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1. Foreword
This paper is exclusively concerned with continuous parameter Markov processes with

a denumerably infinite number of states and stationary transition matrix function. The
foundations of the proper theory of such processes, as distinguished from that of the
discrete parameter version, or of Markov processes which are either more special (for
example, a finite number of states) or more general (for example, general state space;
nonstationary transition matrix function), were laid by Doob [1], [2], and Levy [4], [5],
[61.1 Roughly speaking it was L6vy in 1952 who drew, in his inimitable way, the compre-
hensive picture while Doob, ten years earlier, had supplied the essential ingredients. The
present effort aims at a synthesis of the most fundamental parts of the theory, made
possible by the contributions of these two authors. While the results given here generally
extend and clarify those in the cited literature, immense credit must go to Professors
Levy and Doob for the inspiration of their pioneer work. To them I am also indebted
for much valuable discussion through correspondence and conversation. An attempt is
made in the presentation to be quite formal and rigorous, in the spirit of Doob's already
classic treatise [3]. Further developments of the theory will be published elsewhere.

2. Introduction
We consider a probability space Q with the generic point co, a Borel field A of co-set

including Q itself, and a (complete) probability measure P defined on /8. For general
definitions and notations we refer to [3], unless otherwise specified. The notation x(t, w),
for example, will be used both for the function x(t, *) and its value at co.
A Markov chain jx(t, w), 0 < t < c} is given as follows. The state space is the set

of nonnegative integers. The initial distribution is given by
(2.1) P{x(0,W) =i} pi, i=O, 1, 29 ...

where pi > 0,I p, = 1. The stationary transition probability functions are

(2.2) Pij(t) =P{x(s+t,W) =jlx(s,w) =il} S.0, t>0,
This paper was prepared with the support of the Office of Ordnance Research, U.S. Army, under Con-

tract DA-04-200-ORD-355.
1 It is a pleasure to note that Professor L6vy in his paper [4] attributed its origin to a conversation

held in the course of the Second Berkeley Symposium.
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and satisfy the following conditions: for i, j = 0, 1, 2,*, t > 0 and s > 0

(2.3) Pij(t) > 0, Pij(t) = 1, Pii(s+t IPik(S) Pi (t).
i Ck

We assume that for every i, j
(2.4) lim pi (t) = i.

t -+0

According to theorem II.2.6 of [31, there is a standard modification of the process which is
separable relative to the closed sets, and measurable. Moreover, the denumerable set R satis-
fying the conditions of the separability definition may be taken to be any set which is every-
where dense (see pp. 59-60 in [3]). We shall always take R to be the set of rational numbers
of the form r2-". Another consequence of (2.4) is that the pij(.) are all continuous func-
tions, since

(2.5) pij (t+ h) -p i (t) I 1-pii (h)
for every positive t and h.
The separability of { x(t, c) }, however, may require the adjunction of the value - to

the range of x(., w), so as to make it compact. If we treat this value - as a new state
we have then for every finite i and every t > 0

(2.6) Pi. (t) =PIx (t, W) = Ix (0, w)=i} ,

since E pi(t) = 1. Furthermore since 5 pi = 1 we have also P{x(t, c) = o I = 0
O£j<i<c0 i<

for every t _ 0. Thus any conditional probability under the hypothesis x(t, c) = ,in
particular p,1(t), is undefined. We shall call this state the adjoined state. In the follow-
ing an unspecified state shall mean one which is not adjoined.
We remark that if we label the states in a different way we may need other adjoined

states. For example if the states are all the integers then we may need the two adjoined
states + - and - -; if the states form mutually noncommunicating classes it may be
more advisable to label them in such a way so as to allow for distinct adjoined states in
distinct classes. In one of Levy's examples (see p. 366 in [4]) the states are all the ra-
tional numbers, and the adjoined states all the irrational numbers.

