0 be a time parameter, and let a2 = {X} be
the space of all real linear separable Brownian paths X(t, W) having the nor-
malized form

(2.1) X(0, co) = 0, f [X(l,c)]2dt,(w) = 1,

where j(w) is Wiener measure on the subsets of U. For x > 0, let T(x, co) be the
supremum of all T' such that x + X(t, w) > 0 whenever 0 _ t _ T'. In all that
follows we shall tacitly suppose that X(t, w) is a continuous function of t and
that T(x, w) is finite; this is justified inasmuch as the set of co, for which these
suppositions are invalid, has zero A-measure.
For z _ 0, let V(z) be any nonnegative Borel-measurable function. We work

throughout with a real number system extended to include the value +00, so
that V(z) and other subsequent quantities may be +00. We shall prove that

(2.2) G(x, w) = foT(x,) V[x + X(t, c,)] dt

exists as a (possibly infinite) random variable, that is, that it is ,-measurable.
We shall study its moment-generating function

(2.3) +(x, u) = f e-UG(x,w) dp(w), u _ O.

In the particular case when

(2.4) V(z) = Z-2
where p is a positive constant, we shall prove that 2xP/p2G(x, c) is distributed as
a gamma-variate with parameter llp; in other words,
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1 1.
(2.5) P{G(x, w) - g} = r(1/p) J vl/P-e-v dv.

In the special case p = 2, (2.5) reduces to the well-known first-passage distri-
bution ([1], theorem 42.6)

(2.6) P{T(x, w) g9} = ,r1-/2 f2/2 v-1/2e-v dv.

In the special case p = 1/2, (2.5) reduces to

(2.7) P{G(x, w) _g} = (1 + 8/x) exp

and this equation is relevant to our study of comets.
The general problem, in which (2.4) is not assumed, bears a resemblance to

Feynman's treatment of quantum mechanics, where one studies

(2.8) Q(x, T) = lim h-I exp {f-f V[x + X(t, c)] dt}dA(w)
O <Ox+X(v,w) <h

= limh- CXP f + V(x+ X)]dt} d(path).O<x+X(v,.,) .h \ I

For a discussion of this see [2], pp. 165-175. The only essential difference between
(2.3) and (2.8) is that in the former we terminate the Brownian path as soon
as it reaches the origin, whereas in the latter we terminate it at the origin at a
prescribed time r. In quantum mechanics V is a given potential function; and
consequently (2.3) may be relevant in quantum mechanical problems with an
absorbing potential barrier. The generalization of (2.3) to Brownian paths in
two and three dimensions would be of interest in connection with the loss of
particles from thermonuclear plasmas in magnetic mirror machines; but we do
not consider this here.

If Mn(x) is the nth moment of G about the origin, namely

(2.9) MJ(x) = f [G(x, c,)]n dl4c(w), Mo(x) = 1,

then
(2.10) Mn(x) = 2n fo min (x, z)V(z)AMnI1(z) dz, n = 1, 2, **,

in the sense that both sides of (2.10) are finite or infinite together. In the partic-
ular case (2.4)

(2.11) M (r) (2X (/p) 0 _ n <l/p;

Mn(X) = -, n >_ /p.
Equation (2.11) follows directly from (2.5), or, if n is an integer, by repetition
of (2.10).
In stating the properties of +(x, u), we assume u > 0, since +(x, 0) = 1
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trivially. These properties depend upon a number {, defined as the supremum of
all I such thatflO zV(z) dz is finite. If 0. t < x <c, then +(x, u) = 0 and
G(x, w) is infinite with probability 1. If 0 < x < t < cc, then
(2.12) limr0(x, u) = 1, limr0(x, u) = 0,

and G(x, co) is infinite with probability x/l. If t = oc, then

(2.13) lim +(x, u) = 1, rim 8+(x, u) 0,
:1: 0 x 2 oD ax

and G(x, w) is finite with probability 1. If 0 < x < 0, then 8+(x, u)/ax
exists and is a continuous function of x, and

(2.14) =u) 2uo(x, u) a f V(z) dz,alx2 ax

where c is any constant satisfying 0 < c < t. A familiar issue in pure mathe-
matics is the existence of the solution of a given differential equation. Here we
have the harder task of discussing the existence of the equation itself, inasmuch
as we have to ask whether 4 is differentiable. Equation (2.14) is to be understood
in the sense that, if either side of (2.14) exists, then the other side exists and the
two sides are equal. Notice that the right side of (2.14) exists for almost all x
in 0 < x < t, and that the set of x for which (2.14) holds is independent of u.
The boundary conditions for the differential equation (2.14) are (2.12) or (2.13)
according as t < X or o= . In the particular case (2.4)

(2.15) +(x, u) = P(1/p) [(8)1I2] Khl/, [upI]
where Khl/p(z) is the Bessel function

(2.16) Khl/p(z) = 7r-l (2 z) JP v P exp -v --) dv.

2.2. Proof of results. We shall always assume that u and x are positive and
finite, and that V(z) and V"(z) are nonnegative Borel-measurable functions for
z _ O.
The continuity of X(t, w) as a function of t ensures that V[x + X(t, co)] is a

nonnegative Borel-measurable function of t for 0 _ t _ T(x, W); and hence (2.2)
guarantees the existence of G(x, m,w) . Xo for each fixed .
Suppose for the moment that V(z) is continuous for z _ 0. Let 1 and m be

positive integers. For arbitrary M > 0, let Qj.m(M) be the set of co such that

x + X( k ) >0, k = 1,2, * * ;

(2.17) x + X (+1)c 0;

Evv[t E x my co\ < M.
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The continuity of V and the separability of X ensure that Q2m(M) is A-measurable.
Hence limsupm, F_I' 0im(M) is also ,u-measurable. But the latter set is, by
virtue of the continuity of V and X, the set of w such that G(x, w) _ M. Thus
G is uA-measurable when V is continuous.
Now let V be arbitrary; and let V.. be a sequence of functions satisfying

(2.18) V(z) = lim V.(z), z _ 0,

and such that either (a) Vn is bounded uniformly in n, or (b) V.+, > V,, for
each n and all z 2 0. We assert that

(2.19) Gn(x, w) = foT(xw) Vn[x + X(t, w)] dt -- G(x, w) as n -* oo.

In case (a), (2.19) is the consequence of Lebesgue's bounded convergence theo-
rem together with the finiteness of T(x, w). In case (b), (2.19) follows from [3],
theorem 27.B. From (2.19) and Lebesgue's bounded convergence theorem,

(2.20) On(X, u) = f e-uG.(xz,) d,u(w) --+(x, u) as n -- oo.

Since (2.19) follows from (2.18) in the cases stated, the class of functions V for
which G is A-measurable is closed under pointwise bounded convergence and
under pointwise nondecreasing convergence, and it also contains all continuous
functions. Hence ([4], pp. 168-170) it contains the Borel-measurable functions.
We shall prove presently that

(2.21) +(x, u) + 2u |0 min (x, z)O(z, u)V(z) dz = 1,
for all functions V(z) which are continuous for z 2 0. For the moment, however,
we consider the consequences of (2.21).

Consider an arbitrary a, where 0 < q < o, and let C, denote the class of all
V such that
(2.22) fo zV(z)dz < .

Clearly all continuous functions belong to C,,. They also belong to C*, the sub-
class of C,, for which

(2.23) 4(y, u) + 2u f {min (1, ) - 4I,(z, u)zV(z) dz

and = 1- U{1- ( 1,u)},y _ 1,

because (2.23) is the result of eliminating | 5(z, u)V(z) dz from the pair of

equations obtained by putting x = y and x = 7 in (2.21). Suppose that (2.18)
holds, and that one or other of the cases (a) and (b) mentioned above is fulfilled.
Then (2.20) holds. Suppose that V. belongs to C* and that V belongs to C,.
Then (2.23) holds with 4n and V. in place of 0 and V; and the integrand will
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either be bounded uniformly in n in case (a), or will be bounded by zV(z) in
case (b), since

(2.24) 0° {min()1,) } n(z, U) < 1.

In either case, we may invoke Lebesgue's bounded convergence theorem, since
(2.22) holds; and, when n -+ oo, we deduce (2.23). Thus V belongs to C*. Using
the closure argument already employed in the proof of the A-measurability of G,
we conclude that C* = C,,. Hence (2.22) implies (2.23).
We shall now prove that +(x, u) is a nonincreasing function of x, and is there-

fore continuous for almost all x. Let x > z > 0. Since X(t, w) is continuous in t,
there exists a smallest root r = r(X, z, w) to the equation x + X(r, w) = Z;
and this root satisfies 0 < r < T(x, w). Moreover, the identity
(2.25) x + X(t + T,w) = x + X(r,w) + X(t, co*) = z + X(t,w*), t 2 0,
is a measure-preserving transformation from w to w*. Hence

(2.26) G(z, w*) = fOT(zV[z + X(t, w*)] dt = T(x) V[x + X(t, w)] dt(2.26) Gz, w*)< f Tlx,w*).1+ w)
= ) V[x + X(t, w)]dt = G(x, w);

and

(2.27) O(z, u) = f e uG(z,c*) d,(,*) = fe-uG(zw*) d(,w)
a it

> f e' (O) dp(w) = +(x, u),

as required.
We now embark on the proof of (2.21); and, until further notice, we shall

suppose that V(z) is continuous for z _ 0. We shall prove first that

(2.28) O(x,u) - 1 as x-*O.

K = supo ., 5iV(z) is a finite nonnegative constant. Suppose 0 < x < 1; and
let A be the set of all w such that both T(x, a) < x and supo !t <z[X + X(t, w)] _ 1.
Then, if w belongs to A,

(2.29) G(x, w) <_ f0T(x) K dt < Kx;
and therefore,
(2.30) 1 > ck(X, U) > e-uG(z,w) dpu(w) > e-uKz f dA(w)

A A

> e -uKx[P{T(x, ) _ x} -P{sup X(t,4) > 1 -x}]

= euKxz[P{T(x, w) _ x} - P{T(1 - x, w) _ x}]

= e-UKz7112
(I -Z)2/2 V-1/2e-v dv -* 1 as x -* 0,

by (2.6). This proves (2.28).
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Next let a and y be prescribed numbers satisfying 0 < a < y < oo, and sup-
pose a . x _ y. Let a be any positive number small enough to satisfy 0 < e =
(-26 log 8)1/2 < a. In the following work we shall let a-+0, and there will be
several terms which are o(8) as a-- 0. It will be important to notice that every
one of these o(8) is uniform in x for a _ x _ y, even though, for the sake of
brevity, we shall often omit to say so explicitly hereafter.

Let S = X(8, w). Then the identity
(2.31) X(t + 6, cl) = S + X(t,w2), t >_ 0,
establishes a measure-preserving transformation from w to W2. Let 0 = @(w)
denote the equivalence class of all wi such that X(t, xl) = X(t, w) for 0 _ t < 6;
and let v(8) be the marginal distribution induced by i,(w) on the space 0 = {e}.
Write O(E) for the subset of 0 such that 0(w) belongs to 0(e) if and only
if supo .t<aX(t, w)j _ e. Then, from (2.6),

(2.32) f dv(0) < 2P{T(e, c) < 6} = 27r-1/2 J,og V-12e-idv = o(a).
0 -0(e)

Hence

(2.33) +(x, u) = f dv(0) f d,m(W2)e-uG(x)
0 U

= f dv(0) f d,(w2)e -uG(x,.) + o(8).
0(f) Q

When 0(cw) belongs to 0(e), then T(x, cw) > a since x _ a > e; and so, by (2.31),

(2.34) G(x, w) = foaV[x + X(t, w)] dt + fo'T(x+S,,) V[x + S + X(t, w2)] dt.

In the first integral in (2.34), X(t, 6) <_ e; and e -O 0 as 8 -+ 0. Hence the first
integral is 5V(x) + o(8); and the o(8) is uniform in x because V(z), being con-
tinuous for z _ 0, is uniformly continuous in the closed interval 0 _ z < a + y.
Thus, when 0(X) belongs to 0(e),

(2.35) G(x, c) = f0T(x+Sw2) V[x + S + X(t, 2)] dt + 6V(x) + o(8).

Inserting (2.35) into (2.33) and performing the integration with respect to W2,
we have for fixed u

(2.36) 4(x, u) = f {1 - u6V(x)}j(x + S, u) dv(0) + o(8).
e(e)

Hence, from (2.32) and (2.36), we have, taking +(x + S, u) = 1 formally
for x + S < 0,

(2.37) +0(x, u) = {1 -uBV(x)} f +(x + S, u) dv(0) + o(8).
0

In (2.37), the integrand depends on 0 only through S; so we may integrate out
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onto the marginal distribution of S, which is normal with mean zero and variance
6. This gives

(2.38) +(x, u) = {1 - uV(x)} | (x + S, u)(2 )1/2 dS + o(5).

In this we write z = SIV and

(2.39) P(z) = (27)-1/2 JZ e-v/2 dv

for the standardized normal distribution. After rearranging terms a little, we get

(2.40) f| {+(x + z'V", u) -+(x, u)} dP(z)

= u?V(x) f 4O(x + zV6, u) dP(z) + o(6).
Since the o(5) in (2.40) is uniform in x for a < x _ y, we deduce

(2.41) ft dx(y - x)3 f| {f+(x + z\5, u) -+(x, u)} dP(z)

= f dx(y - x)3ubV(x) f +(x + zV6, u) dP(z) + o(5).
Divide (2.41) by 6 and let a ->0. On the left side we may invoke Fubini's theo-
rem to invert the order of integration, since the integrand consists of the dif-
ference of two nonnegative bounded terms and P is a probability measure. On
the right side we may use Lebesgue's bounded convergence theorem to bring the
limit with respect to a inside both integrals, provided that limso +(x + z\i, u)
exists for almost all x. This proviso is met, and this limit is +(x, u), since +(x, u)
is continuous almost everywhere for fixed u. We thus get

(2.42) lim dP(z) fdx(y - x)3{4(x + zx/6, u) -+(x, u)J/6

= Uf (y -x)3V(x)4(x, u) dx.

Next write qb(x, u) = fo(x, u), and defined for n = 1, 2, *

(2.43) 0.(X, u) = f| 40.-1(v, u) dv,

#n(a, 5, u) = f| dP(z)ok(a + zV", u)/3.

Integrate the inner integral on the left of (2.42) three times by parts, and express
the result in terms of (2.43). We find

(2.44) lim |_ dP(z) {b4(y + zVS, u) - 04(y, u)}

= (x)o(x, u) dx + lim Ey a) 4'n(a, 6, u),
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provided the left side of (2.44) exists. Since dP(z) = dP(-z), the left side of
(2.44) is

(2.45) 2lim f dP(z) {44(y + z'6, u) - 24(y, u) + 04(y- Z\165 U)}/a

= lim | dP(z) -z'o2(y, U) +1 "61/2 [41(y + OiZV, U)
2 mo 6+,U

+ 41(Y - o2ZV6, U)]},
where 10il < 1, i = 1, 2, because the second and third derivatives of 04 are
52 and +i; and 41, being an integral, is continuous. Also, by (2.43), fi(y i 0jz\6,u)
is 0(z) as z -f 4oo; and f Z4 dP(z) is finite. Hence the right side of (2.45)
exists and equals

(2.46) 1 2(y, u) f Z2 dP(z) = 202(Y, u).

