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Abstract. We show that the torus in R? is a critical point of a sequence of
functionals F,, (n = 1,2, 3, ...) defined over compact surfaces (closed mem-
branes) in R®. When the Lagrange function & is a polynomial of degree n of
the mean curvature H of the torus, the radii (a, r) of the torus are constrained
to satisfy ‘;—z = n;‘i;’_‘p n > 2. A simple generalization of torus in R? is
a tube of radius 7 along a curve oo which we call it toroidal surface (TS). We
show that toroidal surfaces with non-circular curve « do not provide mini-
mal energy surfaces of the functionals F,, (n = 2, 3) on closed surfaces. We
discuss possible applications of the functionals discussed in this work on cell
membranes.
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1. Introduction

In the history of differential geometry there are some special subclasses of surfaces
in R3, such as surfaces of constant Gaussian curvature, surfaces of constant mean
curvature, minimal surfaces and the Willmore surfaces. These surfaces arise in
many different branches of sciences. In particular, in various parts of theoretical
physics (string theory, general theory of relativity), cell-biology and differential ge-
ometry [2,4-8,11-15,19-25]. All these special surfaces constitute critical points of
certain functionals. Euler-Lagrange equations of these functionals are very com-
plicated and difficult. There are some techniques developed to solve them, such
as using the deformation of the Lax equations of the integrable equations so that
it is possible to construct surfaces in R? [4, 6,7, 18] solving the Euler-Lagrange
equations.
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Functionals on Toroidal Surfaces 271

The main objective in our work is to investigate surfaces derivable from a varia-
tional principle, such as the minimal and Willmore surfaces [23-25] and surfaces
solving the shape equation [11-14,19-22]. All these surfaces are critical points of
a functional where the Lagrange function is a polynomial of degree less or equal
to two in the mean curvature of the surface. It is natural to ask whether there are
surfaces solving the Euler-Lagrange equations corresponding to more general La-
grange functions depending on the mean and Gaussian curvatures of the surface
[20-22]. It is the purpose of this work to give an answer to such a question.

The quadratic Helfrich functional [8] for a theoretical model of a closed cell-
membrane is

le/(kc(2H+co)2+2w)dA+p/ dv (1)
2 Js v

where k. is the elasticity constant, H and c( are the mean and the spontaneous
curvatures, w is the surface tension and p is the pressure difference between in and
out of the surface. First variation of the above functional gives the shape equation

2k, V?H + k. (2H? — ¢coH — 2K)(2H + ¢¢) +p — 2wH = 0 )

Sphere with an arbitrary radius is an exact solution of this equation. The radius
of the sphere is related to the model parameters k., ¢y, w and p through the shape
equation (2). Stability of this solution has been studied in [12]. A special torus,
called the Clifford torus, is also an exact solution of (2) (see [20]).

In this work we consider a generalization of the Helfrich’s functional (1). Let
Fn=JfgEndA+p [, dV,n>2

n
gn:Zan+1—ka:alHn+a2Hn71+"'+anH+an+1 (3)
k=0

where n = 1,2,... and a;’s are constants which can be considered to be related
to the parameters of a cell-membrane model. Hence it is worthwhile to study
such functionals and search for possible critical points. In this work we consider
only surfaces which are diffeomorphic to torus. We call such surfaces as toroidal
surfaces. The first example we consider is the torus itself. The second example is
the tube of radius r about a closed curve a.

In Section 2 we introduce the first and second variations of a functional F =
Jg EdA +p [, AV where the Lagrange function £ is an arbitrary function of the
mean and Gauss curvatures of the surface S [20]. We introduce the torus in this
section. In Section 3 we consider the Lagrange functions £ depends only on the
the mean curvature H. Letting &, be a polynomial of H of degree n, we then show
that torus 7}, is a critical point of the corresponding functional F,, = |, g EndA +

p [, AV with ‘j—; = _pon = 2,3,4,.... When n = 2 the corresponding

n2—n—1’
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torus 75 is the Clifford torus. In Section 4 we take tubes or toroidal surfaces about
a closed curve o in R3. We show that among these toroidal surfaces the torus 7},
(n = 2,3...) is the only one solving the general shape equation. In concluding
remarks we discuss possible applications of our results on cell membranes.

