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The titles of this talk and of the succeeding one do not divide genetics into two
fundamental categories. At the present stage of development, it may be more
profitable to emphasize the common features rather than the differences between
wild populations on the one hand, and domestic and laboratory populations on the
other. The division indicated by the titles was adopted chiefly as a convenience for
the purpose of preventing overlap in subject matter. Within what I take as my half
of this subject, limitations of time prevent an over-all review and dictate a selection
from the many interesting developments of a mathematical nature that have re-
cently appeared. I am restricting myself therefore to a consideration of nonadditive
genetic variance, a condition that must lie near the heart of the currently unpredict-
able behaviors of populations subjected to prolonged selection, or to inbreeding and
subsequent crossing. It is on this particular field of nonadditive variance that a
new method of attack has very recently been conceived and developed independ-
ently at three different research centers. The different but quite compatible de-
velopments of this new idea are themselves very interesting; in addition there may
be value in a comparative study of the separate pathways by which individuals of
different propensities and backgrounds can exploit the same basic idea. All this
work is very recent and I am greatly indebted to the authors for permission to
discuss their contributions prior to their appearance in print, although it will be
possible to insert full references in the published version of this talk.

In studies of the variance of measurements of organisms, the measurement of each
individual is considered to be the sum of a genotypic value, defined as the average
measurement that replicates of individuals of the given genetic constitution would
have if exposed to the whole array of environments, and of an environmental or
nongenetic deviation from the genotypic value. In the present discussion only
genotypic values will be considered. In order to subdivide the genotypic variance
it is necessary to consider the general features of Mendelian heredity. The genotype
of an individual consists of two alleles (related genes) at each of a large but fixed
number of loci. One allele at each locus comes from the male parent, and one from
the female parent. If the two alleles are the same at a particular locus, the individual
is said to be homozygous at this locus; if the two alleles are different, the individual
is heterozygous at this locus. The distributions of alleles at different loci, for the
most part in the following discussion, are assumed to be independent, although
deviations from this condition due to linkage or to linkage in combination with
inbreeding are considered by two of the authors.
With this background we can consider the usual subdivision of genotypic values
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and of the corresponding genotypic variance. The genotypic value is commonly
taken as the sum of (1) the population mean, (2) an additive genetic deviation, (3)
a dominance deviation, and (4) an epistatic deviation. The first plus the second of
these is then the additive genetic value. The additive genetic deviation of an indi-
vidual is defined as follows: each kind of gene in the population is assigned a value
such that the sum of the values for the particular genes present in each individual
comes as close as possible, in the least-squares sense, to the departure of the geno-
typic value of this individual from the population mean; this sum for an individual
is its additive genetic deviation. If values are assigned to each possible pair of genes
that can exist at each locus, instead of to the individual genes, the sum of values for
all loci for each individual is the additive deviation plus the dominance deviation.
The remainder that must be added to equal the genotypic value is the epistatic
deviation, that is, nonadditive interaction between loci.
The methods to be discussed differ from previous work in the further subdivision

of epistatic deviations. In the first place it has been found useful to divide these
deviations into those that can be accounted for by considering the nonadditive
effects of loci considered in pairs, those additional deviations that can be accounted
for by considering loci in groups of three, and so on for higher numbers. This par-
ticular type of division is not new. Thus Fisher [ 1 ] derived the correlations between
relatives due to nonadditive effects of pairs of loci, Wright [2] demonstrated that
an important model of epistatic deviations, one in which a measured character
depends on the squared deviation of a primary character from its optimum, is
expressible in terms of interactions of loci in pairs, and Griffing [3] considered a
model involving pairs of genes. Homer [4] considered variances and covariances in
random bred and inbred populations in connection with a number of epistatic
models, in some of which loci interact in groups of arbitrary number, but the propor-
tion of variance due to interaction in groups of two, three, four, etc., were not con-
sidered. Other epistatic models, such as the threshold models considered by Lush,
Lamoreux, and Hazel, Robertson and Lerner, and Dempster and Lerner [5 ], [6 ],
[7 ], can be shown to involve nonadditive interactions of loci taken in groups larger
than two, but analysis in this light was not attempted.
The new methods to be discussed differ from previous work in a further orthogo-

nal subdivision of the epistatic deviations and variance. In the first example, this
division is into interactions of heterozygous loci with heterozygous loci, of homo-
zygous loci with homozygous loci, and of combinations of heterozygous and of
homozygous loci. In the other examples, only superficially different, the subdivisions
of nonlinear interactions between loci are additive deviations with additive devia-
tions, dominance deviations with dominance deviations, and interactions of additive
with dominance deviations.
We shall first consider the analysis, as developed by Anderson and Kempthorne

of populations produced by the successive self-fertilizations of an F1 population
obtained by crossing two completely homozygous parents. The symbolism employed
may be understood by reference to table I in which the numbers represent relative
frequencies in the F2 with respect to two loci. The letters ao, a,, and a2 are used to
represent the genotypes aa, Aa, and AA respectively, and similarly for genotypes
at the B locus and other loci. Genotypic values are also denoted by the same sym-
bols, so that ao, for example, represents both the genotype aa and also its average
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genotypic value in combination with all the combinations of genes at other loci in
the population in the proportions in which they exist in the F2. More complicated
symbols are defined similarly; thus aob2c, represents the genotype aaBBCc and also
the average genotypic value of all individuals of the population possessing this
combination of genes. The F2 is thus used as a base population. With this definition
it will be seen that the mean value of the F2 population can be expressed by any one
of the factors in the following expression or by the expansion of the product of two
or more of them, the symbols in the expanded expression being replaced by geno-
typic values:

(1) V = [(ao + 2a, + a2)/4] [ (bo + 2b, + b2)/4] [ (co + 2c, + c2)/4] *, etc.