Thus, from (2.44), whose left side has been shown to exist by the above argument,

(2.47) 2 (y, u) - u (y - x)3V(x)4(x, u) dx

-im E (Y n ,&.(a, 8, u).

We can choose a sequence {8k}, where bk -- 0 as k -- o, such that

(2.48) x.(a, u) = lim 4,6(a, 8k, U)
k- *o

exists for each n = 0, 1, 2, 3. At first sight, it might appear that, to be able to
assert the existence of each Xn, we should have to admit the possibility that
xn = 4oo. However, this is unnecessary; for, if any xn were infinite, we could,
by taking k large enough, show that the right side of (2.47) was arbitrarily close
to a cubic polynomial in y with at least one arbitrarily large coefficient; and this
would contradict the fact that the left side of (2.47) is bounded in any closed
interval a < y < b < o. Hence Xn (a, u) is finite, and

(2.49) ~~~~~~2(Y, u) =y a)(2.49) 02(Y, u) = 1u /;v(y - x)3V(x)qb(x, u) dx + n (a, u)-
Now the right side of (2.49) is clearly a thrice differentiable function of y; so
the third derivative of the left side exists and is

(2.50) 0( u) = 2u f V(x)4.(x, u) dx + 2X3(a, u).

Now (2.50) holds for arbitrary y > a. Also +(x, u) is a bounded nonincreasing
function of x. Hence the left side of (2.50) tends to zero as y -m o. Thus

(2.51) 0 = 2u f V(x)4(x, u) dx + 2x3(a, u).
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Since Xs(a, u) is finite, the integral in (2.51) is also finite; and we may therefore
subtract (2.51) from (2.50) to get

(2.52) = -2u f V(z)o(z, u) dz.

Equation (2.52) holds for y > a > 0, and hence for y > 0, since the arbitrary
number a does not appear in (2.52). If we integrate (2.52) over all positive
y < x and use (2.28), we get

(2.53) +(x, u) = 1 - 2u f0 dy f V(z)O(z, u) dz

= 1 - 2u f| min (x, z)4(z, u)V(z) dz,

since the inner integral in (2.53) is finite and we may invert the order of integra-
tion. This completes the proof of (2.21).
Now relax the condition that V(z) be continuous for z _ 0. For arbitrary V(z),

let Vo(z) be any function, which is continuous for z > 0 and satisfies 0 _ Vo(z) <
V(z). Abandoning the notation of (2.43), we now write 4o for the moment-
generating function associated with V0 (in the same way as c is associated
with V). From (2.21) applied to qo, we have

(2.54) 1 _ Oo(x, u) + 2u fo min (x, z)Vo(z)0o(z, u) dz

> 4o(x, u) {1 + 2u f0 zVo(z) dz},

since oo(x, u) is a nonincreasing function of x. Hence

(2.55) 0 < +(x, u) < 40f(x, u) < {1 + 2u f0o zVo(z) dz}

Let t be the supremum of all -q for which (2.22) is true. Consider first the case
= 0. Then, for any given x > 0, we can choose Vo(z) so that the right side of

(2.55) is arbitrarily small. This proves that +(x, u) = 0, and hence O(x, 0+) = 0.
Hence G(x, w) is infinite with probability 1. There is nothing further to be said
about the case t = 0; and hereafter we shall always suppose that t > 0.

Next suppose 0 < t < oo. Consider an arbitrary finite positive M, and then
choose x(M), satisfying 0 < x(M) < (, such that f0x (M)zV(z) dz _ M. Next

choose Vo(z) such that (M zVo(z) dz _ M/2. By (2.55), we have 0 <

Q{x(M), u} _ (1 + uM)-'. Since M is arbitrary and +(x, u) is nonincreasing, we
conclude that +(x, u) 0 as x -- (, and that +(x, u) = 0 for x _ t. Hence
+(x, 0+) = 0 for x >_, and G(x, c) is infinite with probability 1 if x > t.

It only remains to consider the case 0 < x < t . oo. Let nt satisfy x < 71 < t;
so that (2.22), and therefore (2.23) hold. Put y = x in (2.23) and let u -+ 0.
The integral in (2.23) is finite, since the integrand is bounded by zV(z) uniformly
in u. We conclude that
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(2.56) +(X, 0+) = 1- ' {1- 0, 0+)
77

since +(x, u) is clearly a nonincreasing function of u, by (2.3), and +(x, 0+)
consequently exists. Once more return to (2.23) with y = x. Fix x and let q -* t.
The integrand in (2.23) is a nondecreasing function of i7, and the range of inte-
gration increases with q. On the right side, 0(77, u) -O 0 if 4 < oo; while if = 0,
x{1 - 4(77, u)}/t7 _ x/17 0 = x/t, formally. Hence, we may write

(2.57) +(x, u) + 2u f {min (1, _) - xI 0(z, u)zV(z) dz = 1 - x-,

0 < x < _ oo.
The integrand in (2.57) is nonnegative, and hence

(2.58) +(x, u) _ 1- 0 < x < ._0.

Since (2.58) holds for all x < 4, we may replace x by 77 in (2.58) and then let
u -40 to give

(2.59) k(77,0+) I1 -

From (2.56) and (2.59),

(2.60) +(x, 0+) >1I - 1

Now let u -- 0 in (2.58) and compare the result with (2.60). We get

(2.61) 4(X, 0+) = 1 - X;

and this proves that G(x, w) is infinite with probability x/4, when 4 < 00, and
is finite with probability 1, when 4 = 0. To prove that O(x, u) 1 as x 0,
let y = x-* 0 in (2.23).
From (2.57) we have

(2.62) 1- >_ 2u f <{min (1, x) - x4(z, u)zV(z) dz

- 2u 0(z, u)zV(z) dz;

and hence

(2.63) J (z, u)zV(z) dz < 2u

Letting x - 4 in (2.63), we see that f1t 4(z, u)zV(z) dz is finite; and this allows

us to rewrite (2.57) in the form
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(2.64)

(x, u) = 1 - + t f(z, u)zV(z) dz - 2u miri (x, z)4(z, u)V(z) dz
=1_+ 2ux tO(z, u)zV(z) dz-2u x dy Xdz (z, u)V(z).

The right side of (2.64) is a differentiable function of x; so

(2.65) 'x c- + k| q(z, u)zV(z) dz - 2u t :(z, u) V(z) dz

exists and is a continuous function of x for 0 < x < t _ oo. A fortiori, +(x, u)
is continuous in 0 < x < t _ -; and therefore (2.14) is an immediate conse-
quence of differentiating (2.65) whenever either side is differentiable. The second
equation of (2.13) also follows at once from (2.65).

If t < oo, there is a positive probability that G(x, w) = o. Hence Mn(x) is
infinite for n = 1, 2, ... . This confirms the result given by (2.10). Hence we
have only to prove (2.10) in the case t = oo. In this case, (2.57) reduces to (2.21).
We write (2.21) in the form

(2.66) 2 fo dz min (x, z)V(z) f d,A(w)e-uG(z,) = 2 f| min (x, z)V(z)O(z, u) dz
n

1- (x, u) f 1- e-uG(x,r)fG(Xw )
= = J d8~~-i(co)) d/lu(c) e-11 dz.

0 a

Let v be any complex number whose real part is strictly greater than a prescribed
E > 0. Write f(v) for the left side of (2.66) when u is replaced by v. We have

(2.67) f(v) = f dXe-G = f dX 1 J eF dw,27iw- v

RXO RXO r

where R is the set of positive finite real numbers, X is a measure on the product
space R X Q, and r is a circle centered at v and of radius T(v) - e. For fixed
integers k and m, x + X(k/m, w) is a measurable function on R X Q since x is
a measurable function on R and therefore on R X 0, and since X(k/m, W) is
a measurable function on 0 and therefore on R X Q. Hence the set of (x, w) for
which (2.17) holds is a measurable subset of R X 0 when V is continuous.
Using this set in place of Qzm(M), we can now follow tbrough the argument,
already used to prove that G(x, w) is ,u-measurable for fixed x, to prove that G
is also measurable on R X Q. It follows that the real and imaginary parts of
the integrand on the right of (2.67) are measurable on R X 0 X R', where R'
is the whole real line (covered by the real or imaginary coordinates of w). The
real and imaginary parts of the integrand are also absolutely integrable, since

(2.68)
1
2 e| GI .Idw I | dXe-eG = 1<-(x, 0)

RxQ r RXn
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Hence we may apply Fubini's theorem to (2.67) with the result

(2.69) f(v) = 1 w -v,fdXeG-G f=w-v
r RXQ r

But (2.69) shows that f(v) is analytic when T(v) > e. Hence, if u > e, we may
differentiate f(u) as many times as we please, and

(2.70) dn-'f(U) _ (n - 1)! £ f(w) dw
du"n- 27ri (w-u)

_ (n -i)! £ dw dew
2iri 7 (w -u)= / dXewG

r RXQ

= [ dX(-1n- £: e-vGdw
J 22ri 7 (W - U)n

RXQ I'

= f dX(-G)n-'e-u';
RXQ

for we may apply Fubini's theorem in (2.70) for the same reasons as in (2.68).
Since e > 0 is arbitrary, (2.70) holds for all u > 0. Thus we may differentiate
the left side of (2.66) with respect to u under the integral signs. A similar argu-
ment applies to the right side of (2.66); and we deduce

(2.71) 2 Jo dz min (x, z)V(z) J dMl(w)[G(z, W)]n-le -uG(zw)

= J d(,) f Glx) Z_le_u' dz.

The integrands on each side are nonnegative and are nondecreasing as u decreases
to zero. Hence we may let u -+0 under the integral signs, to obtain

(2.72) 2 f min (x, z)V(z)M.,,(z) dz

= 2 fo dz min (x, z)V(z) f dAt(w)[G(z, w)]'-'

Q~~~~~~~= / dj.4w) fG(z.w) zn-' dz

= 1 f d(,)[G(x, W)]n = M.(X),
n

which establishes (2.10).
When (2.4) holds, (2.14) reduces to Riccati's equation ([5], pp. 195-196),

(2.73) o ,(.u) = 2uxPO(x, u);OJX2
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and the solution of this can be written in terms of Bessel functions. For the
relevant boundary conditions (2.13), we obtain (2.15). The Bessel function
Khi/,(z) can be written in the form (2.16) ([6], p. 548); and so (2.15) and (2.16)
give

(2.74) f0 e-ugdgP{G(x, w) _ g}

=0(zX u) = r(l/p) ;I vl/p-le-ve-u(2xP/p2v) dv.

Since the inverse Stieltjes-Laplace transform is unique, (2.5) is an immediate
consequence of writing g = 2xP/p2v in (2.74).

3. Generalized first-passage theory for walks

3.1. Statement of results. Let P(y) be a given cumulative distribution func-
tion, which is proper at +oo though it may be improper at - ; that is to say,
P(y) is a nondecreasing function which is continuous on the right and satisfies
(3.1) lim P(y) = 1, lim P(y) > 0.

Let Yi, Y2, * be an infinite sequence of mutually independent random variables,
each distributed according to P(y). For given x > 0, define

(3.2) zo = x, Zt= Zt-g +Yt, t = 1, 2,*--.

Thus the infinite sequence zo, zl, Z2, -.. is a random walk starting at x, and we
denote it by WZ. Let T be the smallest integer such that ZT _ 0, with the under-
standing that T = +ao if zt > 0 for all t = 1, 2, * - . Thus T is the first-passage
time for WZ. We shall write WO for the truncated walk zo, z1, * *, ZT, it being
understood that WO = WZ if T = +X.

Let V(z) be a given nonnegative Borel-measurable function such that (a) for
each given r > 0

(3.3) E sup V(z+ )< oo;
n=O n<zSn+l

and (b) there exist constants a and p satisfying a > 0 and p < 1 for which

(3.4) V(z)-~(-) as z-40+.

For the walk WZ, specified by (3.2), we define the random variable

(3.5) G(x) = E V(zt).
O St <T

We are interested in the distribution of G, and our main result here is the asymp-
totic relation

(3.6) lim gl/(2-P)P{G(x) > g} =E (n + 1)1/(2-P)(11Ro n=0 Ro
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where q(x) an(d Ro are quantities defined below. There is onie trivial exception to
(3.6), which arises when, with probability 1, all the yt are zero. In this case, of
course, G(x) = 0 or +co, with probability 1, according as V(x) = 0 or V(x) > 0.
This trivial exception only occurs if P(y) = H(y), where H(y) is the step function

(3*7) H(y) ={O, Y <°-0,
Hence, throughout our work, we assume that P(y) 4 H(y).
To specify the quantities q(x) and Ro, we define Q(z, x) to be the expected

number of visits by WO to the semiclosed interval (0, z]: that is to say, Q(z, x)
is the expected number of distinct integers t such that 0 < Z _< z and 0 _ t < T.
We shall prove that

(3.8) Q(z, x) = ll(z - x) + f Q(z, y) dlP(y -x),

where H is given by (3.7). In general, the integral equation (3.8) has infinitely
many solutions; but, among these solutions, there is a unique Neumann solution,
that is to say, the series solution obtained by iterating

(3.9) Qn(z, x) = H(z - x) + f Q._l(z, y) dP(y - x), n = 1, 2,
starting from Qo(z, x) = 0. We shall prove Q(z, x), defined as the expected num-
ber of visits by WO to (0, z], is the Neumann solution of (3.8), and that it has
the following two properties: for fixed z > 0

(3.10) Q(z, x) = 0(1) as x x,
while for fixed x > 0,
(3.11) Q(z,x) = 0(z) as z-*o.
The two properties (3.10) and (3.11) will often be useful in picking out the
Neumann solution when the general solution of (3.8) is available. The quantity
Ro is defined by
(3.12) Ro = lim Q(2z, z);

z-o+

and it satisfies 1 _ Ro < o, so the series on the right of (3.6) is indeed conver-
gent. The limit in (3.12) always exists. We shall also prove that, for almost all
x > 0, there exists

(3.13) q(x) = lim Q( ')
z-0 + Z

and (3.13) provides the definition of the function q(x) used in (3.6). The limit
on the left side of (3.6) exists if the limit on the right side of (3.13) exists; and
therefore in general (3.6) is only true for almost all x.
The two conditions (3.3) and (3.4) on V(z) are sufficient but not necessary

conditions for (3.6). At the expense of additional complications in the proof,
condition (3.3) could be weakened quite considerably. On the other hand, only
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a relatively trivial weakening of (3.4) would be possible without destroying (3.6).
Equation (3.6) shows that G, defined for a walk by (3.5), behaves quite dif-

ferently from the analogous G, defined for a Brownian path by (2.2). For example,
consider the special case when V(z) is given by (2.4). Then, with probability 1,
G for a walk is finite for all p < 1, whereas G for a Brownian path is finite if
and only if 0 < p < 1. Further, the expected value of G for a walk is infinite
for all p < 1, whereas it is finite for a Brownian path if and only if 0 < p < 1.
The present work is therefore an interesting addition to the relatively few known
cases in the literature, in which results for Brownian paths cannot be regarded
as limiting cases of results for walks.

