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CHAPTER IX

Induced Representations and Branching Theorems

Abstract. The definition of unitary representation of a compact group extends to the
case that the vector space is replaced by an infinite-dimensional Hilbert space, provided
care is taken to incorporate a suitable notion of continuity. The theorem is that each unitary
representation of a compact gro@splits as the orthogonal sum of finite-dimensional
irreducible invariant subspaces. These invariant subspaces may be grouped according to
the equivalence class of the irreducible representation, and there is an explicit formula for
the orthogonal projection on the closure of the sum of all the spaces of a given type. As a
result of this formula, one can speak of the multiplicity of each irreducible representation
in the given representation.

The left-regular and right-regular representationS @ L2(G) are examples of unitary
representations. So is the left-regular representatio oh L?(G/H) for any closed
subgroupH. More generally, ifH is a closed subgroup ardis a unitary representation
of H, the induced representation effrom H to G is an example. It is irreducible,
Frobenius reciprocity says that the multiplicity of any irreducible representatarG in
the induced representation equals the multiplicity o the restriction ofc to H.

Branching theorems give multiplicities of irreducible representationsl af the re-
striction of irreducible representations®f Three classical branching theorems deal with
passing fronJ (n) toU (n — 1), from SO(n) to SO(n — 1), and fromSp(n) to Sp(n — 1).

These may all be derived from Kostant's Branching Theorem, which gives a formula for
multiplicities when passing from a compact connected Lie group to a closed connected
subgroup. Under a favorable hypothesis the Kostant formula expresses each multiplicity as
an alternating sum of values of a certain partition function.

Some further branching theorems of interest are those for w@jdH is a compact
symmetric space in the sense thais the identity component of the group of fixed elements
under an involution of5. Helgason’s Theorem translates into a theorem in this setting for
the case of the trivial representationtdfby means of Riemannian duality. An important
example of a compact symmetric spacé@x G)/diagG; a branching theorem for this
situation tells how the tensor product of two irreducible representatio@sdg#fcomposes.

A cancellation-free combinatorial algorithm for decomposing tensor products for the uni-
tary groupJ (n) is of great utility. Itleads to branching theorems for the compact symmetric
spaced) (n)/SO(n) andU (2n)/Sp(n). Inturnthe first of these branching theorems helpsin
understanding branching for the compact symmetric sp&u@ + m)/(SO(n) x SO(M)).

Iteration of branching theorems for compact symmetric spaces permits analysis of some
complicated induced representations. Of special note?{& /(K N Mg)) whenG is a
reductive Lie groupK is the fixed group under the global Cartan involution, &#éN is
the Langlands decomposition of any maximal parabolic subgroup.

555



556 IX. Induced Representations and Branching Theorems
1. Infinite-dimensional Representations of Compact Groups

In the discussion of the representation theory of compact groups in
Chapter 1V, all the representations were finite dimensional. A number of
applications of compact groups, however, involve naturally arising infinite-
dimensional representations, and atheory of such representationsis needed.
We address this problem in the first two sections of this chapter.

Throughout this chapte6 will denote a compact group, artk will
denote a two-sided Haar measure®nf total mass 1. To avoid having to
discuss some small measure-theoretic complications, we shall state results
for general compact groups but assume in proofs @hét separable as
a topological group. This matter will not be an issue after 82, wen
will always be a Lie group. For commentary about the measure-theoretic
complications, see the Historical Notes.

If V is acomplex Hilbert space with inner prodget -) and norm| - ||,
then aunitary operator U onV is a linear transformation frorid onto
itself that preserves the norm in the sense fléatv)|| = ||v| for all v in
V. EquivalentlyV is to be a linear operator &f onto itself that preserves
the inner product in the sense thibk(v), U (v")) = (v, v') for all v andv’
in V. The unitary operators ovi form a group. They are characterized by
havinguU - = U*, whereU* is the adjoint ofU.

A unitary representation of G on the complex Hilbert space is a
homomaorphism of5 into the group of unitary operators dhsuch that a
certain continuity property holds. Continuity is a more subtle matter in the
present context than it was in 8IV.2 because not all possible definitions of
continuity are equivalent here. The continuity property we choose is that
the group actiorG x V — V, given byg x v — ®(g)v, is continuous.
When is unitary, this property is equivalent wiglirong continuity, that
g — ®(g)v is continuous for every in V.

Let us see this equivalence. Strong continuity results from fixin/the
variable in the definition of continuity of the group action, and therefore
continuity of the group action implies strong continuity. In the reverse
direction the triangle inequality and the equali(g)| = 1 give

[®@(@v — P(Go)voll < [[P(P (v — vo)ll + | P(F)vo — P(Go) ol
= [lv — voll + [P (Q)vo — P(Go)voll,
and it follows that strong continuity implies continuity of the group action.

With this definition of continuity in place, an example of a unitary
representation is thieft-regular representation of G on the complex
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Hilbert spacel?(G), given by(l(g) f)(x) = f(g~1x). Strong continuity
is satisfied according to Lemma 4.17. Titight-regular representation
of GonL%(G), given by(r (g) f)(x) = f (xg) also satisfies this continuity
property.

In working with a unitary representatiofr of G on V, it is helpful
to define®(f) for f in LY(G) as a smeared-out version of the various
®(x) for x in G. Formally®(f) isto befG f (x)®(x) dx. But to avoid
integrating functions whose values are in an infinite-dimensional space,
we defined (f) as follows: The 1‘unctiorfG f (X)(®(X)v, v') dx of v and
v’ is linear inv, conjugate linear in’, and bounded in the sense that
| [5 FCO(@)v, vy dx| < || fllolvllflv']. It follows from the elementary
theory of Hilbert spaces that there exists a unique linear opedat®j
such that

(9.1a) (®(f)v,v) = / f(X)(®(X)v, v') dx
G

for all v andv’ in V. This operator satisfies

(9.1b) SO < Ifllx

and

(9.1¢c) d(f)* = d(f"),

where f*(x) = f(x~1). From the existence and uniquenessbgff ), it
follows that® (f) depends linearly ori .

Another property of the application df to functions is that convolution
goes into product. Theonvolution f x h of two L! functions f andh

is given by(f « h)(x) = [, f(xy™Hh(y)dy = [, f(y)h(y 'x)dy. The
result is anL! function by Fubini’s Theorem. Then we have

(9.1d) ®(f xh) = d(f)d(h).

The formal computation to prove (9.1d) is
CI>(f*h)=// f (xy " Hh(y)®(x) dy dx
GJG
= [ [ foyHnaecodedy
GJG

=f/ f (x)h(y)®(xy) dx dy
GJG
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_ f / £ 0Oh(y)® () (y) dx dy
GJG
— &(f)d(h).

To make this computation rigorous, we put the appropriate inner products
in place and use Fubini’s Theorem to justify the interchange of order of
integration:

(@(f xhy,v) = [, [sf Xy Hh(y)(@(X)v, v) dydx
= [o) s XYy Hh(y)(@(X)v, v') dx dy
= [/ FOOh(Y)(@(xy)v, v') dxdy
= [/ TOOY(@()@(y)v, v') dx dy
= [/ T OO (@(Y)v, (x)*v') dx dy
= [/ T OO (@(Y)v, D(x)*v') dy dx
= fG f(X)(®(h)v, ®(X)*v') dX
= fG f(X)(PX)P(h)v, v') dx
= (®(f)d(h)v, V).
This kind of computation translating a formal argument alib(f ) into a
rigorous argument is one that we shall normally omit from now on.
An importantinstance of the convolutidrkh is the case that andh are

characters of irreducible finite-dimensional representations. The formula
in this case is

dtx. if T = 1’ andd, is the degree of

9.2 O——— _ _ )
(:2) e X { 0 if r andt’ are inequivalent.

To prove (9.2), one expands the characters in terms of matrix coefficients
and computes the integrals using Schur orthogonality (Corollary 4.10).
If f > 0 vanishes outside an open neighborhd®bdf 1 in G and has
Jo T dx =1, then(®(fv—v,v) = [ f(X)(P(X)v—v,v') dx. When
vl < 1, the Schwarz inequality therefore gives

[(@(Fv—v, V)| < / f )P v — vl dx < SUNDIICD(X)U —vl.
N Xe
Taking the supremum over with ||v’| < 1 allows us to conclude that

(9-3) [P(F)v —v|l < sup|P(xX)v — v]|.

xeN
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We shall make use of this inequality shortly.