2. Surfaces From a Variational Principle

Let S be a regular closed surface in R3 with Gaussian (K) and mean (H) curva-
tures. A functional F is defined by

]—":/ E(H,K)dA +p/ dv “)
S Vv

where £ is the Lagrange function depending on H and K. The above functional is
also called curvature energy or shape energy. Here p is a constant which play the
role of Lagrange multiplier and V' is the volume enclosed within the surface S. We
obtain the Euler-Lagrange equations corresponding to the above functional from
its first variation. Let £ be a twice differentiable function of H and K. Then the
first variation of F is given by

5}":/ B(€)QdA )
s
where (2 is an arbitrary smooth function on S. Then the Euler-Lagrange equation

E(€) = 0 reduces [20-22] to

E(E) = (V? +4H? - 2K)% +2(V-V+ 2KH)68—[5( —4HE +2p = 0. (6)

OH
Here and in what follows we will use the notation V? = % 2 (/99" 5% ) and
V-V = ﬁ 8?:2‘ (\/§K ht %), g = det (gi;), g and h* are inverse components

of the first and second fundamental forms, #* = (u,v) and we assume Einstein’s
summation convention on repeated indices over their ranges.

Weingarten surfaces are the surfaces where the mean and Gauss curvatures satisfy
certain algebraic relations. Surfaces are called linear Weingarten surfaces if o H +
BK + v = 0 relation holds for any constants «, 5 and . Here we have a nice
theorem on linear Weingarten surfaces.

Theorem 1. Let S be a linear Weingarten surface ,i.e., «H + K + v = 0, where
a, B and v are constants. Then S is a critical point of the functional F with a
Lagrange function £ = gH +Sandp = —v

Proof: Inserting £ = gH + 5 into the Euler-Lagrange equation (6) we simply
obtain the linear Weingarten relation with v = —p. |
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For the second variation of the functional we assume that £ depends only on H. In
this case the expression is much simpler [20]

& - 1 9%
2 _ 2 20 _ . + 2002
5;_/5(519 +EQVIQ -2 QV-V Ot L s (V)
o€ @
+-— (V(HQ) - VQ - VQ-VQ) | dA
OH
in which
D€ o9&
— 2 _ 2 _ _
&1 = (H* — K)’ 55 — 2HK o + 2KE — 2Hp ©
%€ o€
_ 2 _ - _
& = (H? —K) oom +2H o — €

and where () is an arbitrary function over the closed surface. To have minimal
energy solutions of (6) it is expected that the second variation §°F > 0.

We have the following classical examples:

i) Minimal surfaces: £ =1, p =0 (H = 0).

ii) Constant mean curvature surfaces: £ = 1 (H = %).

iii) Constant Gauss curvature surfaces: £ = aH (K = g)

iv) Linear Weingarten surfaces: £ = aH +b, where a and b are some constants,
aH + 20K — b= 0.

v) Willmore surfaces: & = H? [23-25].

vi) Surfaces solving the shape equation (2) of lipid bilayer cell membranes:
&= % ke (2H + co)? + w, where k., co and w are constants [12,22].

The sphere in R? has constant mean and Gaussian curvatures. Hence the sphere
is a critical point of the most general functional (4). Equation (6) gives a relation
between p, radius of the sphere and other parameters in model.

Another compact surface in R? is the torus, 7. It has been shown [11] that a special
kind of torus, known as the Clifford torus, solves the shape equation (example v)
above). In this work we shall show that, 7" is not only a critical point of quadratic
functional but it is also critical point of functional with Lagrange function £ is any
polynomial function of the mean curvature H, provided that the radii of the torus
satisfies certain relations.

Definition 2 (The Torus). Torus T in R? is defined as the surface X : U — R3
(cf. [3])

X(u,v) = ((a+rcosu)cosv, (a+rcosu)sinv, rsinu)

©
0<u<2m, 0<wv<2m.
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The first and second fundamental forms of T' are

ds% = gij dztda? = r2du? + (a + rcos u)2 dv?

o (10)
ds3 = hyjda’da? = rdu® + (a + 7 cosu) cos udv?
The Gaussian, K, and the mean, H, curvatures of T are
K- cos U 7 H:l 1+ Ccos U an
r(a+ rcosu) 2 \r (a+rcosu)

where a and r (a > r) are the radii of the torus.