3. A fundamental theorem

It is known (see theorem 9 in [1]) that the limit

(3.1) lim 1-Pii (t) = i
t--O t

exists for every i, but it may be infinite. The state i is called stable or instantaneous ac-
cording as qi < - or qi = c. The fundamental property of the two kinds of states is
the following. If P{x(r, w) = i} > 0, then

(3.2) PI x (s, o) _i for T _ s _ T+tIx (r, w) =i}= e-qit t>0

where the right member is interpreted as 0 if qi = .

We introduce the general notation: for any state i, inclusive of c,

(3.3) Si (X) = {t : x (t, co) =i};

the closure of S,(co) will be denoted by S1(wO).
We first establish a fundamental theorem concerning stable states. An open interval of
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t in which x(., co) i, and which is not properly contained in another such interval, is
called an i-interval of the sample function x(., c). Its closure is called the corresponding
closed i-interval.
THEOREM 1. There is a set Q0 E B with P(Qo) = 1 having the following property. If

co E go the set S1i(c), for every stable i, is the union of disjoint closed i-intervals whose num-
ber is finite in every finite t-interval.

PROOF. We prove first that there is a set Q1 E / with P(Q1) = 1 such that if co E Q1,
then for every finite T > 0, and every stable i, the sample function x(., co) has only a
finite number of i-intervals in (0, T).

Consider for each n the numbers

(34) T 2T (n-1)T
nnn

Define a sequence of random variables as follows:

T(f) (co) = the smallest number in (3.4) which lies in an i-interval of x(-, co), if such
a number exists; otherwise r(ln (Xo) = T.

(3.5) r5n+)X(n) = the smallest number in (3.4) which exceeds r'(nco) and which lies in
an i-interval of x(-, co) distinct from the one containing r(n) (co), if such
a number exists; otherwise r(n),(co) = T.

Let N be a positive integer. Consider the co-set AW for which r(n)(co) <.. <rN()(w)
< T (A4n) is empty if n _ N). Let AN be the co-set for which x(., co) has at least N i-inter-
vals interior to (0, T). For each X E AN there exists an n = n(w) such that co E A,7!).

Since 47Il) 5 ANjn±1]') we have then AN C U A5n7).
n=l

For 1 < k _ n- 1 let

(3.6) Qk =P kT is the smallest number in (3.4) lying in an i-interval such that

x (t, w) HAi, <t<
k Ix(O, co) =it

In words, Qk is the probability that, starting from i at t = 0, flT/n is the first one among
the sequence of "instants" (3.4) such that x(t, co) = i again after having left i some time
before. By stationarity we have, if 1 _ j < k < n- 1,

(3.7) Qk- =P~~i (n) kT (n) jT
(3 7) Qk-j =P} T5++1 Ow) = n I T8. (w)=n .

The random variables r(n)(), 1 < s < N, form a discrete Markov chain whose states
are the numbers in (3.4) and the number T. If Q(., *) denotes the transition probability
function, then

Q( n
=0)= 1:5k<_ j,

(3.8) Q(n D) k 1jkSn1
n-I

Q (T, T)= 1- Qk-iX 1 _ j _ n-1,

Q (T, T) =1.
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Now we have

(3.9) P (AN) = PIrt(w) =-1T; (W)

k<, .k2T; *--;k,T (n) kNT

n Is

= S P TAi) (w) =
k,

Qk-k Qk-ks ** QkN-k

Since
n-i

k-i

we have by (3.2)

(3.11) P (AN)) _ (1 - e-QiT) N-i

regardless of n. Hence letting n - we have

(3.12) P (AN) < (1Q-eiT) N-i

Let A.S.(T) = n AN, then A0,(T) is the set of X whose sample function has infinitely

many i-intervals in (0, T). It follows from the above that P[A(T)] = 0 for every T> 0.