An invariant subspacefor a unitary representatiof onV is a vector
subspacé) such thatd(g)U < U for all g € G. This notion is useful
mainly whenU is a closed subspace. In any evenlifs invariant, so is
the closed orthogonal complemdut sinceut € U+ andu € U imply
that

(@(gut, u) = (U, @(g)*u) = (U™, (g)"u) = (U, (g Hu)

isin(ut,U) = 0. If V # 0, the representation igeducible if its only
closed invariant subspaces are 0 ahd

Two unitary representations &, ® onV and®’ onV’, are said to be
unitarily equivalent if there is a norm-preserving line&r: V — V'’ with
a norm-preserving inverse such tlis{g)E = E®(g) forall g € G.

Theorem 9.4. If ® is a unitary representation of the compact group
G on a complex Hilbert spacé, thenV is the orthogonal sum of finite-
dimensional irreducible invariant subspaces.

PROOF. By Zorn’s Lemma, choose a maximal orthogonal set of finite-
dimensional irreducible invariant subspaces. Uebe the closure of the
sum. Arguing by contradiction, suppose thatis not all of V. Then
U+ is a nonzero closed invariant subspace. #i¢ 0 in U+. For each
open neighborhootll of 1 in G, let fy be the characteristic function &f
divided by the measure &. Then fy is an integrable functior 0 with
integral 1. It is immediate from (9.1a) thét( fy)v is in U~ for everyN.
Inequality (9.3) and strong continuity show that fy)v tends tov asN
shrinks to{1}. Hence some& (fy)v is not 0. Fix such am.

Choose by the Peter—Weyl Theorem (Theorem 4.20) a funhtionhe
linear span of all matrix coefficients for all finite-dimensional irreducible
unitary representations so thpty — hj, < %IICD(fN)vII/IIvII. Then

[P (fn)v — @]l = [[®(fn — Mol < || fn — hil2llv]l
< [ fx = hll2llvll < 31@(fu)vll

by (9.1b) and the inequalityF ||; < || F|.. Hence
[@hyv| = [[@(fa)v]l — [P(fn)v — D(h)v|| = 3P (fy)v] > 0,

and®(h)v is not 0.
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The functiorh lies in some finite-dimensional subspagef L2(G) that
is invariant under left translation. Lét, ..., h, be a basis 0§, and write
hj (g7*x) = 3", ¢j(9)h; (x). The formal computation

()@ (h))v = <I>(g)/ hj(x)cb(x)vdx:/h,—(x)d>(gx)vdx
G G
=/hj<g‘1x)¢<x>vdx=2qj(g>/ hi )@ (X)v dx
G i=1 G

= Zcij(g)q)(hi)v

i=1

suggests that the subspagq Ca(hj)v, which is finite dimensional and
lies inU*, is an invariant subspace fdr containing the nonzero vector
®(hyv. To justify the formal computation, we argue as in the proof
of (9.1d), redoing the calculation with an inner product within place
throughout. The existence of this subspac&Jéf contradicts the maxi-
mality of U and proves the theorem.

Corollary 9.5. Every irreducible unitary representation of a compact
group is finite dimensional.

Proor. This is immediate from Theorem 9.4.

Corollary 9.6. Let® be a unitary representation of the compact gréup
on a complex Hilbert spacé. For each irreducible unitary representation
t of G, let E, be the orthogonal projection on the sum of all irreducible
invariant subspaces &f that are equivalent withi. ThenE;, is given by
d.®(x;), whered, is the degree ot and y, is the character of, and
the image ofE, is the orthogonal sum of irreducible invariant subspaces
that are equivalent witlk. Moreover, ift andt’ are inequivalent, then
E.E. = E. E, = 0. Finally everyv in V satisfies

v:ZErv,

with the sum taken over a set of representativesall equivalence classes
of irreducible unitary representations Gf

PrROOF. Let r be irreducible with degred,, and putE, = d,®(x,).
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Formulas (9.1c), (4.14), (9.1d), and (9.2) give

E;* = drcp(z*) = drqD(ch) = drqD(E) = E;7
EE, =dd, G)PG) =ddo PG x %) =0 ifr 27,
E?=d*®(x; %) =d. D(x7) = E..

The firstand third of these formulas say tEgtis an orthogonal projection,
and the second formula says tH&}E/,, = E,,E. = 0 if r and ¢’ are
inequivalent.

LetU be an irreducible finite-dimensional subspac¥® an which®|,
is equivalent withr, and letug, . . ., u, be an orthonormal basis bf. If we
write ®(X)u; = Y, @i (X)u;, thend;j(x) = (@ (X)u;, u;) and x, (X) =
31, @ii(x). Thus a formal computation with Schur orthogonality gives

Eluj = dI/ X )@ (X)u; dx = dI/ Z®kk(x)d>ij(x)ui dx =u;,
G G ik

and we can justify this computation by using inner products withrough-
out. As aresult, we see thgf is the identity on every irreducible subspace
of typer.

Now let us applyE! to a Hilbert space orthogonal suxh = >V,
of the kind in Theorem 9.4. We have just seen tRatis the identity
onV, if V, is of typet. If V, is of typet’ with 7’ inequivalent withr,
then E., is the identity onV,, and we haveE’lu = E.E/,u = 0 for all
u € V,. Consequentlfe! is 0 onV,, and we conclude th&. = E,. This
completes the proof.

It follows from Corollary 9.6 that the number of occurrences of irre-
ducible subspaces of typein a decomposition of the kind in Theorem
9.4 is independent of the decomposition. As a result of the corollary, this
number may be obtained as the quotiédimimageE,)/d,. We write
[®: 7] for this quantity and call it thenultiplicity of ¢ in ®. Each
multiplicity is a cardinal number, but it may be treated simply as a member
ofthe set0, 1, 2, ..., oo} when the underlying Hilbert space is separable.
When® is finite dimensional, 8IV.2 provides us with a way of computing
multiplicities in terms of characters, and the present notion may be regarded
as a generalization to the infinite-dimensional case.

For an example, consider the right-regular representatioh G on
L2(G). Lett be an irreducible unitary representation,ugt. . ., u, be an
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orthonormal basis of the space on whichcts, and form matrices relative
to this basis that realize eaelix). The formula isz;(X) = (t(X)u;, U;).
The matrix coefficients corresponding to a fixed row, those witixed
and j varying, form an irreducible invariant subspaceifaf type z, and
these spaces are orthogonal to one another by Schur orthogonality. Thus
[r:7] is at leastd,. On the other hand, Corollary 4.21 says that such
matrix coefficients, as varies through representatives of all equivalence
classes of irreducible representations, form a complete orthogonal system
in L2(G). The coefficients corresponding to arinequivalent withr are
in the image ofE,. and are not of type. It follows that | : 7] equalsd,
and that the spaces of typecan be taken to be the span of each row of
matrix coefficients for .

For the left-regular representatidrof G on L2(G), one can reason
similarly. The results are thalt [t] equalsd, and that the spaces of type
7 can be taken to be the span of the columns of matrix coefficients for the
contragredient®.

