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Abstract. The Cayley maps for the Lie algebras su(1, 1) and so(2, 1) con-
verting them into the corresponding Lie groups SU(1, 1) and SO(2, 1) along
their natural vector-parameterizations are examined. Using the isomorphism
between SU(1, 1) and SL(2,R), the vector-parameterization of the latter is
also established. The explicit form of the covering map SU(1, 1)→ SO(2, 1)
and its sections are presented. Using the so developed vector-parameter for-
malism, the composition law of SO(2, 1) in vector-parameter form is ex-
tended so that it covers compositions of all kinds of elements including also
those that can not be parameterized properly by regular SO(2, 1) vector-
parameters. The latter are characterized and it is shown that they can be
represented by SU(1, 1) vector parameters with pseudo length equal to minus
four. In all cases of compositions inside SO(2, 1), criteria for determination
of their type (elliptic, parabolic, hyperbolic) have been presented. On the
base of the vector-parameter formalism the problem of taking a square root
in SO(2,1) is solved explicitly. Also, an analogue of Cartan’s theorem about
the decomposition of orthogonal matrix of order n into product of at most n
reflections is formulated and proved for the subset of hyperbolic elements of
the group of pseudo-orthogonal matrices from SO(2, 1).

196



Vector-Parameter Forms of SU(1,1), SL(2,R) and Their Connection to SO(2,1) 197

Notation and Nomenclature

R∗ the set of nonzero real numbers
α1, α2, β1, β2, x, y, z real numbers

α = α1 + iα2, β = β1 + iβ2 complex numbers
θ angle (rapidity)
I the unit matrix of respective dimension
Ip,q diag(1, . . . , 1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

)

η1 = I1,1, η = I2,1 flat metrics in R1,1 and R2,1

x, y vectors in R3

n unit vectors in R3 and R2,1

(x, z) = x.z, u× v scalar and vector products in R3

(x, η z) = x.ηz, uf v = η(u× v) pseudo scalar and vector products in R2,1

δij , εijk Kronecker and Levi-Civita symbols
SL(n,R) special real linear group of order n
L general element of the Lie group SL(2,R)

so(2, 1) the Lie algebra of the Lie group SO(2, 1)

{Pk}k=1,2,3 a basis of the Lie algebra so(2, 1)

C(c) = cf so(2, 1) element associated with the vector c
c, ck, c̃, c±, a, ak, ã vector-parmeters of SU(1,1) elements

SO(p, q) special orthogonal group of signature (p, q)

H general element of the Lie group SO(2, 1)

Rh, Rhi, Rh(c) regular pseudo-rotations in SO(2, 1)

RH the set of regular pseudo rotations in SO(2, 1)

Oh, Ohi, Oh(m) pseudo half-turns in SO(2, 1)

Qh pseudo quater-turn in SO(2, 1)

O(n) half-turn in SO(3,R)
OH the set of pseudo half-turns in SO(2, 1)

su(1, 1) the Lie algebra of the Lie group SU(1, 1)

{Ek}k=1,2,3 a R−basis of the Lie algebra su(1, 1)

M, Mi elements of the Lie algebra su(1, 1)

m, mk, m̃, a, ak, ã, a± SO(3,R) and SO(2,1) vector-parmeters
SU(p, q) special unitary group of signature (p, q)

Mh general element of the Lie group SU(1, 1)

Uh, Uhi SU(1, 1) generators of regular SO(2, 1) elements
Wh SU(1, 1) generators of SO(2, 1) pseudo half-turns

Mi,j = M(i, j) the element at position (i, j) in the matrix M
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1. Introduction

The explicit parameterizations are used to describe Lie groups in an easier and
more intuitive way and have found many applications in modern physics and mathe-
matics [9,11,17,18]. Let G be a finite dimensional Lie group with a Lie algebra g.
A vector-parameterization of G is a map g → G, which is diffeomorphic onto its
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image [15]. We can extend the definition by allowing the vector-parameterization
to be defined only on some subset of g.

Recall especially the subgroups of the pseudo-orthogonal and pseudo-unitary groups

SO(p, q) = {M ∈ Mat(p+ q,R) ; M tIp×qM = Ip×q,detM = 1 }

SU(p, q) = {M ∈ Mat(p+ q,C) ; M †Ip×qM = Ip×q, detM = 1 }

where p+ q ≥ 2, Ip,q =

(
Ip 0

0 −Iq

)
∈ Mat(p+ q,R), and In is the unit matrix

of order n. For ease we will use further on the following notation

η = I2,1 =

 1 0 0

0 1 0

0 0−1

 , η1 = I1,1 =

(
1 0

0 −1

)
.

Also, till the end of the paper I will stand for the unit matrix with dimension
consistent with the context.

In particular, SU(1, 1) can be described as

SU(1, 1) =

{
Mh(α, β) =

(
α β

β α

)
; αα− ββ = 1

}
where α = α1 + iα2, β = β1 + iβ2 and α1, α2, β1, β2 ∈ R.

It is well known fact that SU(1, 1) is isomorphic as a group to the special linear
group of order two with real entities, i.e., SL(2,R) by the map

ψ : SL(2,R)→ SU(1, 1)
(1)

ψ

((
a b

c d

))
=

(
1√
2

(
1 i

i 1

))−1(
a b

c d

)
1√
2

(
1 i

i 1

)
, ad− bc = 1.

The preimage of Mh(α, β) = Mh(α1, α2, β1, β2) in SL(2,R) is given by the
formula

L = L(α, β) = ψ−1(Mh(α, β)) =

(
α1 + β2 β1 + α2

β1 − α2 α1 − β2

)
.

Recall that the classification of SL(2,R) (respectively SU(1,1)) elements is made
in terms of trL = trMh [3]. From the above we have that trL(α1, α2, β1, β2) =

2α1 and thus

L is


hyperbolic if | trL| > 2 ⇔ |α1| > 1

parabolic if | trL| = 2 ⇔ |α1| = 1, i.e., α1 = ±1

elliptic if | trL| < 2 ⇔ |α1| < 1.

(2)
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Consider the map [1, Chapter 9]

ψ : SU(1, 1) −→ SO(2, 1)

which sends the matrix Mh =

(
α β

β α

)
into ϕ(Mh) = H(α, β) ∈ SO(2, 1) where

ϕ(Mh) =


−1

2
(β2 + β

2 − α2 − α2)
i

2
(α2 + β

2 − α2 − β2) i(αβ − αβ)

− i

2
(β2 − β2 − α2 + α2)

1

2
(α2 + β

2
+ α2 + β2) αβ + αβ

i(αβ − αβ) αβ + αβ αα+ ββ

. (3)

The map ϕ is a double covering group homomorphism with kerϕ = {±I}, i.e.,
SU(1, 1)/Z2

∼= SO(2, 1). Observe also that trϕ(Mh) = 4α2
1−1. Thus the criteria

(2) classifies the SO(2, 1) elements in a natural way, i.e.,

H = ϕ(Mh) is


hyperbolic if | trH| > 3 ⇔ |α1| > 1

parabolic if | trH| = 3 ⇔ |α1| = 1, i.e., α1 = ±1

elliptic if | trH| < 3 ⇔ |α1| < 1.

(4)

1.1. Vector-Parameter Form of SU(2) and its Connection to SO(3,R)

LetR = R(n, θ) be the matrix of a proper (i.e., not a half-turn) three-dimensional
rotation in the axis-angle formalism. A convenient representation of R can be

made by the vector-parameter c = tan
θ

2
n, θ 6= π

2
, i.e.,

R(c) =
2

1 + c2

 1 + c21 c1c2 − c3 c1c3 + c2
c1c2 + c3 1 + c22 c2c3 − c1
c1c3 − c2 c2c3 + c1 1 + c23

− I. (5)

However, one has to be careful when half-turns occur because they can not be
represented by regular Gibbs vectors. If c1 and c2 represent the proper rotations
R(c1),R(c2), the composition law in the vector-parameter form is given by the
formulas

R(c3) = R(c2)R(c1), c3 = c3(c2, c1) =
c2 + c1 + c2 × c1

1− c2.c1
· (6)

This composition law is not well-defined either when one of the rotations is a half-
turn or when c2.c1 = 1. The vector-parameterization of the covering group SU(2)
and the corresponding composition law is presented in [5]. Also, half-turns are well
defined as the composition law there has no singularities. Within this formalism,
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the natural covering map SU(2)→ SO(3,R) and its sections are written and stud-
ied. The technique developed in [5] is used in [6] to extend the composition law (6)
in the cases when half-turns are involved or the result of the composition is a half-
turn, i.e., when c2.c1 = 1. To do that, a half-turn R(n, π) = O(n) is represented
as a ray, i.e., by the set of all three dimensional non-zero vectors, collinear with
the axis of rotation n. This is an alternative description of SO(3,R) and the cor-
responding composition laws are more intuitive and are computationally cheaper
even than the quaternionic formalism [10] when it comes to the composition of
rotations [11]. As an application Cartan’s theorem is illustrated constructively [6]
in the case n = 3.

