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1. Introduction
The purpose of this paper is to present some actual problems involving contagion

together with a review of recent work on the subject. Attention is focused on two
avenues of investigation which have been followed in England and the United States
for the past four or five years. This is not meant to be a comprehensive review, since
the results given are selected primarily from applications of stochastic process
techniques to accident and epidemic studies.

In studying contagion, we first consider the idea of the "risk" of occurrence of
one of a class of events. We assume that if one situation has more risk than a second,
then the former would be expected to have more occurrences of the type of events
in question than the latter. We do not try to define risk in general terms; however,
by observing the number and times of occurrences of events, we can define various
specific risk measures. The word "proneness" is usually used in connection with an
individual and may be interpreted as-the risk associated with an individual in a
particular situation. Sometimes one speaks of an underlying proneness, independent
of situation, which is supposed to exist in each person. This notion will not concern
us at this time, and we constrain our viewpoint to the one which involves both the
individual and the situation. When risk is measured for an individual we have a
measure of proneness.
Suppose a process is such that proneness depends upon the number of events pre-

viously incurred by a person. Then we say there is individual contagion in the proc-
ess. Perhaps the first event serves as a reminder and reduces risks of future events.
This would be called negative contagion. If, on the other hand, an event were to
change a person somehow, so that he became more susceptible to future events,
positive contagion would exist. When a person's proneness depends on the events
which have occurred to others in his environment we say there is between individual
contagion with positive and negative connotations as just given.

In order to fix ideas somewhat, a few illustrations of situations involving conta-
gion will be given. Of particular interest are cases in which contagion is observed
in connection with epidemics and the spread of disease. Some of these situations
have recently been brought to the attention of the author by members of the Com-
mission on Respiratory Diseases of the Armed Forces Epidemiological Board.

2. Some problems involving contagion
2.1. Living conditions. Presently under investigation at two United States Air

Force bases is the epidemiology of upper respiratory diseases. These are contagious
diseases which present a serious problem to the armed forces because of the great
amount of time lost due to them. It has been noticed in some preliminary work that
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the courses of these diseases are apparently associated with housing conditions, that
is, when military personnel, instead of being housed in the conventional "open bay"
style barracks are housed in barracks which have been partitioned into small rooms,
changes in incidence of upper respiratory diseases seem to occur. The problem is to
compare the incidence of disease in the two barracks types under various conditions
of crowding, heating methods, location, and climate. Further discussion of this is
given in a later section.

2.2. Experimental epidemics. Over 20 years ago, a series of experimental mouse
epidemics was begun in England and carried on for several years. Various conditions
were established to provide for different types of immunity, rates of immigration,
endemic and epidemic situations, and so forth. Papers by Greenwood, Hill, Topley,
and Wilson [211 described the findings. More recently, Webster [33] in this coun-
try, and Fenner [17] in Australia, have done more work along this line. In addition,
and less well known, is the fact that it has been possible on several occasions to
establish experimental human epidemics and to observe in detail the spread of
infection by inserting a carrier of a certain disease, for example, streptococcal dis-
ease, into an environment which had 50 or 60 individuals who were free from the
disease. It is interesting to note that upon repetition there was a lack of uniformity
of response, which indicates a need for a probabilistic treatment of the problem.

2.3. Family studies. Data on the occurrence of disease within families are quite
rare. Observations from an outbreak of measles in England in the 1920's were the
subject of considerable study by Greenwood [20]. Data from Providence, Rhode
Island, published in 1938 [35] have been utilized in papers as recently as 1953 [5].
Of importance to knowledge in this field is a family study which has been underway
in Cleveland continuously since 1947 [2]. From this Cleveland work, new informa-
tion on within-family contagion has recently become available. Many questions
concerning upper respiratory and gastro-intestinal diseases can now be attacked.
Models describing the course of such diseases through families of various sizes can
be constructed and checked.