It is interesting that K and H satisfy the linear equation r2K — 2rH + 1 = 0.
Hence the torus 7' is a linear Weingarten surface.

3. Functionals with Mean Curvature

In this section we shall consider the Lagrange function £ depending only on the
mean curvature H of the surface. Furthermore se shall assume that £ is a poly-
nomial function of H of the type specified in (3) where ay, (k = 1,2,...) are
constants to be determined. Assuming that the torus is a critical point of the func-
tional F we shall determine the coefficients a; of the polynomial expansion of £
and p in terms of the torus radii @ and r. We shall give three examples here in this
section. In all examples in this section .S is the torus and H is the mean curvature
of the torus.

Example 1 (First Order Functional). Since the torus I is a linear Weingarten sur-
faces then by Theorem 1 it is a critical point of the functional where the Lagrange
function is a linear function of H, i.e., & = a1 H + as. The Euler-Lagrange
equation (6) can be solved exactly, provided

al aj
p=-,  ap=-h (12)
T r
There is no restriction on the radii a and r. The Torus T is a critical point of the

Sfunctional where &1 = a1 H + as for all values of r and a.

Example 2 (Second Order Functional). Lagrange function is a quadratic function
of H, ie, & = a1 H?> + as H + a3. Euler-Lagrange equation (6) is exactly
solvable, provided

p=-2  a=-2 2= (13)
T T
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This is the Clifford Torus. We find that (for p = 0)
Foy = / ErdA =272 ay. (14)
T

Hence the torus with ¢ = 2r% minimizes the functional [¢ £3dS and the mini-
mum energy is given in (14). Willmore conjecture [23], [25] states that (a1 # 0)

L[ eqa > on? (15)
aq S

for all compact surfaces S with genus g > 0. The proof of this conjecture has been
given very recently [9]. In terms of the Helfrich’s functional (1) we have a; = 2 k.,
as = 2k.co and ag = % k‘ccg + w. The parameters p, w, ¢y must satisfy
. 2kCCO
= —3

1
, w:pr(l—i—zrco). (16)

Remark 3. Since K is a topological invariant and total curvature for torus is zero,
there will be no contribution by adding linear K terms to &.

Example 3 (Third Order Functional). Lagrange function is a polynomial of H of
degree three, i.e., £3 = a1y H3 +ay H? + a3z H + ay. The Euler-Lagrange equation
(6) can be solved exactly, provided that

~ 3a1 — asr? ~ 2a1 — asr? ~ 1bay

b= 4 ; a4 = ; ag = 27’,

. 3 a® = (6/5)r%. (17)

We also find that (for p = 0)
F3 = / E3dA = 9vV5 72 (a1 /r) (18)
T

the torus with a* = (6/5)r? minimizes the functional [ £3dA and the minimum
energy is given in (18). We expect that (a; # 0)

(ay/r)~? /Sé’gdA > 9v/5 7 (19)

for all compact surfaces S with genus g > 0. This can be considered as the Will-
more conjecture for n = 3.

Definition 4 (Torii 7},). The tori T with radii (a,r) satisfying the relation
2 2
a n°—n
- == =23.4,... 20
7.2 n2 —n— 1 Y n 9 ) ) ( )
are special and denoted by 'T,,. For all these surfaces 1 < ‘;—; <2

It is possible to continue on finding critical points of higher order functionals with
Ens (n = 4,5,6,...). The following theorem asserts that critical points of func-
tionals F,,, in general, are the special torii T}, (n = 2,3, ...).
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Theorem 5. A torus T is a critical point of a functional F,, = fS EndA+p fv dVv

where &, is the n'* degree polynomial (3) of the mean curvature H of the surface
T ifand only if T =T, for all n > 2.