TABLE I

DIHYBRID F2
(Numbers are relative frequencies.)

Genotypes aa Aa AA
ao al a2

bb bo .... .1i .2 12
Bbb,... 2 4 2
BB b2 ................... 1 12 1

(SOURCE: Anderson and Kempthorne [8])

The symbols Ao, A1, A2, and likewise Bo, B1, B2, etc., are now introduced to represent
deviations of genotypes from the F2 mean. Thus the value of Ao can be expressed
in the following way:

(2) Ao = ao-(ao + 2a1+ a2)/4 = (3ao-2a1-a2)/4,

and if genotypic values are inserted this gives the deviation of the average of all
genotypes containing aa at the A locus from the F2 mean. Thus we can write:

(3) ao-Ao + = Ao + (ao + 2a +a2)/4.

Note that Ao = aO- (ao + 2a, + a2)/4 so that sums like Ao + 2A1 + A2 are equal
to zero.
We can now write certain products as in the following example:

(4) aob2cl = [Ao+ (ao+2a,+a2)/4] [B2+ (bo+2b,+b2)/4] [C1+ (co+2c,+c2)/4],

and if we expand the right-hand side without disturbing the symbols in parentheses,
and appropriately substitute the meanings of certain symbols as described above
we obtain:

(5) aob2c= + Ao + B2 + C1 + AoB2 + AoC1 + B2C1 + AOB2C1-

In this expression A o is the deviation of the genotypic mean values of all individuals
possessing aa from v, AoB2 is the deviation of genotypic mean values of all indi-
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viduals possessing aaBB from [v + Ao + B2] and AoB2C, is the deviation from
[v + Ao + B2 + C1 + AAB2 + AoC1 + B2C1] of the mean genotypic value of all
individuals possessing aaBBCc, and similarly for the other terms. Note that the
expected values of terms like A , ABj, A B,Ck, etc., in the F2 population are all zero.
The zero value of expressions like the following shou ld also be noted:

(6) [Ao + 2A1 + A2] [BiC,Dk. **, etc.] = 0,

where each subscript in the second factor is given a particular value, either 0, 1,
or 2. In this model then terms like Ai are the additive deviations of individual loci,
terms like ABi3 are the epistatic deviations of two loci in a given genotype, terms
like A iB,Ck are epistatic deviations of three loci taken at a time, etc. The parameters
are additive, the expectations of all of them in the F2 population, with the exception
of v, are zero, the basic differential effects in the F2 of genes at individual loci are
given by terms like (A2 - Ao)/2, the deviation of the heterozygotes at individual
loci from the mean of the two homozygotes in the F2 is given by expressions like
(2A1- Ao - A2)/2. If it is assumed that interactions of certain classes do not exist
the corresponding terms may be dropped and the model used without other altera-
tion; thus if it is assumed that interactions involving three and more loci together
are negligible then all terms like AiBiCk and A,BiCkD, etc., can be simply omitted.
It should be clearly understood that the present author is solely responsible for any
faults in this brief paraphrase of the rigorous development of Anderson and Kemp-
thorne [ 8 ].
The authors mentioned now apply this model to the population resulting from

self-fertilizing the F1 for m generations. Consider only the contribution to the mean
of such a partially inbred population of interactions at the first p loci taken together.
This may be expressed as:

(7) 1J [qA1 + (1 - q)(Ao + A2)/2]
first
p loci

where q is the frequency of heterozygotes in this generation. Since from (6) we may
substitute - A1 in place of (Ao + A2)/2 in this expression it may be written:

(8) II [qA, - (1 - q)A1] = rI (2q - 1)AI = (2q - 1)PA1B1C*1. .
first first
p loci p loci

Thus the entire effect of nonadditive interactions on population means in the sym-
metrical situation produced by self-fertilization can be expressed in terms of hetero-
zygous times heterozygous interactions. With self-fertilization the frequency of
heterozygotes is halved at every generation, so we may write 1/2m in place of q.
The sum of all p factor interactions in the mth generation of selfing is then:

(9) E [(1/2"-') - 1]P[A,B,Ci . *.* .
all sets
of p loci

If we let ,p represent the summation of the second factor we can write for the mean
of the population produced by m generations of selfing (which is the Fm+i) as follows:

(10) F.+, = K1 + E [(1/2m-') - l]f, -
p=1
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In this expression K1 is the mean of the F2 population, and the O3's are the sums of
p-factor interactions of the various loci and their interactions with the fixed loci.
(The latter phrase serves as a reminder that the interactions of factors are not
independent of genetic background.)

If we can obtain the mean values of successive generations of a self-fertilized F1,
in the absence of disturbing factors such as selection and linkage, it should be pos-
sible to estimate the O3's, and to determine in particular whether epistasis is of any
great importance in the changes of mean with inbreeding. From expression (10) we
may write expressions for generation means as follows:

(11) F1 = K1+ 1 + 2 + *,etc .

(12) F2 = K1.