2.4. Accident proneness. Another problem involving contagion is the question
confronting workers in the field of accident research as to whether the occurrence
of an accident changes a person's proneness to future accidents. This will be dis-
cussed in some detail in the next section.

3. Contagion and accidents
This section will be devoted to reporting on recent research on the theory of

accidents. The reader is referred to writings by Lundberg [28], Feller [16], and
Arbous and Kerrich [1] for critical comment on the early stages of research on
this theory.

3.1. The data. A population of aircraft pilots is the object of study. When a flyer
receives his pilot rating, records are begun which list each flight he makes through-
out his flying carerr. Recorded are the following:

(i) Date of flight
(ii) Type of aircraft
(iii) Mission of flight
(iv) Number of landings
(v) Number of flying hours under various conditions of weather and time of day
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From such records a detailed account of exposure to the risk of aircraft accidents
is available for each pilot. In addition to the above, there exists an extensive account
of each accident occurring to these pilots. Over a period of years, a pilot usually
has a variety of experience. For example, suppose he has a flying record as given in
figure 1.
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FIGUIRE 1

He begins flying aircraft of low risk (1) at time To; has a minor accident (2) but
continues flying with no loss of time. He transfers to a higher risk job (3), has a
serious accident (4), and does no flying for a while. He returns to flying (5) and
works in all three risk situations from time to time. While all this is going on, the
pilot himself changes, because of both increasing experience and increasing age.

3.2. The problems considered. Somehow we wish to study flyers like the above in
order to describe the course of accidents among them and test hypotheses concern-
ing them. We begin by considering an individual exposed only to a particular risk
situation. Let t represent time, and suppose in the interval 0 _ t < T1 that m
accidents occur to an individual at times Ti, T2, * * * TT. Denote the conditional
probability that n further accidents occur to this person during interval (T,, T2),
given this previous experience, by Pn(T,, T2 Tm) where rm is the vector (Tl, * * *, Tm).
We shall consider various special circumstances under which this probability

has been studied. Suppose that previous accident experience is adequately summa-
rized by the number of previous accidents. In this case we assume Pn(T1, T2| Tm)
= Pm,n(Ti, T2)-
In accordance with the work of Bates and Neyman, we proceed as follows by

accepting certain postulates.
POSTULATE P1: The individual I cannot die or otherwise cease to be exposed to

accidents. This postulate is obviously unrealistic, and there is a real problem to
develop the theory in order to include the possibility of death. Comments on some
early steps in this direction appear later in this paper.
POSTULATE P2: Whatever the time interval (T1, T2), with 0 . T1 < T2, the

number of accidents, say X(T1, T2), that individual I will incur and survive in
(T1, T2) is a random variable whose distribution depends on T1 and T2 and on the
number of accidents incurred in the time interval (0, T1), but not on the precise
times when those accidents took place.
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POSTULATE P3: If T2 -- T1, then all the probabilities Pm,n(T1, T2) converge to
limits Pm n(Ti, T1).

(1) Pm,o(TI, T1) = 1

(2) P.,n(TI, T1) = 0, n _ 1.

POSTULATE P4: At least at T2 = T1, the probabilities Pm,n(Ti, T2) are differen-
tiable with respect to T2, and specifically,

_-c(m, T1) if n = 0

(3) dPm,n(Ti, T2) =
(m, T1) if n = 1

a2 T2=T,
0 if n 2.

This postulate implies that, as T2 - T1, the probability of more than one accident
in (T1, T2) decreases faster than the difference T2 - T1.

3.3. The risk function. The function O(m, t) is important in that it defines the
process. We call it the intensity of risk or the risk function and we identify it with
the accident proneness of individual I. If O(m, t) varies from person to person, we
say there is variable proneness. If 4(m, t) varies with m, as implied by its form, then
there exists a form of individual contagion. Finally, if c0(m, t) varies with time, t, then
we speak of a time effect, thus introducing the effects of age and experience.