Proof: The shape equation with &€ = £(H) is given by

E(€) = (V2 +4H? - 2K)§§I —4HE +2p=0. Q1)

Using equations (10)-(11) for the torus we obtain

1
V2H = 2,3 (4r3(—a® + r?)H3 + 2r2(5a% — 61%)H?
+4r(—2a% + 3r?)H + 2(a® — 21?))
1 (22)
(VH)-(VH) = = (4rt(—a® 4+ r?) H* 4+ 4r3(3d* — 47) H3

+r2(—13a” 4 24r%) H? 4 2r(3a* — 8r2) H + 41%).

With the aid of these equations for the torus and for all n > 2 we get the identity

4n? 2
V2H" = LQ(—CLQ +r3)H" 2 4 T((an —n)a® — (8n% — 2n)r?)H" ! 4 ...
a a’r
(23)
Hence inserting
En=arH" +asH" '+ +a, H+ ap1 (24)

into the general shape equation (21) we get
E() = (naiV?H" "+ (n—1)aaV?H" > + - ) + (4(n — 1) H*

2

+4(n = 2)agH" +-++) — = (2rH — 1)(na; H* (25)
T

+(n—1DagH" 2 4--.) = 0.

Using the identity (23) for the torus and collecting the coefficients of the powers of
H we get equations for a;’s. The coefficient of the highest power H"*! in E(E)
can be calculated exactly and since E(€) = 0 we get

dn(n —1)2 (—a® +1?)
a“ ( a?

—|—4(n—1)) H™ 4. =0 (26)

where a; # 0. Then coefficient of H™+! must vanish which leads to the constraint
equations
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for all n > 2. The remaining 7 + 1 number of equations are linear algebraic
equations for a;, (i = 1,2,...,n + 1) and p. In general one can solve them in
terms of one arbitrary parameter, for instance a;. |

In Examples 1-3 above, the solutions contain two arbitrary coefficients. This means
that one of the remaining equations in (26) vanishes identically. This is due to the
following property

Theorem 6. Critical points T, of the functional F,. T, are left invariant under
the change of the Lagrange function &, = &, + biH + by where by and by are
constants satisfying

_ b1 b

p=p——3, by=—— @7

r2’ r

Proof: It is straightforward to show that

2b;

, b
E(&,) = E(E,) +2p— 2p — 4(bo + %)H + (28)

Since E(&€,) = E(E,) = 0 we obtain the equations in (27). [ |

Here b; is left arbitrary. This is the reason why the coefficients of the linear H
terms are arbitrary in the first, second and third order functionals studied in Exam-
ples 1-3. It is left arbitrary in all &,.

4. Toroidal Surfaces

In this section we will give a generalization of torus in R3. This is a regular surface
which is diffeomorphic to torus.

Definition 7 (Toridal Surfaces). Let a(v) be a simple and a regular closed plane
curve in R3 with the unit tangent vector t(v), the unit normal vector n(v) and the
bi-normal vector b(v). Here v € I = [v1,v9] is the arclength parameter of the
curve. A parametrization X : U C R? — R of this surface is given as

X(u,v) =aa(v)+r(—cosun(v) + sinub(v)) (29)

where a and 1 are constants. Here u € [0, 27] and v € I such that a(v1) = a(vg).
This is a tube of radius r around the closed curve o. The radius r is so chosen that
tube has no self intersections. We call these surfaces as toroidal surface. The first
and second fundamental forms of this surface are
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ds? = 9ij dz’ da’

= r?du?® — 2r? 7(v) dudv + ((a + rk(v) cosu)? + (1(v))* r?) dv?
o 30)
ds3 = h;jda’da?

= rdu? — 2r7(v)dudv + ((a + rk(v) cosu) k(v) cosu + r(7(v))?) dv?.
The Gaussian and the mean curvatures are

B k(v) cosu 171 k(v) cosu
K= r(a+rk(v) cosu)’ H= 2 (r + (a + rk(v) cos u)> (1)

where k(v) and T(v) are the curvature and torsion of the closed curve .

It is simple to show that K and H satisfy the linear equation 72K — 2rH 4+ 1 = 0.
Hence TS is also a linear Weingarten surface. When & = 1 this surface becomes
the the Torus we discussed in Section 2. Below we shall assume that the Lagrange
function £ is a polynomial of the mean curvature H.