It is worth noting from (3.6) that the asymptotic behavior of large G depends
upon V only through the multiplier a and the coefficients (n + 1)1/(2-P). The
functions Ro and q, on the other hand, depend only on the distribution P(y).
Further we shall show that, if P(y) is continuous, then Ro = 1, and the right
side of (3.6) reduces to the simple expression aq(x). At the other extreme, if
P(y) is a lattice distribution, then q(x) = 0 for almost all x; and (3.6) provides
little useful information in such a case. It is natural to ask whether one cannot
obtain an integral equation for q(x) itself, for instance by differentiating (3.8)
under the integral sign. It is fairly easy to construct counterexamples to show
that such a procedure is not in general justifiable, as indeed might have been
expected from the fact that q(x) may not exist on a set of measure zero. However,
in the special case when P(y) is convex for all sufficiently large negative y and
possesses a bounded derivative p(y) for all y, then we shall show that q(x) exists
for all positive x, satisfies the integral equation

(3.14) q(x) = p(-x) + fj, q(y)(y - x) dy,

and is bounded as x -m o. There are heuristic reasons for believing that, when
the distribution P possesses a variance a2 and satisfies certain additional
conditions, then q(x) -+ 21/2/o- as x -* oo. But I have not succeeded in discovering
what these additional conditions are, though it is clear from the foregoing that
the mere existence of af is insufficient to provide a limit for q(x), inasmuch as a
may exist even though p(-x) does not tend to a limit.
As an illustration of the multiplicity of solutions of (3.8), we may take the

example

K2 -(1 - K2)eY, y < 0,
(3.15) P (y)

2
0 _ K _ 1.

t1-2(1 - 0)e-y, y >_ O,

Then we can solve (3.8) by differentiating twice to obtain an ordinary differen-
tial equation, whose solution can be substituted into (3.8) to obtain the relevant
boundary conditions. For details of the procedure see the companion paper [13]
by D. G. Kendall. The resulting general solution of (3.8) is
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(3.16) Q(z, x) (1 - K) (cosh Kz + K sinh Kz - 1) eK

+ {1 -(1- K2) cosh K(Z - )} H(z - x)

+ (K cosh KX + sinh KX) C(z),

where C(z) is an arbitrary function of z for 0 < K < 1, but C(z) = 0 for K = 1.
Thus there are infinitely many solutions or just a unique solution according as
0 _ K < 1, or K = 1. In either case, the Neumann solution is the one obtained
by putting C(z) = 0. When K = 0, the expressions in (3.16) are to be interpreted
as their limiting values as K 0+. It follows from (3.16) that, when (3.15)
holds, then
(3.17) q(x) = (1 -K)e-L.

3.2. Proof of results. We shall first show that there exist positive numbers c
and 7, depending on x but independent of z, such that
(3.18) a(z) _ c,
where a(z) is the expected number of visits by Wo to the closed interval [z, z + 'i]
for z _ 0.

Since P is not of the form (3.7) it belongs to one of the following three types.
Type I. P(y) = 0 for all y < 0, while P(y) < 1 for some y > 0. In this case

we choose q > 0 such that P(q7) < 1.
Type II. P(0) = 1, while P(y) > 0 for some y < 0. In this case we choose

q > 0 such that P(-277) > 0.
Type III. P(0) < 1 and P(y) > 0 for some y < 0. In this case we choose

numbers 7, 77o0, 'l, v, and t in the following manner, which, it should be noted,
does not involve z. First, since P(0) < 1 = lim,_ +x P(y) and P(y) is nondecreas-
ing, we may choose 771 > 0 such that

(3.19) P(Y) < P(771), 0 <y <771.
Next we choose 17 to satisfy simultaneously the three relations

(3.20) P(-4X1) > 0, 0 < 2X7 < 71, 377 < x,

this being possible because P(y) > 0 for some y < 0 and P(y) is nondecreasing.
Then we choose a positive integer v such that
(3.21) v1h > x + 3-.

Finally we choose 770 such that

(3.22) 0 < max (277, 71 -v <77 < 711,

this being possible by virtue of (3.20). These choices lead to the following con-
sequences. By (3.19) and (3.22),
(3.23) P(71) - P(7O) > 0.
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By (3.22),
(3.24) 0 < (71 - o) <7
By (3.21) and (3.24),
(3.25) = xv77o < -27,
where t is defined by (3.25).

Let #(z, t) = 1 - *(z, r) denote the probability that Wo does not visit
[z, z + q] for any t > 0, though it may visit this interval for t = 0. Define

(3.26) d(z) = inf ,B(z, t).
Z:St _Z+n

If P is of type I, and if yi> I and z _< = zo < z + 7, then WE cannot visit
[z, z + iq] for t > 0; and consequently
(3.27) ,B(z) _ 1 - P() > 0.
If P is of type II, and if yi _ -2X7 and z < r = zO _ z + q, then Ws cannot
visit [z, z + 71] for t > 0; and consequently
(3.28) ,(z) _ P(-277) > 0.
Finally, if P is of type III, let u be the least integer exceeding (z + 17)/4-1. Then,
if z . r = zo < z + i7 and y < -4X7 for j = 1, 2, * *, ,we see that WE cannot
visit [z, z + ,q] for t > 0; and consequently
(3.29) 13(z) _ [P(-477)], > 0.

Thus, whatever the type of P, we have ,B(z) > 0 and by virtue of (3.26) we can
find a number a- satisfying 0 _ a- < q such that
(3.30) 0 < :(z) ! 1(z, z + a-) = Oo(z) _ 20(z),
where /3o(z) is defined by (3.30).

Since a walk starting at an arbitrary point of [z, z + q] has a probability at
most [1 - 13(z)]k of visiting [z, z + q] at least k times before visiting [- o, 0],
we have

1 2(3-31) a(z) _l-E 1#() (z) <- 0(z),
by (3.30). If P is of type I or II, (3.18) follows from (3.31) and (3.27) or (3.28),
respectively. Hence, in the remainder of the proof of (3.11), we may and do
assume that P is of type III. We may also assume that z > x; for, if z < x, we
have u <- 5/4 + x/471 and (3.11) follows from (3.29) and (3.31). When z > x,
the probability that WO visits [z, z + 11] at least k times is not greater than
0*(z, x)[1 - (z)]k-1; and therefore

(3.32) a(z) _ E 1*(z, x)[1 - #(Z)]k-1 < A*(Z, X)
k=1 = fl~~~~~~1o(z)

If 1*(z, x) = 0, then a(z) = 0 and (3.11) is trivial. Hence we may and do assume
that
(3.33) 1*(z, x) > 0.
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Now let y denote the probability that TVO never visits [- 1, 7] for t > 0.
Clearly y is independent of z. By translating both the walk and the interval
through a distance z + o, we see that Sy is also the probability that Wz+o never
visits [z + a -r7, z + a + 71] for t > 0. This process of bodily translation of a
walk and boundaries will often be invoked in what follows; and we shall simply
use the phrase "by translation" to indicate this method of obtaining a conclusion.
Since [z, z + j] lies within [z + a - q, z + a + q], y does not exceed the
probability that W2+a never visits [z, z + q] for t > 0. Moreover, this last proba-
bility does not exceed j3o(z). Thus -y _ flo(z); and (3.11) follows from (3.31) if
y > 0. Hence we may and do assume that - = 0. Consequently WO revisits
[-, t1] with probability 1; and hence by translation Wt revisits [ - , t + ']
with probability 1.

Let ,3i(z) denote the probability that WE visits [z, z + 2-q] before it revisits
- 3nq, t + 2,q]. The validity of this definition follows from (3.25) and z > x.

In particular, consider the case when WE starts with v steps satisfying 'io < yj _
711 for j = 1, 2, ... , v, and then continues with any sequence of steps according
to which a Wx would visit [z, z + j] before entering [-oo, 0]. The probability
of such a particular Wt is [P(n1) - P(no)]vfl*(z, x). Now, by (3.22), 7o > 2,7; so
the first step of this particular WE carries it clear of [t - 3t7, t + 271]. By (3.24)
and (3.25), the first v steps of this WE will bring it to some point of [x, x + a];
and it will not revisit [t - 3-q, t + 271] in the course of these v steps since 710 > 0.
The succeeding steps of this Wt will carry it to some point of [z, z + 2X1] without
entering [-oo, 0], and therefore before revisiting [t -3X7, t + 271] because
t + 271 < 0 by virtue of (3.25). Consequently this particular WE visits [z, z + 271]
before it revisits [- 37, t + 2j71. Hence

(3.34) 01(z) > 1*(z, X)[P(11) - P(10)]? > 0,
the last part of this inequality being a consequence of (3.23) and (3.33). Let :2(Z)
denote the probability that Wt visits [z + - 371, z + a + 271] before it revisits
[ - 37, t + 2X7]. Since [z, z + 2,q] is contained in [z + - 371, z + a + 271], we
we have ,B,(z) ._ 32(Z); and (3.34) gives
(3.35) 0 < ,B*(z, X)[P(Q1q) - P(,70)]t _< 32(Z).
Notice that 3q < x < z _ z + a* and < -2t7 by (3.20) and (3.25), so that the
intervals [t - 371, t + 271] and [z + r- 371, z + a + 2,q] do not overlap; and
this validates the definition of 02(Z) given above.
Now, as already noted, Wt has probability 1 of revisiting [ 0-n, t + 7]; and,

according to (3.34), it has positive probability #1(z) of visiting [z, z + 271] before
it revisits [t -37, + 2X7]. A fortiori, Wt has positive probability of visiting
[z, z + 2X7] before it revisits [ -71, t + ,q]. If, for every point z + X in
[z, z + 271], Wz+ had a positive probability of never revisiting [ -71, t + 71],
WE would have a positive probability of never revisiting [t - 0, t + 7]. This
contradicts the fact that Wt revisits [t - q, t + i7] with probability 1. Hence
there is at least one point z + X in [z, z + 271] such that Wz+x visits [ - 7, t + 71]
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with probability 1. By translation, Wz+a has probability 1 of visiting
[t + of- X - i, t + o- - X + q]. Since 0 _ oa _ t and 0 . X _ 2X1, W2+a has
probability 1 of visiting [t - 3,q, t + 2,q]. Let f3(z) be the probability that Ws+,
visits [t - 3-1, t + 2,q] before it revisits [z + oa -37, z + o + 271]. Let Wz+af(r)
denote a Wz+¢, which starts with a step yi S -471 and which visits [t -3X,
t + 271] after precisely r steps. Because of (3.20) and the fact that Wz+U visits
[t-3X7, t + 27X] with probability 1, there exists a positive integer m such that
W'+f is a Wz+of(m) with some strictly positive probability rm. Let W*+O(m)
denote a Wz+oU(m) in which the first m steps are in increasing order of magnitude
algebraically, that is, the most negative values of y come earliest. Then Wz+v (m)
visits [ -371, t + 2X1] before it revisits [z + oa -3X1, z + o + 2717]; and there is
a positive probability at least equal to 7rm/m ! that Wz+U is a W*+ 0(m). This proves
that

(3.36) 33(Z) > 0.

Since [z + oa -3X1, z + a- + 2Xq] contains [z, z + 71], and since [-xo, 0] contains
[t- 31, t + 271], we have

(3.37) 0 < 33(z) <_ io(z).
From (3.32), (3.35), and (3.37) we deduce

(3.38) a(z) < 2[P(,71) - P(710)]- $2(Z).

Next, for brevity, write It and Iz+, for the intervals [ -3X1, t + 271] and
[z + a- - 371, z + a + 2X1] respectively. Let Q denote a walk which starts from
zo = t and continues indefinitely with independent steps, each distributed ac-
cording to P(y), each step being taken from the point reached by the previous
step except that, whenever Q visits a point of It or of Iz+a the next step is taken
from the point t or z + a respectively. Evidently Q coincides with a WE up to
its first visit to I.+, or its first revisiting of It. After a visit to Iz+e or It, Q for its
next sequence of steps until a fresh visit to one of these intervals coincides with a
Ws+' or a WE respectively. Now WE revisits It with probability 1, and similarly
by translation WZ+6 revisits Iz+a with probability 1. If Q had both a last visit to Ih
and also a last visit to Iz+e, it would, after the later of these last visits, coincide
with either a WE not revisiting It or a Wz+U not revisiting I,+,, and it would there-
fore have probability zero. Hence, with probability 1, Q makes infinitely many
visits to the union of It and Iz+e Further, whenever Q visits It it has a positive
probability :2(Z) of next visiting Iz+, before it revisits Ie; and whenever Q visits
I+a, it has a positive probability /3(Z) of next visiting It before it revisits I.+,.
It follows that, with probability 1, Q visits It infinitely often and also, with
probability 1, Q visits I.+, infinitely often. The probability that, following upon
a visit to It, Q will make at least k visits to Iz+, before it revisits It equals $2(Z)
[1 - /3(z)]k-1; and hence the expected number of times Q visits Iz+a between two
successive visits to It is



LOSS OF COMETS, II 37

(3.39) E 2(Z)[1 -3(Z)] k- (Z)
k=1 J33(Z)

Since Q visits Ie infinitely often with probability 1, we may regard Q as having
started in the indefinitely distant past. Thus (3.39) also gives the expected num-
ber of visits by Q to Iz+, between a given visit to It and the preceding visit to I'.
Hence (3.39) represents the expected number of visits to Iz+e between successive
visits to It when Q is described backward.
We now set up the following mechanism for describing Q backward, starting

from a visit to It. Draw a sequence of independent random numbers yI, Y2, *
from the common distribution P(y). We say that event Ar occurs if

(3.40) -3n _ E yj 2-,
j=-

and that event Br occurs if
r

(3.41) -3Xq-z- -a E yj - + 2,1- z-a.
j=1

Since It and I,+, do not overlap, the events A,. and Br are exclusive for each
given r. If either A1 occurs or there is an integer r > 1 such that A,. occurs al-
though none of B1, B2, * * , B,_1 occurs, we say that event A occurs. Similarly
if B1 occurs or there is an integer r > 1 such that B, occurs although none of
Al, A2, * * * , Ar,- occurs, we say that event B occurs. Evidently events A and B
are exclusive. Since the steps of a WE or a Wz+± are independent, and may there-
fore be taken in reverse order, we see that, if A eventually occurs, then no visits
to Iz+, occurred between the given visit to It and the previous visit to It;
whereas, if B eventually occurs, then some visit to I,+e occurred between the
given visit to It and the previous visit to It. However, one and the same trans-
lation will carry t and It into z + a and Iz+e respectively. Hence, if we do not
take the yj in reverse order, the events A and B will respectively tell us whether,
in describing Q forward from a given visit to I.+, Q does or does not revisit
Iz+e before it visits It. Consequently, events A and B are exhaustive, apart from
events of zero probability; and event B must have probability 13(z) and event
A must have probability 1 -,3(Z). A similar argument shows that, if we de-
scribe Q backward starting from a visit to I.+,, then the probability that no
visits to It occurred between the given visit to Iz+, and the previous visit to
I.+, is ,B2(z). Hence, in tracing Q backward, the expected number of visits to
Iz+e between successive visits to It is

(3.42) k z03(Z)[1 - 32(Z)]k-i = 3(Z)k-1 132(Z)
Since, as already remarked, the expectations in (3.39) and (3.42) are equal and
reciprocals of one another, each equals 1. Thus (3.38) reduces to

(3.43) a(z) _ 2[P(71) -P(,no)]
and this completes the proof of (3.18).
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Now define Q(z, x) to be the expected number of visits by Wox to the semiclosed
interval (0, z]. From (3.18) we have

(3.44) Q(nj + n, x) - Q(ntq, x) _ a(nuq) _ c

for n = 0, 1, * , N - 1. Summing (3.44) over these values of n and noting
that Q(O, x) = 0, we get

(3.45) Q(Nq, x) _ cN.
Since Q(z, x) is a nondecreasing function of z for fixed x, (3.11) follows at once
from (3.45).
Next we shall prove the assertions connected with (3.12). For this and for

subsequent work we require an extension of the notation WI'. We write W' for
the truncated sequence zo = x, zl, Z2, * , Zt where t is the smallest nonnegative
integer such that zt _ t. This niotation carries the gloss that Wx = Wx if zt > t
for all t. For z > 0 we define

(3.46) R(z) = Q(2z, z).
Thus R(z) is the expected number of visits by Wo to (0, 2z], and this does not
exceed the expected number of visits by Wo' to (¢, 2z - f] if 0 < r _ z. The
latter expected number does not exceed the expected number of visits by Wr to
(¢, 2z - fl, which in turn by translation does not exceed the expected number of
visits by Wo-t to (0, 2z - 2f]. Hence
(3.47) R(z) > R(z -

so that R(z) is a nondecreasing function, which establishes the existence of

(3.48) Ro= lim R(z).
z-O+

Since zo = z < 2z, we have R(z) > 1; and therefore Ro _ 1. The inequality
(3.45) shows that Q(z, x) is finite for every given z and x; so R(z) is finite for
given z; and now Ro < oo follows from the nondecreasing character of R.