3.4. P6lya Model (P). Let 4(m, t) = X(1 + ,um)/(1 + vt). We see that ,u and v
control individual contagion and time effect; for example, if ,u = 0, we say there is
no contagion; if I > 0, positive contagion; and so forth. Work of Bates and Neyman
[9] attacks a problem associated with observations of successive time intervals
under this model. Consider S + 1 consecutive periods of time, the ith period being
(ti_1, ti) with ti-1 _ 0, to = 0, ts+1 = -. Let Xi be a random variable defined as the
number of accidents incurred after the moment ti-1 and up to and including ti.
(For simplification we here assume all accidents are survived.)
The problem is to deduce the joint probability generating function of the vari-

ables X1, - * *, Xs+,. Let Gx1.... xs+8(Ui, - - ., Us+1IP) denote this generating
function where p stands for the P61ya model as given by the above assumptions.

Consider first the generating function, g.(ti-1, ti, U) corresponding to interval
(ti_1, ti),
(4) gm(ti-i, ti, U) = Z UnPm n(ti-1, t) .

n=O

By conventional methods (for example, see [6]), the solution is obtained;

A(ti-1) +

(5) 9(ti-1 ti} ) = A(ti-1) + [A(ti) - A(ti-1)](1 - U)}

where A(t) = (1 + vt)"P/'and y = 11A. Let A(ti) = Ai.
Using gm as written above we can obtain by a simple recurrence relationship the

desired expression for the generating function,

(6) Gx1, xs,x8+1(Ui, * * *, Us+1P) = 1 + (Ai- Ai-)(I - Ut)]~~
IP)= I-
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This is the generating function of the S + 1 variate negative binomial distribution
and is called the generalized P61ya distribution.

3.5. The Greenwood-Yule-Newbold model (N). We refer back to ck(m, t) as given in
the last section, and put Iu = v = 0. Then we assume that individual proneness, X,
is a specific value of a random variable, A, which has a probability density function
PA(X) = [ml/r(a)] X-1e-A for X 2 0. This, of course, is the familiar assumption
made by Greenwood and Yule [ 19 ]. We denote this model by N. The multivariate
probability generating function corresponding to this model may be written as

(7) Gxl, . . . ,xs+.(U * *, Us+,l N)

=J Gxl, . . *, xs+l(Ui) Us,l = v = o P)pA,(X)dx.
This leads by an easy limit procedure and an integration to

S+1

(8) Gx1, * , x8+1(U1, * , Us+1|N) = 1 + j,1 E (ti -ti1)(1-U)]
i=l

When S + 1 = 1, we find

(9) Gxl(UiIP) = [(1 + (A1- 1)(1 -U)]-'

(10) Gxi(UitN) = [1 + #-It1(1 - U, -

If a = y and (A1- 1) = f-lt, these two expressions are identical. Hence we
reach the well-known result that one cannot distinguish the P61ya contagion model
and the Greenwood-Yule-Newbold no contagion model on the basis of empirical
observations made over a single time interval. This is, of course, the point made by
Lundberg [28], Feller [16], and many others. When more than one time interval
is observed, however, it is easily seen that the two generating functions are equal
only if X'P = v.

3.6. Tapering contagion. The notion of a contagion effect which diminishes with
time has been considered by Neyman in lectures and in unpublished reports prior
to 1954. He called this a "tapering" contagion. Where the P61ya model imposes a
lasting effect of an accident upon the proneness of the pilot, Neyman postulates
that this effect may decrease, that is, taper off, with time. An interesting model of
this has been generalized by Le Cam [26]. Let x(t) be a function of time such that
x(O) = 0, and x(t) has a unit jump each time an accident occurs (which is when
time equals one of the T'S mentioned earlier).
Now let

(11) q¶(x(t), t) = a(t) + pf k(t, s)dx(s)

For example, taking k(t, s) = exp [-a(t - s)], the effect of an accident decreases
exponentially with time. If the integral f. I [x(v), v] dv exists in the Riemann sense,
we can write

(12) PO(tl, t2fx(t)) = exp [Jf +(x(v), v)dv]
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If k(t, s) has suitable integrability properties, then from the above assumptions
one can obtain the probability of exactly n accidents in an interval (t4, t2).