Sinc

Let A = U AX~(n), then also P(A) = 0. The set Q1 = Q-A fulfills our requirement.

n-i

Now it follows from (3.2) that if i is stable, then every rational point T in S1(co) must
be contained in an i-interval, with probability one [see theorem 2 (i) below]. Hence we
may choose a subset Q2o of Ql with P(Q0) = 1 such that if X e Qo, then every rational
point in everyS1(c) with i stable is contained in an i-interval. Let X e Q1o and let T be
an irrational point of S,(w). Because of separability there are rational points 7n of S,(w)
in any neighborhood of r. By the choice of Q1o there must then be i-intervals intersecting
any neighborhood of T. Unless Tr itself is contained in a closed i-interval there must be
an infinite number of distinct i-intervals in its neighborhood. This is impossible by what
we have proved. Hence each point of S3(2) is contained in a closed i-interval. Since there
is only a finite number of i-intervals in every finite I-interval the closure S,(w) is the
union of the closed i-intervals. They are disjoint since the possibility of two abutting
i-intervals is precluded by separability. Theorem 1 is proved.

For a discussion of theorem 1, see the remarks after theorem 5.
For each X ( Qo given in theorem 1, and for each stable state i, we can now define the

first, second,---, nth,- i-intervals of each sample function x(*, co). However, for
given X and n there may not exist an nth i-interval of x(-,Pl)). We denote byer(i) the
set of =for which the nth i-interval exists. For each w e A(i)- there is then a finite non-
negative number fro(3,i) which is the beginning of the nth i-interval, a positive "num-
ber" Ti(eri), possibly X, which is the end of the same interval, and a third positive
number ofdsici) = i( iei)v-aTs(nii) npossibly a, which is the length of the interval.
Furthermore, for each Xe Ai+n(i), n 2 1, there is a finite positive numberPn(owd i) =



CONTINUOUS PARA1METER MARKOV CHAINS 33

T3+dw, i) - .(w, i). A single-valued function t(aw) will be called a random variable if
its range is [- c, + cX] and its domain of definition is a set A E /Q such that for every
real a, the set of co E A for which t(w) < a belongs to A. It can then be shown, but we
omit the proof, that rn(w, i), Tn(w, i), XA(w, i) and p,n(o, i) as functions of w are random
variables in the above sense. We shall call them the nth entrance, exit, sojourn and return
times of the state i, respectively.

4. Further properties
The first three properties, enumerated below, apply to a stable state as well as an in-

stantaneous state. In the former case however more definitive results have been estab-
lished in theorem 1.

(i) If x(t, w) = i, then t is a point of density of Sj(w) for almost all co. More precisely:

(4.1) P{lime-1m [Si (X) n (t, t+e)] =I x (t, ) =i} = 1.

Ptfime-1m [Si (X) n (t-e, t) =1 x (t, w) =i} = 1
4$o

PROOF. By Fubini's theorem,

(4.2) E{el-m [Si (co) n (t, t+e) ] | x (t, w) =i} =-1 fpii (t) dt.

Similarly, if P{x(O, co) = h} = 1, then

Ifphi (t)-u)Piii(u) du
(4. 3) E I eL m [Si (co) n (-e, t) xx (t, co) = Phit)

Thus both conditional expectations tend to 1 as f J 0; the second assertion being true
for every h remains true under any initial distribution.

Let {IS,J and {e," be two sequences of positive numbers decreasing steadily to 0. It
follows from (4.2) that

(4-4) p.=P{en- m [Si (co) n (t, t+fn) I < 1-alX (t, co)

p ii(t) dt .
We have

(4- 5) 1--f"Pii (t) d t = I -1Pii (ens) I d s .

Since

(4.6) 1 -Pii (efS) : I -Pii (S) C log Pii(s)
we have

(4-7) P.nr in-nf lnlo1g Pii (s) I ds .

Thus if we choose 5,i and ef so thatz 5;le3 < - we have by the Borel-Cantelli lemma

(4.8) P{I Im [Si (w) n (t, t+ en) ] < 1--, for infinitelymanynI x (t, co) =i} = O.