2. Vector-Parameter Form of SO(2,1)

2.1. Description of so(2, 1)

Consider the Lie algebra so(2, 1) with a basis

P1 =

0 0 0

0 0−1

0−1 0

 , P2 =

 0 0−1

0 0 0

−1 0 0

 , P3 =

 0 1 0

−1 0 0

0 0 0

 .

The commutation relations of these matrices are as follows:

[P1, P2] = −P3, [P2, P3] = P1, [P3, P1] = P2.

Any C ∈ so(2, 1) has a unique representation via some vector c ∈ R3

c 7→ cf := C(c) = c1P1 + c2P2 + c3P3 = c ·P =

 0 c3 −c2
−c3 0 −c1
−c2 −c1 0

 . (7)

Given an arbitrary matrix C ∈ so(2, 1) we can retrieve the vector c = (c1, c2, c3)
such that C = c ·P by the formula

c(C) =
1

2
(tr C.P1, tr C.P2,− tr C.P3).

2.2. The Cayley Map for so(2, 1)

The Hamilton–Cayley theorem applied to C ≡ C(c) from (7) reduces to

C3 = (1− c.ηc)C, c.ηc = c21 + c22 − c23 (8)

and some direct calculations show that

Ct = −ηCη = C(ηc), (Ct)2 = (C2)t = ηC2η. (9)
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The Cayley map applied for so(2, 1) is

Rh(c) = Rh = Cayso(2,1)(C) = (I + C)(I − C)−1 = (I − C)−1(I + C). (10)

One checks immediately that I − C is invertable if and only if c.ηc 6= 1 and in this
case (again via Hamilton–Cayley theorem) we can obtain

(I − C)−1 = I +
1

1− c.ηc
C +

1

1− c.ηc
C2. (11)

Let us now prove that Rh ∈ O(2, 1). Using (8), (9), (11) and the fact that I − C
and I + C commute we obtain

Rt
hηRh = ((I + C)(I − C)−1)tη(I + C)(I − C)−1

= (I − Ct)−1(I − ηCη)η(I + C)(I − C)−1

= (I − Ct)−1(η − ηC)(I + C)(I − C)−1 = (I − Ct)−1η(I + C)

=

(
I +

1

1− (ηc).(η2c)
Ct +

1

1− (ηc).(η2c)
(Ct)2

)
η(I + C) (12)

=

(
η2 − 1

1− c.ηc
ηCη +

1

1− c.ηc
ηC2η

)
η(I + C)

= η

(
I − 1

1− c.ηc
ηCη +

1

1− c.ηc
ηC2η

)
η2(I + C)

= η(I + C)−1(I + C) = η.

Calculation shows that det (I + C) = det (I − C) = 1− c.ηc which is equavalent
to detRh = 1. Thus the Cayley map (10) takes values in SO(2, 1). Similar
technique has been used in [13]. By making use of (11) we obtain the explicit form
of (10), i.e.,

Rh(c) = Cayso(2,1)(C) = (I + C)(I +
1

1− c.ηc
C +

1

1− c.ηc
C2)

= I +
2

1− c.ηc
C +

2

1− c.ηc
C2 (13)

=
2

1− c.ηc

 1− c21 c1c2 + c3 −c1c3 − c2
c1c2 − c3 1− c22 c2c3 − c1
c1c3 − c2 −c2c3 − c1 1 + c23

− I.
Note we can express the type ofRh(c) in terms of c.ηc in the following way

Rh(c) is


hyperbolic if | trRh| > 3 ⇔ 0 < c.ηc < 1

parabolic if | trRh| = 3 ⇔ c.ηc = 0

elliptic if | trRh| < 3 ⇔ c.ηc < 0.

(14)
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The inverse of the Cayley map (10) is

C = (Rh − I)(Rh + I)−1 (15)

and it is well-defined if and only if det (Rh + I) 6= 0 which is equivalent to the
condition that Rh does not have an eigenvalue of -1. We will need to characterize
the SO(2, 1) elements, that are not in the range of the Cayley map.

Lemma 1. Let the element H = H(α, β) = H(α1, α2, β1, β2) ∈ SO(2, 1) with
αα− ββ = 1 be such that H 6= I. The following are equivalent

i) H has as eigenvalue -1, i.e., det (H + I) = 0.

ii) H = H(0, α2, β1, β2).

iii) ηHt = Hη.

Proof: i)⇔ ii). After straight, but tedious calculations one can obtain the equality
det (H + I) = 8(1− α2

2 + β21 + β22). Thus, det (H + I) = 0 if and only if α2
2−

β21 − β22 = 1 but given the fact that α2
1 + α2

2 − β21 − β22 = 1, this is equivalent to
α1 = 0.

ii)⇔ iii) Let us mention that Ht = ηHη ⇐⇒ ηHt = Hη. Again, after a straight
calculation we obtain

Ht − ηHη = 4α1

 0 α2 −β2
−α2 0 −β1
−β2 −β1 0

 . (16)

Now it is clear that α1 = 0 ⇒ Ht = ηHη. Conversely, let Ht = ηHη. Then we
have either α1 = 0 or α2 = β1 = β2 = 0. If we suppose that the second holds true
then from αα − ββ = 1 it follows that α1 = ±1. Then H = I, a contradiction.
Thus, α1 = 0, which completes the proof. �

An SO(2, 1) element for which whatever of the conditions from Lemma 1 is ful-
filled will be denoted by Oh. Let us denote

OH = {H ∈ SO(2, 1) ; ηHt = Hη}, RH = SO(2, 1)\OH .

Any element Oh of OH shall be called a pseudo half-turn, whereas any element
Rh of the setRH shall be called a proper pseudo rotation.
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Relying on (3) one can check that the arbitraryOH elementOh = H(0, α2, β1, β2)

has the following matrix form

Oh = 2

 −β21 β1β2 α2β1
β1β2 −β22 −α2β2
−α2β1 α2β2 α2

2

− I, α2
2 − β21 − β22 = 1. (17)

Note that such matrices are elliptic elements in accordance with (14).

Finally, let us invert (10) explicitly. Let Rh = Rh(α1, α2, β1, β2) be a regular
SO(2, 1) element (i.e., such that det (Rh + I) 6= 0). Thus from Lemma 1 it fol-
lows that α1 6= 0. Taking into account (13) we obtain

trRh = 4α2
1 − 1 = 2

3− c.ηc
1− c.ηc

− 3

Rh(2, 3) +Rh(3, 2) = 4α1β1 = −4
c1

1− c.ηc
(18)

Rh(1, 3) +Rh(3, 1) = 4α1β2 = −4
c2

1− c.ηc

Rh(1, 2)−Rh(2, 1) = 4α1α2 = 4
c3

1− c.ηc
·

In the last three equations of (18) and further on, Rh(i, j) means the element at
position (i, j) in the matrixRh. From (18) we obtain

Cay−1so(2,1)(Rh(α1, α2, β1, β2)) = c ·P, c =
1

α1
(−β1,−β2, α2). (19)

We have proved

Theorem 2. The Cayley map is a vector-parameterization

Cayso(2,1) : so(2, 1)\{C(c) ∈ so(2, 1) ; c.ηc 6= 1} −→ RH . (20)

LetRh ∈ SO(2, 1) be a regular pseudo rotation. From (3) and Lemma 1 it follows
that 1 + trRh 6= 0. Taking into account formulas (18) we can retrieve the vector-
parameter c which generatesRh = Rh(c) by means of the general formula

cf=
Rt

h − ηRhη

1 + trRh
(21)

which simplifies in components to

c =
−1

1 + trRh
(Rh(2, 3) +Rh(3, 2),Rh(1, 3) +Rh(3, 1),Rh(2, 1)−Rh(1, 2)).
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2.3. The Composition Law in SO(2,1)

We are interested in the composition law of SO(2, 1) in vector-parameter form. Let
us introduce the notation

c2 f c1 := η(c2 × c1).