3.7. Multiple exposure. Tucker [31] has tackled the difficult problem, indicated
in figure 1, of exposure to several kinds of risks. Consider for individual I a fixed
decomposition of the positive time axis into intervals in each of which only one type
of risk is met. Let each type of risk have a weight associated with it, and let the
effective time of exposure be the weighted sum of the various exposure times. This
is the idea used by Warren, et al., in [32]. Tucker goes further, however, by formu-
lating the problem as follows. Let f(t) = wi, i = 1, 2, *, r, if t belongs to a time
interval having a risk of type i. Then T(t), defined as

(13) T(t) = f f(U)dU

is called the effective time of exposure to all risks up to calendar time t. Put T(t,)
= T1 and T(t2) = T2, t1 < t2. Consider T, and T2 as points on the scale of effective
exposure time. In particular, let l,(T1) be the effective time of exposure to a risk
situation of type j prior to T1,

(14) lj(T1) = fJ f(U)dU

where R, includes all intervals of j-type risk prior to time ti. Obviously,

(15) T1 = E li(Ti)
j-1

Let I(T1) denote the vector (I4(T1), * *, 1,(T1)). Also let m,(T1) denote the number
of accidents associated with risk j prior to T1, with m(T1) = (ml(T1), - - *,m,(T,)).

Define P(n i, T1, T2, 1, m) as the conditional probability that during the effective
time of exposure (T1, T2), the individual I will incur exactly n accidents, given that
during (T1, T2) I is constantly exposed to a risk situation of type i and given that
prior to T1, his exposure and accident experience are characterized by vectors I(T1)
and m(T1) respectively.
The key postulate in this case is: at least at t2 = t1 the probabilities P(n i, T,, T2,

1, m) are differentiable with respect to t2, and, specifically,

[+ vI (Tj) wi forn = 0

(16) aP(nfi, T,, T2, 1, m) Fl + um (T1)
at2 i2- t | 1 + vl (T1) Wi forn = 1

0 for n _ 2.
The risk function 0(m, t) is now replaced by (m, 1) with the vectors + and v

playing the roles of , and P.
The probability generating function approach of Bates and Neyman can be re-

peated here with similar results.
3.8. Fatal accidents. One of the points made by Arbous [ 1 ], in his excellent dis-
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cussion of accident research, is the need for considering fatal accidents. It is just the
people involved in such accidents who may provide information crucial to questions
of proneness and contagion. The sections above on the P6lya and Greenwood-Yule-
Newbold models purposely deleted provisions for fatal accidents for the sake of
simplicity. Now a brief discussion of this problem will be given.

Let Z be a random variable defined as the number of complete periods of time
survived by the individual I. The random variables Xi used above are now defined
as the number of accidents incurred after moment ti-1 and up to and including ti,
which the individual I will survive. We modify the postulates so as to permit the
possibility of dying from an accident and we stipulate that to each accident there
corresponds a fixed probability B of surviving it. Then define Qm,n(TI, T2) as the
conditional probability that during the time interval (T1, T2) individual I will incur
exactly n + 1 accidents, the last one being fatal, given that he incurred m accidents
prior to time T1. Using the fact that

(17) Qm,o(Ti, T2) = (1 -) [ 1 - P.,o(T1, T2)]
we can then proceed to find the joint probability generating function of the variables
Z, X,, * , Xs+,. This has been done by Bates and Neyman [91 for both the
P6lya and the Greenwood-Yule-Newbold models. Tucker [31] also utilized this
device in his work on multiple exposure. Most other work, however, has skipped
over this important part of accident analysis.