(13) F3 = K, - (1/2)#1 + (1/4)2 -(1/8)13 +

(14) F4 = K1 - (3/4)#,i + (9/16)2 -(27/64)13 +

(15) F5 = K1 - (7/8)01 + (49/64)32 -(343/512)133 +

Anderson and Kempthorne have made least-squares estimates of the first three
parameters with respect to a number of characters in red peppers, using data on
means of successive generations of selfing provided by Khambanonda [9]. The
authors emphasize that the results are dependent on the absence of disturbances of
means by selection or linkage, and that the tests of significance also depend on
sampling distributions being normal. The estimates of 132, the second order epistatic
interactions, turn out to be significant at the 5 per cent level or better in all cases,
even when the data are expressed in logarithms. The actual estimates of the 13's
depend on the assumption that higher order interactions can be neglected, but any
error in this assumption could not of course invalidate the demonstration that epi-
static interactions had significant effects on the means of the populations studied.

There may be some value in considering further the meanings of the 13's. K1 is of
course the F2 mean. The dominance parameter, #1, decreases by increments that are
halved in successive generations of selfing as would be expected. However the
increase, with selfing, of 132, the sum of heterozygote by heterozygote interactions,
may appear puzzling at first, since combinations of pairs of heterozygous loci must
decrease in frequency. The explanation is in the definition of dominance, which is
based on the F2 generation and therefore in a sense includes a good deal of what
might, in physiological terms, be considered heterozygote by heterozygote inter-
action. The use of the F2 as a base is not obligatory and some further light may be
shed on meanings of the parameters by alternative procedures. The general method
of Anderson and Kempthorne is easily applied to the F1 or any other generation as a
base, but the use of F_, a population which consists of all possible completely homo-
zygous lines, as a base seems to be of particular interest. In this case the physio-
logical meanings of the parameters are rather easily formulated; the dominance
parameter is then the sum of the effects of making each factor heterozygous in turn
while all other factors are homozygous; 632 is the sum of the additional effects due
to making all possible combinations of two loci heterozygous, with the remaining
loci homozygous; and similarly for 3 and higher order parameters. Such definitions
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have a direct relationship to certain theories of heterosis. For example Shultz and
Briles [10] present some evidence, in the case of blood-group genes in poultry,
that heterozygosity at two loci may boost certain superficially unrelated characters
more than the sum of the boosts due to heterozygosity of each locus alone. Such a
situation, if of general occurrence, would correspond to a positive value of 132 and
perhaps also of higher order parameters, as they are defined in terms of the F_
population.
Anderson and Kempthorne are not responsible for the following manipulation to

which their general model has been subjected. The following expressions apply
with F.0 used as a base:

(16) (ao + a2)(bo + b2)(co + C2) . . . (po + P2)
2P

(17) A2 = (a2 - ao)2

(18) A, = a, _ (ao+a2) = -ao + 2a1-a2(18) Ai= ai- ~~~2-2
Then the interaction deviation of, say, AA with Bb is

(19) A2B1 - (a2 - ao)(-bo + 2b, - b2)4
and, as an example, we can write

(20) a2b i= v+ A2+ B, + A2B-= (a2 + ao)(b2 + bo)4

_____ -b0+2b1-b2 (a2-ao)(-bo+2b1-b2)
+

a
(b2+bo) + (a2+ao) + 4

Now consider the mean effect of the p-factor interactions for the case where there is
q proportion of Aa and (1 - q)/2 proportion each of AA and aa, and similarly at
other loci. The p-factor interactions for the first p loci can be obtained, as before,
by expanding

(21) [(1-q)Ao/2+qA,+(1-q)A2/2] [(1-q)Bo/2+qB,+(1-q)B2/2] , etc.

In this case however expressions like the following equal zero:

(22) (1- q)AoXYZ + (1- q)A2XYZ = 0,

where as before X, Y, and Z represent symbols like B1, Co, D2, etc. Making substi-
tutions accordingly, expression (21) can be written

(23) [qA1] [qBi] [qCG] . . . [qP,] = qpAIBICI . . . P1 = (1/2m)PA,B,C, * * * P1.

Summing over all sets of p loci, and letting

(24) E,=E (1/2m)Pi3,
all sets
of p loci
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we have the following very simple result:

(25) Fm+l = Ko + (1/2)m01 + (1/2)2m132 + (1/2)3m,B + etc.

Note that Ko is the mean of the completely inbred populations. The expressions
for the first few generations, excluding four-factor and higher order interactions
then become

(26) F1 = Ko +1i+ 02 + 038

(27) F2 = Ko + (1/2)013 + (1/4)3,2 + (1/8),B3,

(28) F, = Ko + (1/4)01i + (1/16)32 + (1/64)03,

(29) F4 = Ko + (1/8)#13 + (1/64)12 + (1/512)03s.