Theorem 3. Let c = (c1, c2, c3) and a = (a1, a2, a3) be such vectors for which
c.ηc 6= 1, a.ηa 6= 1 and 1 + a.ηc 6= 0. LetRh(c),Rh(c) are two SO(2,1) elements
represented by c and a. Then

Rh(c̃) = Rh(a)Rh(c), c̃(a, c) = 〈a, c〉SO(2,1) =
a + c + af c

1 + a.ηc
· (22)

Proof: The straightforward evaluation of the matrix H = Rh(a)Rh(c) has as
outcome

det (H + I) = 8
(1 + a.ηc)2

(1− a.ηa)(1− c.ηc)
6= 0 (23)

and the following equalities

trH = 4
(1 + a.ηc)2

(1− a.ηa)(1− c.ηc)
− 1

H2,3 +H3,2 = 4
1 + a.ηc

(1− a.ηa)(1− c.ηc)
(a3c2 − a2c3 − a1 − c1)

(24)

H1,3 +H3,1 = 4
1 + a.ηc

(1− a.ηa)(1− c.ηc)
(a1c3 − a3c1 − a2 − c2)

H1,2 −H2,1 = 4
1 + a.ηc

(1− a.ηa)(1− c.ηc)
(−a1c2 + a2c1 + a3 + c3)

hold true. From Lemma 1, equation (23) and the conditions imposed in the Theo-
rem it follows that there exists c̃, c̃.ηc̃ 6= 1 such that Rh(c̃) = H . Comparing the
equalities (18) (written for c̃) with (24) we obtain

1

1− c̃.ηc̃
=

(1 + a.ηc)2

(1− a.ηa)(1− c.ηc)
(25)

4

1− c̃.ηc̃
c̃ = 4

(1 + a.ηc)

(1− a.ηa)(1− c.ηc)
(a + c + af c).

Now (22) follows easily from (25). Note that this result can also be obtained from
equation (21). Let us also mention that from (23) it follows that if a.(ηc) + 1 = 0,
and thus the resulting SO(2, 1) element is a pseudo half-turn. Latter on we will
treat this case more rigorously. �
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Equation (22) is the vector-parameter form of SO(2,1) obtained by the parameter-
ization given by the Cayley map. The same result was obtained independently by
usage of pseudo-quaternions [3]. We are going to write explicitly the matrix forms
of the different types of SO(2,1) elements in terms of (4). We will use chx, shx

and thx to denote the hyperbolic trigonometric functions chx =
ex + e−x

2
, shx =

ex − e−x

2
and thx =

shx
chx

=
ex − e−x

ex + e−x
· We will also use scx to denote the se-

cant function
1

sinx
· Till the end of the paper, for typographical reasons, we denote

respectively the tangent and cotangent functions of the variable x as tgx and ctgx.
In the hyperbolic case, i.e., when 1 > c.ηc > 0 there exists θ ∈ R,n ∈ R2,1 such

that n.(ηn) = 1, c = th
θ

2
n and the matrixRh(c) takes the form n21(1− chθ) + chθ n1n2(−1 + chθ) + n3shθ n1n3(−1 + chθ)− n2shθ

n1n2(−1 + chθ)− n3shθ n22(1− chθ) + chθ n2n3(1− chθ)− n1chθ
n1n3(−1 + chθ)− n2shθ n2n3(1− chθ)− n1chθ n23(−1 + chθ) + chθ

 .

In the elliptic case, i.e., c.ηc < 0 there exist θ ∈ [0, π),n ∈ R2,1 such that

n.(ηn) = −1, c = tg
θ

2
n and for the matrixRh(c) we have that it has the form

n21(1− scθ) + scθ (n1n2tg
θ

2
+ n3)tgθ n1n3(1− scθ)− n2tgθ

(n1n2tg
θ

2
− n3)tgθ n22(1− chθ) + scθ n2n3(−1 + scθ)− n1tgθ

n1n3(−1 + scθ)− n2tgθ n2n3(1− scθ)− n1tgθ n23(−1 + chθ) + scθ

 .

Finally, in the parabolic case, i.e., c.ηc ≡ 0 there exist n ∈ R2,1 such that
n.(ηn) = 0 and

Rh(c) =

 1− 2n21 2(n1n2 + n3) −2(n2 + n3n1)

2(n1n2 − n3) 1− 2n22 2(n2n3 − n1)
−2(n2 − n3n1) −2(n2n3 + n1) 1 + 2n23

 , c = n.

3. Vector-Parameter Form of SU(1,1)

3.1. Description of su(1, 1)

Let us consider the Lie algebra su(1, 1) with R-basis

e1 =

(
0 1

1 0

)
, e2 =

(
0 i

−i 0

)
, e3 =

(
i 0

0−i

)
·
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The matrices E1, E2 and E3 defined by

E1 =
1

2
e1, E2 =

1

2
e2, E3 =

1

2
e3

also form a R−basis of su(1, 1). Moreover, direct calculations confirm that

[E1, E2] = −E3, [E2, E3] = E1, [E3, E1] = E2.

Denoting E = (E1, E2, E3) we express the su(1, 1) algebra in the following way

su(1, 1) =
{
m ·E = m1E1 +m2E2 +m3E3 ; m ∈ R3

}
.

The corresponding matrix realization of m ·E is

M = M(m) = m ·E =

 i
m3

2

m1

2
+ i

m2

2m1

2
− i

m2

2
−i
m3

2

 . (26)

In the opposite direction and for any element M ∈ su(1, 1) we have

m = m(M) = 2(trM.E1, trM.E2,− trM.E3).

Obviously, the map

m1E1 +m2E2 +m3E3 −→ m1P1 +m2P2 +m3P3 (27)

is a linear isomorphism between the Lie algebras su(1, 1) and so(2, 1). Observe
that for M1, M2 ∈ su(1, 1), i.e., M1 = m1 · E, M2 = m2 · E one can obtain by
direct calculations the useful equality

M2M1 =
m2.ηm1

4
I +

m2 fm1

2
·E. (28)

3.2. The Cayley Map for su(1, 1)

Let M = m ·E ∈ su(1, 1). The Hamilton–Cayley theorem applied to M reads as

M2 =
m

2
· ηm

2
I.

The Cayley map applied to su(1, 1) element M is

Uh(m) = Caysu(1,1)(M) = (I +M)(I −M)−1 = (I −M)−1(I +M). (29)

Let us define

∆m = 1− m2
1 +m2

2 −m2
3

4
= 1− m

2
· ηm

2

which is exactly det (I −M). Thus, Caysu(1,1) is well-defined when ∆m 6= 0.
The solutions of ∆m = 0 geometrically form a simple (one sheeted) hyperboloid.
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It is straightforward to check that ∆m 6= 0⇒ (I −M)−1 =
1

∆m
(I +M). Thus,

we can explicitly calculate

Uh(m) =
1

∆m
(I +M)2 =

1

∆m
(I + 2M +M2) =

2−∆m

∆m
I +

2

∆m
M

(30)

=
2−∆m

∆m
I +

2

∆m
m ·E =

1

∆m

(
2−∆m + im3 m1 + im2

m1 − im2 2−∆m − im3

)
.

A direct calculation shows that detUh(m) = 1 and also U†h(m)η1Uh(m) = η1
which means that when the Cayley map is defined it takes values in SU(1, 1).

To invert the Cayley map Caysu(1,1) : su(1, 1) → SU(1, 1) let us consider an arbi-
trary SU(1, 1) matrix

Mh(α1, α2, β1, β2) =

(
α1 + iα2 β1 + iβ2
β1 − iβ2 α1 − iα2

)
, α2

1 + α2
2 − β21 − β22 = 1.

The matrixMh ∈ Im Caysu(1,1) if and only if there exist m ∈ R3,∆m 6= 0 such
that we have Caysu(1,1)(M(m)) = Mh(m). This is only possible if and only if
α1 6= −1 and provided that the inversion is

m =
2

1 + α1
(β1, β2, α2).

Let us note that the SU(1, 1) elements that can not be parametrized are of a par-
abolic type. We can identify the group SU(1, 1) with the points of R4 for which
α2
1 + α2

2 − β21 − β22 = 1. Now only the cone α2
2 − β21 − β22 = 0 is not covered by

the Cayley map. Let us introduce notation for the regular SU(1,1) elements (those
which are parametrized by the Cayley map)

UH = {Uh =Mh(α, β) ∈ SU(1, 1) ; α1 6= −1, αα− ββ = 1}
= {Mh ∈ SU(1, 1) ; trMh 6= −2}.

We have proved the following

Theorem 4. The Cayley map is a vector-parameterization

Caysu(1,1) : {m ·E ∈ su(1, 1) ; ∆m 6= 0} −→ UH . (31)

Further, we will use the notation WH for the set of SU(1, 1)\UH group and Wh

for its elements.
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Let Uh ∈ UH . We want to extract the vector-parameter m from the matrix Uh.

Relying on formula (30) we have ∆m =
4

2 + trUh
and therefore

m =
2 + trMh

4

(
<(Uh1,2),=(Uh1,2),=(Uh1,1)

)
(32)

where <z and =z denote the real and imaginary part of the complex number z.