Let G be the set of equivalence classes of irreducible representations of
G. The multiplicities of each member & within a unitary representation
of G determine the representation up to unitary equivalence. In fact, the
various multiplicities are certainly not changed under a unitary equivalence,
and if a set of multiplicities is given, any unitary representationGof
with those multiplicities is unitarily equivalent to the orthogonal sum of
irreducible representations with each irreducible taken as many times as the
multiplicity indicates. We shall be interested in techniques for computing
these multiplicities.

Proposition 9.7. Let ® andzt be unitary representations of the compact
groupG on space¥ ® andV7, respectively, and suppossds irreducible.
Then

[®: 7] = dimc Homg(V®, VT) = dime Homg (V™, V®),

where the subscrip(s refer to linear maps respecting the indicated actions
by G.

PrROOF. By Schur's Lemma (Proposition 4.8) and Corollary 9.6, any
member of Horg(V®, V™) annihilates(E,V?®)*+. Write, by a second
application of Corollary 9.6E,V?® as the orthogonal sum of irreducible
subspace¥, with eachV, equivalentto/*. For eachV,, the space of linear
maps fromV, to V' respecting the action b§ is at least 1-dimensional. It
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is at most 1-dimensional by Schur's Lemma in the form of Corollary 4.9.
Then it follows that

[®:7] = dimc Homg(V®, V7).
Taking adjoints, we obtain

dimz Homg (V?®, V) = dime Homg (V7 V®).

2. Induced Representations and Frobenius Reciprocity

In this section we continue to assume tkats a compact group, and
we continue to write out proofs only under the additional assumption that
G is separable.

A wider class of examples of infinite-dimensional unitary representa-
tions than the regular representationd.60G) is obtained as follows: Let
H be a closed subgroup &, and letl be theleft-regular representation
of GonL?(G/H), given by(l(g) f)(xH) = f(g~ixH).

This is a unitary representation, and it can be realized also as taking
place in a certain closed subspaceldfG). Namely the identification
f > F given byF(x) = f(xH) carriesL?(G/H) onto the subspace of
members of_2(G) that are right-invariant undét, a closed subspace that
we shall denote by.?(G, C, 14). The result is a unitary equivalence of
representations db.

The realization oL.2(G/H) asL?(G, C, 14) suggests a generalization
in which C and 3, are replaced by a Hilbert spateand a unitary rep-
resentatioro of H on V. The case of most interest is thatis finite
dimensional, but the theory is no more complicate¥ ifs allowed to be
infinite dimensional but separable. We shall not have occasion to apply the
theory to nonseparable Hilbert spaces, and we defer to the Historical Notes
any discussion of the complications in that case.

Let the inner product and norm f& be denoted -, - )y and| - |v.
A function F from G to V is (weakly) measurable ¥ — (F(X), v)y is
Borel measurable for alt € V. In this case lefv,} be an orthonormal
basis ofV. Then the functionF (x)|3 = Y, [(F(X), va)v|? is measurable
and is independent of the choice of orthonormal basis. We saythst
in L%(G, V) ifitis measurable and ifF ||, = (/5 [F(X)[5 dx)*? is finite.
Technically the spack?(G, V) is the Hilbert space of such functions with
two such functions identified if they differ on a set of measure 0, but
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one usually speaks of functions, rather than their equivalence classes, as
members ot.2.

We define theleft-regular representation | of G on L2(G, V) by
(1@ F)(x) = F(g~1x). To verify the strong continuity, we use the same
argument as for Lemma 4.17 once we know that the continuous functions
from G to V are dense ilL?(G, V). This density is a consequence of
the density in the scalar case, which was proved in §IV.3wf is an
orthonormal basis of/, then the finite linear combinations of functions
fv, with f scalar-valued and continuous are continuous Yhtand form
a dense subset & (G, V).

Let us interject some remarks about Fubini's Theorem. Fubini’'s Theo-
rem is usually regarded as a statement about the interchange of integrals
of nonnegative measurable functions on a product measure space that is
totally finite or totally o -finite, but it says more. For one thing, it says
that the result of performing the inner integration is a measurable function
of the other variable. For another thing, through its statement in the case
of a characteristic function, it gives insight into sets of measure 0O; if a
measurable set in the product space has the property that almost every slice
in one direction has measure 0, then almost every slice in the other direction
has measure 0.

Let H be a closed subgroup &, and leto be a unitary representation
of H onV. Define

F(xh) = a(h)le(X)
L%(G,V,0) = {F € L%G, V) | for almost every pair}

9.8) x,hyeGxH

For everyh € H,
= {F e LAG,V) | E(xh) = o(h)tF(x) } .
fora.e.x e G

The equality of the two expressions in braces requires some comment. The
equality is meant to convey that an equivalence class of functiohs in
containing a function having one of the defining properties in (9.8) contains
a member that has the other of the defining properties, and vice versa. With
this interpretation the second expression is contained in the first by Fubini's
Theorem. IfF is in the first space, we can adjuston a subset ofs of
measure 0 to make it be in the second space. This adjustment is done by
integration as follows. Formally we considef(x) = fH o (h)F(xh) dh.

By Fubini’s Theorem, for almost all € G, we haveF (xh) = o (h)"1F(x)
foralmost allh € H, and these’s haveF;(x) = F(x). For the remaining



2. Induced Representations and Frobenius Reciprocity 565

X’s, we setF;(x) = 0. ThenF; is in the second space, ad and F

yield the same member &f?(G, V). This argument is formal in that it
used integrals of vector-valued functions. To make it precise, we work
throughout with inner products with an arbitravye V; we omit these
details.

In practice it is a little easier to use the second expression in (9.8), and
we shall tend to ignore the first expression. Some authors work instead
with the subspace of continuous members &G, V, o), for which there
are no exceptionat’s andh’s; this approach succeeds because it can be
shown that the subspace of continuous members is dense® V, o).

For F in L?(G, V,0) andg in G, define(®(g)F)(x) = F(g~x).

The system of operato®(g) is nhothing more than the restriction to an
invariant subspace of the left-regular representatioGasn L2(G, V).
Thus® is a unitary representation & on L2(G, V, o). Itis theinduced
representationof o from H to G and is denoted irftlo-.

From the definitions it follows immediately that i is the finite or
countably infinite orthogonal sum of unitary representatigros separable
Hilbert spaces, then irfdo is unitarily equivalent with the orthogonal sum
of the incf, o,

Theorem 9.9(Frobenius reciprocity). LeH be a closed subgroup of
the compact groufs, leto be an irreducible unitary representationtbf
on Ve, let t be an irreducible unitary representation®fon V*, and let
® = indd o actonV®. Thenthereis acanonical vector-space isomorphism

Homg(V™, V®) = Homy (V*, V),

and consequently
[indS o : 7] =[t]n:0].

REMARKS. Restriction to a subgroup is a way of passing from represen-
tations ofG to representations dfl, and induction is a way of passing in
the opposite direction. Frobenius reciprocity gives a sense in which these
constructions are adjoint to each other.

PrROOF. We shall prove the isomorphism. The equality of multiplicities
is then immediate from Proposition 9.7.

The spaceV?® is contained inL?(G, V°), and L?(G, V?) is simply
the direct sum ofl, copies ofL?(G), d, being the degree. Therefore
occurs exacthyd,d, times inL2(G, V?) and at most that many times in
V®. By Schur's Lemma we then know that the image of any member
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of Homg(V7, V?®) lies in the subspace of continuous members/6t
If e denotes evaluation at 1 B, it therefore makes sense to form the
compositioneA wheneverA is in Homg (V®, V?®). Forv in V*, we have

o (h)(eAv) = o (M[(Av)(1)] = (Av)(h™)
= (P(M(Av) (D) = (Ar(v)(1) = eAr(hjv.

ThuseAisin Homy (V7, V°), and the linear mapcarries Hong (V*, V%)
into Homy (V7, V7). To complete the proof, we show thais an isomor-
phism.