Example 4 (Linear functional). Since the toroidal surface TS is a linear Wein-
garten surface then by Theorem 1 it is a critical point of the functional with the
Lagrange function £1 = a1 H + ag, provided that

ai ai

@ ag = — 2
r2’ r

(32)

Hence any toroidal surface with arbitrary closed curve o(v) in R? is a critical
point of the corresponding functional F;.

Example 5 (Quadratic functional). The Lagrange function is a quadratic function
of H, i.e., & = a1 H?> 4 as H + as. The toroidal surface TS is a critical point of
the corresponding functional Fo provided that 7 = 0, k = kg a constant and

az az

p= - a3 = ——, (12 = 2k%T2. (33)
r T

Without loosing any generality we take kg = 1. Hence TS is the torus Tb, i.e.,
Clifford Torus.

Example 6 (Qubic functional). The Lagrange function is a cubic polynomial of
H,ie, & = a1 H3 + ag H?> + a3 H + ay. The toroidal surface TS is a critical
point of the corresponding functional F3 provided that T = 0, k = kg a constant
and

_3a1 —as 1544 2a1 — asr?

p="—7—, ay= as =
rd 2’

Again we take ko = 1. Hence TS is the torus Ts.

6
3 ,a2:5k8r2. (34)
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We may continue finding solutions of the Euler-Lagrange equations for &, with
n > 4. We observe that, except n = 1, for all n > 2 toroidal surfaces reduce
to torus. We claim that this is true in general. Toroidal surface TS with non-
vanishing torsion 7, non-constant curvature k is not a critical point of the functional
Fn (n = 2,3,...) where the Lagrange function &, is a polynomial of the mean
curvature H.

Theorem 8. Let S be a toroidal surface TS given in Definition 7. Let the Lagrange
function function £ be a polynomial of the mean curvature H of degree n > 2
given in (3). Then the critical points of the functional (4) on TS are the surfaces
T, n>2.

Proof: The Euler-Lagrange equation for the Lagrange function (3) takes the form

E(E) = (nayVEH" ' 4+ (n — 1)apaVPH" 2 4+ ...)

2 _ -
fﬁ(Qer D(natH"™ + (n— 1)agH" 2 +---) = 0.

We can write VZH"~!, V2H""2 ... by using V2H and VH - VH given in
the Appendix. We collect the terms sinu H™ and H" foralln = 0,1,2,... and
equate the coefficients of these terms to zero. It is clear from the expression of
V2 H the highest order term sin uH"* gives 7 = 0. This simplifies the remaining
equations considerably. Equating the coefficient of the highest order factor "4
to zero in the remaining equations we get &’ = 0. With this result « reduces to a
plane curve with constant curvature. Since it is a closed curve then « is the circle
with &k = 1 and TS is a torus. From the theorem 3 we know that critical points of
functional (4) on TS are T, (n > 2).

5. Concluding Remarks

1. Clifford torus is a critical point of the Willmore and also Helfrich’s functionals
where the Lagrange function is a quadratic polynomial in the mean curvature of
a closed surface in R3. One of the main contributions of this work is that the
sequence torus surfaces {7, } where radii a and r restricted to satisfy ‘;—j =
for all n > 2 are the critical points of the functionals F,, where the Lagrange
function &, are polynomial of degree n in the mean curvature H of the surface.
We have given three examples n = 1, 2, 3 and proved this assertion in Section 3.




280 Metin Girses

2. A simple generalization of the torus in R? is the tube around a closed planar
curve o. We call such surfaces as toroidal surfaces which are topologically dif-
feomorphic to torus. Except the linear case we showed that these surfaces with
non-vanishing torsion 7 and nonconstant curvature k are not critical points of the
functionals F,,. Euler-Lagrange equations force the torsion of the curve « to vanish
and the curvature be a constant.

3. In Section 3, for each solution with n = 2,3 and p = 0 we have calculated the
curvature energy J,,. As in the case of the Willmore energy functional (n = 2) it
is expected the torus surfaces for n > 3 with the constraints are minimal energy
surfaces. To support this assertion, second variation of the functionals on these
surfaces must be nonnegative. Another point to be examined is the stability of
these minimal energy surfaces. These points will be clarified in a forthcoming
communication.