If 0 < y z, Q(z, y) is the expected number of visits by Wo to (0, z], which
does not exceed the expected number of visits by WY -z to (y - z, z], which
equals Q(2z - y, z) upon translation. Hence

(3.49) Q(z, y) _ Q(2z - y, z) < Q(2z, z),
since Q(z, x) is a nondecreasing function of its first argument. From (3.46)
and (3.49),

(3.50) Q(z, y) < R(z).
For any x > 0, we have

(3.51) Q(z, x) _ sup Q(z, y).

Hence (3.50) holds for all y > 0; and (3.10) follows at once.
Next we shall prove (3.13). Define L(z, x) to be the probability that W0

visits (0, z]. For arbitrary h > 0 we have
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(3.52) L(z + h, z + x)-L(z, z + x)
= P{Wo+' visits (z, z + h] but does not visit (0, z]}
= P{W2 2 visits (0, h] but does not visit (-z, 0]}
= P{Wx visits (0, h] but not (-z, 0] before entering [-co, -z]}
_ P{Wx visits (0, h] before entering [-oo, 0]}
= P{Wo visits (0, h]} = L(h, x).

Define K(z) to be the probability that WO does not visit the open interval
(0, z). Since R(z -P) is the expected number of visits by Wo-¢ to (0, 2z -2f,
which equals on translation the expected number of visits by Wr to (r, 2z -],
we have on letting r -* z - 0 that Ro is the expected number of visits by Ws
to the point z before entering [-oo, z). Thus

(3.53) R(z) -Ro
= expected number of visits by WO to (0, 2z] excluding visits to

the point z

_ expected number of visits by WO to (0, z)
_ P{Wo visits (0, z)} = 1 - K(z).

Now consider the product L(h, x)K(z + h). The first term of this product is
the probability that WO visits (0, h]. Conditional upon W3 having visited (0, h]
at some point t, say, K(z + h) is the conditional probability that the ensuing
part of WZ does not visit (t - z - h, t) before entering [-X0, t - z -h],
because this ensuing part is independent of the part of Wx up to and including
the first visit to (0, h]. Thus
(3.54) L(h, x)K(z + h)

= P{WZ visits (0, h] before entering [-00, 0], and having first
visited (0, h] at some point t, say, does not thereafter visit
(- z - h, t) before entering [-oo, t - z - h]}

< P{W2Z visits (0, h] but does not visit (-z, 0]}
= L(z + h, z + x) -L(z, z + x).

In (3.54) the last step follows from the first two steps of (3.52); and the penul-
timate step of (3.54) holds because 0 < t . h implies -z - h _ -z. As-
sembling (3.52), (3.53), and (3.54) we deduce

(3.55) [1 + Ro-R(z + h)]L(h, x) < K(z + h)L(h, x)
_ L(z + h, z + x) - L(z, z + x) . L(h, x).

Suppose 0 < z < x, and write x - z in place of x in (3.55). We get
(3.56)

[1 + Ro - R(z + h)]L(h, x - z) . L(z + h, x) -L(z, x) . L(h, x - z).
For fixed x, L(z, x) is a nondecreasing function of z by virtue of the definition
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of L, and is therefore differentiable for almost all z, say for all z belonging to
some set 38, depending on x. Suppose z belongs to S3.. Then there exists

(3.57) 1(z, x) = lim h-'{L(z + h, x) - L(z, x)}.
h-O +

From (3.56) we get

(3.58) [1 + Ro- R(z + 0)] lim sup h-1L(h, x - z)
h 0+

< 1(z, x) _ lim inf h-'L(h, x - z),
h-*O +

provided z belongs to 83,. By (3.48) we deduce that
(3.59) (1 - rn-1) lim sup h-1L(h, x - z) _ lim inf h-'L(h, x -z),

h_-O+ h 0+

provided that z both belongs to 3,0, and also satisfies 0 < z < b(m), where m
is a positive integer, and b(m) is determined by (3.48) and is therefore independ-
ent of x. Since 83, comprises almost all z, (3.59) holds for almost all z in 0 < z <
6(m). By writing x = (1/2)nb(m) in (3.59) and combining the results for n =
1, 2, * * * we deduce that
(3.60) (1 -m-l) lim sup h-1L(h, x) _ lim inf h-1L(h, x)

h 0+ h--O+

holds for almost all x > 0. Note that the x of (3.60) is an x - z of (3.59). Since
m is an integer and takes only countably many values, we can let m -- 00 in
(3.60) and deduce that
(3.61) lim sup h-1L(h, x) < lim inf h-'L(h, x)

h- 0+ h_O+

holds for almost all x > 0. Consequently
(3.62) 1(x) = lim hl'L(h, x)

exists for almost all x > 0.
Now Q(z, y) is at least equal to the expected number of visits by WY to the

point y before entering [-0, y), and this is Ro. So, by (3.50),
(3.63) Ro _ Q(z, y) < R(z).
By the definitions of Q and L, we have

(3.64) Q(z, x) = f' Q(z, y) dL(y, x),

y being the first point (if any) at which Wo enters (0, z]. From (3.63) and (3.64),

(3.65) RoL(z, x) = Ro fl dL(y, x) f' Q(z, y) dL(y, x) = Q(z, x)

< R(z) f ' dL(y, x) = R(z)L(z, x).

Divide (3.65) by z and let z 0+. By (3.48) we conclude that

(3.66) q(x) = lim z-'Q(z, x) = Rol(x)g- +
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exists if and only if 1(x) exists. In particular, by (3.62), q(x) exists for almost
all x > 0. This completes the proof of (3.13).
We now turn to our main topic of discussing the moment-generating function

(3.67) +(x, u) = Ee-G(z),
where u > 0, and G(x) is the random variable defined in (3.5). For typographical
convenience we shall write
(3.68) v(z) = e-uv(z).

We define

(3.69) ;(z) = 1 - c(z, u);
and for t = 1, 2, we write

(3.70) At(zo) = {H v(z.-1)d.P(z. - z,-)} {1 -V(Zt)},
8=10

(3.71) Bt(zo) = {II v(z,.1)dP(z - z.1-)} I(Zt).

In (3.70) and (3.71) the symbol d. indicates that the Stieltjes integration is with
respect to z,, and the products indicate multiple integrals. From (3.5), (3.67),
and (3.68) we have

(3.72) O(zo, u) = v(zo) {f djP(zi - zo) + f 4(z1, u)diP(zi - zo)}

Substituting (3.69) into (3.72) and using (3.71) we obtain

(3.73) k&(zo) = 1 - v(zo) + v(zo) f| ,(zl)dlP(zl- zo)
= 1 - v(zo) + B1(zo).

Now write Zt and zt+l for zo and z1 in (3.73) and substitute into (3.71). By (3.70)
we obtain

(3.74) Bj(zo) = Aj(zo) + Bg+i(zo);
and hence from (3.73) and (3.74),

(3.75) 4/(zo) = 1 - v(zo) + E A(zo) + Bt+l(zo).
1=l

Next define

(3.76) Qo(z, zo, u) = H(z - zo);
and,fort= 1,2, *--,

(3.77) Q'(z, zo, u) = o dlP(zl - zo)Q1-1(z, z1, u)v(z0).

Repeated application of (3.77) gives
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(3.78) Q((z, zo, 1l) = f| (z,_8)(z8(z, - Z8-.)} H(z - zt);

and therefore, by (3.70),

(3.79) A,(zo) = f [1 - v(z)]dQK(z, zo, u).

From (3.75) and (3.79) we deduce

(3.80) 4,(zo) = J [1 - v(z)]d [ Q8(z, z0, U)] + Bt+l(zo).

We shall niow prove that.

(3.81) lim Bt(zo) = 0.
t-x

In proving (3.81) it is conveniielnt to adopt the conveiitioin that V(z) = 0 when
z _ 0. We also write Zt for the smallest of z0, z1, * * *, zt. Since u, G, and V are
all nonnegative, we know that 0 _ v(z) _ 1 and 0 _ '(z) < 1 for all z. Thus

(3.82) 0 _ B,(zo) _ I j (/,/(z8 - Z-1) = JZt > ° -
If X is any nonnegative random variable and e is any event, then

(3.83) E(Xje)P{e} _ E(Xje)P{e} + E(Xje')P{e'} = EX,

where E(X!e) is the conditional expectation of X given e, and e' is the event
complementary to e. In (3.83) we take e to be the event Zt > 0 and also take
X = I,(zt)T=, v(z.-I). From (3.82) and (3.83) we have

(3.84) [B,(zo)]2 < Bt(zo)p{Zt > °} -{U f v(z_8)d,P(z8 - Zs.-)} 4k(z,).

If Zt _ 0, then l'(Zt) = 0. If Zt > 0, we define r to be the largest s such that
Zt, zt+l1, * * z, are all positive (r < co). Then, whatever the sign of Zt, we have

(3.85) 4(zt) _ {r f dsP(zs- Z81)} - exp [- E V(z)]}

< t f d,]P(z - z,-)} {I - exp [-u E V(z84}O

since the middle term of (3.85) may be trivially omitted when Zt < 0. On sub-
stituting (3.85) into (3.84) we find

(3.86) [Bt(zo)]2 < E [{II v(zs)} 1 V(Z")
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The expression in square brackets on the right of (3.86) lies between 0 and 1
inclusive; and hence, by Lebesgue's bounded convergence theorem, we have

(3.87) E [lim sup fflv(z,) ) I v(za)}]

lim sup E [{If v(zJ)} {1 v(zS)}] > lim sup [Bj(zo)]2.

However,
(t-1

(3.88) lim sup ( V(Z.) 1- v(zJ) = 0,
t--*c I~=O 8)

since the two expressions in braces in (3.88) lie between 0 and 1 inclusive, and
as t -* oo either the first or the second expression tends to zero according as the
series of nonnegative terms _So V(z8) diverges or converges. Consequently
(3.81) follows from (3.87) and (3.88). Finally, by (3.80) and (3.81),

(3.89) 5,(x) = lim f [1 - v(z)]d [ E Q8(z, x, u)].

From (3.78) with u = 0, we have

(3.90) Qj(z, x, 0) = P{0 < Zt _ z.< Z"J,
where the probability is taken over the walk Wx with x = zo. By definition,
Q(z, x) is the expected number of visits by Wo to (0, z], and we deduce from
(3.90) that

(3.91)~~~~~ YQEQ(Z, x, ()) QQ(z, x).t=o

From (3.76) and (3.77) by induction on t = 1, 2, -* we see that Qt(z, zo, u) is a
nonnegative nonincreasing function of u for fixed z and z0. Hence there exists

(3.92) Q(z' , ?!x) =E Qt(Z' , ?0 - Q(z, x).
t=O

From (3.89) and (3.92), we deduce

(3.93) {'(x) _ f [1 - v(z)] dQ(z, x, u),

since, for each fixed x and u, Q,(z, x, u) is a nonnegative nondecreasinig functioii
of z. On the other iand, since Bt(z) _ 0, we have from (3.80)

(3.94) 4,(x) _ [1 - v(z)]d _ Q8(Z, x, U)

for arbitrary Z > 0 and t > 0. Since Q8(0, x, u) = 0 by (3.78), and since 0 _
1 - v(z) < 1, we have from (3.94)
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(3.95) 46(x) _ [1 - v(z)] dQ(z, x, u)
o~~~~~

-J: [1-v(z)]d [Q(z, x, u) -E Q(z, x, u)]

> f [1- v(z)] dQ(z, x, u)-f d [Q(z, x, u)-L Q(z, x, u)]

= f; [1 - v(z)] dQ(z, x, u) -[Q(Z, x, u) - E8 Q.(Z, x, U)].

In (3.95) fix Z and let t -* oc, with the result

(3.96) #(x) _ f7 [1 - v(z)] dQ(z, x, u),

by virtue of (3.92). In (3.96) Z is arbitrary; so letting Z -X oo we conclude

(3.97) #(x) _ f_ [1 - v(z)] dQ(z, x, u).

Finally, by (3.93) and (3.97), we obtain

(3.98) 0(x) = f [1 - v(z)] dQ(z, x, u).
So far we have made no use of the special properties of V(z), other than the

fact that it is nonnegative. But now we shall embark on a study of the asymp-
totic behavior of 4,(x) as u -f 0; and for this we shall require (3.3) and (3.4).
Indeed, instead of (3.4) we shall temporarily and until further notice make the
stronger assumption that there exists a fixed r > 0 such that

(3.99) V(z) = (-) 2 0 < z < .

Let Vo(z) be any nonnegative Borel-measurable function which satisfies (3.3).
We shall show that there exists a finite function M(x), which is independent
of u, such that

(3.100) f| Vo(z) dQ(z, x, u) _ M(x).