If in addition we choose en so that en+1/en -+ 1 we obtain the first relation in (4.1). The
proof of the second relation is analogous.
A t-set S will be called metrically dense in itself if every open interval which contains

a point of S contains a subset S of positive measure.
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(ii) For almost all w, the set Si(w) is metrically dense in itself.
PROOF. Since the process is separable relative to the closed sets, there exists Q.2 E A

with P(02) = 1 such that if X( E Q2, then x(., c) has the following property: any open
interval which contains a point of Si(w) contains also a point of R n Sj(w), where R is
defined in section 2. For let A be the set of nonnegative integers, except i, closed at -.
Let {II} be the denumerable set of all open intervals with rational endpoints. Then Q2
may be so chosen that

(4.9) 2 n Iw : x (r, w) G A, r e R n In}-2 n{: X(t,w)E A, tE I.} = °

for every n. Hence if w E 02 and I,, n Si(w) #4 0, then I,, n R n Si(c) #d 0. Since any
open interval contains an interval I, this proves the assertion regarding i2. Applying
property (i) to all t = r E R, we see that for almost all w such that x(r, w) = i, any open
interval containing r contains a set of Si(w) of positive measure (in fact, on both sides
of r). Combining this with the property of Q2 stated above, we obtain (ii).

In the sequel we shall make use of an important result due to Doob (see theorem 12
in [1]), which we shall refer to as theorem D.

TiiEoRE1 D. There is a setQ3 C B with P(Q3) = 1 such that if w E 23, then x(*, cw) has
the following property: as t a T or tT 'r, x(t, w) has at most one finite limiting value.

(iii) For every j Fd i and almost all w, S3(co) n SYj(w) is a finite set in every finite t-in-
terval. Consequently, Si(w) - S(co) is at most denumerable.

PROOF. By theorem D, for almost all w, a point of B(c) = S_i(w) n Sj(w) must be a
limit point of Si(w) and of Sj(co) from different sides. If there is a point wO, for which
B(wo) is infinite in a finite t-interval, then there is a limit point T and an infinite sequence
of points of B(wo), all on the same side of T and converging to it. Thus as t T-r from this
side, x(t, w0) has the two limiting values i andj. This can happen only for a set of c,o with
probability zero, by theorem D. Thus the first part of (iii) is proved; the second is an
immediate consequence since Si(co) - Si(co) C U [Si(w) n Sj(c)].

Wip

(iv) If i is instantaneous, then for almost all w the set Sj(w) is nowhere dense.2
PROOF. It follows from (3.1) with qi = - that for almost all co the set Si(w) does not

contain any open interval with rational endpoints. Hence for almost all c,, Si(cc) does
not contain any open interval. If Si(w) should contain an open interval then this inter-
val would intersect some Sj(w) with j $! i and thus by property (ii) contain a subset
of Sj(w) of positive measure. But by property (iii) the set Si() - Si((w) is at most de-
numerable. Hence Sj(w) does not contain any open interval. This is equivalent to the
assertion that S1(co) is nowhere dense.

Properties (ii) and (iv) are given by L6vy (see p. 373 in [4]), and property (iii) in [6].
Our proofs of (iii) and (iv) are quite different from Levy's and are gathered from con-
versations with Doob, who discovered (iii) independently.

5. Nature of sample functions
The following theorem is due to Doob (see p. 457 in [2] and compare theorem 11 in [1]

for a less specific statement) and is repeated here for the sake of completeness.
THEOREm 2. Let T _ 0 be fixed. Then the following is true for almost all co:
(i) If x(r, co) = i where i is stable, then x(t, w) -* i as t - ;
2 Added in proof. According to McKean and Feller (communication by letter) the union U Sj(cu) for

all instantaneous i may be everywhere dense with probability one. Thus all states may be instantaneous.
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(ii) If X(T, c) = i where i is instantaneous, then x(t, w) has exactly two limiting values i
and - ast -+;

(iii) x(r, C)) 5F! a>.