3.3. Vector-Parameter Form of SL(2,R)

In order to obtain a vector-parameter form of SL(2,R) by taking advantage of the
already obtained such of SU(1, 1) we need to invert ψ in vector-parameter form
and calculate ψ−1(Uh(m)) where m ∈ R3, ∆m 6= 0. Direct calculations shows
that

ψ(m) := ψ−1(Uh(m)) = L(m) =
1

∆m

(
2−∆m +m2 m1 +m3

m1 −m3 2−∆m −m2

)
.

The isomorphism (1) is trace-preserving since it is a conjugation. Thus

trUh(m) = trL(m) =
4− 2∆m

∆m
, ∆m 6= 0.

In a straightforward manner we obtain that if ∆m 6= 0 then

L(m) is


hyperbolic if ∆m < 1 ⇔ m.ηm > 0

parabolic if ∆m = 1 ⇔ m.ηm = 0

elliptic if ∆m > 1 ⇔ m.ηm < 0.

(33)

Of course, because the Cayley map is not onto the whole SU(1, 1) we parametrize
only a subset of SL(2,R), i.e., ψ[=[Caysu(1,1)]] ⊂ SL(2,R). Actually, the SL(2,R)
matrices that can not be parametrized are of the type(

1 + β2 α2 + β1
−α2 + β1 1− β2

)
, α2

2 − β21 − β22 = 0.

Based on the above observations, the Lie algebra su(1, 1), can be viewed geomet-
rically as splitting of R3 into the union of the sets X1,X2,X3,X4

X1 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 > 0, x21 + x22 − x23 6= 4}

X2 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 < 0}
(34)

X3 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 = 0}

X4 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 = 4}.
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The set X1 consists of the preimages of the hyperbolic elements of SU(1, 1) (re-
spectfully, SL(2,R)) and is open. Geometrically, it consists of the exterior of the
cone x21+x22−x23 = 0 except the points lying on the hyperboloid x21+x22−x23 = 4

and thus consists of two disjoint open and connected sets, i.e., X1 = X ′1 ∪ X ′′2 ,
where

X ′1 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 > 0, x21 + x22 − x23 < 4}
(35)

X ′2 = {(x1, x2, x3) ∈ R3 ; x21 + x22 − x23 > 0, x21 + x22 − x23 > 4}.

The open and disconnected setX2 consists of the preimages of the elliptic elements
of SU(1, 1) and geometrically is the interior of the cone x21 + x22 − x23 = 0. The
closed and connected set X3 consists of the preimages of the parabolic elements of
SU(1, 1). The set X4 is where Caysu(1,1) is not defined.

Until the end of the paper we would call not only the SU(1, 1) and SL(2,R) matri-
ces hyperbolic, elliptic and parabolic but also the vector-parameters m for which
∆m 6= 0 i.e., the vector-parameters m ∈ R3\X4.

3.4. The Composition Law in SU(1,1)

Let us start by introducing for any two vectors m1 and m2 ∈ R3 the scalar function

E(m2,m1) := (m2.ηm2)(m1.ηm1) + 8m2.ηm1 + 16. (36)

Theorem 5. LetM1,M2 ∈ su(1, 1), i.e., M1 = m1 ·E, M2 = m2 ·E be such that
∆mi 6= 0, i = 1, 2 and E(m2,m1) 6= 0. Let Uhi(mi) = Caysu(1,1)(Mi), i = 1, 2
be the images under the Cayley map of M1 and M2. Then, if Mh = Uh2.Uh1
is the composition of the images in SU(1, 1) then Mh = Caysu(1,1)(M̃) where

M̃ = m̃ ·E, m̃ =〈m2,m1〉SU(1,1) and

m̃ =
(1 +

m1

2
· ηm1

2
)m2+ (1 +

m2

2
· ηm2

2
)m1+ m2 fm1

1 + 2
m2

2
· (ηm1

2
) +

(m2

2
· ηm2

2

)(m1

2
· ηm1

2

) · (37)

Proof: Let us calculate

Uh2(m2).Uh1(m1) =
(2−∆m2

∆m2

I +
2

∆m2

m2 ·E
)(2−∆m1

∆m1

I +
2

∆m1

m1 ·E
)

(28)
=

(2−∆m2
)(2−∆m1

) + m2 · (ηm1)

∆m2∆m1

I

+
(2−∆m1

)m2 + (2−∆m2
)m1 + m2 fm1

∆m2
∆m1

·E.
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Now, the condition for existence of m̃ is
(2−∆m2)(2−∆m1) + m2 · (ηm1)

∆m2∆m1

6= −1

⇐⇒ 1 + (1−∆m2)(1−∆m1) + 2
m2

2
· ηm1

2
6= 0.

From the definition of ∆ we have that 1−∆mi =
mi

2
· ηmi

2
, i = 1, 2 and thus the

existence condition is equivalent to E(m2,m1) 6= 0. Thus, m̃ exists and is such
that

2−∆m̃

∆m̃
=

(2−∆m2)(2−∆m1) + m2.ηm1

∆m2∆m1 (38)
2

∆m̃
m̃ =

(2−∆m1)m2 + (2−∆m2)m1 + m2 fm1

∆m2∆m1

·

From (38) we immediately find

∆m̃ =
∆m2∆m1

1 + 2
m2

2
· ηm1

2
+
(m2

2
· ηm2

2

)(m1

2
· ηm1

2

) 6= 0

and thus again from (38)

m̃ =
(2−∆m1)m2 + (2−∆m2)m1 + m2 fm1

1 +
1

2
m2.ηm1 + (1−∆m2)(1−∆m1)

from where follows the equality (37). Finally, note that E(m2,m1) is exactly
sixteen times the denominator of (37). �

Remark 6. What happens in the case when E(m2,m1) = 0? In this case there
is no vector m to parameterize the matrix parabollic element Uh2(m2)Uh1(m1).
However, the element −Uh2(m2)Uh1(m1) is parameterizable by the vector-para-
meter

m̂ = −(2−∆m1)m2 + (2−∆m2)m1 + m2 fm1

∆m2∆m1

·

Of course, both the elements Uh2(m2)Uh1(m1) and −Uh2(m2)Uh1(m1) are pro-
jected by (3) into one and the same SO(2,1) element.

Remark 7. What about when m2 ≡ m1? Then it is immediate to see that the
condition E(m2,m1) = 0 is equivalent to m1.ηm1 = −4. If this is the case,
direct substitution leads to Uh2(m2)Uh1(m1) = I. If m1.ηm1 6= −4 then we

obtain m̃ =
2m1

1 +
m1

2
· ηm1

2

·
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The condition E(m2,m1) 6= 0 is equivalent to

(4 + m2.ηm1)
2 − (m2 fm1).η(m2 fm1) 6= 0 (39)

since for · and f operations one can easily check that the equality

(xf y).η(xf y) = (x.ηy)2 − (x.ηx)(y.ηy)

holds for arbitrary x,y ∈ R3. It is interesting to compare it with the standard
vector and scalar products in R3

(x× y)2 = x2y2 − (x.y)2.

Let us calculate
m̃

2
· η m̃

2
= 1 −∆m̃. We obtain that if m̃ exists (i.e., when (39)

holds), then

m̃

2
· η m̃

2
=

m2

2
· ηm2

2
+ 2

m2

2
· ηm1

2
+

m1

2
· ηm1

2

1 + 2
m2

2
· ηm1

2
+ (

m2

2
· ηm2

2
)(
m1

2
· ηm1

2
)

(40)

= 4
(m2 + m1).η(m2 + m1)

(4 + (m2.ηm1))2 − (m2 fm1).η(m2 fm1)
·

Next, we need the formula

1 +
m̃

2
· η m̃

2
=

(1 +
m2

2
· ηm2

2
)(1 +

m1

2
· ηm1

2
) + 4

m2

2
· ηm1

2

1 + 2
m2

2
· ηm1

2
+ (

m2

2
· ηm2

2
)(
m1

2
· ηm1

2
)
· (41)

Now, readily from the definitions (34) of the sets Xi, i = 1, 2, 3 we obtain a condi-
tions for determining the type (hyperbolic, elliptic, parabolic) of the composition
of two SU(1,1) vector-parameters.