TABLE II
TwO-FACTOR MODELS. THE NUMBERS ARE DEVIATIONS FROM AN ARBITRARY

BASE OF THE GENOTYPES INDICATED AT THE MARGINS

a a' a" b c

Model (Duplicate (Complementary
Factors) Factors)

Genotypes AA Aa aa AA Aa aa AA Aa aa AA Aa aa AA Aa aa

BB........0 0 0 2 1 0 1 1 0 0 0 0 1 1 0
Bb 0 1 0 1 1 -1 0 1 -1 0 0 0 1 1 0
bb ........ 0 0 0 0 -1 -2 0 0 -1 0 0 1 0 0 0

With these definitions of dominance and of epistatic deviations, the increments of
all factors in successive generations form simple geometric series, and the higher
order interactions rapidly become of relatively less importance as inbreeding con-
tinues. It becomes obvious that the relative values of the parameters that measure
dominance, two-factor interactions, three-factor interactions, etc., can be quite
different where different populations are used as bases, and have exact meanings
only when defined with respect to a specified generation. An exception to this state-
ment must be made for the case in which there are no interactions of higher order
than the one-factor or dominance interactions, in which case the particular genera-
tion chosen as a base is immaterial.
To illustrate the relationship of the parameters to the generation used as a base,

the model is applied to the hypothetical two-locus populations shown in table II.
The numbers shown are deviations of genotypic values from an arbitrary base. Note
that the change per generation of selfing, and hence the dominance and higher order
parameters, are the same for model a (in which only the double heterozygote has
a differential effect) and models a' and a" where additive effects and opposing domi-
nance effects respectively are introduced for all other genotypes. Model b is the
duplicate factor case, and model c the complementary factor case. Table III shows
the values of the parameters, as dependent on the generation used as a base, and
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also the decrease in mean between certain generations attributable to dominance
and to two-factor interactions in the different cases. It may be noted in passing
that, when the F2 is the base population, the change from F, to F_, due to all even-
number factor interactions is always zero. The rather large differences in the changes
attributed to dominance as compared to epistasis, depending on the base population
used, illustrate the limitations inherent in the use of fixed parameters in a rapidly
changing population; the method is perfectly valid, however, for estimating param-
eters as they exist in a particular generation (assuming data can be obtained cor-
responding to the assumptions on which the model is based) and it is therefore of

TABLE III

Quantity PlBase Model a Model b Model a
QPopulation M(Dupate) (Complementary)

F2 1/2 -1/8 3/8
(dominance) F., 0 -1/2 1/2

02 F2 1/4 1/16 1/16
(Two-factor epistasis) F., 1 1/4 1/4

Decrease from F, to F2
attributed to F2 1/2:1/4 -1/8:1/16 3/8:1/16

dominance and epistasis F., 0: 3/4 -1/4: 3/16 1/4: 3/16
respectively

Decrease from F2 to F,,
attributed to F2 1/2: -1/4 -1/8: -1/16 3/8: -1/16

dominance and epistasis F, 0: 1/4 -1/4: 1/16 1/4: 1/16
respectively

some importance to understand the meanings of the parameters as applied to the
particular base population adopted.

It should be mentioned that Anderson and Kempthorne adapt their model to
utilize data from parental lines, backcrosses, repeated direct and reciprocal back-
crosses, selfed backcrosses, and the offspring of backcrosses by Fl's. In particular
they explore the scaling tests of Mather [11] and show that it will detect inter-
actions of the second order if higher order interactions are absent, but could by
chance fail in some cases if higher order interactions are present. These interesting
developments cannot be discussed further at this time.
Hayman and Mather [ 12 ] have also studied the partition of epistatic variance to

inbred and backerossed populations. Their method of attack is quite different from
that discussed above and, as it provides a logical transition to the application of the
same ideas to crossbreeding populations with unrestricted allelic frequencies, will
be briefly reviewed at this point. Table IV shows their symbolism as applied to a
dihybrid F2. The capital letter gene symbols, A and B, refer to alleles that have a
plus effect on the character measured and are not necessarily either dominant or
recessive. The symbols da and -da are the additive values of genes A and a, 2da
being the difference in mean genotypic values of AA and aa individuals in the F2;
db is similarly defined. The symbol ha, the dominance deviation of Aa, is the excess
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of the mean genotypic value of Aa F2 individuals over the mean of AA and aa
individuals. Because of the assignment of ha and hb solely to Aa and Bb individuals
respectively, the mean of the genotypic values listed in the table is (ha + hb)/2
rather than zero. This arrangement seems to have no particular disadvantage in the
computation of variances where gene frequencies are equal. The further symbols,
iab/, jalb, lb/a, and l/ab, represent deviations due to the following kinds of interactions
respectively: additive with additive, additive at locus A with dominance at locus B,
the reverse, and dominance with dominance. All these interactions, with the excep-
tion of ha and hb, add to zero in the F2.