PROOF. Part (i) follows from (3.1). More precisely, if P{x(O, w) = h} = 1,

(5.1) lim P I x(t, co) i, -e <t` < T+eIx(O,w) = i} =lim ( ) =1.
e-*O f-*0 Phi (T)

Part (ii) follows from properties (i) and (iv) in section 4 and theorem D. Part (iii) is
mentioned in section 2.
We can now give a general description of the sample functions of the process. For the

sake of convenience we shall say that x(t, w) has a discontinuity at t = r if lim x(t, co)
o whether x(r, w) = a or not.
THEOREm 3. There is a set Q4 E B with P(Q4) = 1 such that if X E Q4, then the sample

function x (., co) defined on (0, - ) has the following properties. The set of its discontinuities
D(w) is a closed set which consists of the union of a possibly empty and at most denumerable
set of perfect, nowhere dense sets S_i() with i instantaneous; and a set of measure zero which
is contained in the closure of the set ofjumps. Each of the open intervals whose union is the
(possibly empty) complement of D(w) belongs to a certain Si(,W) with i stable, and two adja-
cent ones belong to different Si(co). For eachfixed stable i, the number of intervals belonging to
Si(c) is finite in every finite t-interval. The sets S`jTw) for all i are disjoint except for an at
most denumerable set and each Si(w) differs from Si(w) by an at most denumerable set. On
each Si(w), x(., w) is constant and equal to i.

PROOF. Let C(w) be the union of all Si(w) with i instantaneous. By property (iv),
section 4, C(w) C D(w). If r E D(w) - C(w) and i is an instantaneous state then there
is a neighborhood of T in which x(*, co) 5di. Hence by theorem D we have as t -* T from
one side, the following possibilities with probability one:

(i) lim x(t, w) = i # j = lim x(t, w) where i and j are stable;
Itt IT

(ii) lim x(t, w) = i < = lim x(t, co) or lim x(t, w) = > i = lim x(t, c) where
tt 1T ITT

i is stable;
(iii) lim x(t, W) =

5t-
(iv) x(t, w) has two limiting values i and - where i is stable.

The set N1 of w for which (iv) is true for some r has probability zero, by theorem 1.
Because of separability we have x(r, w) = Co in case (iii) if T does not belong to the de-
numerable set satisfying the conditions of the separability definition; while if it belongs
to this set then case (iii) has probability zero by theorem 3 applied to all T in the de-
numerable set. Now the set E of (Tr, w) for which x(-r, w) = - is measurable and for each
fixed r the co-set {w: (T, w) E E} has probability zero by theorem 2 (iii). Hence by Fubi-
ni's theorem if co is not in a set N2 with P(N2) = 0 the set of r for which (iii) is true has
measure zero. Finally let Q2o be the set specified in theorem 1. Then for each X E go the
set of T for which either (i) or (ii) is true may be put into an at most 2-1 correspondence
with the set of stable intervals of x(., w). Hence it is a denumerable set by theorem 1.
We have thus proved that for every X E 0- N1- N2 = Q4, m[D(co) - C(W)] = 0.
Since the possibility (iv) has been excluded, each of the remaining possibilities presents a
discontinuity T which is either a jump or a limit point of jumps. The other assertions in
theorem 3 merely give a resum6 of some of the previous results.
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Theorem 3 reduces to a result by Levy (see p. 349 in [4]) if there are no instantaneous
states.

Note that the value of x(., w) is not uniquely prescribed by separability at certain
points, for example, at a point of S3(w) n S3(w), i F6 j. For the adjoined state the set
50,(w) may be further specified as follows: Tr E SO(w) if and only if lim x(t, w) = O. In

fact, at any other point separability does not prevent us from changing the value of
X(T, w) to one of the finite limiting values of x(t, w) as t -+ T. The resulting process re-
mains measurable since changes are made only on a (t, w) set of measure zero.
We are now in a position to strengthen theorem D as follows:
THEOREm 4. For almost all w, the sample function x(., w) has the following properties.