Corollary 8. In the terms of the conditions and the notation from Theorem 5, for
the composition vector m̃ we have that

M(m̃) is


hyperbolic if ξζ > 0

parabolic if ξ = 0 or ζ = 0

elliptic if ξζ < 0

(42)

where

ξ = ξ(m2,m1) = (m2 + m1).(η(m2 + m1))
(43)

ζ = ζ(m2,m1) = (4 + m2.ηm1)
2 − (m2 fm1).(η(m2 fm1)).
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3.5. The Double Covering SU(1, 1)→ SO(2, 1)

We are interested in the vector-parameter form of ϕ from (3). Let us consider the
SU(1, 1) matrixMh(m) = Caysu(1,1)(m). We have

α =
2−∆m

∆m
+ i

m3

∆m
, β =

m1

∆m
+ i

m2

∆m
· (44)

Substitution of (44) in (3) leads to the explicit formula for ϕ(m) =Mh(m)

H(m) =
2

∆2
m

 m2
2 −m2

3 m1m2 +m3∆̃m m1m3 +m2∆̃m

m1m2 −m3∆̃m m2
1 −m2

3 −m2m3 +m1∆̃m

−m1m3 +m2∆̃m m2m3 +m1∆̃m m2
1 +m2

2

+ I (45)

where ∆̃m = 2−∆m.

It is important to note that all SO(2, 1) matrices can be parametrized by m de-
spite the fact that the SU(1, 1) elements of the type Mh(−1, α2, β1, β2) can not
parametrized, see also Remark 6. Indeed, if ϕ(Mh) = H(−1, α2, β1, β2) than
also

ϕ(Mh(1, α2, β1, β2)) = Rh(−1, α2, β1, β2) =Mh((β1, β2, α2)).

The vector-parameter form (45) of (3) will allow us to establish the connection
between the vector-parameter in SO(2,1) and its cover SU(1,1).

Theorem 9. LetMh(m) is an SU(1, 1) element, represented by the vector-para-
meter m such that

m

2
· (ηm

2
) 6= −1. Then in SO(2, 1) this element is represented

by the matrixRh(c) generated by the vector

c = − ηm

1 +
m

2
· ηm

2

· (46)

On the other hand, if the vector c represents the SO(2, 1) element Rh(c), then in
SU(1, 1) the elements represented by the vector-parameters

m+(c) = −2
1 +
√

1− c.ηc
c.ηc

ηc, m−(c) = −2
1−
√

1− c.ηc
c.ηc

ηc (47)

produce the same element Rh(c) provided that c.ηc 6= 0, i.e., Rh(c) is not para-
bolic. If c.ηc = 0 then we have

m(c) = −ηc. (48)
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Moreover, the following relations hold

m+.ηm− = 4, (m+.ηm+)(m−.(ηm−)) = 16
(49)

m+ = − 4

m−.ηm−
m−, m− = − 4

m+.ηm+
m+.

Proof: Let us equate some expressions by using the formulas forRh(c) (cf. (13))
and H(m) (cf. (45))

trRh(c) = trH(m)

Rh(c)1,2 −Rh(c)2,1 = H(m)1,2 −H(m)2,1
(50)

Rh(c)1,3 +Rh(c)3,1 = H(m)1,3 +H(m)3,1

Rh(c)2,3 +Rh(c)3,2 = H(m)2,3 +H(m)3,2.

The first equation in (50) is equivalent to
2

1− c.ηc
(3− c.ηc)− 3 =

4

∆2
m

m.ηm + 3

and after some algebraic manipulation we obtain also

2

1− c.ηc
= 2

(2−∆m)2

∆2
m

· (51)

The second equation in (50) tells us that
4

1− c.ηc
c3 = 4

2−∆m

∆2
m

m3

while the last two equations in (50) read as
−4

1− c.ηc
c2 = 4

2−∆m

∆2
m

m2,
−4

1− c.ηc
c1 = 4

2−∆m

∆2
m

m1.

It is obvious that all these equalities imply the vector equation
1

1− c.ηc
c = −2−∆m

∆2
m

ηm (52)

and thus by substituting (51) into (52) we obtain formula (46) directly.

Our next task is to find the vector-parameter form of the sections of the homomor-
phism ϕ, i.e., to invert (46). If c.ηc = 0 we obtain (48) directly. Now let c.ηc 6= 0.
Making use of (46) we can write

c.ηc =
−ηm

1 +
m

2
· ηm

2

· η −ηm
1 +

m

2
· ηm

2

=
m.ηm(

1 +
m.ηm

4

)2 ·
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In essence, this is a quadratic equation for x := m.ηm

c.ηcx2 + 8(c.ηc− 2)x+ 16c.ηc = 0. (53)

Note that 1 − c.ηc =

(
4− x
4 + x

)2
and thus 1 − c.ηc ≥ 0 with 1 − c.ηc = 0 if and

only if x = 4. Thus, equation (53) has two real roots, namely

m+.(ηm+) = 4
2− c.ηc + 2

√
1− c.ηc

c.ηc
= 4

1 +
√

1− c.ηc
1−
√

1− c.ηc
(54)

m−.(ηm−) = 4
2− c.ηc− 2

√
1− c.ηc

c.ηc
= 4

1−
√

1− c.ηc
1 +
√

1− c.ηc
·

Direct calculation shows that

1 +
m±
2
· ηm±

2
= 2

1±
√

1− c.ηc
c.ηc

and thus we find the two sections (47) of (46). Note that the first two properties
in (49) follow directly from (47) and (54). To prove the formulas from the second
row in (49) let us calculate for example

m+(c) = −2
1 +
√

1− c.ηc
c.ηc

ηc = −1 + 1
√

1− c.ηc
1− 1

√
1− c.ηc

2
1−
√

1− c.ηc
c.ηc

ηc

which in accordance with the results in (54) simplifies exactly to − 4

m−.ηm−
m−.

For m− the calculations are analogical. �

Note that if we assume the axis-rapidity representation of SO(2,1) elements via
hyperbolic vector-parameters then for m+(c) and m−(c) we obtain

m−(c) = −2th
θ

4
ηn, m+(c) = −2cth

θ

4
ηn.

If we assume the representation of SO(2,1) elements via elliptic vector-parameters
then for m+(c) and m−(c) we would have

m−(c) = 2tg
θ

4
ηn, m+(c) = −2ctg

θ

4
ηn.

Observe that in the vector-parameterization of SO(2, 1) the elements Oh obeying
the condition ηOt

h = Ohη are not parametrized. In SU(1, 1) vector-parameter
form they are however well defined and are represented by vectors m ∈ R3 which
fulfill the equality m.ηm = −4, i.e., ∆m = 2. According to (33) these are elliptic
elements. Substituting ∆m = 2 in (45) we obtain the vector-parameterized matrix
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form of the pseudo half-turns, i.e.,

Oh(m) =
1

2

 −m2
1 m1m2 m1m3

m1m2 −m2
2 −m2m3

−m1m3 m2m3 m2
3

− I, m2
1 +m2

2 −m2
3 = −4. (55)

Taken together equations (17) and (55) imply

m = 2(β1, β2, α2), Oh = Oh(m) = Oh(0, α2, β1, β2). (56)

For practical applications, we may need to extract the vector-parameter of an arbi-
trary SO(2, 1) elementH . IfH is a regular element we extract its vector-parameter
from (21). If this is not the case, i.e., ηHt = Hη, H = Oh we can take any of the

nonzero columns of H1 = (H + I)η, lets say h1, normalize it to ĥ1 =
h1√
−h1.ηh1

and then multiply the result by two. Note that
√
−h1.ηh1 is well-defined real num-

ber since h1.ηh1 equals (see equation (17)) to one of these: −β21 ,−β22 or −α2
2.

Notice also that the matrix η(Ot
h + I) is invariant under left multiplication by Oh

Ohη(Ot
h + I) = OhηOt

h +Ohη = η + ηOt
h = η(Ot

h + I).

Thus, the columns of η(Ot
h + I) (and thus m) are eigenvectors of Oh.

In SU(1, 1), the matrix form of these elements is (see equation (32))

Wh(m) = m ·E =

 i
m3

2

m1

2
+ i

m2

2m1

2
− i

m2

2
−i
m3

2

 , m.ηm = −4. (57)

Actually, formula (30) says that the vectors in the fixed point set of the Cayley map
are only those m ∈ R3 for which m.ηm = −4.

Taking into account the sections (47) of the vector-parameter form of ϕ (cf. (3)
and Theorem 9) we can obtain the matrix form of a SU(1, 1) element in terms of
SO(2, 1) vector-parameter c. After calculating ∆m± in terms of c we substitute in
formula (30) and obtain

Mh(c) =
±1√

1− c.ηc

(
1 + ic3 c1 + ic2
c1 − ic2 1− ic3

)
. (58)

Because ϕ is group-homomorphism, its vector-parameter form also preserves the
composition law. It turns out that its two sections m± also preserve it in the fol-
lowing sense

Theorem 10. Let c and a be such that c.ηc 6= 1, a.ηa 6= 1 and 1 + a.ηc 6= 0. Let
H(c), H(c) are two SO(2,1) elements represented by c and a. Let Uh1 and Uh2 be
the SU(1,1) elements in matrix form, obtained by the “+” or “-” section of (47),
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i.e.,

Uh1 =
ε√

1− c.ηc

(
1 + ic3 c1 + ic2
c1 − ic2 1− ic3

)
, Uh2 =

ε√
1− a.ηa

(
1 + ia3 a1 + ia2
a1 − ia2 1− ia3

)
where ε = ±1 depending on the chosen section. Let Mh = Uh2Uh1 be their

composition in SU(1,1). Then

Mh =
±1√

1− c̃.ηc̃

(
1 + ĩc3 c̃1 + ĩc2
c̃1 − ĩc2 1− ĩc3

)
(59)

where c̃ = 〈a, c〉SO(2,1), i.e., each of the sections in (30) preserves the composition
law up to a sign.