TABLE IV

Genotypes AA A. aa

da+ db h. + db - da+ db

BB + iab/ - iab/

db - (1/2)ij/b - (1/2)jb/a + (1/2)jb/a (1/2)ja/b - (1/2)jb/a

(1/4)l/ab - (1/4)l/ab (1/4)l/ab

da+ hb ha+ hb - da+ hb

Bb (1/2)ja/b - (1/2)ja/b

hb - (l/4)1/ab (1/4)l1/b - (1/4)l/ab

da - db ha - db - da - db
bb - iab/ iab/

- db - (1/2)Vo/b + (1/2)jb/a (1/2)jb/a (1/2)Ja/b + (1/2)jb/a

+ (1/4)l/ab - (1/4)l/ab + (1/4)l/ab

It will simplify our comparison of this table with the work of Kempthorne [131
and of Cockerham [14] to be discussed later, if we note that the definitions of the dif-
ferent kinds of interactions by the three groups of investigators would be identical if,
in table IV, the dominance interactions were distributed equally between the hetero-
zygotes and homozygotes. Thus instead of adding ha to Aa genotypes, if (1/2) ha is
added to these genotypes and (1/2) ha subtracted from AA and aa genotypes, and
similarly with hb, the F2 mean of genotypic deviations becomes zero. Such a change
would somewhat clarify the terminology in that the coefficient of any compound
parameter for any genotype becomes simply the product of the coefficients of the
corresponding elementary ones. Thus the coefficient of jab/, the additive by additive
interaction, for genotype AABb is the product of unity, the coefficient of da, and
zero, the coefficient of db; the coefficient of l/ab, the dominance by dominance inter-
action, for the same genotype would be the product of the coefficients for ha and hb
or (- 1/2) (1/2) = - 1/4 after the change suggested above had been made. With
this superficial change the definitions correspond also to those used by Anderson
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and Kempthorne in the work just discussed; in the latter work, since means only
were being considered, the additive by additive interactions cancelled and the other
interactions were expressible in terms of dominance by dominance interactions be-
cause of the symmetry of gene combinations in the populations derived by successive
self-fertilizations.
There are thus eight parameters in the table which completely define the devia-

tions of the nine genotypes from the mean. With three segregating loci affecting the
character there are 27 genotypes and 26 parameters as follows: three additive, three
additive by additive, one additive by additive by additive, three dominant, three
dominant by dominant, one dominant by dominant by dominant, six additive by
dominant, three additive by additive by dominant, and three additive by dominant
by dominant. It is easy to assign the proper parameters, and to determine their
coefficients, for interactions of higher orders than two by the same scheme men-
tioned above for the two-factor case.
At this point it might be asked whether there is much utility in replacing indi-

vidual genotypic values by an equal number of parameters. The authors believe
that the higher order interactions are likely to be negligible and that, if this is the
case, the scheme permits the combination of different types of epistasis, that may
be acting in a population, into a single model in which each component can be con-
sidered somewhat independently of the others. We have already seen how this was
done by Kempthorne and Anderson and further examples will be considered later.
In addition some consideration will be given to the question of higher order param-
eters.
Hayman and Mather next show certain simple relations among the parameters

that result in classical types of epistatic interactions. As examples we may note that
the 9:3:3:1 ratio occurs when da = ha, db = hb and iab/ = ja/b = jb/a = 1/a and that
when, in addition, d = (3/2)iab/ the 9:3:4 ratio is produced. These authors also dis-
cuss methods for estimating the parameters in the two-locus case where the genes
are "associated" and where they are "dispersed," that is, where the two plus genes
come from the same parent in the original cross and where they come from different
parents. In this connection, they also give the linear expressions involving popula-
tion means, which in scaling tests have the value of zero in the absence of epistasis,
in terms of the above parameters. A number of expressions for variances and co-
variances of backcross and selfed populations are derived and the effects of linkage
on these various relationships discussed. Some of these relations are given in table V.
Time is not available for a consideration of these very interesting exploratory inves-
tigations in further detail.
The application of the same basic idea to populations having any gene frequencies

and any degree of inbreeding, but restricted to two alleles at any locus, is illustrated
in table VI, extracted from a table by Cockerham [ 14]. The two subscripts to the
Y's (genotypic values) and thef's (genotypic frequencies) indicate the alleles present
at the A locus and the B locus in that order. Thus, subscript 2 represents homo-
zygous AA or BB, subscript 1 the heterozygote, and 0 the aa or bb homozygous.
Y1o is thus the genotypic value of Aabb and fio its frequency. Dots indicate averages,
so that Y1. is the mean of AaBB, AaBb, and Aabb genotypic values in the popula-
tion. The rows headed by Wi, W2, etc., are orthogonal scales and it will be noted
that multiplying the genotypic values by the corresponding f's and Wl's yields the
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product of 2uv and an expression representing the additive effect at the A-a locus,
namely, the mean of all the AA's and half the Aa's minus the mean of all the aa's

TABLE V

SCALING TESTS

Test Associated Dispersed

P1+ F1 -2B1 (1/2)(i-j - j + 0 (1/2)(-i-j + j + 0
P2 + F1 - 2B2 (1/2)(i + j + j + 1) (1/2)(-i + j-j + 0
P1+ P2 + 2F1-4F2 2i + I -2i + 1

P1 + P2 + 2F2 - 4F 2i + (1/4)1 -2i + (1/4)1

EXAMPLES OF VARIANCES

VF2 = (1/2)da + (1/2)db + (1/4)ha + (1/4)hb + (1/4)zb/ + (1/8)ja,b

+ (1/8)j2/. + (1/16)12ab
VF8 = (1/2)[d;- - (1/4)ja/b]2 + (1/2)[db - (1/4)jb/a]2 + (1/16)[h- - (1/4)1/.b]'

+(1/16)[h - (1/4)l,ab] + (1/4)iab/ + (1/32)j./b + (1/32)jb/.

+ (1/256) /ab

(SouCD: Hayman and Mather [12])

TABLE VI
ORTHOGONAL SCALES AND PARTITION OF VARIANCE

Scale Genetic Type

Y Y22 Y21 Y20 Y12 Y11 YIO Y02 YOI Yoo
f f22 f21 f2o f12 fli fio fo2 foI foo

WI 22v* 2v 2v v-u v-u v-u -2u -2u -2u

W2 1/f2. 1/f2. 1/f2. -2/fl. -2/fl. -2/fl. l/fo. l/fo. l/fo.