3.9. Joint distribution of the times of occurrence of accidents. Consideration of
problems associated with the time intervals between accidents has been given by
Maguire, Pearson, and Wynn [29]. At this time, however, we turn attention to
some more recent work. Bates [ 10] in a paper, yet unpublished, has attacked the
problem of determining the joint density function of the times, rl, T2, * * *, Tn, of
occurrence of accidents. Furthermore, she has developed a test of the hypothesis
of no contagion in the set of admissible hypotheses which assume no time-effect and
linear contagion. Among other cases, Bates obtains the joint probability density
functions when the risk function 4(m, t) is of the forms

(18) O(m, t) = X(1+ um) = X + VIm
and

(19) 4 (m, t) = .

In the former case the density is

(20) P * * ., tn, i) n!(en 1) exp (4 E tk)

while in the latter it is

(21) P71 ... r"(t,, ..* * tn141 = 0) =n! .

These are both independent of X; thus no restrictive assumptions concerning the
distribution pA(X) of A among a population of pilots need be made. The joint density
of the times of accidents is seen to be a uniform one under the hypotheses that 4' = 0.

3.10. Tests of hypotheses. The availability of the distributions in the last section
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makes possible the development of a test for the hypothesis of no contagion and
no time-effect, ck(m, t) = X, against linear contagion and no time-effect, 4(m, t) =
X + m4p. Bates constructs such a test by utilizing the fact that, when 4 = X + m*,

n

then E tk is a sufficient statistic for ,6
k-1

Suppose there is a total of S accidents and the values t, of the T's are observed.
Under the hypothesis of no contagion, the statistic

S

(22) t = 1 E tj

is distrbuted very nearly normally with a mean 1/2 and standard deviation
1/ V/12S. Bates shows that the test t > to(t < to) provides a uniformly most power-
ful test of hypothesis 4, = 0 against the class of alternates 1 > 0 (1, > 0), where to is
chosen for an appropriate level of significance.
Le Cam investigates tests of contagion under his model of tapering contagion.

He derives a locally best test for the presence of contagion, testing for p = 0 in
his expression

(23) +(x(t), t) = a(t) + po f k(t, s) dx (s)

Bates' test has been extended by Tucker to the case of multiple exposure.

4. Stochastic theory of epidemics
4.1. Comments on the deterministic theory. Attention should be called to Serfling's

excellent review [30] of the development of deterministic epidemic theory. In it,
the work of the pioneers in the mathematical study of the spread of disease is pre-
sented. Some of the most extensive and elegant work was that of Kermack and
McKendrick in their general theory and particularly in their analyses [25] of the
experimental mouse epidemics previously mentioned. It is not the purpose of this
paper to discuss the work done in this deterministic field. Instead, attention is
directed to recent literature devoted to the development of probabilistic methods
for describing epidemics.

4.2. A few problems concerning the spread of disease. We now continue the dis-
cussion begun in section 2.1 above. At one of the recruit training bases of the
United States Air Force, a practically continuous stream of newly enlisted men
flows in and out of the base. As they arrive, the men are grouped into "flights" of
50 or 60 men. Each man lives with his ffight for the entire period of training (about
12 weeks). A flight occupies one floor of a barracks, and its members sleep, eat, and
train together. Detailed information is available on the health of these men, and
consequently the disease experience of a great many flights is known. The problem
is to utilize this information by building stochastic models to describe the situation,
by estimating parameters, and by testing certain hypotheses connected with types
of barracks and other matters. Present are many of the classical difficulties asso-
ciated with varying incubation periods, temporary immunity, variable proneness,
seasonal changes, etc. In addition, and not having obvious counterparts in deter-
ministic theory, are probabilistic features generated by the existence of the small,
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semi-independent groups of 50 or 60 men. Similar problems occur in family living,
of course, but data on as large a scale are not available.

In another paper in this symposium [ 14] some specific new methods of attacking
the above problems are presented by A. T. Bharucha-Reid. Consequently, the re-
mainder of this paper will be concerned only with some of the efforts made in the
recent past to study contagion and theoretical epidemics.