Proof: Direct calculation ofMh = U2U1 yields

Mh =
1√

1− a.ηa
√

1− c.ηc

(
α+ iβ γ + iδ

γ − iδ α− iβ

)
where

α+ iβ = 1 + a.ηc + i(a + c + af c)3
(60)

γ + iδ = (a + c + af c)1 + i(a + c + af c)2.

We can also calculate 1− c̃.ηc̃ =
(1− a.ηa)(1− c.ηc)

(1 + a.ηc)2
and thus

±1√
1− c̃.ηc̃

=
|1 + a.ηc|√

(1− a.ηa)(1− c.ηc)
=

ε1(1 + a.ηc)√
(1− a.ηa)(1− c.ηc)

(61)

where ε1 = sgn(1 + a.ηc). Now (59) readily follows from (60) and (61). �

4. Composition of Pseudo Rotations

The vector-parameter form (22) of the composition law in SO(2,1) is well defined
in the case when neither of the two elements is a pseudo-half-turn and the result is
not a pseudo half-turn as well. All other cases, i.e., when at least one of the two
rotations is a pseudo half-turn and/or when their composition is a pseudo half-turn
has to be treated separately. The exhaustive list of all possible scenarios is:

• composition of two proper pseudo rotations

• composition of a pseudo half-turn and a pseudo proper rotation

• composition of a pseudo proper rotation and a pseudo half-turn

• composition of two pseudo half-turns.
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su(1, 1)

SU(1, 1)

so(2, 1)

SO(2, 1)SL(2,R)

Cayley
(31)

Cayley
(20)

1 : 1, (27)

1 : 1, (1)

2 : 1

c = c(m), (46)

m− = m−(c), (47)

m+ = m+(c), (47)

Figure 1. Relations between the Lie algebras su(1, 1) and so(2, 1) and
respective Lie groups SU(1, 1) ∼= SL(2,R) and SO(2, 1) in terms of the
vector-parameterizations generated by the Cayley map.

Of course, if the identity matrix is involved in the composition, the problem is
trivial. For the most of these scenarios we will not compose the given rotations in
SO(2,1) but their images in the covering group SU(1,1) making use of the vector-
parameter form of the latter, see Figure 1.

In this way we will find and describe all possibilities listed above and describe
the result either as a SO(2,1) vector-parameter c representing a regular SO(2,1)
element Rh(c) or as SU(1,1) vector-parameter m representing a pseudo half-turn
Oh(m). In this way, an extension of the vector-parameter form of the composition
law in SO(2,1) will be made which leads to more informative and intuitive group
description of SO(2,1).

4.1. Composition of Two Regular Pseudo Rotations

Proposition 11. Let Rh1 = Rh(c1), c1.ηc1 < 1 and Rh2 = Rh(c2), c2.ηc2 < 1

be two regular SO(2,1) elements. Then for their composition

H = Rh2(c2)Rh1(c1)

we have that it is represented by the SO(2,1) vector-parameter

c =
c2 + c1 + c2 f c1

1 + c2.ηc1
, H ≡ Rh(c) (62)

provided that c2.ηc1 6= −1. If c2.ηc1 = −1 then H is a pseudo half-turn, repre-
sented by the SU(1,1) vector-parameter

m = −2
ηc2 + ηc1 − (ηc2)f (ηc1)√

1− c2.ηc2
√

1− c1.ηc1
, H ≡ Oh(m). (63)
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Proof: The case c2.ηc1 6= −1 is already covered by Theorem 3. Let c2.ηc1 = −1

and lets suppose that ci.ηci 6= 0, i = 1, 2. Let m1 = m+(c1), m2 = m+(c2) be
the SU(1,1) vector-parameters obtained by the “+” section of (47). We will firstly

calculate the denominator of (37) which is equal to e1 :=
1

4
E(m2,m1) (see (36))

for arbitrary value of c2.ηc1 because we will use this more general formula later
on. For simplicity of the calculations we will use the additional notation

Υc :=
1 +
√

1− c.ηc
c.ηc

·

We have

e1 = 1− 2Υc2Υc1c2.ηc1 + (2Υc2 − 1)(2Υc1 − 1)

=
2

c1.ηc1c2.ηc2

(
c1.ηc1c2.ηc2 + (1 +

√
1− c2.ηc2)(1 +

√
1− c1.ηc1)

(64)
− c1.ηc1(1 +

√
1− c2.ηc2)− c2.ηc2(1 +

√
1− c1.ηc1)

)
= 2Υc2Υc1

(
1 + c2.ηc1 +

√
1− c2.ηc2

√
1− c1.ηc1

)
.

Substituting c2.ηc1 = −1 in (64) implies e1 = 2Υc2Υc1
√

1− c2.ηc2
√

1− c1.ηc1
is always non-zero. Taking into account equation (54), for the composition vector-
parameter m = 〈m2,m1〉SU(1,1) we obtain

m =
−2Υc12Υc2ηc2 − 2Υc22Υc1ηc1 + 2Υc22Υc1(ηc2)f (ηc1)

2Υc2Υc1
√

1− c2.ηc2
√

1− c1.ηc1
which becomes (63) after cancellation of the non-zero term 2Υc1Υc2 . We just
proved the Proposition in the case ci.ηci 6= 0, i = 1, 2. If at least one of the
terms ci.ηci, i = 1, 2 equals zero in the proof we take the preimage mi = −ηci of
the corresponding vector-parameter ci in accordance with equation (48). In these
three cases the calculations follow the same idea, are easier to perform and will be
omitted here. �

Corollary 12. To determine the type of the composition element of two regular
SO(2, 1) elements we substitute (64) in (40) after making analogical algebraic
simplification with the denominator. We obtain

m

2
· ηm

2
=

2Υc2Υc1
(
1 + c2.ηc1 −

√
1− c2.ηc2

√
1− c1.ηc1

)
2Υc2Υc1

(
1 + c2.ηc1 +

√
1− c2.ηc2

√
1− c1.ηc1

) =
r − 1

r + 1
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where r =
1 + c2.ηc1√

1− c2.ηc2
√

1− c1.ηc1
· Thus from criterion (40) we obtain that

H is


hyperbolic if r ∈ (−∞,−1) ∪ (1,+∞)

parabolic if r = ±1

elliptic if r ∈ (−1, 1).

(65)

4.2. Composition of a Proper Pseudo Rotation and a Pseudo Half-Turn

Proposition 13. Let Oh2 = Oh(m2), m2.ηm2 = −4 be a pseudo half-turn and
Rh1 = Rh(c1), c1.ηc1 < 1 be a regular SO(2,1) element. Then for their compo-
sition

H = Oh2(m2)Rh1(c1)

we have that it is represented by the SO(2,1) vector-parameter

c = η
m2 −m2 f (ηc1)

m2.c1
, H ≡ Rh(c) (66)

provided that m2.c1 6= 0 and m2.c1 + 2
√

1− c1.ηc1 6= 0. If m2.c1 = 0 then H
is a pseudo half-turn, represented by the SU(1,1) vector-parameter

m = −m2 −m2 f (ηc1)√
1− c1.ηc1

, H ≡ Oh(m). (67)

Finally, if m2.c1 + 2
√

1− c1.ηc1 = 0 then H is represented by the parabolic
SO(2,1) vector-parameter

c = −ηm2 −m2 f η.c1
2
√

1− c1.ηc1
, H ≡ Rh(c). (68)

Proof: Let a1 = a1(c1) be the “+" section of (47) in the case c1.ηc1 6= 0. Let
e2 := E(a2,m1). Before making a composition of a1 and m2 in SU(1,1) we need
to check the condition e2 6= 0 for existence of the composition vector-parameter.
We calculate consequently

e2 = 1 + 2
m2

2
· (ηa1

2
) +

(m2

2
· (ηm2

2
)
)(a1

2
· (ηa1

2
)
)

=
1

c1.ηc1

(
2c1.ηc1 − (1 +

√
1− c1.ηc1)m2.c1 − 2− 2

√
1− c1.ηc1

)
= −1 +

√
1− c1.ηc1

c1.ηc1
(m2.c1 + 2

√
1− c1.ηc1).