To see thae is one-one, suppose thefv = O for all v in V*. Then
(Av)(1) = 0 for all v. Applying this conclusion te = 7(g)~1v’ gives

0= (Av)(1) = (At(9)"v)(1) = (2(9) " Av)(D) = (AV)(9),

and soAv’ = 0. Sincev’ is arbitrary,A = 0. Thuseis one-one.
To see thak is onto, leta be in Homy (V®, V). Define Av(g) =
a(r(g9)~tv) forv e VT andg € G. Then

Av(gh) = a(z(h)z(9) v) = o (h)(@(z(9) v)) = o (h)*(Av(g))

shows thatvisinV?®. Infact,Aisin Homg (V7, V®) because the equality
(®(go) Av)(9) = Av(gy'9) = a(r(9) (t(go)v)) = A(z(go)v)(Q)
implies®(gy) A = At(gy). Finally e carriesA to a because the equality
eAv = Av(l) = a(zr(DHv) = av
implieseA = a. Thuseis onto, and the proof is complete.

The final topic of this section is “induction in stages,” which refers to
the legitimacy of forming an induced representation by first inducing to
an intermediate group and then inducing from there to the whole group.
Induction in stages may be regarded as adjoint to the obvious notion of
restriction in stages—that iH and H, are closed subgroups & and
H C H; C G, then the effect of restricting fror® to H,; and afterward
restricting toH is the same as the effect of restricting fr@1o H directly.

We can quantify this relationship by means of multiplicities as follows. Let
7 ando be irreducible unitary representations®fandH. Decomposing
7 underH; and the result undédf , we see that

(9.10) fio]l= > [r:olos:o].

(7'1€H1
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Induction in stages is more subtle than restriction in stages and requires
some justification. When inducing representations in stages, even if we
start with an irreducible representation, the intermediate representation is
likely to occurin a subspace of sorhé&(G, V) with V infinite dimensional.
Before stating the result about induction in stages, let us therefore check
in the case of interest that all the Hilbert spaces that arise are separable.

Proposition 9.11.Let G be a separable compact group. ThenG) is
a separable Hilbert space. In fatf(G, V) is a separable Hilbert space
whenevel is a separable Hilbert space.

PROOF. Fix a countable base for the topology®f For each pait) and
V in the countable base such thatc V, choose, by Urysohn’s Lemma,

a continuous real-valued function that is 1rand 0 offV. The resulting
subset of the spad@(G) of continuous complex-valued functions @Gnis
countable and separates points®nThe associative algebra ov@r+ i Q
generated by these functions and the constant 1 is countable, is closed
under conjugation, and is uniformly dense in the associative algebra over
C generated by these functions and 1. The latter algebra is uniformly dense
in C(G) by the Stone—Weierstrass Theorem. Si6¢6) is known from

8IV.3 to be dense in.?(G), we conclude that >(G) is separable. This
proves the first statement.

If V is a separable Hilbert space, let,} be a countable orthonormal
basis. Choose a countable dense{$gtin L2(G). Then the set of finite
rational linear combinations of functiorfgv, is a countable dense set in
L2(G, V).

Proposition 9.12(induction in stages). L& be a separable compact
group, and leH andH; be closed subgroups with € H; C G. If o is
an irreducible unitary representationtdf then

ind? o is unitarily equivalent with  infj, indj}' o.

REMARKS. In fact, the unitary equivalence is canonical, but we shall
not need this sharper statement. The functions in the Hilbert space of
the doubly induced representation are functiong@®whose values are
functions onH;, thus are functions of pairg, h;). Their values are in
the spacé/? on whicho acts. The functions in the space of fnd are
functions fromG to V°. The unitary equivalence is given in effect by
evaluating the functions of pairg, h;) ath; = 1. Since the functions
in question are unaffected by changes on sets of measure 0, some work is
needed to make sense of this argument.
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PROOF. Lett ando be irreducible unitary representations®fandH.
Decomposing underH; and the result unddf leads to the multiplicity
formula (9.10). Frobenius reciprocity (Theorem 9.9) then gives

(9.13) lindo:7] = Z [indﬁ1 oy t]find{'o : oy].

O'1EH1

The representation iffélr is the orthogonal sum over ai| of [ind{}'o : 03]

copies ofry, and hence the induced representatioﬁlirimdﬂla is unitarily
equivalent with the orthogonal sum over all of [ind}'o : o;] copies of
ind3, o1. Thus the right side of (9.13) is

= [indS, ind o : 7].

Therefore the two representations in question have the same respective
multiplicities, and they must be unitarily equivalent.

3. Classical Branching Theorems

Let H be a closed subgroup of the compact gr@ipFrobenius reci-
procity deals with the multiplicities of irreducible representation&dh
induced representations frarto G, reducing their computation to finding
multiplicities of irreducible representations Gfwhen restricted td1. In
particular, this approach applies to finding the multiplicitieslfé(G/H).

A theorem about computing multiplicities for an irreducible representation
upon restriction to a closed subgroup is calledranching theorem or
branching rule. The rest of this chapter will be concerned with results of
this type.

We shall concentrate on the case Bas a connected Lie group and that
the closed subgroud is connected. In the next section we shall see that
there is a direct formula that handles all examples. However, this formula
involves an alternating sum of a great many terms, and it gives a useful
answer only in a limited number of situations. It is natural therefore to try
to form an arsenal of situations that can be handled recursively, preferably
in a small number of steps.

For this purpose a natural first step is to look at the various series of
classical compact connected groups and to isolate the effect of restricting
an irreducible representation to the next smaller group in the same series.
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In this section we list three theorems of this kind, postponing their proofs
to 85.

Our groups are as follows. We work with the unitary group®), the
rotation groupsSO(N) with N = 2n 4+ 1 or N = 2n, and the quaternion
unitary groupsSp(n). The rotation groups are not simply connected, but
we omit discussion of their simply connected covers. In each case we use
the standard embedding of the subgréupf next smaller size in the upper
left block of the given groufis, with the members o filled out with 1's
on the diagonal. A different choice for an embeddind-bfvill yield the
same branching if the two subgroups are conjugaté&yias is the case if
H is embedded in the lower right block &f, for example.

We parametrize irreducible representationsGfind H as usual by
highestweights. The maximal tdriare asin 8IV.5 for the most part. Inthe
case ol (n), the maximal torus is the diagonal subgroup. 56r(2n -+ 1)
it consists of block diagonal matrices withblocks consisting of 2-by-2
rotation matrices and with 1 block consisting of the entry 1, an&€@¢2n)
it consists of block diagonal matrices withblocks consisting of 2-by-2
rotation matrices. To have highest-weight theory apply conveniently to
Sp(n), we realizeSp(n) as Sp(n, C) N U (2n); then the maximal torus
consists of diagonal matrices whage+ j)™ entry is the reciprocal of the
jhentryforl<j <n.

In each case the notation for members of the complexified dual of the Lie
algebraofT isto be as inthe corresponding example of 811.1. We wifioe
the Lie algebra off . The positive roots are as in (2.50). The analytically
integral members oft®)* in each case are of the forme, + - - - + a,e,
with all & equal to integers.

We begin with the branching theorem fd(n). ForU (n), the condition
of dominance is thad; > --- > a,.

Theorem 9.14(Weyl). ForU (n), the irreducible representation with
highest weighta,e; + - - - + a,&, decomposes with multiplicity 1 under
U (n—1), and the representationsldfn — 1) that appear are exactly those
with highest weightg,e; + - - - + ¢,_1€,_1 such that

(9.15) 8 >C >8> >a-1>Co1>a,.