. 2 2_ . .
4. The constraints 5 = —5—" can be utilized to select the correct functional for
the toroidal fluid membranes. These functionals are used to minimize the energy

of the lipid membranes. The ratio a/r of toroidal configuration can be measured

experimentally. Comparing the measured value of this ratio with ‘;—; = n;’i;ﬁl

we can identify the degree of the polynomial function &, from (20), hence finding
the functional for the corresponding closed membrane. As an example, for vesi-
cle membranes such a measurement had been done by Mutz and Bensimon [10].
They measured the value of this ratio approximately as &+ = 1.43, or %i = 2.04.
Hence for vesicle membranes the correct functional should be the quadratic one
which was first introduced by Helfrich [8] several years ago. For other closed fluid
membranes the functionals might be different.

5. In his study of vesicles with toroidal topology Seifert [16, 17] claimed that
circular toroidal configurations exist for any 0 < v < 1 where v is the reduced
volume parameter defined by

v = (36)

gl <

S
Here V is the volume and A is the surface are of the toroidal membranes. In terms
of the torus radii we have
2

a 1

c o . 37

r2  1.94v4 (37)
Seifert claims2 also that the membranes with v > 0.84 are not stable. This cor-
responds to ‘7% < 1.188. This stability analysis seems to save the quadratic and
cubic functionals we have given above. One must be careful about discarding
higher order functionals because the stability analysis mentioned by Seifert is done
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by using the quadratic functional. To investigate the stability of toroidal configu-
2

. g2 _ .
rations with 75 = —7—"-, n = 2,3,4,... one must use the functionals F,,

(n=3,4,5,6,...) respectively.

6. Appendix

In this Appendix we give the Laplacian and the norm of the gradient of H for
toroidal surfaces in Section 4. We factorize the results with respect to sin v and
cos u. To get simpler expressions we expressed cos v in terms of H, i.e.,

1
Watd |
+32sinuH?ak?*r®(26K'T + 7'k) + 48 sinuH?ak*r®(—16k'T — 7'k)
+32sinuHak?r*(11K'1 + 7'k) 4 8sin uak®r3(—8k't — 7'k)
HARH Y (02K — a®k27% + k'272) + SHArS (—a®kk” — 24k a?
+25a%k%72 — 3k 72) + 43 H3(Ta?r?kk" + 75k % a2r?

—a'r® + a®k*r? — 82a*r? k1 + 120k 7?) + 2r° H? (— 180”1 ki
—114K°%a®r? + 5a*k? — 6a%k*r? + 132a2k%r% 7% — 240k* 4 7?)
+4rH (5a2r2kE" + 21K a®r? — 2a*k? + 3a%k*r?
—26a2k*r? 260k r %) + 2(—2a%r2kk" — 6k a2r? + a'k?
—2a2kY? + 82k 1% — 24Kk127?)]

ViH = 96 sin wHh' ak*rS1 + 8sinuH*ak*r" (—=56k'T — 7'k)

VH -VH = ﬁ [16r8 HO (K a?r + K%a® — a®k*7° — ® K21 + k272
+EY2r) 4 167“7H5(—5k‘/2a27' — 5k%a% + 5a2k272 + 5a2k%r
—6k*r2r% — 6k 2T) + 4r4H4(4lk’2a2r27 + 41K a?r?
—a*k? + ?k*? — 4162K% 2% — 416% K22 T + 60k rir?
F60k*riT) + 4r H3 (— 44k a?r?r — 44K a®r? + 3a*k?

—4a2k'r? 4 440> E*r? 2 + 44r° K% a®r — 80k rir? — 80k1rtr)
+r? H2 (104K a?r? + 104k a?r? — 13a*k? + 240 k*r?
—104a’k*r?72 — 10472k2a® 1 + 240k 472 + 240k r47)
+27’H(—16k’2a2r27 — 16k"2a2r? + 3ak? — 24a%k4r?
+16a’k*r2 1% + 16r2k%a®r — 48k rir? — 48K4rir)

4K a2 4 4K 6% — a*k? + da2kir?

—4a’K*r 1% — 4’k 4 16K 42 + 16k
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When 7 = 0 and £ is a constant then the above equations reduce to those (22).
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