It is clear that e2 = 0 ⇔ m2.c1 + 2
√

1− c1.ηc1 = 0. Let e2 = 0. From
Remark 6 we know that H is a parabolic element in SU(1,1) generated by the
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vector-parameter

m̂ = −
2

1 +
√

1− c1.ηc1
c1.ηc1

m2 − 2
1 +
√

1− c1.ηc1
c1.ηc1

m2 f (ηc1)

− 4

c1.ηc1
√

1− c1.ηc1(1 +
√

1− c1.ηc1)
=

m2 −m2 f (ηc1)

2
√

1− c1.ηc1
·

The corresponding SO(2,1) vector-parameter is c = −ηm̂ and this leads exactly
to the formula (68).
Now let e2 6= 0 and let m = 〈m2,a1〉SU(1,1) by (37). Using some of the already
done calculations and (41) we obtain

m = −2
m2 −m2 f (ηc1)

2
√

1− c1.ηc1 + m2.c1
, 1 +

m

2
· ηm

2
=

2m2.c1
2
√

1− c1.ηc1 + m2.c1
(69)

and thus the condition for m to represent a pseudo half-turn is m2.c1 = 0. If
this is the case then formula (67) follows directly from the first equality in (69).
Finally, if m2.c1 6= 0 substituting the results of (69) in (46) we obtain (66) which
ends the proof in the case c1.ηc1 6= 0. If the last holds true then a1 = −ηc1 is
also a parabolic element. If one repeats the same scheme of the proof in the case
c1.ηc1 6= 0 will find out the three formulas and the corresponding conditions are
consistent with the case c1.ηc1 = 0. The calculations in this case are much easier
and we skip them here. �

Corollary 14. After performing algebraic simplification of the expression m.ηm

in the case m2.c1 + 2
√

1− c1.ηc1 6= 0 we end up with

m.ηm = 4
m2c1 − 2

√
1− c1.ηc1

m2c1 + 2
√

1− c1.ηc1
= 4

q − 1

q + 1
, q =

m2.c1
2
√

1− c1.ηc1
·

The case q = −1 is covered (see equation (68)) and in this case H is of parabolic
type. Now by performing simple calculus, from (42) (or, equivalently from (40)) we
obtain the following condition for the type of the composition, i.e.,

H is


hyperbolic if q ∈ (−∞,−1) ∪ (1,+∞)

parabolic if q = ±1

elliptic if q ∈ (−1, 1).

(70)

Remark 15. Note that equations (66) and (68) are actually coherent and thus
the case m2.c1 + 2

√
1− c1.ηc1 = 0 does not really have a nature of singularity.

Rather, it signifies turning point for the type as it can be seen from Corollary 14.
The same observation can be made for the next Proposition and its Corollary .
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4.3. Composition of a Pseudo Half-Turn and a Proper Pseudo Rotation

Proposition 16. Let Oh1 = Oh(m1), m1.ηm1 = −4 be a pseudo half-turn and
Rh2 = Rh(c2), c2.ηc2 < 1 be a regular SO(2,1) element. Their composition

H = Rh2(c2)Oh1(m1)

will be represented by the SO(2,1) vector-parameter

c = η
m1 − (ηc2)fm1

c2.m1

, H ≡ Rh(c) (71)

provided that c2.m1 6= 0 and c2.m1 + 2
√

1− c2.ηc2 6= 0. If c2.m1 = 0 then H
will be a pseudo half-turn, represented by the SU(1,1) vector-parameter

m = −m1 − (ηc2)fm1√
1− c2.ηc2

, H ≡ Oh(m). (72)

Finally, if c2.m1 + 2
√

1− c2.ηc2 = 0 then Rh is represented by the parabolic
SO(2,1) vector-parameter

c = −ηm1 − (ηc2)fm2

2
√

1− c2.ηc2
, H ≡ Rh(c). (73)

Proof: The proof is analogical to that one of Proposition 16 and will be omitted.
�

Corollary 17. Introducing the parameter p =
c2.m1

2
√

1− c2.ηc2
, in the same manner

as in Corollary 14 we can obtain the criterion

H is


hyperbolic if p ∈ (−∞,−1) ∪ (1,+∞)

parabolic if p = ±1

elliptic if p ∈ (−1, 1).

(74)

4.4. Composition of Two Pseudo Half-Turns

Before we start with the composition of two pseudo half-turns we will need the
following

Lemma 18. Let m = (m1,m2,m3), a = (a1, a2, a3) ∈ R3. The system of
equations

m.ηm = m2
1 + m2

2 − m2
3 = −4

a.ηa = a21 + a22 − a23 = −4

m.ηa = m1a1 + m2a2 − m3a3 = −λ2
(75)

where |λ| ≤ 2 has a solution if and only if |λ| = 2 and in this case m ≡ a.
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Proof: Let the system of equations has a solution. From the third equation we
have that (m3a3)2 = (m1a1 + m2a2 + λ2)2 and substituting m2

3 and a23 from the
first and the second equation we obtain

(m1a1 +m2a2 + λ2)2 = (m2
1 +m2

2 + 4)(a21 + a22 + 4). (76)

Let us define the vectors x = (m1,m2, λ) and y = (a1, a2, λ). Then the Cauchy-
Bunyakovsky-Schwarz inequality for x and y reads as

(m1a1 +m2a2 + λ2)2 ≤ (m2
1 +m2

2 + λ2)(a21 + a22 + λ2) (77)

with equality if and only if x = µy for some µ ∈ R∗. From (76) and (77) we have

(m2
1 +m2

2 + λ2)(a21 + a22 + λ2) ≥ (m2
1 +m2

2 + 4)(a21 + a22 + 4)

which is impossible for |λ| < 2. Thus, |λ| = 2 and therefore x and y are propor-
tional. But the third components of the vectors x and y are equal to λ and thus
x ≡ y. Therefore, also m1 = a1 and m2 = a2. Now from the equations of the
system (75) we obtain m2

3 = a23 = m3a3 and therefore m3 = a3. In this way
we have proved that m = a. Note that in this case the three equations become
one and the same equation the solutions for both vectors lying on a double sheeted
hyperboloid. �

Proposition 19. Let Oh1 = Oh(m1), m1.ηm1 = −4 and Oh2 = Oh(m2),
m2.ηm2 = −4 be two pseudo half-turns in SO(2, 1) and m1 6= m2. Then for
their composition

H = Oh2(m2)Oh1(m1)

we have that it is represented by the SO(2,1) vector-parameter

c = −m2 ×m1

m2.ηm1
, H ≡ Rh(c). (78)

Proof: Before composing the SU(1,1) the vector-parameters m1 and m2 we need
to check the condition E(m2,m1) 6= 0. In the present setting it is equivalent
to m2.ηm1 6= −4. Supposing m2.ηm1 = −4, the conditions of Lemma 18
are fulfilled (for λ = 2) and thus it follows that m1 = m2, a contradiction. Now,
according to (37), the composition of the vector-parameters m1 and m2 in SU(1,1)

is m3 =
m2 fm1

2 + 2
m2

2
· ηm1

2

· From (41) we obtain 1+
m3

2
·ηm3

2
=

m2.ηm1

2 + 2
m2

2
· ηm1

2
and thus m3 represents a pseudo half-turn if and only if m2.ηm1 = 0. From
Lemma 18, applied for λ = 0 we conclude that this is not possible. Finally, using
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formula (46) we calculate directly

c = − ηm3

1 +
m3

2
· ηm3

2

=
−η(m2 fm1)

m2.ηm1
= −m2 ×m1

m2.ηm1
·

�

Remark 20. Let us finally discuss the case m2 = m1 = m which is not covered
by the proposition. From Remark 7 we can conclude that for an arbitrary pseudo
half-turn, represented by the SU(1,1) vector m we have that

Oh(m)Oh(m) = I. (79)

Corollary 21. To determine the type of the composition H from Propositon 19 we
can use Corollary 8. In this case it simplifies to

H is
{
hyperbolic if t ∈ (−∞,−4) ∪ (4,+∞)

parabolic if t = 4
(80)

for t = m2.ηm1. Note that the case t ∈ (−4, 4) is not possible due to Lemma 18
applied for t = λ2.

A systematics of the results from Propositions 11, 13, 16, 19 and their Corollaries
is presented in Table 1.