EXAMPLE. L2(U(n)/U(n — 1)). The spacaJ(n)/U(n — 1) may be
regarded as the unit spherelA. Frobenius reciprocity says that the mul-
tiplicity of an irreducible representatianof U (n) in L?(U (n)/U (n — 1))
equals the multiplicity of the trivial representationdtn — 1) in 7|y n_1.
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Let ¢ have highest weigha;,e, + - -- + a,e,. A brief calculation using
Theorem 9.14 shows that

1 |f(a]_,,an):(q,0’709_p)
0 otherwise

[tlun-p:1] = {

The representation with highest weigjg; — pe, can be seen to be realized
concretely in the subspadg, ; of homogeneous harmonic polynomials
in(z,...,2Z, 2, ..., 2Z, in which p factors ofz's andq factors ofz's

are involved; here “harmonic” means that the polynomial is annihilated
by the usual Laplaciaf} |, (f—xzz + j—yzz) ThusL?(U(n)/U(n — 1)) is
unitarily equivalent with the sum of all the spacksg,, each occurring
with multiplicity 1. This conclusion, obtained from Theorem 9.14 with
just a brief calculation, begs for an analytic interpretation. Here is such an
interpretation: Any homogeneous polynomial involvipgf thez's andq

of theZ'sis uniquely a sur, 4 +|z|*hp_1.4-1+12|*hp_24-2+- - - Witheach

of the h’s in the indicated space of homogeneous harmonic polynomials.
On the unit sphere each of the powersgayfrestricts to the constant 1, and
hence every polynomial on the sphere is the sum of harmonic polynomials
of the required kind. Compare with Problems 9-17 in Chapter IV.

Now we state the branching theorem for the rotation groups. The con-
dition of dominance for the integral forme; + - - - + a,&, for SO(2n + 1)
andSO(2n) is that

a>--->a,>0 for the case oN = 2n + 1,
a; > --->a,_1>|a, forthe case olN = 2n.

Theorem 9.16(Murnaghan).

(a) ForSO(2n + 1), the irreducible representation with highest weight
a,e, + --- + a,e, decomposes with multiplicity 1 undesO(2n), and
the representations &0 (2n) that appear are exactly those with highest
weights(cy, ..., ¢,) such that

(9.17a) @ >C>a,>C>->a1>C1 >3 > |Gl

(b) For SO(2n), the irreducible representation with highest weight
ae + --- + a,e, decomposes with multiplicity 1 unde80(2n — 1),
and the representations 80(2n — 1) that appear are exactly those with
highest weightsc,, ..., ¢,_1) such that

(9.17b) Q>C>>C> > 1>Ch1 > (@]
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Finally we state the branching theorem f8p(n). The condition
of dominance for the integral forra,e; + - - - + a,e, for Sp(n) is that
a>--->a >0,

Theorem 9.18(Zhelobenko). Fop(n), the irreducible representation
with highest weighie,e; + - - - + a,e, decomposes undép(n — 1) as
follows: the number of times the representatiorgpfn — 1) with highest
weight (¢, ..., ¢,_1) occurs in the given representation $(n) equals
the number of integemn-tuples(by, . .., b,) such that

y>bh>a>--->a,1>b,;>a,>b, >0,

(9.19) by>c>b,>--->by1>C1 > by
If there are no sucin-tuples(by, ..., b,), then it is understood that the
multiplicity is O.

Any of the above three theorems can be iterated. For example, the
irreducible representation &f (n) with highest weightye; + - - - + ae,
decomposes under(n—2) as follows: the number of times the irreducible
representation df (n — 2) with highest weight,e; + - - - +¢,_»€,_» occurs
in the given representation &f (n) equals the number agh — 1)-tuples
(by, ..., by_q) such that

and
blzclz bZZ an72ZCn722bnfl-

An iterated answer of this kind, however, may be unsatisfactory for some
purposes. As the number of iterations increases, this kind of answer be-
comes more like an algorithm than a theorem. If the result of the algorithm
is to be applied by substituting it into some other formula, the answer from
the formula may be completely opaque.

4. Overview of Branching

The previous section mentioned that there is a general formula that
handles all examples of branching for compact connected Lie groups. This
is due to Kostant. The full branching formula of Kostant's involves the
same kind of passage to the limit that is involved in 8V.6 in deriving the
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Weyl Dimension Formula from the Weyl Character Formula. But in this
book we shall restrict the treatment of Kostant’s formula to the situation
where no passage to the limit is needed.

Although the formula can always be used to calculate particular exam-
ples, it finds rather few theoretical applications. We shall use it in the next
section to derive results implying the classical branching theorems of the
previous section, and those will be our only applications of it.

Despite the paucity of theoretical applications, the special hypothesis
in the theorem that eliminates any passage to the limit has philosophical
implications for us. It will enable us to focus attention on an approach to
getting concrete branching formulas in a great many practical situations.
We return to this point after stating and proving the theorem.

Let G be a connected compact Lie group, andHete a connected
closed subgroup. The special assumption is that the centraligzoira
maximal torusS of H is abelian and is therefore a maximal tofusf G.
Equivalently the assumption is that some regular elemeht &f regular
in G. We examine the assumption more closely later in this section.

Let us establish some notation for the theorem. Agtbe the set of
roots of (g%, t%), let Ay be the set of roots afy©, 5©), and letW; be the
Weyl group ofAg. Introduce compatible positive systemg andA;, by
defining positivity relative to arH regular element of's, let bar denote
restriction from the duak®)* to the duals®)*, and let be half the sum of
the members oA §. The restrictions te® of the members oA, repeated
according to their multiplicities, are the nonzero positive weights“dh
gC. Deleting from this set the members af;, each with multiplicity 1,
we obtain the seE of positive weights 0§ in g©/h, repeated according
to multiplicities. The associatddostant partition function is defined as
follows: P(v) is the number of ways that a member(gf)* can be written
as a sum of members a&f, with the multiple versions of a member &f
being regarded as distinct.

Theorem 9.20(Kostant’'s Branching Theorem). L& be a compact
connected Lie group, ldd be a closed connected subgroup, suppose that
the centralizer irG of a maximal torusSof H is abelian and is therefore a
maximal torusT of G, and let other notation be as above. ket (t)* be
the highest weight of anirreducible representatiai G, and letu < (5%)*
be the highest weight of an irreducible representasicof H. Then the
multiplicity of o in the restriction oft to H is given by

m, () = Y e)Pw( +85) — g — ).

weWg
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PrROOF. The theorem generalizes the Kostant Multiplicity Formula for
the weights of a representation (Corollary 5.83), and the proof is a variant
of the proof of that special case. As in the special case, one needs to
make rigorous an argument involving multiplication of formal series; here
we defineQ™ to be the set of all nonnegative integer combinations of
members ofZ, and matters here are justified by working in a rigs©)*)
defined relative to thi€)*. NamelyZ((s®)*) is the set of allf € Z¢""
whose support is contained in the union of a finite number ofigetsQ™
with eachy; in (s©)*.

The special assumption about regularitysinenters as follows. Pos-
itivity for both H and G is defined relative to somkl regular element
X € is; specifically a member of Ag is positive ifa(X) > 0. Hence the
restrictions td s of all members o= lie in an open half space o§*, and
it follows that P(v) is finite for allv € (s©)*. With this finiteness in hand,
it follows that

(9.21) (Z (1- e-ﬁ)‘“”)( Z P(u)e‘“) —1,

BeX

wherem; is the multiplicity of 8 in g©/hC. This formula generalizes
Lemma 5.72.