For every r, as t T r or t J r we have one of the following possibilities:
(i) x(t, co) -* i where i is stable;
(ii) x(t, w) has exactly two limiting values i and X where i is instantaneous;
(iii) x(t, c) --) c.

Furthermore, if X(T, w) = i where i is stable then (i) is true with the same i as t -4 r from
at least one side; if x&, w) = i where i is instantaneous then (ii) is true with the same i as
t -4 T from at least one side; if x(r, c) = - then (iii) must be true as t -. Tfrom both sides.

PROOF. According to theorem D these are the three possibilities with the state i in
(i) and (ii) yet unspecified. Now by property (iv) of section 4 the probability is zero that
x(t, c) -+ i with i instantaneous, hence in (i) the state i must be stable. By theorem 1 the
probability is zero that a stable i is a limiting value of x(t, w) as t -4 T from one side
without being the limit. Hence in (ii) the i must be instantaneous. The remaining asser-
tions follow from the separability of the process and the remark preceding theorem 4.

6. System theorems
In this section we prove several results concerning the optional starting, stopping and

splitting of the process. Such theorems have their origin in so-called gambling systems,
hence the name "system theorems." They were frequently regarded as obvious and used
without comment.

Let q{x(s, co), s < t}, or q{x(s, co), s > t}, be the Borel field of c-sets generated by
the random variables x(s, co) with s < t, or s> t. Let a(w) be a nonnegative random
variable such that for every I > 0

(6.1) {a (w) < t} 7< x(s,c) , s<t}.
For each positive integer n, w-sets of the form

(6.2) UO [A, n {r2-"_ a (w) < (r+ 1) 2-}]
where A, E A {x(s, w), s < (r + 1)2-} form a Borel field In. It is clear that n2
44+i. We define

(6.3) 69{x(s, w) ,s< a(co) n-I

Similarly, co-sets of the form (6.2) where A, E &7{x(s, co), s 2 r2-n} form a Borel field
q,n withtanQ _ t7n+ We define

(6.4) 471x (s, w) ,s :a(c) } )= n4n
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Informally speaking, a set in q{x(s, c), s _ a((w)}, or q{x(s, w), s _ a(co)j, is deter-
mined by conditions on x(s, w) for s _ a(,w), or s _ a(w). We remark that even though
a(w) may be c or undefined with positive probability, every set in 4? {x(s, W), s _ a(w)
or 4I{x(s, c), s > a(w)} is contained in the set {a(cw) < - }.

Naturally, we define 471x(s, w), s < a(w)} to be the smallest Borel field containing
all 49{x(s, w), s < a() - 1/n}, n > 1; and 47{x(s, w), s > a(co)i to be the smallest
Borel field containing all 4?{x(s, co), s _ a(c() + 1/n}, n _ 1.
THEOREM 5. Let T(co) = Tn(W, i), rT(O) = 4n(w, i) and X(w) = X)(,, i) be the nth en-

trance, exit and sojourn times of the stable state i with qi > 0. Then for every finite a > 0,
and any two sets A1 E 4?{x(s, W), s _ T(W)} and A2 E 4{x(s, c), s > Tr'())}, we have
under any initial distribution

(6.5) PIT (O) < ac }P{A,; X (c) > a; A2} =P (A1) P (A2) ei".