4.3. Continuous time approach. Many articles appearing in the past six years refer
to the notes of lectures on stochastic processes given in 1946 by Bartlett [6]. These,
together with his 1949 Symposium paper [ 7 ], form the nucleus of some of the recent
work in epidemic theory. As in the accident studies, the key to many models of
epidemics is a risk function similar to o(m, t). Differing from the accident approach,
however, is the predominance of the concept of between individual contagion. The
individual is no longer the 'population' studied. Now a group of individuals must
be studied together.
One of the concomitants of epidemic contagion models is the nonlinearity of the

associated differential equations. This occurs with many of those models in which
the risk of a new case occurring in A small population depends on the number of
infectious persons. Nonlinearity also occurs in many models featuring two or more
populations between which interaction exists.

(a) The logistic case. As an example, we first consider one of the simplest of be-
tween individual contagious situations, the well-known logistic case. We assume
that at t = 0 there are N susceptible people and one infectious person in the popu-
lation. No immigration or deaths occur. Once infected, a person remains infectious.
If there are Y, infectious people at time t, then the individual risk function is given
by o(Yt, t) = Yt,u. The risk to the population, however, is (N + Y, - 1) YtA.
Denote the expectation of Ye as mi. Feller has pointed out in [15] that in this lo-
gistic case the stochastic mean, mt, does not agree with the corresponding deter-
ministic solution, ml, which is the logistic function,

(24) mt = N + e(N+±)t
However, an explicit expression for mt itself has until recently eluded workers in
this field. Bailey, in a clever attack on this problem [3], considers the evaluation
of the probabilistic mean mt. This is a rather formidable task, partly because the
usual differential equation in mt involves the second moment and the probability
generating function is of second order. In his work Bailey turns to the Laplace
transform in addition to the probability generating function. While failing to solve
the problem completely, he succeeds in deriving expressions which simplify it
greatly.

In a highly satisfying piece of work, Haskey [ 22 ] builds upon Bailey's results and
conquers a mountain of algebra to obtain a fairly simple expression for mt, the
expected number of infectious persons,

(25) N + 1N- E -

{(N - 2r + 1)2t +2- (N- 2r + 1) E - e-at
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for N even, while for N odd, mt equals the above expression summed over r = 1,
2,* * *, (N+ 1)/2lessaterm,4N!exp(-at)/[(N+ 1)!]2,wherea = r(N-r+l).
This constitutes a rather neat solution to a problem which has, by its algebraic un-
pleasantness, bothered a great many people.
Something which is obvious but which the author has not seen in the literature

is the interpretation of a simple growth process as a contagious process. Suppose the
individual risk o(m, t) is given as

(26) 4(Yt, t) - Yt
N-Yt + 1

where again Y, is the number of infectious persons. We see that, as in the logistic
case, the risk increases as the number of infectious individuals increases. Consider-
ing the whole population, however, the risk of a new infection is Yt1u as in a birth
process. The assumption that the total population is of size N + 1 leads to conclu-
sions different from those of the usual birth process, however. The expression for
the mean is

(27) mg = e t[l- (1 - e-Lt)f+l]

(b) Immunity. Let Xt and Yt be the number of susceptible and infectious indi-
vitluals respectively. Suppose an infectious individual has a risk X of becoming
noninfectious and immune, while a susceptible has the risk Yt,U of becoming in-
fected. Bailey [4] studied this model; he did not get far in deriving the probability
generating function but he did go on to consider the total size of the epidemic.
Letting time tend to infinity, he obtained a recursion method for finding the proba-
bility that X_ equals N - w and Y_, = 0, given that at time 0, Xo = N and Yo = a.

(c) Immunity plus immigration of susceptibles. Add to the assumptions in (b) above
a provision that the risk of a new susceptible entering the population is a constant v.
Bartlett, in [7], briefly states this problem, obtains a second order partial differen-
tial equation for the probability generating function and then leaves it after a dis-
cussion of various limiting properties.