Let x; and x, be characters fo& and H, respectively. Using bar to
indicate restriction, not complex conjugation, we have

(9.22) o= M),

neF

as an identity irZ[(s®)*]; hereF is a finite set ofH dominant weights.
The construction ok makes

923 [ (1-e%)= (; (1-e"™)(IT @-e7)).

aeAé yEAﬁ

In (9.22) we substitute fog, from the Weyl character fo and obtain

(9.24) X l_[ (1— e’V) = Z m, ()& (p)ePutin—n
yeay peWFH,
e

whereWy is the Weyl group oH andéy is half the sum of the members of
AY,. Substitution from (9.21) and (9.23) into the left side of (9.24) yields

7(IT @-e9))( X Pwer) = 3 mae(pe+-n,
+ veQt

aeAf peW,
nekr
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The Weyl character formula fae implies that

o] =€) =) e(wyertorie

aeAf weWs

in Z[(s%)*], and we can substitute and obtain

(925) Z g(w)'])(v)em_” — Z mk(u)g(p)ep(u-&-éH)—BH‘
oo e

The theorem will follow by equating the coefficientsasfon the two sides
of (9.25). On the right side the equatigiux + 84) — éy = u forces
p = 1 by Chevalley’s Lemma in the form of Corollary 2.73 because
is H dominant. Thus the coefficient @f* on the right side of (9.25) is
m, (n). On the left side the coefficient ef is the sum ok (w)P(v) over
allw € Wg andv € Q* such thatw(A + 8g) — 8¢ — v = . Thissum is
justd o, eW)P(w(i + 8c) — 8 — w), and the proof is complete.

Let us study in more detail the special assumption in the theorem—that
the centralizer of in g is abelian. There are two standard situations where
this assumption is satisfied. The obvious one of these is witealready
maximal abelian iy. We refer to this as the situation efjual rank. This
is the case, for example, wheth = T and the theorem reduces to the
formula for the multiplicity of a weight. The less obvious one is when
the subgrouH is the identity component of the set of fixed points of an
involution of G. We refer to this situation as that oEampact symmetric
space

Let us accept for the moment that the special assumption in Theorem
9.20 is satisfied in the situation of a compact symmetric space, and let
us examine the circumstances in the classical branching theorems in the
previous section. In the case of branching fr@n= SO(n) to H =
SO(n — 1), the subgrougH is the identity component of the set of fixed
points of the involution ofS given by conjugation by the diagonal matrix
diagl,...,1, —1). Thus this is the situation of a compact symmetric
space. The case with = U(n) andH = U(n — 1) is not that of a
compact symmetric space, nor is it an equal-rank case. Yet this situation
does satisfy the special assumption in the theorem, essentially because
every root forUJ (n) is determined by its restriction td (n — 1).

The case witlG = Sp(n) andH = Sp(n— 1) is more decisive. It does
not satisfy the special assumption, and we are led to look for a remedy.
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If we think of G = Sp(n) as the unitary group over the quaternions, then
the case 060 (n) suggests considering conjugation by dig. ., 1, —1).

The identity component of the set of fixed pointslis= Sp(n—1) x Sp(1),

and thus we have a relevant compact symmetric space. Theorem 9.20 will
be applicable wittH; as subgroup. We can thus handle the branching in
two stages, passing frofa to H; and then fromH; to H.

For uniformity we can use the same technique v@th= U (n), passing
fromGtoH; =U((n -1 x U() and then fromH; to H = U(n — 1).

In this way all of the classical branching reduces to instances of branching
associated with compact symmetric spaces.

What is the scope of compact symmetric spaces?ULbe a compact
semisimple Lie group, leé be an involution olJ, letu, be the Lie algebra
of U, and letd be the corresponding involution of. Let B be the Killing
formforuy; thisis negative definite by Corollary 4.26 and Cartan’s Criterion
for Semisimplicity (Theorem 1.45). K is the identity component of the
fixed set of® and¥, is its Lie algebra, then we can writg = &, ® qo,
whereqq is the —1 eigenspace af. Corollary 4.22 allows us to regard
U as a closed linear group, and then Proposition 7.12 saydJthets a
complexificationJ €. We use the Lie algebra tf® as the complexification
u of up. Putpy = iqo andgy = & & po. From the definition ok, and
qo as eigenspaces far, it follows that [y, €] < &, [fo, Po] S po, and
[po, Po] < &. In particular,g, is a real form ofu and is semisimple. Also
the complex extension @ is negative definite o, and positive definite
onpo. By the definitionin 8V1.2g, = £, @, is a Cartan decomposition of
go. If G is the analytic subgroup &f € with Lie algebrago, G/K is called
thenoncompact Riemannian duabf the compact symmetric spaldg K.

The proof that the special assumption in Theorem 9.20 is satisfied for the
passage fromd to K is easy. Proposition 6.60 shows that the centralizer
of a maximal abelian subspasggof ¢, in g is abelian, equaling the sum of
so and an abelian subspaggof po. Then the centralizer af in uyg is the
sum ofsy andiag and is abelian. Thus the special assumption is satisfied.

G K U/K
U(n, m) U (n) x U(m) U +m)/Un) x Um)
SO(n, m)y | SO(N) x SO(M) | SO(N+ m)/(SO(Nn) x SO(M))
Sp(n,m) | Sp(n) x Sp(m) | Sp(n+ m)/(Sp(n) x Sp(m))

GL(n,R)g SO(n) U (n)/SO(n)
GL(n, H) Sp(n) U (2n)/Sp(n)
SO*(2n) U SO(2n)/U(n)

Sp(n, R) U Sp(n)/U (n)
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In Chapter VI we took advantage of Cartan decompositions to classify
real semisimple Lie algebras. We can refer to that classification now to find,
up to isomorphisms and coverings, all the compact semisimple groups and
involutions. The ones associated to the classical noncomplex Lie groups
are as in the accompanying table, except that special unitary groups have
been replaced by unitary groups throughout.

The first three, witim = 1, are what govern the classical branching the-
orems. Later in this chapter we shall observe some things about branching
in the context of the other compact symmetric spaces.

One more kind of5 of interest along with those in the above table is a
group whose Lie algebrg is complex simple. In this cask,is a compact
form of go. Using Theorem 6.94 to unwind matters, we are led to the
compact symmetric spag&k x K)/diagK. The involution in question
interchanges the two coordinates.

We can easily make sense of branching frimx K to diagK. If 7;
andr, are irreducible representationskf then theouter tensor product
1.Q1T, given by(ky, ko) — 11(k)) ®12(ko) is anirreducible representation of
K x K. Application of Corollary 4.21 shows that all irreducible representa-
tions ofK x K are of this form. Restricting such a representation to #iag
yields the representatida— 1,(k) ® 12(k), which is the ordinary tensor
productr; ® 1, for K. In other words, branching fromd x K to diagK is
understood as soon as one understands how to decompose representations
of K under tensor product.

In practice the list of branching theorems produced from an understand-
ing of branching for compact symmetric spaces is much longer than the
above table might suggest. The reason is that many (@aijrkl ) arising in
practice can be analyzed as a succession of compact symmetric spaces. We
give just one example, together with an indication how it can be generalized.
The groupSp(n, 1) has real rank one, and it is of interest to know what
irreducible representations occurlid(K /M), M having been defined in
8VI.5. For this exampleK = Sp(n) x Sp(1), andM is isomorphic to
Sp(n — 1) x Sp(1). However, the embedding &l in K is subtle. Let
Ki: = (Sp(n — 1) x Sp(1)) x Sp(l) be embedded ik in the expected
way. If we regroupK; asSp(n — 1) x (Sp(1) x Sp(1)), thenM embeds
in K; asSp(n — 1) x diagSp(1). ThusK /M is built from two compact
symmetric spaces, one that amountsSpgn)/(Sp(n — 1) x Sp(1)) and
another that amounts (&p(1) x Sp(1))/diagSp(1).