Ws 2y y-x -2x 2y y-x -2x 2y y-x -2x

W4 1/f.2 -2/f. 1/f.o 1/f.2 -2/f.i 1/f.o 1/f.2 -2/f.i 1/f.o

WV5 = W1W3, W6 = W1W4, W7 = W3W2, W8 = W2W4.
u = f2. + fl./2., i) = 1 - u, x = f.2 + f.1/2, y = 1 - X.
2
= (E fiiFiFW,,)2/f iW2ii = (CovYW,)2/qr2t = PW 2

(SouRc3: Cockerham [14])
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and half the aa's. The W3 scale does the same for the B locus, while W2 and W4 are
related to the dominance effects at these two loci. Thus the summation of the prod-
ucts of the Y's and f's with W2 yields a value proportional to the mean of the Aa's
minus half the means of AA and of aa. These scales are orthogonal in that the sum-
mation of the products of the W's of any one scale and the corresponding f's is zero
(thus ensuring that deviations around the means are dealt with) and also in that
the summation of the products of two scales and the corresponding f's is zero.
The additive variance due to the A locus is now obtained by summing the triple

products of corresponding Y's, f's, and Wl's, squaring the sum and dividing the
square by the sum of the frequencies multiplied by the squares of the corresponding
Wl's. This division standardizes the scales, the terms of which need only be in cor-
rect proportions. The W2, W3, and W4 scales, when treated similarly, give, respec-
tively, the dominance variance due to the A locus, and the additive and dominance
variances due to the B locus. By multiplying the terms of WI by those of W3, and
similarly for other scales involving the A and B loci as indicated near the bottom
of table VI, four new orthogonal scales are obtained which can be used to give the
additive by additive variance, the additive by dominance, the dominance by addi-
tive, and the dominance by dominance. The sum of the eight components equals the
total variance, and these components correspond to those obtained by Hayman and
Mather, and by Kempthorne in work to be discussed presently. Where three or more
loci are to be considered it is only necessary to add new W scales for the additive
and dominance effects of the new locus and then to obtain a whole new set of scales
by multiplication of the appropriate terms of the previously existing scales. It is
thus a straightforward process to obtain scales permitting the calculation of all
interaction components of dominance and additive variance taking two loci at a
time, three at a time, and so on up to the number of loci considered. The total
variance is the sum of these components which again correspond to those obtained
by Hayman and Mather, and by Kempthorne in work to be discussed presently.

Table VII gives examples of single locus and two-locus variance components. In
these expressions F is Wright's inbreeding coefficient. As is well known, complete
inbreeding (F = 1) ordinarily leads to an increase in additive variance, always to
the disappearance of dominance variance, and as the new methods demonstrate, to
the disappearance of any variance with dominance in its nomenclature. However
these expressions show that dominance variance may actually increase in the early
stages of inbreeding, as has previously been noted by Robertson [ 15]. The variance
components given here apply strictly to the particular population on which the
computations are made, and not only components and frequencies, but also orthogo-
nal scales themselves, change with inbreeding.
These scales are used not only to obtain variance partitions, but also (and chiefly)

to obtain correlations between relatives. This is done by setting up joint tables for
the two sets of relatives, and obtaining covariances of, in theory, all terms in one
with all terms in the other. Although the processes are too involved to detail at this
time, a number of simplifications in the relationships make the task usually much
less formidable than might seem to be the case. In the first place, it is only necessary
to obtain covariances between the scales, taking account of joint frequencies, and
of the variance components, rather than between the genotypic deviations. Sec-
ondly, one-factor deviations in one relative are correlated only with one-factor
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deviations in the other and of the same locus, and similarly for two-factor and higher
order deviations. In fact only the same type of n-factor deviations (as for example
two-factor dominance by additive) are correlated in a noninbred population at
equilibrium. The latter condition does not hold for inbred relatives, and linkage
partially invalidates the method for some conditions of inbreeding, even when the
population is assumed originally to be in equilibrium. We will reproduce here only
the very simple results that were obtained for random mated populations in equi-
librium, namely that the correlation between relatives for a given order of domi-
nance-by-additive deviations is equal to (p)A(q)D, where A is the number of loci

TABLE VII
ExAMPLEs OF PARTITIONS OF VARIANCE IN INBRED POPULATIONS FOR Two LOcM

Orthogonal Partitions of the VarianceScale

WI (add.) 1 + F [(u + Fv)(Y2.- Y.) + (v + Fu)(-Yi -

W2 (dom.) uv(u + Fv)(v + Fu)(1 - F) (Y2. - 2Y1. + y0.)21 + F

WX(add. 14+xF)2 [(u + Fv)(x + Fy)e*22 + (u + Fv)(y + Fx)e2l
+ (v + Fu)(x + Fy)eI2 + (v + Fu)(y + Fx)ell]2