Whittle [34] considers the moment generating function for X and Y and studies
the relation of this stochastic model with its deterministic counterpart. He utilizes
operational methods similar to those of Bartlett [7] in obtaining time expansions
to approximate various expectations.

(d) Incubation period. Bartlett [7] adds to the model above by introducing a new
'state' of being in an incubation period, with risk X1i of then becoming infectious.
He does little but state these assumptions and mention that Kendall's [23] device
of introducing a number of such sub-states can be used to vary the distribution of
lengths of the incubation periods.

(e) Infection from within and without. Gaffey [ 18] makes one of the first attempts
at deriving a test for between individual contagion. He studies a variation of the
logistic case in which a susceptible has risk X of becoming infected from outside his
family and risk Ytu of infection from the infectious individuals within his family.
Gaffey follows the method used by Bates in obtaining the joint distribution of
times ri, * * *, 7, of occurrence of infection and developing tests of the hypothesis
,u = 0 against alternative hypotheses that , > 0, ,u < 0, or , #, 0. As in Bates'
work, the test is based on the mean of the 7's.
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4.4. Discrete time, the chain binomial. Suppose the incubation period is fairly con-
stant, the period of infectiousness is quite short, and this period is followed by com-
plete immunity. Greenwood [20] introduced a method which he called 'chain bi-
nomials' to apply to such situations and used it as a tool in studying the incidence
of measles in families. Lidwell and Sommerville [27] improved this method some-
what. Let p be the chance a particular susceptible becomes infected by a particular
infectious person during the latter's brief infectious period. For example, if there is
one primary (index) case and three susceptibles, then the probability of two new
cases occurring is the probability of one secondary case which in turn leads to one
tertiary case plus the probability of two secondary cases,

(28) P{2 new cases} = (3pq2)(2pq)q + (3p2q)q2 = 6p2q4 + 3p2q3
q = 1 -p .

When theoretical distributions so derived were fitted to observations, Greenwood
found that the fits were not always satisfactory and suggested that the risk p may
vary considerably from family to family. Bailey [5] recently studied this problem
and assumed that p was distributed among the population of families as a beta
distribution,

(29) dF y1-l dp .

This leads to the probability of, say, 2 new cases out of 3 susceptibles, given one
primary case, as

(30) 101 (6p2q4 + 3p2q3)pZ-iqY-l dp

6 B(x + 2, y + 4) + 3 B(x + 2, y + 3)
B(x, y) B(x, y)

When Bailey fitted theoretical distributions of this type to observations, excellent
fits were obtained in all cases tried.

4.5. Promising approaches in the probabilistic study of epidemics. It seems appro-
priate in closing this paper to mention some of the work which seems to the author
to be most promising for future research in epidemic theory. This is naturally a
subjective list and not nearly an exhaustive one. Briefly, then, these approaches are:

(a) Whittle's [34] approximations, which relate the older and better developed
deterministic results to stochastic cases.

(b) Utilization of approaches similar to that of Bellman and Harris [ 11 ] in their
study of branching processes. Bharucha-Reid [ 13 ] has made a start here. There is
need for models having variable incubation periods and variable periods of infec-
tiousness.

(c) Expansion of David Kendall's [24] artificial realization of a birth and death
process to epidemic situations.

(d) Interpretation of birth (growth) processes as a particular type of contagious
process, then using the simple expressions which result to study epidemics.

(e) Extension and exploitation of Gaffey's [ 18 ] test for contagion.
(f) Application of LeCam's [26] generalized model of tapering contagion to the

spread of the disease.
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(g) Use of sampling procedures via electronic computers. In particular, Bartlett
[8 ] mentions the use of Monte Carlo methods in epidemic theory.

(h) The work of Landau, Rapoport, and others from the Committee on Mathe-
matical Biophysics of the University of Chicago. See [12] for comments and
references.
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