What is happening in this example is a fairly general phenomenon. Let
the restricted-root space decomposition of the Lie algebra be written

0=02Dg . DadmD g, D gou,
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with a & m forming the O restricted-root space. The linear transformation
¢ from g© to itself given as the scaléf on g, is an automorphism gf° of
order 4. SinceSp(n, 1)C is simply connectedy lifts to an automorphism

® of Sp(n, 1)© with ®* = 1. Sinceg? has real eigenvalues;? carries

G to itself. Alsog? commutes with the Cartan involution, and th@$
carriesK toitself. The mapb? is an involution ofK , andK is the identity
component of the fixed group und@?. In turn, ® is an involution ofK,
andM is the identity component of the fixed group under

5. Proofs of Classical Branching Theorems

In this section we prove Theorems 9.14, 9.16, and 9.18 using Kostant’s
Branching Theorem (Theorem 9.20). The different cases have a certain
similarity to them. Consequently we shall give the proof in full tb¢n),
but we shall omit parts of the later proofs that consist of easy calculations
or repetitive arguments.

1) Branching from U (n) to U (n — 1). We use (9.13) witlc = U (n),
Hi=Umnh-1) x U(),andH = U(n — 1). The given highest weights
arer =Y agwitha, > - >a,andpu = Y| g withc, > -+ >
Cch—1. The only termsyr; that can make a contribution to (9.13) are those
with highest weight of the fornu, = Z?:l c;g for somec,. However,r
is scalar on scalar matrices, and it follows for every weiglf r that
andv have the same inner product wef+- - - - +e,. Sincev = Z?zl cig
is such a weight, we must haje] ;& = >, ¢;. In other wordsg, is
completely determined.

We may as well therefore assume from the outset that the branching is
fromU (n)toU (n—1) xU (1) and thajx = Zj”:l cig withc, > --- > 1.

For the passage frotd (n) to U(n — 1) x U(1), we use Theorem 9.20.
The multiplicity being computed is

(9.26) M (1) = Y e)yPw( +8) — (1 +8)).
weWg

HereW is the symmetric group ofi, . . ., n}, the roots inz are thes —e,
with 1 <i < n -1, andP and$ are given by

1 if (v,g)>0forallj <nand(v,e;+---+¢€)=0

P =
®) {0 otherwise

s=in—-De+in-3)e+ - —in-1De,.
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We are to prove than, (1) is 1 if (9.15) holds and is 0 otherwise.

We begin with two lemmas. The first one gives a necessary condition
for m, () to be nonzero, and the second one concentrates on the value of
the w' term of (9.26). After the two lemmas, we prove two propositions
that together prove Theorem 9.14.

Lemma 9.27.Every term of (9.26) is O unless,|_,; & = ), ¢.

ProOF. The formula forP shows that thev'" term of (9.26) is O unless
O=(wA+38) —(u+d),e1+ - +&)

=(A+8wie+--+e)—(u+d e+ - +6)
= (h—p et e

n n
= Za,- — ch'
=1 =1

Lemma 9.28. Fix i withi < n, and suppose that > a,,, for j <i.
ThenP(w(A +8) — (n + 8)) = O unlesswe; = g for j <i.

ProoF. Fix| with| <i. Choosea =r(l) with we = ¢g. Then
(WA +8) —(u+9),8)=(r+d,&)—(n+d,8) =@ —0)—-1).

For thew™ term to be nonzero, this has to be0, and thus we must have
& >q+ @ —1)>a4+ @ —1). The casé =1 hasa, > a, + (r — 1).

If r > 2,thena, > a, > a, + (r — 1), contradiction. Sé = 1 implies

r = 1, andwe, = e;. Inductively suppose thate, = ¢ for j <. We
havewe (, = . From above,

&y > &+ rd)—1).
We know that (1) > |. If r(I) > |, then
am=an =anat+ 00— >a.,
contradiction. Thus(l) = I, and the induction is complete.
Proposition 9.29.1f ¢, > a5, ¢, > a3, ..., Ci_1 > &, hold, then

1 ifa>cforl<i<n—1lande,=Y",a-Y,¢

m =
() {O otherwise
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PrROOF. Lemma 9.28 shows that the!" term can contribute tan, (1)
only if we, = g for j < n — 1. Thus we need consider only = 1. We
have

PAML+8) — (u+8)) = PO — ) = P(3[_,(a — ©)).
The formula forP shows thaP is 1 if
a—¢=0forj<n and a-C=-) (&—0).
i<n
and it is 0 otherwise. The proposition follows.
Proposition 9.30. If one or more of the inequalitiey > a,, ¢, > ag,
..., Cy1 > a, fails, thenm, (1) = 0.

PROOF. Inview of Lemma 9.27, we may assumethat ;¢ = >, a.
Choose as smallas possible sotlat< a;,;. Herel<i < n—1. Lemma
9.28 shows that the'™" term of (9.26) gives O unlesse; = ¢ for j <i. So
we may limit consideration to terms in whiehhas this property. We shall
show that thev term cancels with thep term, wherep is the reflection in
the roote — g ,,. Definek andl by we = g andwe ;; = . Herek > i
andl > i sincewe, =g for ] <i. We have

wpA+8) —(u+38) =wr +68) —(u+98) — (& —a+Dw(e — &),

and the arguments @t for w andwp have the samg" component except
possibly forj = k andj = |. For thek" component,

(Wp(A +8) — (u +9), &) = (wp(A + 3), we) — (u + 3, &)
(9.31) =(A+45,641) —(n+4, &)
=@n1—C)+k-i-1

and

(WA +98) —(u+d).&)=((RA+6.6)—(u+d &)

(9.32) = (@ —c)+ (k—i).

Assumek < n for the moment. We have

G—K=<G—i<agu—i
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and hence
G—k=<au—(>0+1D.

S0 (9.31) is> 0. Since (9.31) is< (9.32), we see that (9.32) is 0.
Similarly for thel™ component,

(wp(A +6) — (u+d),8)=(r+6,8)—(nu+d 8)

(9:33) =@—-co)+d-0
and
(9.34) (WA +8) —(u+d),8)=Gm—c¢)+1—-i-1.

Under the assumptidn< n, (9.34) is> 0 and (9.33) is> O.

Now we want to see tha® has the same value an(A + §) — (u + 8)
andwp(x + 8) — (u + 8). Since we are assuming;_, ¢ = >, &, the
formula forP gives

(9.35a)
Pw+8) —(u+68) =1 ifand only if
(WA +8) —(nu+3d),g)>0forl<j<n-1
(9.35b)
Pwpr+8) —(u+6) =1 ifand only if
(wp(A +8) — (n+6),6) >0 forl<j<n-1

First suppose th&t < nandl < n. We have seen that(A+38) — (i +3)
andwp(r + 8) — (u + §) match in all components but thé& andl™ and
that thek™™ andI™ components are 0 for each. Hence (9.35) gives

(9-36) Pw(i +98) — (n+98) = Pwp(h +68) — (1 +6))

whenk < nandl < n.

Next suppose thdt = n. We have seen that(x + §) — (u + 8) and
wp(r + 8) — (u + 8) match in all components but tm& andl™, hence in
all of the firstn — 1 components but thé'. In thel®™™ component, they are
> 0. Hence (9.35) gives (9.36) wh&n= n.

Finally if | = n, then we argue similarly, and (9.35) gives (9.36) when
| =n.
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2a) Branching from SO(2n+1) to SO(2n). The given highest weights
arer = ) &g witha > --- > a, > 0Oandpu = Y|, g with
CL > >Cha> |Gl

The multiplicity being computed is again as in (9.26). The members
of the Weyl group\; are of the formw = sp with s a sign change anda
permutation, the roots i are theg with 1 <i < n, and the expressions
for P ands are

1 if (v,g)>0forallj <n

PW) =
) {O otherwise

§=M+3e+N—3e+ -+ 36

We are to prove thah, (1) is 1 if (9.17a) holds and is O otherwise.
The argument proceeds in the same style as for the unitary groups. There
are two lemmas and two propositions.

Lemma 9.37.Write w = sp with s a sigh change and a permutation.
Then thew'™ term can contribute to (9.26) onlysfequals 1 os equals the
root reflections,, .