If 0 < z < z', we have by (3.78)

(3.101) Qt(z', zo, u) - Qt(z, zo, u)

= {ll ft; v(z81)d.P(z, - z-1)} {H(z' - zt) - H(z -zt)

The right side of (3.101) is nonnegative and a nonincreasing function of u.
Consequently, for any t, Qt(z, zo, u) regarded as a function of z induces a measure
which is dominated by the corresponding measure induced by Qt(z, zo, u') for
any u' < u, and in particular by the measure induced by Qt(z, zo, 0) = Qt(z, zo).
Since this holds for each t, similar statements hold for the measures induced by
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Q(z, zo, u) and Q(z, zo). In the sequel these facts will be used freely without
further explicit mention. In particular, we have
(3.102) f| Vo(z) dQ(z, x, u) < f' Vo(z) dQ(z, x).
By (3.18) we have

(3.103) Q(D + n + 1, x) -Q(¢ + n, x) _ c(l + -)
for any nonnegative integer n. Hence

(3.104) f Vo(z) dQ(z, x) . c(1+ -) E sup VO(z + );Jr ~~~~~~n_On <z:gn+l

and now (3.100) follows from (3.3), (3.102), and (3.104). Since p < 1, we have
1/(2 - p) < 1 and therefore, by (3.100),

(3.105) 0° u-1/(2-) {1 - e-uvo(z)} dQ(z, x, u)

_ u-1/(2-pf) uV.(z) dQ(z, x, u)
_ u1-1/(2-P)M(x) -*0 as u - 0.

Taking Vo(z) to be either V(z) or (z/a)P-2, both of which satisfy (3.3), we deduce
from (3.105) that

(3.106) lim U-1/(2-p) f [1-v(z)] dQ(z, x, u) = 0

and

(3.107) lim U-1/(2-p) 1 -exp -u (a) ]} dQ(z, x, u) = 0.

By (3.98), (3.99), (3.106), (3.107), we conclude that

(3.108) limr-1/(2-p) [+(X)-A {-exp [-u (1) 2} dQ(z, x, u)] = 0.

Now Q(0, x, u) = 0 by (3.78) and (3.92). Also, by (3.11),
(3.109) 0 < Q(z, x, u) . Q(z, x) = O(z) as z-oo;

and

(3.110) 0 _ 1 - exp[-u(-)'2] _ u( z)p = o(z-1) as z-oo.

Thus, integrating (3.108) by parts and using (3.109) and (3.110) to dispose of
the integrated part, we find

(3.111) lim u-1/(2-, [+,(x)- f Q(z, x, u)d {exp [-u (a) ]}] = °
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In (3.111) we make the substitution

(3.112) t = u
a

with the result
/u1/2 -p) 1

(3.113) lim { - t112- tf /(2 p)e-' dt} = 0.
U-+0IUI/(2 a ('~)1/(2P

The next step is to prove the existence of
/[(/2-p)

Qa - ,xul
(3.114) S(t, X) = lim 11(2-

tt
for each fixed t > 0 and to obtain an explicit expression for S(t, x). By (3.112)
and (3.99), (3.114) is equivalent to

(3.115) S(t, x) = lim Q [zX, V(z)]

and we shall deal with (3.115) instead of (3.114). Throughout the argument
t > 0 will be fixed. Let z < x. By (3.64),

(3.116) Q(z, x) < L(z, x) sup Q(z, y).

Prescribe e satisfying 0 < f < 1. Then, by (3.63), (3.116), and (3.48), we can
find 6o(e) > 0 such that

(3.117) 0 < Q(z, x) - RoL(z, x) _ [R(z) - Ro]L(z, x) < R(z) - Ro _ f

provided 0 < z _ bo(e). In (3.117), Q(z, x) - RoL(z, x) is not less than the ex-
pected number of visits by WO to (0, z] excluding any visits to the particular
point of (0, z] at which Wo first visits (0, z] if any such first visit occurs. Hence,
if 0 < 6 ' So(e),

(3.118) P{WO visits more than one poilnt of (0, b]} <

Of course, we have to remember that even when WV only visits one point of
(0, z] the expected number of visits to this particular point is at least Ro. We
now choose a fixed 6 > 0 such that

(3.119) 6 _ 6o(e), 6 _<, V(6) > sup V(z),
2>5

as we may clearly do in view of (3.3) and (3.99).
For 0 < y _ 6, let 7r(y, 5) denote the conditional probability that W9 re-

visits the point y, given that Wo does not visit any point of (0, 5] except y. We
have
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(3.120) P{Wo revisits y}
= 7r(y, 5)P{Wo visits no point of (0, 8] except y} + P{W8

revisits y given that it visits some other point of (0, 5]}
P{W8 visits some point of (0, 8] other than y}
77r(y, 8) + P{W8 visits some point of (0, 8] other than y}

<_ r(y, 8) + {Expected number of visits by WO to points
of (0, 6] other than y}

_ 7r(y, 6) + Q(5, y) - Ro 7r(y, 8) + R() -Ro
=< 7r(y,86) + E,

because of (3.50), (3.117), and (3.119). Also, if 7rO denotes the probability that
WO revisits y before it visits [-oo, y), then

(3.121) Ro= 1

and
(3.122) 7r _ P{W9 revisits y}.
From (3.120), (3.121), and (3.122), we deduce
(3.123) 7r(y, 8) > 1 - _ e.

Let k denote the number of times WE revisits the point y; and let E* denote
the conditional expectation operator given that WO does not visit any point of
(0, 8] except y. For 0 < 0 _ 1 define

(3.124) J(0) = E* {_ exp [-jt0p-2]}

By the definition of 7r(y, 6), we have

(3.125) J(o) = ; [7r(y, 6)]i exp [-jto-2]
j=0

= {1 - 7r(y, 6) exp [-tOp-2]}1-
2 (1 - (1 - -_ E) exp [-t0P 2]} 1

by (3.123). Also let k(n) denote the number of times W'0 revisits the point y within
the first n steps of Wy. Define

(k(n)
(3.126) Jn(0) = E* , exp [-jtop-2]}

As n -a oo, k(n) -- k. Also the series in (3.126) is dominated by the convergent
geometric series obtained by replacing k(n) by 00. Hence, for n = 1, 2, ... , Jn(6)
is a nondecreasing sequence such that J.(O) -+ J(D) as n - oo0. By (3.125) and
(3.126),
(3.127) lim Jn(0) {1 - (1 - - e) exp [-tO-2]}-1.

We recall that Z. is defined to be min (zo, zi, * , z,); and we define
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ri ifz2z,2Z, >0
(3.128) I(z, z., Z.) =

WO otherwise.
Then, by (3.78) and (3.92) we have, for x = zo> z,

(3.129) Q [Z, x, V-z] = E [i.r(Z, Z,, Z,) exp {- (z)t2 V(Z,)fJ
Next define
(3.130)

Q* z,x, V ] = E I(z, z., Z.) exp -1(z) T_ H(5 - Zr)V(Z')A]
For z < a we have

(3.131) z1 {Q*[,xQ [ - ,
tV)

* l L v X v(Z)2 L V(Z)_
E [Z I(Z, Z8, Z.) exp {-V(z)2 H(5 - Zr)V(zr)}

(1-exp 1-V(Z) [1 -H(5 Z7)] V(Zr)})]

. E [i-i E I(z, Z, ZS) (1- exp {V(z)t [1 - H( - Z)]V(zr)})]
V()r-O

_ E [z(z) E I(z, z8, Z.) X {1- H(5-- Zr)}V(-r)]

= taP2ZiPEIE I (z, z,,Z.) VI{1-H(5 -rLa-i r-OJ

by (3.99) and (3.119). Also, since z <58,

tZ s-1

(3.132) E ,I(z, z8,Z.) o {11-H(5 - Zr)} V(Zr)

<. _E I(5,Z8,Z8) r-{1 - H( - Z7)}V(zt)1

1ZV(Z.- La-i

-{ -8)
=E5I z (z ,Zs, Z-)r {1 - Z) r} V(z)]

_8=,1 r=O

where Es denotes the conditional expectation that Wo visits (0, 5] at least once.
The last step in (3.132) follows from the consideration that, if Wo never visits
(0, 5], then every factor I(5, z., Z.) is zero. We propose to prove that the right
side of (3.132) is finite; and accordingly we may suppose without loss of gener-
ality that

(3.133) L(5, x) > 0.

Given that Wo visits (0, 5] at least once, write y = ze for the first visit to (0, a].
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Then
s-1 e-i

(3.134) f( - H(S - Zr)}V(zr) = 2 V(z7), s > a,
r=O r=O

and

(3.135) I(6, z., Z.) = 0, S < a.

It follows that
-x ~~s-1

(3.136) Es I(6[ z,Z,Z) E {1 - H(b - Zr)} V(zr)
_8=l ~r=O

=EJ N(y, ) V(zr)_

where N(y, 5) is the number of visits to (0, 5] by WO given that the first visit
to (0, 5] is at y. However,

(3.137) N(y, 6) _ 1 + N*(5),

where N*(b) is the number of visits to (y - 6, y + 5] by Wv_-, excluding the
first visit which occurred at ze = y. Moreover, N*(5) depends only on z+1-Z
for s > a, and is therefore independent of I_:- V(zr). Consequently,

(3.138) Es [N(y, 6) :- V(z.)]
r=O

_Es [{1 + N*(5)} Eo V(zr)]

= Es [1 + N*(5)]Ea [ V(Zr)]

= [L(5, x)]-2{Es[1 + N*(3)]L(6, x)} {Ea[ V(Zr)] L(x,x)}

< [L(5, x)]-2{E[l + N*(b)]} {E [g V(Zr)]}9
by two applications of (3.83). From the definition of N*(B), we have

(3.139) E[1 + N*(6)] = Q(26, 5) = R(S).
When r _ a. - 1, Zr > S by the definition of a. Hence, if

V(z), ~~~~~Z> S,
(3.140) V*(z) ={, z<5
we have

(3.141) L V(Zr) < X I(+-o, Zr, Zr)V*(Zr).
r-O r-O
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Thus

(3.142) E [ I(zr) . f l*(Y) dQ(z, .r)

= f V(z) dQ(z, x)
< V(6)QQ', x) + M(X)

by (3.141), (3.140), (3.119), and (3.100). Collecting (3.131), (3.132), (3.136),
(3.138), (3.139), and (3.142), we obtain

(3.143) z-1 (Q* [z, X, V(z)] - Q x, V(z)]}

if L(b, x) = 0

{taP 2z1-PR(b)fV()Q(, x)+M(x)} if L(6, x) > 0.

Since p < 1, we may conclude from (3.143) that

(3.144) lim inf z-1Q [z, x, V lim inf z-'Q* z, x, t
L- V(Z)j z-O L' V(z)j

Next in (3.83), we take c to be the event that W0 does not visit more than one
point of (0, 5], and we take X to be the expression in square brackets on the
right of (3.130). By (3.118), we get

(3.145) Q* [z, X, V(z)]

_ (1 - )E' [ I(z, z8, Z.) exp V H(5-Zr)V(zr)}J
where E' denotes conditional expectation given that Wo visits (0, 6] at most at
a single point, say the point y = Oz. Here we may suppose that 0 < 0 < 1, since
the factor I(z, zo, Z.) will be zero for all s when 0 > 1. The right side of (3.145)
will not be increased if we make the following substitutions: (a) + for EJ 1;
(b) V(5) for V(zr) when Zr > 5; and (c) V(6) + V(y) for V(zr) when Zr < 6
that is, when Zr = y. With these substitutions, we get from (3.126) and (3.99),

(3.146) Q* [z, x, V(z)]> (1 -e) f exp (- }J.(O) dL(y, x).

We have already noted that Jn(0) is a bounded function of 0; and (3.126) shows
that it is a nondecreasing function of 0. Thus we may integrate the right side
of (3.146) by parts to obtain

(3.147) z-'Q*[ Z,x t I
> (1 - e) exp {-tn (Z) } {Lz Jn(l) Z Z

In the ensuing analysis we assume that x is such that q(x) exists. When q(x)
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exists, 1(x) exists as already proved. We let z -+ 0 in (3.147), which entails
y -V 0 because 0 < y < z, and invoke (3.62) and Lebesgue's bounded conver-
gence theorem to deduce

(3.148) lim inf z-lQ* [z, x, 1 _ (1 - e)1(x) -Ji(i) - Of'd.Jn(0Y)}Z-40 I V(Z)j Jo I_
Next integrate by parts once more to obtain

(3.149) lim inf z-lQ* [z, x, V(z]2- (1 -e)l(x) f J,n(0) do.
z--iO I V(z)jJ

The left side of (3.149) is independent of n. We may therefore let n oo in
(3.149), and by a further use of Lebesgue's bounded convergence theorem con-
clude that

(3.150) lim inf z-'Q* [z, x, V(t)]

_ (1 - e)l(x) f01lim Jn(f) (10

> (1 - E)l(X) {1- ( -Ro- E) exp (-t0P-2)}-j do,

by virtue of (3.127). In view of (3.144) we may omit the asterisk on the left
side of (3.150), and, when this is done, the left side becomes independent of e.
Hence we may let Ef-* 0 on the right side of (3.150), with the result that

(3.151) lim inf z-1Q [z, x, V(z)

1(X) 10 {1 - (1 - R-1) exp (-to2)}j' do.
For 0 < y _ 6/2, let w(y) denote the probability that Wo revisits the point y.

Then the expected number of visits by Wo to the point y, including the visit
at zo = y, is

(3.152) w[w(y)]i [1- (y)]-1 _ Q(2y, y) = R(y) _ Ro + e,
j=0

by (3.117) and (3.119). Hence,
(3.153) w(y) _ 1 - (Ro + e)-'.
Suppose 0 < z _ 6/2. If Vo visits (0, z], let a be the smallest integer such that
0 < Za < z; and put y = Ze. We do not decrease the right side of (3.129) if we
replace V(zr) by 0 whenever Zr F y. Thus,

() [ ' ' ~V(z)]
_E [w(y)]i exp{- tV(y) } dL(y, x)

=
z fl- (1 - )exp r-t() ]}' dL(y, x).
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On integrationl by parts,

(3.155) z-'Q [Z, X, o i-R
) [ ' ' V(z)] z R(( o + e

Io L(Oz d[{d1-( R+ ) exp (-tOP-2)}1].
Letting z -* 0 and using (3.62) and Lebesgue's bounded convergence theorem,
we obtain

(3.156) lim sup z-1Q [Z, x, Vz1< 1(x) {1 -( - R )'-

1(X Od
r 1

ex o-21
-1(x) f' { 1R-- I) exp (-tP-2)} do.

Letting e- 0 in (3.156) and combining the result with (3.151), we obtain the
desired result (3.115) with

(3.157) S(t, x) = 1(x) R0 {1-(1-Ro') exp (-toP-2)}-' do.

Now, by (3.112),

(3.158) 0 _ Q[a(u/t)'/(2_P),xu] = z-Q(z, x, u) _ z-'Q(z, x);

and, whenever q(x) exists, the right side of (3.158) is bounded by virtue of (3.66)
and (3.11). Hence we may apply Lebesgue's bounded convergence theorem to
(3.113) to obtain

(3.159) lim u-/(2-p)4,(X) = af0 S(t, x)t-1/(2 -P)e- dt,
u-0 f

because J0t' t-l/(2-P)e t dt is finite.
We shall now and hereafter relax the condition (3.99). By virtue of (3.4), for

prescribed e > 0 we can find a number r = P(e) and two functions V+(z) and
V_(z) such that

(3.160) (a ) V(z) _ V(z) _ V+(z) = (a + E)
whenever 0 < z _<(e), while

(3.161) V_(z)= V(z)= V+(z)

whenever z > t(E). Next we define Gj(x), ++(x), and 4,4.(x) by using V+(z) in
place of V(z) in the definitions of G(x), ¢(x), and ,6(x). Clearly, from these defini-
tions
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G_(x) < G(x) < G+(x),
(3.162) +_(x) 2+() 2t 0+(X),

+_(x '{(x) _ A+(x).
By (3.160) and (3.161), (3.3) and (3.99) apply to V+(z). Hence, by (3.159)
and (3.162),

(3.163) (a - E) f0 S(t, x)t -1/(2 -P)e -1 dt = lim U -1/(2 -p)4_(x)
_ lim inf U-1/(2-P)4,(X) _ lim sup U-1/(2-p)P(x)

u-0 ~~~~~~u-0O

< lim U-1/(2-p)±+(X) = (a + e) f 'S(t, x)t-l/(2-P)e-t dt.