PROOF. For each t 2 0 define T'(t, w) on the set {w: x(t, w) = i} to be the least exit
time of i that exceeds t. Let A2(t) be defined with respect to T'(t, O) in exactly the same
way as A2 is defined with respect to T-'(w). Then PI A2(t) x(t, W) = i} is a number PO not
depending on t whenever P{x(t, co) = i} > 0. We evaluate P(A2) as follows, letting
h = 2-n, n- oo:

CO

(6.6) P (A2) =limEPI (r-1) h (<T (w) < rh; A21
h >° r=l

=lim1:PI (r-1) h _- T (co) < rh < Tr' (co) ; A2 (rk) Ih*0 r-1

since 0 < r'(w) - T(c) < a with probability one, and on the set {Ic: T(w) < rh < T(rw)I
the set A2 becomes A2(rh). Now the set Ic: T'(w) > rh} differs from a set in q{x(s, W),
s < rh} by a set of probability zero; hence we may use the Markovian property to obtain

(6.7) P (A2) = lim P{ (r-1) h T(w) < rh< T'(w); x (rh, w) =i}

*P{A2(rh) lx(rh,w) =i}
=P T (w) < a)}Po .

We can now evaluate the left member of (6.5) as follows:
co

(6.8) P IAl; tA (w) > a; A21 = lim P IA,; (r-1) k (w) < rh < r' (w);
h-+ r=

x(t,)-i, rhkt.rh+a;A2(rh+a) I
co

=limEP{AN; (r-1) kh _ T(w) < rh< T'(co); x(rk, w) =i}h--0*O
.P{x(t, ) _i, rh.t. rh+aI x(rh,w) =iI

*P{A2(rh+a) I x(rh+a, w) =i}
co

=limE P{ A,; (r-1) h < r (w) < rh< Tr' (w) I e-qiaPo

P (A1) e-QiaPo

This is equivalent to (6.5) by (6.7).
COROLLARY 1. Suppose that P{T(w) < X } - 1. Let q be the smallest Borel field con-



38 THIRD BERKELEY SYMPOSIUM: CHUNG

taining both q {x(s, W), s S T(w) } and q {x(s, w), s > r'(w) }. Then for every a > 0 and
any set A E a we have
(6.9) P{X (w) > a;A} =P (A) e-ia .

PROOF. Consider a set of the form

(6.10) Ao= UAm AMm-1

where the A(1) and A(2) are disjoint sets in d { x(s, w), s _ T(w)} and q { x(s, w), s >7'(W))
respectively. Such sets form a field Q0 containing both these Borel fields. We have

(6.1 1) P{ X (w) > a; Ao}= P{ X > a; A; Am}

= P (A(.'))P (A.m)eqam

Putting a = 0 we obtain

(6.12) P(Ao) = (A('))P(Am

Hence we have for every AO E q0,
(6.13) P{X (w) > a; AO} =P (Ao) e-Qia.

Thus (6.9) is true for every set in Qo and consequently also for every set in Q.
COROLLARY 2. Suppose that all T,(W, i), Tn(W, i) and XAn(c, i) for all stable i and n are

defined with probability one. Then every finite set of random variables Xn,(W, i,), V = 1 * * * X
N, such that if ,u 5 v then i,. $ iv or n,M F n,, is a set of independent random variables.

This follows from repeated application of corollary 1. Corollary 2 is stated by L6vy
(see p. 349 in [4]) and is essential for much of his work there.

Because of the relative recent growth of rigor in the discussion of stochastic processes
we permit ourselves the following remarks. Consider, for example, the successive
Xnk( i), n > 1, for a fixed i. By an abuse of the Markov property it seems obvious that
these random variables are independent and identically distributed. It would then be
easy, for example, to deduce theorem 1, namely, that their number is finite in every finite
t-interval. However, we wish to stress the point that such a procedure cannot possibly
be justified. In fact, theorem 1 must precede corollary 2 above in the logical order, be-
cause the random variables X,(w, i) cannot be defined without theorem 1. Let us suppose
for the sake of argument that the latter theorem merely asserted that there is at most a
denumerable number of i-intervals in every finite t-interval. It would then be impossible
to define the Xn(w, i) unless the set of i-intervals were first shown to be well ordered. Per-
haps this is one reason why Doob in his 1945 paper [2] restricted himself to processes
whose discontinuities are well ordered in time.
THEOREM 6. Let a(X) be the least t for which t E Si((w). Suppose that the initial distribu-

tion is such that P{a(w) < X } = 1. Let A E q{x(s, w), s 5 a(w)}, 0 < t1 < t2 <*
< tN, ii, * ** iN, be any states. We have then