W, (dom. u(1y(l F)2 (x + Fy)(y + Fx)(u + Fv)(v + Fu)(e22-e21-e12+e1I)2

*e22 = Y22 - Y21- Y12 + ylly e2 = Y12 - yll- Y02 + Y01

e2l = Y2- Y20- Yl1 + Y10 , ei = Y1- Y1o- Yo0 + Yoo

(SOURCE: Cockerham [141)

entering into the deviation with additive nomenclature, D is the number with
dominance nomenclature, and p and q are the correlations for single factor additive
and dominance deviations respectively. Wright's coefficient of relationship is the
value of p, and q is well known for simple cases such as for parent-offspring correla-
tions (q = 0) and for full sibs (q = 1/4). Thus the correlation between full sibs of
dominance-by-dominance deviations would be (1/4)2 = 1/16, between additive-by-
dominance deviations (1/4) (1/2) = 1/8, and between additive-by-additive devia-
tions (1/2)2 = 1/4. The higher order correlations thus diminish rather rapidly with
decrease in genetic relationship. The value of q can be obtained by the orthogonal
scales for inbred populations, but in such cases there may be n-factor correlations
between dominance deviations of one relative and additive deviations of the other,
which can greatly complicate the results.
Although analogy suggests that the results obtained by the orthogonal scales may

also apply to cases of multiple alleles, Cockerham states that this can be only a
conjecture at the present time. The results of Kempthorne [13] to be discussed
demonstrate, however, that his conjecture is valid at least for the case of noninbred
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populations. The latter attacks the problem by means of the general factorial
model. The total genotypic array of a random bred population without linkage is
given by the expansion of the following expression:

(30) I{EP;Ai}2

The superscripts are not exponents but refer to loci, the subscripts refer to par-
ticular alleles at a given locus, A refers to the gene, p is the relative frequency of the
particular allele at the given locus, and n is the number of loci. The expansion thus
gives every genotype, and the coefficient of each is the relative frequency with which
it appears in the population. The gene symbols are also used to indicate genotypic
values as in the work of Anderson and Kempthorne discussed above.
The value of a particular genotype, A,Ak, where Ai and Ak are particular alleles

at a single locus, may be expressed by the expansion of the following identity:

(31) AjAk = [ PmA-] [Z PnAn] + [Aj -EPA.] [ PnAn]

+ [ PmAm] [Ak- PnAn] + [A j- PrA,n] [Ak- PnAj]
The subscripts m and n refer to the first and second alleles at the locus distinguished
as having been contributed by, say, the sire and dam respectively, and the value of
every term in the expansion is to be interpreted as averaged over all genotypes at
other loci. The four terms on the right are the population mean, the additive effect
of the jth allele, the additive effect of the kth allele, and the dominance effect of the
two together, and this may be written

(32) AjAk = V + a, + ak + dik-

If every symbol on the right of expression (31) is given a subscript, indicating that
it refers to the ith locus, and if the entire expression is then multiplied by a similar
one for the i'th locus and then by a similar one for the i"th locus and so on for all n
loci, the expansion will indicate a genotypic value for a particular genotype ex-
pressed at every locus. Typical terms in the expansion of such an expression are
as follows:

(33) ' = II [ pmAi] [ EpnAnj (mean of population)i-1 m n

(34) a' = [A-jEpmAm'I FEPnAn] II[ Epm"A mim
A
n (additive effect

j,i " FEpn"AF 1 of thejth allele
m 'n L nn i LfPim n at the ith locus)

(35) (atai )jijtj = [A', -EpZ A] [E 'A'] [A"r- Ep.mAn'] [Zp 'An']

r
[Edpm At"l] Ai"] (additive by additive effect of the

it im n jith allele at the ith locus, and the
jiith allele at the i'th locus.)
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The general form taken by the expressions for dominance effects, additive X domi-
nance effects, etc., can be inferred from these examples. In this manner Kempthorne

shows that the genotype indicated by E Ak.A. can be expressed by a series of
terms like the following: i i

m the mean plus all additive
(36) v + E (aji + al) effects of individual genes

n . the sum of all dominant
+L djikS effects at individual loci

+ E (a'ai )j + (a'a ) k + (a'ai )k j,f + (a a' )k k ,

the sum of all additive by additive interactions of genes at two loci.

Similar expressions may be written for additive-by-dominance interactions, domi-
nance-by-dominance, additive-by-additive-by-additive at all sets of three loci, etc.
Kempthorne demonstrates that these are all additive parameters and that all of
them (except v) have expected values of zero and are uncorrelated. The definitions
of single locus additive effects and dominance effects are equivalent to those used
in the past and they correspond, for the cases of two alleles and no inbreeding, to the
definitions of Cockerham, and for the case of equal frequencies of the alleles to the
definitions of Hayman and Mather with the exception noted in the discussion of the
latter paper.
To compute correlations between individuals related in a given manner, the two

groups with common ancestors are designated populations I and II. With the aid
of an ingenious symbolism, which cannot be reproduced here because of lack of
space, expressions indicating the genotypic array of the two populations are ex-
panded and multiplied together in order to obtain the covariance. Only terms of the
same order and kind can contribute to covariance, and only if genes are received
from a common ancestor. In the case of dominance deviations, or of additive-by-
additive deviations, two alleles have to trace to a common ancestor for the expected
covariance to be other than zero, and three alleles in the case of dominance-by-
additive or of additive-by-additive-by-additive deviations, and similarly for devia-
tions of higher order. Inasmuch as the present model is restricted to noninbred
populations, a sire and dam cannot be related and two relatives will be related
either through their two sires or through their two dams, or both, or in crisscross
fashion-not from the sire of one, for example, to both the sire and dam of the other.
Kempthorne adapts the procedure that Malecot [16] has applied to one locus to
the case of many loci. If Wright's path coefficient between gametes contributed to
the two related individuals by one set of parents (two sires, or sire of one and dam
of the other) is given the designation 4, and the coefficient through the other set
of parents is given the designation 0' (using Malecot's terminology), then it is
shown that the p and the q of Cockerham's results (given above) are equal to
(4 + ¢')/2 and 00' respectively. The result now demonstrated is equivalent to
that given by Cockerham, namely that the correlation of nth order deviations in-
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volving additive nomenclature A times, and dominance nomenclature D times, is
pAqD, where p and q are defined as mentioned above.