On letting e- 0 in (3.163), we recover (3.159), but this time without the assump-
tion (3.99).
Next write

(3.164) F(g) = P{G(x) _ g}.
From (3.67)

(3.165) +(x, u) = E[e-uG(x)] f , e- udF(g);

and, by (3.69),

(3.166) {/'(x) = 1 _ e-o dF(g) = 1 + e-u2d[l - F(g)]

= -fl [1l - F(g)]d(e-u0) = it f [I - F(g)]e-lgdg

= u f e-ugd[f0 {I- F(y)}dy]l
Note that the method of working used in (3.166) uses the fact that F(+ cc) < l,
but does not assume that F(+o) = 1. The lower limit of integration is taken to
be 0-, so that F(0-) = 0 because G(x) _ 0. However, in the penultimate
integral, 0- may be and has been replaced by 0 without affecting the value of
the integral. By (3.159) and (3.166),

(3.167) lim U( -p)/(2-p) e-u' d [f0 {l - F(y)}dl1]

a 0 S(t, X)t-1/(2-P)e- dt.

We are now in a position to invoke two Tauberian theorems. The first such theo-
rem ([7], theorem 4.3, p. 192) runs as follows. If a(t) is a nondecreasing function
of t such that

(3.168) lim se' e-s' da (t) = A,
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where A is a constant and y is a nonnegative constant, then

(3.169) lim t-'a(t) A

where -y! = r(-y + 1). Since 1 - F(y) _ 0, we see f0g {1 - F(y)} dy is a non-

decreasing function; and we can apply the theorem to (3.167) to obtain

(3.170) lim g -(1 -p)/(2 -P) 1-F(y)}y
o

{(1 - P)/(2- p)} ! Jo S(tX)t -11(2 -p)e-t dt.

The second Tauberian theorem ([8], Hilfssatz 3, p. 517) runs as follows. If a(t)
is a nondecreasing function of t such that

(3.171) lim s- fg a(t) dt = A,

where A and -y are arbitrary real constants, then

(3.172) lim tl1-a(t) = A-y.
t Dx

If we multiply (3.170) by -1, we can apply this second theorem to obtain

(3.173) lim gl/(2-p) {F(g) - 1}

-a(1 -p)/(2- p)}! S(t X)t-1/(2-P)e-t dt.

From (3.164), (3.173), and (3.157) we get

(3.174) lim gl/(2-P)P{G(x) > g}

_ al(x C dOal(x) [dt e-tt-l/(2-P) [
{-1/(2 - p)}! dt 1t1-(1 - Ro) exp (-toP-2)

_ ~~al(x) [e X #(3-p)/(p-2)dy
{-1/(2 -p)}!(2 - p) dt e tf 1 - Ro-)e-

on making the substitution y = toP-2. We may invert the order of integration
in (3.174) and obtain

(3.175) lim gll(2-P)PfG(x) > g'

al(x) [ g(3-p)1(p-2)dy f -cd
-1/(2 -p)} !(2 -p) JO 1-(1- Ro- 1)e O

al(x) f0 y(3-p)/(p2)(1 - e-) dy
{-1/(2 - p)}!(2 - P) J 1-(1-Ro-)e

If we write

(3.176) 0°-y= 1-Ro' < 1, 0 < =(2-p)-1 < 1,
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we have

(3.177) 1 f,0 y(3-p)/o-2)(1 - e-v) dy(3.177) 1{-1/(2 -p) !(2p) J 1 - (1 -R6)e-
- (.)! i:[yx 1(1 _ e-v) dy

(-T) ! =oJ 1-Ye-o

( T)! nO ,%; 8(1 - e),yne-ni, dy

(- ) -/{nr-(n + 1)T}X Y-e-Y dY
(-T)!n=OJ

y=E n(n + 1)rT-n71 = (I- y) E -yn(n + 1)r
n=0 n-0

= Ro1 x; (n + 1)1/(2-P)(1 - R6-1)n.n=o
The required result (3.6) now follows from (3.66), (3.175), and (3.177).

It remains to discuss equations (3.8) and (3.14). Both these equations are of
the form

(3.178) x(Z, x) = ¢(z, x) + f0 x(z, y) dP(y -x),

where r is a nonnegative function. For brevity, we write (3.178) in the form

(3.179) x = r + Ax
and study (3.179). The essential feature of the linear operator A is that it maps
nonnegative functions into nonnegative functions. If x is any nonnegative solu-
tion of (3.179), either finite or formally infinite, then by successive substitution,

n ~~~~~n
(3.180) x = E Ar + An+'X _ Art.

r=O r=0

Since (3.180) holds for all n, we have

(3.181) x EArt
r=O

where the sum on the right, being composed of nonnegative terms, is either
convergent or formally equal to +X0. The inequality (3.181) shows that the
Neumann solution of (3.179) is the minimal nonnegative solution.

Consider next the special case when P is such that with probability 1 there
are only finitely many steps in Wo. In particular, any symmetrical P satisfies
this condition. Then (3.179) can only have at most one bounded solution. For,
if xi and X2 are two bounded solutions,

(3.182) lxI - X21 = IA(Xj - X2)1 = An(X - X2)1
_ {suplxi-X2l}An1---0 as n---oo,
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because All is the probability that WV'0 has at least n steps. The same conclusion
holds under the weaker assumption that lim^.x A'l is bounded away from 1 for
all x; for we can then take the supremum (over x) of both sides of (3.182), and
deduce that sup lxi -X21 does not exceed a proper fraction of itself and is there-
fore zero.

In general, without the assumptions of the previous paragraph, ArH(z - x)
is the probability that Wo will visit (0, z] at the rth step. Hence

(3.183) Q(z, x) = lim E ArH(z - x) AArH(z - x)
n-to r=O r=O

is indeed the Neumann solution of (3.8).
Consider finally the case when p(x) exists for all x, is a bounded function of x,

and satisfies

(3.184) I)()- P(-oo) -I p(x) dx.

Suppose further that there exist fixed numbers X, M, and r such that

(3.185) z-'[P(z - x) - P(-x)] _ M -'[P(¢- x) - P(-x)]
whenever x _ X and 0 < z < t. The condition (3.185) is satisfied in particular
if p(-x) is a nonincreasing function of x for all sufficiently large x. Under the
above assumptions we shall show that q(x) exists for all x > 0 and is a bounded
function of x.

Since z-1H(z - x) = 0 for 0 < z < x, we have

(3.186) q(x) = lim z-'Q(z, x) = lim z-'[Q(z, x) - H(z -x)],
zoO z-O

whenever either the second or the third term in (3.186) exists. Also, from (3.8),
(3.187) Q(z, x) - H(z - x) = AQ(z, x) = AH (z - x) + A[Q(z, x) - H(z - x)]

= P(z - x) -P(-x) + A[Q(z, x) - H(z - x)].

Since p(x) is bounded for all x, there exists a positive number Mo such that

(3.188) Mo _ sup p(y) _ z-1 f p(y) dy = z-[P(z - x) - P(-x)]

and therefore
(3.189) P(z - x) - 1(-x) _ zMo = zMoH(X - x)
whenever x _ X. On the other hand, when x > X, we can invoke (3.185). Thus
by (3.185) and (3.189)
(3.190) P(z - x) - P(-x) _ z{MoH(X - x) + MA-1[P( - x) -P(-x)]-
for all x, provided only that 0 < z < ¢. Now by (3.187) and (3.190),

(3.191) z-'[Q(z, x) - H(z - x)]
< MoH(X - x) + M¢-1[P(D- x) - P(-x)]

+ A{z-'[Q(z, x) - H(z -x)]}
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By successive substitution of the left side of (3.191) into the right side of (3.191),
we find
(3.192) z-1[Q(z, x) -H(z - x)]

n
_ E J{MoH(X -x) + MU'[P(¢- x) -P(-x)]}

r=O

+ An+ {z-i[Q(z, X) - H(z - x)]}
If we fix z and let n oo in (3.192),

(3.193) An+'{z-1[Q(z, x) -H(z - x)]} -+ 0.

Hence, if 0 < z _ ¢,

(3.194) z-'[Q(z, x) - H(z - x)]

AE{MoH(X - x) + M¢-'[P(¢- x) -P(-x)]}
r =O

= MoQ(X, x) + Mr'[Q(¢, x) - H(¢- x)]
_ MoQ(X, x) + Ml-1Q(¢, x)
< MoR(X) + Mr'R(r),

by (3.50). Hence the left side of (3.194) is uniformly bounded for all sufficiently
small z. Thus, if we divide (3.187) by z and let z -- 0+, we may invoke Lebesgue's
bounded convergence theorem; and, by virtue of (3.184), the right side of (3.187),
after division by z, will tend to the right side of (3.14), since q(y) on the right side
of (3.14) exists almost everywhere in y. This convergence of the right side
of the divided form of (3.187), however, holds whatever the value of x. Hence the
left side converges for all x; and therefore the third member of (3.186) exists
for all x. Consequently q(x) exists for all x; and, by letting z -O 0 in (3.194), we
see that q(x) is bounded.

4. Numerical results on cometary lifetimes

4.1. General remarks. Throughout this section of the paper we assume that
Kepler's third law

( 1. I) V(Z) = z-:q'2

lholds. We give numerical results for the cumiiulative distribution functioni of the
lifetime G(x) of a comet with initial energy x, where G(x) is defined by (3.5).
We take the normal distribution

(4.2) P(y) = (27r)-1/2 fJv et'/2 dt

for the distribution of individual energy perturbations. Equations (4.1) and (4.2)
prescribe absolute units of time and energy; and the final subsection of this
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section interprets these units in physical terms. The results, which are. displayed
in figures 1 to 6, are graphs of

(4.3) F(g) = P{G(x) > g}
for

(4.4) x =2 1, 2, 4, 8.
2'

In each graph the vertical linear axis is F and the horizontal logarithmic axis
is g. Figures 1 to 5 deal respectively with the five individual values of x in (4.4)
and exhibit

(a) Monte Carlo estimates of F, which are subject to sampling errors;
(b) the asymptotic form of F, given by (3.6), which only applies when g is

large; and
(c) the corresponding results (2.7) for Brownian paths, which are known to be

poor approximations for large g, though they should be tolerable approximations
when g is small and x is large. Figure 6 consists of freehand curves, drawn from
the combined evidence of figures 1 to 5; and thus summarizes the best estimates
available to us on the distributions of G(x).

4.2. Monte Carlo estimates. The Monte Carlo estimates were obtained by
direct simulation on the Ferranti Mercury computer at the United Kingdom
Atomic Energy Research Establishment at Harwell. The energy perturbations
yt in (3.2) were generated as pseudorandom normal deviates by the multipli-
eative congruential process

12t
Yt -6 + 2-29 E 1j,

(4.5) j=12t-11
-qj+i 317 77i (mod 229).

In effect, (4.5) makes yt the sum of 12 variates, each rectangularly distributed
between - 1/2 and 1/2, which by virtue of the central limit theorem affords
observations that are good approximations to (4.2). The quantities z8 and G(x)
were calculated according to (3.2), (3.5), and (4.1) inside the machine, which
printed out G(x) and T as soon as zt _ 0. This done, the machine commenced
work on the history of the next comet, using the last value of vo in the history
just ended to generate the first 7a of the new history. For the values of x in (4.4),
the machine constructed the numbers of histories shown in table I, excluding

TABLE I

Value of x Number of Histories

1/2 272
1 210
2 226
4 292
8 234

Total 1234
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FIGURE 1

Graphs of probability F(g) = P{G(x) > g) for x = 1/2.
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FIGURE 2
Graphs of probability F(g) = PIG(x) > g) for x = 1.
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FIGURE 3

Graphs of probability F(g) =P{G(x) > g) for x 2.

1.0 - STANDARD ERRORS-

0.0 _-7
1000 100 10

-TIME

FIGURE 4
Graphs of probability F(g) = P{G(x) > g) for x = 4.
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FIGURE 6

Summary curves showing distributions of G(x).
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histories for which T = 1. The point of excluding histories with T = 1 from the
Monte Carlo work is that they can be handled analytically instead, thereby
increasing the precision of the Monte Carlo results for T > 1. In fact, when
Y'= 1 the lifetime is simply X-'12 and the probability of T= 1 is P(-x) =
I -P(x). Thus each curve satisfies

(4.6) F (g) P(x), g X-31'2
This discontinuity for x = 1/2 is visible in figure 6. For x = 1, the discontinuity
occurs at the extreme right side of figure 6; while, for larger values of x, the dis-
continuity is small or very small and occurs to the right of the parts of the curves
shown in figure 6.

For each value of x, the histories were divided into two sets, each with equal
numbers of histories. Each such set was treated separately to plot a conditional
empiric distribution F(g) for g > x, given that F(x-312) = P(x). One set provides
the irregular curve of small crosses, and the other set the irregular curve of solid
dots, on each of figures 1 to 5. The accuracy of the estimation may be judged
partly from the discrepancy between the two curves, and partly from the shaded
region giving the standard error at the top of each graph. This standard error
was calculated simply as a binomial standard error,

(4-7) = {F(g)[1 -F()]}'I2,
where n is the number of histories in a set. The curves which bound the shaded
area are i6. Thus, for any prescribed value of g, the cross or solid dot curve
might be expected not to deviate by more than about 26, that is, the whole
height of the shaded region at the prescribed value of g, from the true curve F(g).
If g is not prescribed, but is instead selected to give, say, maximum discrepancy
between the cross and the solid dot curve, a larger discrepancy than that in-
dicated by the shaded region should be expected. Such a discrepancy could, of
course, be computed by means of the Smirnov-Kolmogorov formulas; but this
has not been done, since in the present case the standard error appears to give
an adequate picture of the accuracy of the Monte Carlo estimates.