(6.14) P{A; x[a(c) +t, wI iv, 1.v.N}

-P (A) Pii, (tl) Pi,i, (t2 - tl) ... PiN, i, (N - tN-1)
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PROOF. Let St(co), or S- (w), be the set of t such that (t, t+ e) n Si(c) F$ 0, or
(t-e, t) n Sj(w) = 0, for every E > 0. Note that Si(w) = Si(c) u St(w) u S,(W). For
given t4 and i4, it follows from theorem 3 that the following sets have the same probability,
under any initial distribution.

(6.15) E S+i n S-,(,)I,I :t ES+t(c) uSi,(w)}co x (4,co)

Therefore we have, omitting a proof that the c-sets below belong to A,
(6.16) lim P{Si, () n(4-e, 4) F#0; Si, (o) n (4, t,+E) $d0;

1v N x(0,w) i}

=lim P{Si(co)n(t4-e, 4+e) $50; 1_v_ NIx(0, w) i}.4~o
= Pii (tl) Piti2 (2- tl) PiNl,iN(N - tN-1)

Now owing to separability of the process we have

(6.17) P{A;a (w) + t E S'ico()n ST(w); 1 _v_ N} P{A; x [a(c) +4,]=ic ;

1 <v< N}J <P{A; a(w) +t, E Si+V (w) u Si, (w); 1 <v_ N}J
The first member of (6.17) is equal to, if h = 2-n, n-- ,

(6.18) lim P{A; Siv,(w)n[a(w)+4 -e, a(w)+4t]$ 0; Si,(w)n[a(w) +t', a(w) +tv~~~~~4~~~~~~~~~o~~ ~c

+e] $^0; 1 <v_ N} >lim lim P{A; x(rh, o) $i,0 _ r < m;
.lO h .O°m=O

x(mh,w) =i}P{Si1(o)n[mh+t4-e,(m-1)h+t,I $-60;

Si,(o)n[mh+4,(m-1) h+t +4 ]$l0;
1 _v._ NI x(mh,o) =i}

lim P{Si, (o) n (t4-e, 4) $0°; Si, (o) n (4, tv+e) $ 0; 1 _v < NI
co

x (0, ) = i} lim P{A; x(rh, co) i, 0 < r < m; x(mh, co) i}.
h-+ mO

The inequality above follows from the fact that if (m - 1)h < a(w) _ mh and h < E,
then [aG() + t - e, a(co) + 4t] [mh + 4 - e, (m - 1)h + t4], etc. The last-written
limit is equal to P(A) since P[a(o) < o I = 1; the limit preceding it is given by (6.16);
hence

(6.19) P{A; x [a (co) +4,co] =4} ?.P (A) pii (tl) piliU2(2- tl)
PtN1iN (tN - tN-1) -

The third member of (6.17) is evaluated in a similar way and seen not to exceed the right
side of (6.19). Therefore, by (6.17), equality sign holds in (6.19) and the theorem is
proved.

COROLLARY. There is a standard modification of the process {y(t, co), t > 0} defined by
(6.20) y(t,co) = x[a(o) +t,co], t>0,

which is separable relative to the closed sets and measurable. It is a Markov chain with the
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same states and the same transition probability functions as {x(t, W), t > 0} and whose
initial distribution may be taken to be P{ y(O, w) = i} = 1.

This is a consequence of theorem 6 and theorem II.2.6 of [3].
If i is a stable state this reduces to a theorem of Doob (see theorem 2.1 in [2]) except

for the inclusion of the set A which is necessary for certain applications.
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