I regret that it is impossible to more than suggest the beautiful and rigorous
development of Kempthorne in a brief presentation. The ideas that form the basis
of the final result are not, however, difficult to grasp. Consider two individuals re-
lated separately through their two sires and through their two dams. The proba-
bility that the genes at a given locus contributed by the sires to the two individuals
are descendants of the same gene in a common ancestor is Wright's path coefficient
computed solely through paths passing through the sires. The equivalent probability
with respect to the genes contributed at the same locus by the dams is Wright's
path coefficient computed solely through the dams. The probability that both alleles
at this locus in both individuals trace back to common genes in the common an-
cestors is thus the product of the two paths. Only in this event will the expected
covariance of the dominance deviations be other than zero. Where there are n-order
deviations n genes have to trace back to common ancestors; if less than n trace
back in this way, there is no covariance contribution from the n-order deviations,
although there may well be contributions with respect to lower order deviations.
Kempthorne and Cockerham by remarkably different methods have applied the

same basic idea to Mendelian populations and arrived at entirely compatible
results. Kempthorne restricts himself to noninbred populations, whereas Cocker-
ham's results, though applicable to all kinds of inbreeding, are based on populations
with only two alleles at each locus.
The methods described are likely to be most useful if genotypic variance is found

in practice to be due chiefly to main effects and low order interactions. The sugges-
tion that this is probably true is made both by Anderson and Kempthorne and by
Hayman and Mather in the articles discussed above. The ultimate resolution of this
problem must of course be empirical, and the methods themselves provide the basis
of the necessary tests. As an illustration of the usefulness of the new methods, as
well as of possible techniques of test, we may consider the demonstration of Hen-
derson [ 17], by the use of Cockerham's results for inbred populations, that higher
order interactions will contribute little to specific combining ability unless the in-
breeding coefficient of the parents is close to unity. Conversely, if the specific com-
bining ability were found to change considerably in the last stages of inbreeding, we
could conclude that higher order interactions did exist to an important degree.

It may be worthwhile as a preliminary gesture to see what arguments there may
be in mathematical theory or general genetic knowledge for supposing variance
might or might not be largely composed of the low order varieties. Consider first a
large panmictic dihybrid population with two equally frequent alleles at each locus.
Suppose we assign each genotype a value at random from a normal population with
unit variance, so that no two genotypes are alike. The sampling variance of the
genotypic means of such populations is 9/64 so that the expected variance of the
population itself is 53/64. This population, in which the values are assigned without
any reference to the genes has, nevertheless, the variance components indicated in
table VIII, computed by means of the appropriate variance expressions given by
Cockerham [ 14]. The correctness of these components has been tested by comput-
ing the correlation between half-sibs in such a population by the variance compo-
nent methods that have just been described above and independently in terms of
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TABLE VIII

PARTITION OF VARIANCE IN DIHEYBRID F2 WHERE GENOTYPES ARE
ASSIGNED VALuES AT RANDOM

Type of Variance Proportion

A locus additive .6/55
A locus dominance .. 9/55
B locus additive .. 6/55
B locus dominance .. 9/55
Add. X add .. 4/55
Add. X dom .. 6/55
Dom. X add .. 6/55
Dom. X dom .. 9/55

the frequency of identical genotypes in related and unrelated individuals. Both
methods give a correlation of 13/220. With assurance of the correctness of the
method employed, then, the proportion of variance due to single factor additive
effects was computed for similar "random" populations with higher numbers of
loci, and these results are shown in table IX. The proportion for five loci is rather

TABLE IX
PROPORTION OF ToTAL SINGLE FACTOR ADDMVE VARIANCE

IN VARIOUS MODELS

Type of Model
Number
of Loci

"Random" Duplicate Complementary

1............ .4 .667 .667
2............ .218 .571 .267
3............ .111 .095 .486
4............ .0527 .031 .411
5............ .0255 .0098 .346

small and it is obvious that large amounts of high order interactions can not be
shown to be improbable unless whatever pertinent information may be available
on the mode of gene action is taken into account.

Of the simple well-known models of epistasis, probably the most extreme is that
of duplicate factors, in which only the homozygous recessive at n loci produces a
differential result. Actual instances that correspond closely to such models have been
observed, up to the case of three loci, in plants of polyploid origin. The simple
complementary model, in which a minimum of one dominant gene at each of n loci
is sufficient to produce a result seems, from considerations of the relationships of
genes to chain reactions in biochemical syntheses in lower organisms, to be more
realistic. The proportions of total single factor additive variance for both these
models for various number of loci are also shown in table IX. If the alleles do not
produce all-or-none effects, the amount of additive variance can be greatly in-
creased.
The conclusions to be drawn from this table and similar calculations must be

exceedingly tentative and provisional. On the one hand, the possibility that higher
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order interactions may be of general importance is certainly not excluded by these
considerations, but neither do they preclude the view, and perhaps they encourage
it, that most genetic variation, in the case of continuously variable characters in
crossbred populations, may be treated as single locus effects plus low order multi-
locus interactions. With the new mathematical tools described in the preceding
pages for studying interactions between loci, it is to be hoped that progress in the
elucidation of these questions will be more rapid in the future than it has been in
the past.
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