For x = 1/2, figure 1 also exhibits an irregular curve of open circles which is
plotted from 35 histories generated by Mr. G. Logerman on the IBM computer
at the California Institute of Technology. The work on the IBM machine was
done before the other calculations. When the first really long history was en-
countered, it became apparent that a faster machine would be needed; and the
remainder of the work was therefore done at Harwell. This explains why only
35 histories were done on the IBM machine and why values of x > 1/2 were not
studied. Although the total number of orbits followed on the IBM machine was
only 1,782, compared with 1,534,779 on Mercury, the IBM results compare
extremely well with the Mercury results. The reason for this is provided by
an examination of the Mercury results for long histories, which shows that
the correlation between long histories and long lifetimes is negligible. The open
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TABLE II

NUMBER OF IIISTORIES WITH SIPECIFIED VALUES OF T

X=1 x x = 2 X = 4 x=
2

T = 2 74 25 17 1
2 < T < 4 53 36 30 9
4 < T -5 8 44 36 29 24 1
8 < T 16 35 26 35 30 7
16 < T. 32 25 31 28 63 24
32 < T. 64 24 16 26 37 29
64 < T. 128 15 11 16 28 34
128 < T S 256 9 11 19 32 34
256 < T. 512 10 8 7 27 33
512 < T < 1024 6 6 8 18 24
1024 < 1' < 2048 4 2 2 6 13
2048 < 71 < 4096 4 1 5 8 12
4096 < 1' S8192 1 1 1 5 7
8192 < 7' 16384 2 - 1 1 3
16384 < T 32768 - - 1 1 3
32768 < T 65536 1 - 1 1 5
65536 < T < 131072 - - - 1 4
131072< T < 262144 - - - - 1

Total 307 210 226 292 234
S_T 93900 22226 129047 285623 1005765

TABLE III

PERCENTAGE OF COMETS WHICH DESCRIBE MORE THAN N ORBITS

N x x = 1 x = 2 x = 4 X = 82

1 69 84 98 100 100
2 52 74 90 100 100
4 41 60 77 97 100
8 31 45 65 88 100
16 23 35 50 78 97
32 17 22 38 57 86
64 12 16 26 44 74
128 8 12 19 34 59
256 6 7 11 23 45
512 4 4 8 14 31
1024 3 2 5 8 21
2048 2 1 4 6 15
4096 1 - 2 3 10
8192 1 - 1 1 7
16384 - - 1 1 6
32768 - - - 1 4
65536 - - - - 2
131072 - - - - -
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circle curvc provides a useful independent check of the other two curves. W\e
are indebted to Mr. Logerman and Professor John Todd for making these results
available to us.
The magnitude of the computation is governed principally by the long tail

in the distribution of T, as shown in table II. The last line of table II shows the
total number of orbits followed for each value of x. The table includes both the
IBM and the Mercury results.
From table II we deduce table III, which estimates the percentage of comets

that describe more than N orbits before being lost from the solar system.
The Monte Carlo work is, of course, aimed at producing figure 6; and table

IllI is no more than a rather casual by-product. The standard error of any entry
in table III is about seven-tenths of the corresponding standard error in figures
1 to 5; so the entries should usually lie within about L4 of the correct value.
Thus useful information stems from the upper part of the table, where the
percentages are, say, 10 or more. But in the lower part of table III the sampling
errors swamp the estimates, as may be seen from the fact that the tabulated
percentages do not, in every given row, inierease steadily from left to right, as
they ought.

In using (4.2) for the Monte Carlo work, we have so far made no allowance
for a positive probability of a comet disintegrating at perihelion or being lost
from the solar system for reasons other than energy perturbations. When such
an allowance is made, the tails of the distributions in table III are sharply de-
pressed. In fact, if K2 is the probability per orbit of loss for reasons other than
energy perturbations, then each entry in table III must be multiplied by
(1- K2)N. Tables IV, V, and VI show the result of applying this rule with
K2 = 0.01, 0.02, 0.04. The effect on figure 6 of allowing for a positive K2 is not so
easily assessed. There must be some depression of the tails of the lifetime dis-
tributions; but, since long lifetimes show negligible correlation with long histories,
the depression will be much less marked than for tables IV, V, and VI when x

TABLEI IV

PER(ENTAGE OF (COIETS UWHICH DESCRIBE MORE THAN N ORBITS (K2 = 0.01)

1x= x= 1 x=2 x=4 x=8
2

1 68 83 97 99 99
2 51 73 88 98 98
4 39 58 74 93 96
8 29 42 60 81 92
16 20 30 43 66 83
32 12 16 28 41 62
64 6 8 14 23 39
128 2 3 5 9 16
256 - 1 1 2 3
512
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TABLE V

PERCENTAGE OF COMETS WHICH DESCRIBE MORE THAN N ORBITS (K2 = 0.02)

N x=1X=1 x=2 x=4 x=8
2

1 68 82 96 98 98
2 50 71 86 96 96
4 38 55 71 89 92
8 26 38 55 75 85
16 17 25 36 56 70
32 9 12 20 30 45
64 3 4 7 12 20
128 1 1 1 3 4
256 - - -

TABLE VI

PERCENTAGE OF COMETS WHICH DESCRIBE MORE THAN N ORBITS (K2 = 0.04)

N X =21 X = 1 x = 2 x = 4 x = 8
2

1 66 81 94 96 96
2 48 68 83 92 92
4 35 51 65 82 85
8 22 32 47 63 72
16 12 18 26 41 50
32 5 6 10 15 23
64 1 1 2 3 5
128 - - - - -

is small. But, when x is large, most comets will have been lost before they can
be perturbed to small energies, and the tail will be considerably diminished.
Further remarks on this question appear in the next subsection.

In figure 7 there is a simplified flow diagram of the Monte Carlo calculation.
In this figure, primes denote new values of variates. For example, "t' = 0"
means "set t to zero," while "G' = G + Z-3/2" means "replace G by G + Z-312."1
The following is a typical example of a question which could be asked by setting
switches on the console to the appropriate question number: "If z < 8, what
are the current values of z and G and how far has t advanced since this question
was last answered? If z > 8 and t has advanced by 1000 since this question
was last answered, what are the current values of z and G? Otherwise, do
not answer this question." With these explanations, the flow diagram should
be self-explanatory.

4.3. Asymptotic theory. When (4.1) and (4.2) apply, (3.6) and (3.14) give
(4.8) F(g)r g-2Iq(x) as g- ,
where

(4.9) (27)112q(x) e-x2/2 + f
' q(y)e-(zx-)2/2 dy.
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FIGURE 7

Simplified flow diagram of the Monte Carlo calculation.
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From section 3 we know that we need a bounded solution of (4.9); and the sym-
metry of the normal distribution guarantees that there is only one bounded
solution to (4.9).
The relevant curves in figures 1 to 5 were calculated from (4.8) after solving

(4.9) on the Mercury computer at Oxford University; and we are indebted to
Dr. L. Fox for help and advice on the numerical solution of (4.9), and to Mr. K.
Wright, for preparing the relevant autocode program. The method of solution
is as follows. Write

(4.10) qj = q(jh),
where j is a nonnegative integer and h > 0 is a fixed interval size. In the belief
(now proved by D. G. Kendall) that q(x) will tend to a limit as x oo, we assume
that for a sufficiently large n
(4.11) q(x) = 2n, X >_ 2nh,
to an adequate degree of approximation. Applying Simpson's rule to (4.9), we
can now write down a system of 2n + 1 simultaneous equations

(4.12) (2ir) 12qj

/-j2h2+ h fq ex/(_j2h2\ n
exp

(j-2k + 1)2h21=exp (2j2+ {qo ex
2 ) 3 2e 2 )+4k='2>1ex 2
'n-l [(j -2k)2h2] [(j -2n)lhl]+ 2 Eq2kexp[( 2k)h + q2nexp2

+ q2n J(2n)h e1i'2 dy, j = 0, 1, * , 2n.

The 2n + 1 possible values of the integral in (4.12), taken from tables [9], were
written into the program as constants, and (4.12) was solved by the machine's
mnatrix autocode. As a check on the accuracy of the solution, three different
values of h(= 0.1, 0.2, 0.4) were used and various values of 2nh(=2.0, 2.4, 3.2,
4.0, 5.0, 5.2, 6.0) were tried. The solution appears essentially stable when h _ 0.2
and 2nh _ 4.0. Table VII gives the solution for h = 0.1 and 2nh = 5.0.
We feel confident that the entries in table VII are correct to certainly four

places of decimals, and probably to five places. The sixth decimal place is sus-
pect; but we have quoted q(x) to six places for reasons which will appear pres-
ently. The computation was carried through with 29 binary digits, excluding
the sign digit, which is equivalent to about 8 1/2 significant figures in the deci-
mal scale. The equations (4.12) are quite well conditioned, but there are 51 of
them. To say that the results are accurate to five places of decimals is thus to
assert that only 2 1/2 decimal digits will be lost by round-off and the use of
Simpson's rule.
D. G. Kendall has shown that (1/X) f0x q(x) dx - (27r)-w1t2(3/2) =

1.042187 *.** as X-0, where c(s) is the Riemann zeta function. The entry
for q(0) in table VII is thus too large by 3 units in the sixth-decimal place.
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TABLE VII

SOLUTION OF (4.9)

x q(x) x q(x) x q(x)

0.0 1.042190 1.7 1.415767 3.4 1.414140
0.1 1.094685 1.8 1.416438 3.5 1.414155
0.2 1.143272 1.9 1.416647 3.6 1.414171
0.3 1.187616 2.0 1.416555 3.7 1.414186
0.4 1.227506 2.1 1.416288 3.8 1.414200
0.5 1.262853 2.2 1.415936 3.9 1.414210
0.6 1.293687 2.3 1.415563 4.0 1.414218
0.7 1.320143 2.4 1.415211 4.1 1.414224
0.8 1.342447 2.5 1.414904 4.2 1.414228
0.9 1.360902 2.6 1.414652 4.3 1.414230
1.0 1.375862 2.7 1.414458 4.4 1.414231
1.1 1.387719 2.8 1.414317 4.5 1.414231
1.2 1.396882 2.9 1.414222 4.6 1.414231
1.3 1.403756 3.0 1.414164 4.7 1.414230
1.4 1.408735 3.1 1.414134 4.8 1.414230
1.5 1.412183 3.2 1.414124 4.9 1.414229
1.6 1.414431 3.3 1.414128 5.0 1.414229

Table VII shows that q(x) is close to \/2 = 1.414214..* when x is large. This
might have been expected on the following heuristic grounds. It is easy to see
from a linear transformation of (3.14) that, if p(x) is a probability density func-
tion with variance a2, the solution q.(x) of (3.14) satisfies
(4.13) aqu(ax) = ql(x).
Hence, from (3.17), when p(x) is a double exponential distribution with unit
variance,

(4.14) q(x) = '/2

identically for all x. Now q(x) represents the density of visits by the walk to a
thin strip at z = 0, when the walk starts from x. If x is large, the walk will have
to take many steps before reaching the strip; and the central limit theorem will
operate to render unimportant the precise character of the distribution of in-
dividual steps. Thus q(x) for large x should be insensitive to the form of p(x);
and (4.14) ought to hold asymptotically even when p(x) = (27r)-2 exp (-x2/2).
What is at first sight highly surprising about table VII is the damped oscil-

latory character of q(x). But this, too, can be explained by a heuristic argument,
which predicts that the period of the oscillation should be about (27r)1/2 =
2.51. - - . If the sixth decimal place in table VII can be trusted, at least relatively
to neighboring entries if not absolutely, q(x) exhibits maxima at about x = 1.9
and x = 4.5 together with a minimum at about x = 3.2, giving a period of about
2.6 in reasonable agreement with the prediction. We have to thank Mr. D. C.
Handscomb for supplying us with the following argument in support of oscil-
lations.
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Suppose we approximate to a normal distribution by using a symmetric bi-
nomial distribution having steps y = -n, -n + 1, . .. , n - 1, n. When we
replace the integral equation (4.9) by the discrete analogue appropriate to the
binomial, we have

(4.15) q0(x) = 2--n 2n{(n-) + (n + -x)(z)}' x = 1, 2,

where any binomial coefficient in (4.15) is understood to be zero if the factorial
of a negative integer appears formally in its denominator. The solution of the
difference equation (4.15) will be of the form

(4.16) qa(x) = ae Oz,

and (4.16) will satisfy (4.15) for x > n provided

(4.17) Ox = 2-2n E (n+2n-X) = n (2 2 )In.
Hence,
(4.18) 4Oe2-ir/n = (1 + 0)2, r = 0, 1, * , n - 1.
Equation (4.18) for fixed r > 0, has two distinct roots 0, one inside the unit
circle and one outside. Since q,(x) is bounded, ae = 0 when 11 > 1. When r = 0,
(4.18) has a repeated root 0 = 1, leading to a term of the form a + bx in (4.16);
and here b = 0, because qu(x) is bounded. Thus (4.16) becomes, writing a = A/a,

(4.19) q,(x) = a (A + A

where 0, is the root of (4.18) satisfying IO,! < 1. The coefficients Ao, A1,l , An -

in (4.19) are determined in principle by substituting (4.19) into (4.15) and put-
ting x = 1, 2, * , n. For the binomial distribution used, a2 = n/2. Hence,
by (4.13),

n-I
(4.20) q(x) = aq.(x) = Ao + E A,Orz(n/2)"2.

r=1

We now let n , so that the binomial distribution approximates to the normal
distribution. Since IO,1 < 1, we know that O'(n/2)1'I will be negligible unless IleA
is very close to 1, and this cannot occur unless either r is fixed as n -X 0 or n - r
is fixed as n -- oo. In these two cases we find, by solution of (4.18),

(4.21) 0,-' exp [2 (n) _I(-1 hi)] as n -4 oo.

Thus substitution of (4.19) into (4.20) and a little rearrangement of the terms
gives for the solution of (4.9)
(4.22) q(x) = E {a, cos [(27rr)'/2x] + 1,B sin [(27rr)'/2x]} exp [- (27rr)'/2x],

r=o

where a,, 1,B are constants. Equation (4.22) exhibits the damped oscillatory char-
acter of q(x), whose dominant oscillation (r = 1) has period (2r)"2.
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We consider next the appropriate allowance to make when there is p)robal)ility
K" per orbit that the comet will he lost from the solar system owing to disintegra-
tion, and so on. Equation (4.8) is still valid; though, to emphasize the dependence
upon K, we write it in the form

(4.23) F(g) g-213q(k)(x) as g -x o.

Instead of (4.9), however, we have

(4.24) (2ir)/2(1 - K2)-Iq(K)(X) = e-x'/2 + Jo q(K)(y)e-(x-y)x/2 dy.
To see roughly how the solution of (4.24) behaves, write x + h for x in (4.9).
This gives after a little rearrangement

(4.25) (27r)1/?ch2/2[elxq(x + h)] = e X2/2 + f [eI q(y)]c(-x)/ (ly.

Now, from table VII, q(x) is a fairly constant function; so exp (hx)q(x + h), if h
is small, will be approximately equal to exp (hx)q(x). With this substitution in
(4.25), we have by comparison with (4.24)
(4.26) q(K)(T)

where
(4.27) h/ (1 - K.)1

for small K. Thus h -i K\/2; and, since q(K)(x) < q(x), we must choose the lower
sign. Thus we expect

(4.28) q (K) (X) - e KX2q(x)

for small K. This approximate relation may be compared with the corresponding
exact result for the double-exponential distribution with unit variance, which is
available from (3.17) modified according to (4.13),

(4.29) q(K)(x) = e-KX'2(1- K)V2.
Thus, except when x is large, disintegration with small K will have little effect.
Bly substituting (4.14) into (4.28), we see that for the double-exponential dis-
tribution (4.28) is correct to within the factor 1 - K.
The asymptotic theory is, of course, only valid for sufficiently large g. For

the values of x studied (x _ 8), figures 1 to 5 indicate that the asymptotic
theory is an adequate approximation when g _ 100, say.