5. Some Applications

5.1. Finding a Square Root in SO(2,1)

In Lemma 1 we have characterized the pseudo half-turns. We can clarify also
which are the pseudo rotations equivalent to quarter-turns. They should be SO(2,1)
elements Qh such that Q2

h are pseudo half-turns. Let m̃ be a SU(1,1) vector-
parameter associated with the pseudo half-turn Oh(m̃). We seek such vector-
parameter m for which 〈m,m〉SU(1,1) = m̃. For that purpose we can use the
results from Remark 7 and write down the equation

m̃ =
2m

1 +
m

2
· ηm

2

, −4 = m̃.ηm̃ =
4(

1 +
x

4

)2x
for the respective unknown x = m.ηm. In other words, we are led to the quadratic
equation

y2 + 4y − 4 = 0, y = 1 +
x

4
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which solutions obviously are y± = −2(1 ±
√

2). Taking all this into account
we have that m =

y

2
m̃ = −(1 ±

√
2)m̃. However, we are interested in finding

those SO(2, 1) vector-parameters c corresponding to m̃ which fulfill the defining
relation, i.e., Qh = Rh(c), Q2

h = Oh(m̃). Fortunately, such solution can be

obtained immediately, namely c−
(46)
= c(m̃) = −η m̃

2
. Note that both m̃ and −m̃

represent the same pseudo half-turn Oh. Thus, by repetition of the calculations

above we obtain that c+
(46)
= c(−m̃) = η

m̃

2
will do also the job. Finally we obtain

that the equation Q2
h = Oh has two roots of elliptic type, i.e.,

Q2
h(c±) = Oh(m̃), c± = ±η m̃

2
, c±.ηc± = −1.

In a similar way one can find the pseudo “octa-turns” and so on, only this time
using (22) because it is already well defined. Not only that, given an arbitrary
c̃ ∈ R2,1, c̃ .η c̃ < 1, we can solve the equation

R2
h(c) = Rh( c̃ ), c.ηc < 1

explicitly for c in general. From equation (22) we have c̃ =
2c

1 + c.ηc
and thus

c̃ .η c̃ =
4c.ηc

(1 + c.ηc)2
· If c̃ is parabolic then it is obvious that c =

1

2
c̃ . In the

other cases, i.e., when c̃ is of hyperbolic or elliptic type, we obtain the quadratic
equation

( c̃ .η c̃ )z2 − 4z + 4 = 0, z = 1 + c.ηc

from which we obtain z± =
2

c̃ .η c̃
(1 ±

√
1− c̃ .η c̃ ). After respective algebraic

simplification we obtain

c± =
1∓

√
1− c̃ .η c̃

c̃ .η c̃
c̃ , c±.ηc± =

(1∓
√

1− c̃ .η c̃ )2

c̃ .η c̃
·

Another simple computations show that that c+.ηc+ > 1 for c̃ .η c̃ > 0 (see
Fig. 2) and thus c+ /∈ SO(2, 1) in this case. So, it turns out that the equation
R2

h(c) = Rh( c̃ ) has two roots only for the elliptic elements and just one root for
hyperbolic and parabolic elements.

5.2. On the Analogue of Cartan’s Theorem in SO(2,1)

Cartan’s theorem states, that every O(n,R) rotation can be decomposed into a
product of at most n symmetric SO(n,R) matrices, i.e., reflections. In the case
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−2 1 2 4

−4

−2

1
2

4

c−.ηc−
c+.ηc+

c̃ .η c̃

Figure 2. Graphs of c+.ηc+ and c−.ηc− as functions of c̃ .η c̃ .

n ≡ 3 any rotation can be decomposed into a product of two half-turns. The
vector-parameterization of SO(3,R) has been used in [5] to find such explicit solu-
tion. Below we discuss an analogue of Cartan’s theorem for the set of hyperbolic
SO(2,1) elements.

Proposition 22. Let Rh(c), c = (c1, c2, c3) be a proper pseudo rotation which is
of hyperbolic type, i.e., 1 > c.ηc > 0. Then

Rh(c) = Oh(m2)Oh(m1) (81)

where

m1 = (
√
s2 − 4 cosϕ,

√
s2 − 4 sinϕ, s), m2 = −m1 − (ηc)fm1

2
√

1− c.ηc

for arbitrary s2 ≥ 4
c21 + c22

c.ηc
, s2 6= 4

c21
c21 − c23

where tg
ϕ

2
= B±

√
A2+B2−C2

A+C ,

A = c1
√
s− 4, B = c2

√
s− 4 and C = −sc3.

Proof: Consider the plane perpendicular to c in R3

αc : c1x+ c2y + c3z = 0.

From the assumptions of the theorem it follows that at least one of the coordinates
of c is nonzero. We will choose a vector m1 = (m1,m2,m3) ∈ αc such that
m.ηm− 4. Thus we need to find a solution of the system of equations

m1c1 + m2c2 + m3c3 = 0

m2
1 + m2

2 − m2
3 = −4
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under the condition c.ηc = c21 + c22 − c23 ∈ (0, 1). Let m3 = s be an arbitrary real

number but such that s2 ≥ 4
c21 + c22

c.ηc
≥ 4. This choice reduces the above system to

c1m1 + c2m2 = −c3s
m2

1 + m2
2 = s2 − 4.

(82)

Since c is such that c.ηc ∈ (0, 1) it is not possible to have c1 = c2 = 0 because this
will imply c23 < 0, i.e., a contradiction. Thus, c1m1 + c2m2 = −c3s is a line in
the plane R2. The system (82) can be viewed geometrically as a problem about the
intersection of a circle and a line. If we introduce polar coordinates, m1 = r cosϕ,
m2 = r sinϕ we are led to

A cosϕ+B sinϕ = C, r =
√
s2 − 4 (83)

where A = c1r, B = c2r and C = −c3s. Equation (83) can be solved by the
substitution t = tg

ϕ

2
which leads to the quadratic equation for t in the form

(A+ C)t2 − 2Bt− (A− C) = 0.

We have that A+ C 6= 0 exactly when s2 6= 4
c21

c21 − c23
· The discriminant of the so

obtained quadratic equation is

D = A2 +B2 − C2 = (s2 − 4)(c21 + c22)− s23c23 = s2(c.ηc)− 4(c21 + c22).

Our choice for s implies that D ≥ 0 and thus the solutions of the system (82) are

m1 =
√
s2 − 4 cosϕ±, m2 =

√
s2 − 4 sinϕ± (84)

where tg
ϕ±
2

= B±
√
A2+B2−C2

A+C · In this way we have described all vectors m1 that
are perpendicular to c and for which m1.ηm1 = −4. Let m1 be such vector.
Equation (81) is equivalent to the identity

Oh(m2) = Rh(c)Oh(m1) (85)

and from Proposition 16 and c.m1 = 0 it follows that Oh(m2) is represented by

the SU(1, 1) vector-parameter m2 = −m1 − (ηc)fm1

2
√

1− c.ηc
· Indeed, having in mind

that m1.ηm1 = −4 and c.m1 = 0 we get

−m2 ×m1

m2.ηm1
= −
−m1 − (ηc)fm1

2
√

1− c.ηc
×m1

−m1 − (ηc)fm1

2
√

1− c.ηc
· ηm1

=
η(c×m1)×m1

m1.ηm1
= c

that ends the proof. �
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Remark 23. From Remark 7 if follows that the identity matrix I ∈ SO(2, 1) can
be decomposed into Oh(m)Oh(m) for each pseudo half-turn Oh(m).

6. Concluding Remarks

The Lie groups discussed in this paper are of great importance in modern mechan-
ics, crystallography, quantum physics and mathematics. The parameterizations de-
veloped here along corresponding composition laws and the relationships among
these groups offer some alternative viewpoints. The vector-parameteterization of
the regular pseudo-rotations inside SO(2, 1) is extended to cover the whole group,
including the pseudo half-turns which had been characterized in detail. This is
done by going to the covering group SU(1, 1) and its parameterization via the Cay-
ley map. Although the set of pseudo half-turns OH is of measure zero within the
group SO(2, 1), they appear to be important since it can be shown that according
to the analogue of Cartan’s theorem they are generators for the set of all hyperbolic
elements in SO(2, 1).
Furthermore it is interesting to note also that the projections of the pair of the matri-

cesL1 =

(
0 −1

1 0

)
,L2 =

(
0 −1

1 1

)
∈ SL(2,Z) in PSL(2,Z) = SL(2,Z)/{±I}

form a (2,3)-generating set of the latter [16]. The group SL(2,Z) is a subgroup of
SL(2,R) and thus can be parameterized by the Cayley map. The SU(1, 1) vector-
parameters that correspond to L1 and L2 are m1 = (0, 0,−2), m1.ηm1 = −4 and

m2 = (0,−2

3
,−4

3
), m2.ηm2 = −4

3
· The vector-parameter m1 is of elliptic type

and it corresponds to a pseudo half-turn in SO(2,1).
Finally, using the developed formalism the problem of finding the square root in
the group SO(2, 1) is solved explicitly.
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