4.4. Brownian theory. The Brownian theory curves in figures 1 to 5 are
plotted from a direct evaluation of (2.7) on the Mercury computer at Harwell.
We wish to thank Dr. J. Howlett for writing the relevant autocode and furnish-
ing us with the numerical results. As expected, the Brownian theory turns out
to be a poor approximation except when g is small and x is large.

4.5. Physical size of units. Hitherto in this section the unit of energy has been
chosen equal to the standard deviation of an energy perturbation. Then, in
terms of this absolute unit of energy, the time scale has been chosen so that the
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coefficient in Kepler's law (4.1) is 1. There are two advantages in this procedure.
The first (and minor) advantage is that it simplifies the calculations and the
formulas. The second (and major) advantage is that the calculations are inde-
pendent of the physical observations relating to comets.
To interpret the results physically, however, we need to estimate the physical

sizes of the absolute units. This we do below. The estimation is rather imprecise,
because the relevant data on comets is somewhat sketchy, there being a number
of practical difficulties against accurately determining the orbital parameters of
a comet. If and when better observational data come to hand, one will have to
re-estimate the physical sizes of the absolute units; but it will not be necessary
to recalculate any of the Monte Carlo estimates or any of the asymptotic theory,
and so on. In short, what we do now is merely to calibrate the theory.

D. G. Kendall [10] has discussed the magnitude of the energy perturbations,
and quotes the following estimates of the standard deviation of the perturbation
in 1/a, where a is the length of the comet's semimajor axis in astronomical units
(that is, a = 1 for the earth's orbit):

0.00076 (Halley's comet)
0.00079 (27 comets of Fayet)
0.00067 (20 comets of Galibina)
0.00078 (van Woerkom's analysis)

Kendall uses 0.00075 as a convenient single representative of these four figures.
We make a slightly different choice, namely 0.000737, which leads to a round
number in the time scale. In fact, since 202/3 = 7.37.- * , we have 0.000737-3/2 =
5 X 104. Now (4.1) gives V(z) in years when z is in astronomical units. Hence,
if 1 absolute unit of z is equal to 0.000737 (astronomical units)-1, 1 absolute
unit of time will equal 5 X 104 years. Since 0.000737-1 = 1360, a comet with
an initial energy x = 1 in absolute units, has a semimajor axis of 1360 astronomi-
cal units, that is, about a hundred and twenty thousand million miles.
We can summarize the foregoing by saying that the unit of time in figures 1

to 6 is 50,000 years (so that the visible part of the time scale in each of these
six figures runs from 50 thousand to 50 million years), and that the lengths of
the semimajor axes of comets with specified values of x are

Semimajor axis
Value of x in astronomical units

1/2 2700
1 1400
2 680
4 340
8 170

Taking q(x) = V/2, we see that quite a good rule of thumb for long-period comets
is the following: "The probability that a long-period comet will remain in the
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solar system for at least M million years is about 0.2M-2'3, provided thatM 2 5."
For example, five per cent of comets have lifetimes of at least eight million years.
A rough conversion rule for energies is that a comet with an initial energy of x
absolute units has a semimajor axis of length 12 X 10'0/x miles.

5. The accumulation of comets in the solar system

In this section we make the same assumptions as in section 4; and, except
when the contrary is explicitly stated, our units of time and energy are the ab-
solute units defined in section 4. For the next part, we confine our attention to
comets with a given initial energy x.

Let 0 denote time measured from the formation of the solar system, and let Oo
be the present time, that is, the present age of the solar system. Suppose that
in the time interval (0, 0 + do), there is a probability X(0) dO that a comet (with
the given initial energy x) will enter the solar system. Thus the input of comets
to the solar system is assumed to be describable in terms of a Poisson process
with a time-dependent parameter X(O). If a comet enters during the interval
(0, 0 + do), the probability that it will not have been lost from the solar system
before 0o is
(5.1) F(Oo -0) = P{G(x) >00 -0};
and hence the probability that the solar system now contains a comet which
entered during (0, 0 + do) is F(Oo - 0)X(0) do. To get the total number M of
comets in the solar system at the present time, we must sum over all 0 satisfying
0 _ 0 < 00. It follows that M has a Poisson distribution with parameter

(5.2) m = m(OO) = 109 F(Oo - 0)X(O) do.

Let us consider first the special case when X(0) is a constant Xo. Then

(5.3) m = Xo f0 F(Oo- 0) dO = Xo F(g) dg,

and this can be evaluated in terms of the information about F provided by sec-
tion 4. We saw in section 4 that, if g 2 100, then to an adequate degree of
approximation
(5.4) F(g) = q(x)g-211.
Since the age of the solar system is at least 100 absolute units (= 5 million years),
we have from (5.3) and (5.4)
(5.5) m(OO) = Xo {3q(x)0/3 + f0'1 [F(g) -q(x)g-21] dg}

= Xo{3q(x)0o' + A(x)}, 00 _ 100,
where A(x) is defined by (5.5). By numerical integration of the curves in figure
6 of section 4, we obtain the values for A(x) given in table VIII, the last decimal
place being of doubtful significance. Equation (5.5) may be converted into
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TABLE VIII

VALUES OF A(X)

x 1 2 4 8
2

A(X) 2.56 2.95 4.64 8.07 12.29

physical terms on recalling from section 4 the values of q(x) in table VII and
the fact that one absolute unit of time is 50,000 years. In fact, let the age of
the solar system be 01 thousand million years, let Xl(x) be the average number of
comets per annum which enter the solar system with energy x absolute units,
and let ml(x) be the number of comets in millions which are in the solar system
today having originally entered it with initial energy x absolute units. Then

(5.6) ml(x) = {a(x)0'13 + b(x)}Xl(x), 01 _ 0.005,

where a(x) and b(x) have the values shown in table IX. Then table X gives values

TABLE IX

VALUES OF a(x) AND b(x)

x 1 1 2 4 8
2

a(x) 5.141 5.601 5.767 5.757 5.757
b(x) 0.128 0.147 0.232 0.403 0.614

TABLE X

VALUES OF mI/Xi

1
0, XX=1 x=2 x=4 x=8

2

3 7.54 8.22 8.55 8.70 8.92
4 8.29 9.04 9.38 9.54 9.75
5 8.92 9.72 10.09 10.25 10.46
6 9.47 10.32 10.71 10.86 11.07

of ml/Xi, as a function of x and 01. The values in table X make no allowance for
a disintegration effect. If K2 is the probability of disintegration per orbit, then,
as remarked in section 4, q(x) must be multiplied by exp (- KXV\2) approximately.
Applying this correction to table X we obtain tables XI, XII, and XIII.

In each of tables X to XIII there is only a weak dependence of m1/Xi upon 01
and, as already noted in section 4, there is not much dependence on K2 unless
x is large. If we suppose that the larger values of x are less frequent than the
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TABLE XI

VALUES OF Mn1/XI WITII K2 = 0.01

0, X=2 x=1 x=2 x=4 x=82

3 7.03 7.13 6.47 4.94 2.88
4 7.73 7.85 7.07 5.42 3.15
5 8.31 8.44 7.61 5.82 3.38
6 8.83 8.96 8.08 6.17 3.58

TABLE XII

VALUES OF Ml1/XI WITH K2 = 0.02

1a Z=2 X=1 x=2 x=4 x=8
2

3 6.82 6.73 5.73 3.91 1.80
4 7.50 7.40 6.28 4.28 1.97
5 8.07 7.96 6.76 4.60 2.11
6 8.57 8.45 7.18 4.88 2.24

TABLE XIII

VALUES OF Ml/X1 WITH K2 = 0.04

01 Z=2 X=1 x=2 x=4 x =82

3 6.54 6.20 4.86 2.81 0.93
4 7.20 6.82 5.33 3.08 1.01
5 7.74 7.33 5.73 3.31 1.09
6 8.22 7.78 6.08 3.51 1.15

smaller values, and such a supposition seems to be in line with the mechanism
by which comets enter the solar system, then the present total number of comets
(of any initial energy) in the solar system should be between 5X2 million and 1OX2
million, where X2 iS the annual entry rate of comets irrespective of initial energy.

It remains to make some estimate of X2. There are no observations of X2 in
the remote past; but we are in any case assuming in the present analysis that
X2 iS constant, so we can take X2 to be the present rate of entry of comets into
the solar system. Next, from (5.6), the net present rate of accumulation of
comets in the solar system, is (1/3)a(x)6i 2/3X2 million per thousand million
years, that is, (1/3)a(x)O1 /3X2 X 10-3 comets per annum. Since this quantity
is small in comparison with X2 we can say that at the present time the annual
number of new comets is effectively equal to the annual loss of comets. Hence
we can take X2 as the number of comets lost per annum.
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Even so, it is not at all easy to observe or decide how many comets on average
are lost each year. Nevertheless, the following extremely crude argument might
indicate the order of magnitude involved. We know first from Galibina's data
that postorbit perturbations have a algebraic mean about equal to their standard
deviation, namely +0.0005 (astronomical units)-', the bias being such that, in
their onward passage from perihelion, orbits tend to become less hyperbolic.
Thus a comet with an elliptic perihelion orbit is unlikely to have a hyperbolic
postorbit; and it will more or less suffice to say that a necessary (though not
sufficient) condition for loss is a hyperbolic perihelion orbit. Accordingly, we
confine attention to the observed hyperbolic perihelion orbits afforded by Str6m-
gren's data. In this data there seems to be a suspicious lack of observations before
1880; and we therefore deal only with the years 1886 to 1936, the latter date being
determined by the date of Str6mgren's paper. This gives 19 comets in 50 years,
as shown in table XIV. This suggests that about 8.7 comets should have been

TABLE XIV

STROMGREN'S DATA

Perihelion Chance of Hyperbolic
Comet Orbit 1/a Postorbit

1886 I -.0007 0.66
1886 II -.0005 0.50
1886 IX -.0006 0.58
1889 I -.0007 0.66
1890 II -.0002 0.27
1897 I -.0009 0.79
1898 VIII -.0006 0.58
1902 III +.0001 0.12
1904 I -.0005 0.50
1905 VI -.0001 0.21
1907 I -.0005 0.50
1908 III -.0007 0.66
1914 V -.0001 0.21
1922 II -.0004 0.42
1925 I -.0006 0.58
1925 VII -.0003 0.34
1932 VI -.0006 0.58
1936 I -.0005 0.50

Total 8.66

lost in the course of 50 years, in which case X2 = 0.17. Presumably in these 50
years some comets have gone unobserved (for a variety of reasons ranging from
overcast skies to the First World War); so the figure 0.17 will represent a lower
bound for X2. The rough order of magnitude of X2 should, however, be about
X2= 1/4. An upper bound for X2 is about 3 or 4, namely the total number of
comets observed each year.
We conclude that the number of comets in the present-day solar system, which
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have perihelion distances sufficiently small for them to become eventually ob-
servable, is perhaps about two or three million and in any case is pretty unlikely
to be less than half a million or more than forty million. If and when astronomical
equipment permits detection of comets at greater perihelion distances than is
now possible, the estimate of X2 will need to be revised upward to include the
new class of observable comets.
The figure of two or three million given above is somewhat greater than pre-

vious estimates. For instance (in [11], p. 18), Lyttleton wrote: ". . . by far the
majority of comets possess much longer orbital periods . . . , and according to
Crommelin the average is about 40,000 years. . . . The average number of
comets discovered each year is about six . . . but of these only three or four
are really new, the others . . . being returns of earlier discovered comets of
moderate periods. This discovery rate means that at least three hundred long-
period comets come to perihelion each century, and if we adopt 30,000 to 40,000
years as the average period, we arrive at the amazing but inescapable conclusion
that there must be at least 100,000 comets in the solar system." However, the
present study of the process by which comets are lost from the solar system
shows that comets which have lingered in the solar system from the remote past,
have, by being in the tail of the lifetime distribution, energies very near zero and
hence immensely long periods. The cube root relation (5.6) indicates that the ma-
jority of comets now in the solar system are contributed from the remote past;
and accordingly the average period should be considerably greater than Crom-
melin's figure of 40,000 years. Perhaps an average period of half to one million
years is about right at the present day. (It follows from (5.6) that the average
period is nearly proportional to the cube root of the age of the solar system.)
The foregoing arguments depend on the assumption that the rate of entry of

comets into the solar system is constant. This assumption, however, is rather
likely to be invalid. For instance, if comets are born from matter swept up by the
sun's gravitational field in traversing intragalactic dust clouds, then X(O) will
be a fluctuating function of time. We therefore turn to the treatment of variable
X(O). In this we shall assume that X(o) is bounded and possesses a long-term
average, that is, that

(5.7) X = lim W-f X(o) do

exists. The boundedness of X(O) provides a Tauberian condition, sufficient (as
we shall presently see) for the Tauberian conclusion

(5.8) mn(Oo) - 3Xq(x)00M13 as 0, -* -.

The asymptotic relation (5.8) leads immediately to the required generalization
of (5.6), namely
(5.9) ml(x) - a(x)X1(x) 01' as 01 -,

where Al(x) is the long-term average number of comets per annum which enter the
solar system with energy x absolute units. From the point of view of theory this
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result may be satisfactory, but there is a practical difficulty in the way of applyiilg
it. We can no longer, as we did previously, estimate 2j by equating it to the
present annual loss of comets without some further assumption or evidence that
the present dust-collecting rate of the solar system is typical of its long-term
average rate. However, (5.9) could be used the other way around to estimate the
long-term dust-collecting rate if we knew the present number of comets in the
solar system.
To prove (5.8), take an arbitrary E > 0. Then by results of section 4, we can

find y = y(e) such that

(5.10) F(g) = [q(x) + e0]g-213, g >_ y,

where ta denotes an unspecified number in the interval (-1, 1). 13y (5.2), we have

(5.11) m(00) - [q(x) + E6](0o- o)-2/3X(0) dO

f| {F(0o- 0) -[q(x) + et-](0o - 0)-213}X(0) do

=0(1) as Oo-*czo,
by virtue of the boundedness of X(0) and F(g). Since e is arbitrary, (5.8) will
follow from (5.11) if we can prove that

(5.12) f80 (°0-0)-2/3X*(0) dO = o(0'/3) as 0O - ,

where
(5.13) X*(0) X(8) X

From (5.13) and (5.7) we have

(5.14) f| X*(o) dO = o(w) as w

Finally, (5.14) implies (5.12) on applying the following theorem due to
M. Riesz [12].
THEOREM. Define

(5.15) Ar(,) = P(r) f (co- 0)r1X*(0) do

and suppose
(5.16) X*(0) = O(V), Ar(0) = o(W) as 0 - ,
where V and W are nondecreasing functions of 0. Then

(5.17) A.(0) = o(Vl-a/rWa/r) as 0 ,-

whenever 0 < a < r.
In this theorem we take a = 1/3, r = 1, V = 1, and W = 0. In general (5.8)

will not hold uniformly in x; and we shall not discuss the delicate conditions
upon the perturbation distribution P(y) and the distribution of initial energies x,
which would be needed before (5.8) could be integrated over initial energies.
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