ProoOF. Consider the expressiqw (i + §) — (n + 8), ) for j < n.
Since(u + 8, ) > 0, we must havéw(x + §), g) > 0 for thew™ term
of (9.26) to be nonzero. Therefore'e, > 0 for j < n, and hence
p~'s e > 0for j < n. This means that e > 0 for j < n, and hence
s=lors=s,.

Lemma 9.38. Fix i withi < n, and suppose that > &, for j <i.
ThenP(w(x +6) — (u +8)) = 0 unlesswe; =g for j <i.

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.37 shows
that we need not considere. = —g sincew e > O for j <n.

Proposition 9.39.1f ¢, > &, ¢, > a3, ..., Ci_1 > &, hold, then

1 fag>c¢forl<i<n-1anda, > |c,

m =
n02) { 0 otherwise

PrROOF. The proof is similar to that for Proposition 9.29. Th& term
can contribute ton, (1) only if we; = ¢ for j < n— 1. Thus the only
possible contributions tm, (1) are fromw = 1 andw = s,,.



582 IX. Induced Representations and Branching Theorems

Proposition 9.40. If one or more of the inequalities > a,, ¢, > as,
..., Ch1 > @, fails, thenm, (u) = 0.

ProOOFE The proof is along the same lines as the one for Proposition
9.30, and we retain that notation. Again the term will cancel with the
w term. This timewe = +e, andwe ; = +6 withk > i andl > i, and
the minus signs must be carried along as possibiliti&s={ n or| = n.
For thek" component, we readily check that

(9.41)  (wp(h+4) — (n+3d),a) and (WA +38) — (u+9), &)

are both> 0 if we = +e. Fork = n, if weg = —e,, then the members
of (9.41) are both< 0. Thus the arguments @t in the wp andw terms
have the same sign in ti& component. For thE" component,

(9.42) (wp(A+8) —(n+6),8) and (wA+368) —(u+3),8)

are both> 0 if we ., = +q. Forl = n, if we_; = —q, then the members
of (9.42) are both< 0. Thus the arguments @ in the wp andw terms
have the same sign in tth& component. The proposition follows.

2b) Branching from SO(2n) to SO(2n—1). The given highestweights
arer =Y ag witha > -+ > a,1 > [a,] andy = Z;‘;llcjej with
Ci>--->Cr1>0.

The multiplicity being computed is

(9.43) M) = Y ew)PwO +8) — 8 — ).

wEWG

where the bar indicates restriction to the finst- 1 components. The
membersw of the Weyl group/s are of the formw = sp with s an even
sign change ang a permutation, andl is given by

§=m-De+N-2)e+- - +e1.

Let us compute the set of weighfs The restrictions of the positive roots
of SO(2n) are theg £ g withi < j < nand thee,,...,e_;. The

e £ ¢ have multiplicity 1 as weights i6O(2n) and correspond to roots in
SO(2n—1); thusthey do not contribute . The weight®y, ..., e,_; have
multiplicity 2 in SO(2n) from restriction ofe; & e,; one instance of each
corresponds to a root &0 (2n — 1), and the other instance contributes to
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>. ThePfunction is therefore defined relative to the weights . ., e,_1,
each with multiplicity 1. Thus

1 if (v,g)>0forallj <n-1

Pv) =
) {0 otherwise

We are to prove thah, (1) is 1 if (9.17b) holds and is O otherwise.

This time we begin with three lemmas, the second and third of which are
similar to the lemmas for branching fro80(2n + 1) to SO(2n). After
the three lemmas, we prove two propositions that together prove Theorem
9.16b.

Lemma 9.44. It is enough to prove the branching formula under the
assumptiora, > O.

ProOOF. The matrix diagl, ..., 1, —1) normalizesSO(2n), and conju-
gation ofSO(2n) by it leavesSO(2n — 1) fixed, negates the last variable in
the Lie algebra of the maximal torus 80 (2n), and leaves stable the set of
positive roots ofSO(2n). Thus it carries an irreducible representation of
SO(2n) with highest weightye; + - - - +a,_16,_1 + a,&, to an irreducible
representation with highest weighie; + - - - + a,_1€,_1 — a,&,. Therefore
the restrictions t&8O(2n — 1) of these two irreducible representations of
SO(2n) are equivalent.

In both cases restriction t80(2n — 1) is asserted to yield all irre-
ducible representations with highest weighs + - - - +¢,_16,_; such that
a>C>a>C > -->a,_1 > C1 > |a,|, and the lemma follows.

From now on, we accordingly assume that- 0.

Lemma 9.45. For w in Wg, thew™ term can contribute ton, (1) only
if w is a permutation.

ProoF. Conside{w(A+38)—(n+36), g)for j < n. Since(u+34, g) >
0, we must havéw(1+36), ) > 0 for thew™ term ofm; (1) to be nonzero.
Therefore( + 8, w™g)) > 0for j < n. Since(» +6,¢/) > 0if |’ <n,
the only two situations in which we can have'e, = —e; arej = nand
j’ = n. The number of signs changed by* has to be even, and hence
this number must be 0 or 2. Ifitis O, themis a permutation. If it is 2,
thenj andj’ cannot both ba. So there is somg < nwith w'e = —e,,
and we find thati + 8, —e,) > 0. The left side of this inequality isa,,
and we obtain a contradiction since Lemma 9.44 has allowed us to assume
thata, > 0.
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Lemma 9.46. Fix i withi < n, and suppose that > a,,, for j <i.
ThenP(w(x +8) — (u +8)) =0 unlesswe; =g for j <i.

PROOF. The proof is the same as for Lemma 9.28. Lemma 9.45 shows
thatw may be assumed to be a permutation.

Proposition 9.47.1f ¢, > a5, ¢, > a3, ..., Ci_1 > &, hold, then
1 ifa>c¢forl<i<n-1
m; (n) = .
0 otherwise

PROOF. The proof is similar to that for Proposition 9.29. Tié term
can contribute tam, () only if w is a permutation andve; = ¢ for
j <n—1. Thus the only possible contributiontg (1) is fromw = 1.

Proposition 9.48. If one or more of the inequalitiey > a,, ¢, > ag,
..., Cy1 > a, fails, thenm, (1) = 0.

PROOF. The proof proceeds along the same lines as the ones for Propo-
sitions 9.30 and 9.40, and we retain that earlier notation. Agaimihe
term will cancel with thaw term. This timewe = ¢ andwe ., = g, and
minus signs do not enter. We readily find that

(Wp(A +8) — (n+98),&) and (wA +36) — (u+93), &)
are both> 0 and that
(wp(A +68) — (u+6),8) and (w(A+3) — (u+9), @)

are both> 0. Thus the arguments @ in the wp andw terms have the
same sign in th&™ component and the same sign in tflecomponent.
The proposition follows.

3) Branching from Sp(n) to Sp(n — 1). This case is considerably
more complicated than the previous ones and is an indicator of the depth of
branching theorems with multiplicities 1. We use restriction in stages.

In (9.13) we takeG = Sp(n), H; = Sp(nh — 1) x Sp(l), andH =
Sp(n — 1). The given highest weights fas andH arex = Z].”:l €
witha, > -+~ > a, > Oandp = Y/ ;g with ¢ > -+ > ¢,y > 0.
Any irreducible representation dfl; is the outer tensor product of an
irreducible representation &p(n — 1) and an irreducible representation
of Sp(1) = SU (2). The only termsr; for H; that can make a contribution
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to (9.13) are those for which the representation onSpé — 1) factor
matches the given. Initially we take the representation on tisp(1)
factor to be arbitrary, say with highest weighg, for an integerc, > 0.
Since restriction fronSp(1) to {1} yields the trivial representation with
multiplicity equal to the dimension, we see that

(949 mi (X lce) =) (Go+Dm* (X Ice + ).
Cco=0

wherem!' andm" are the multiplicities of the respective representations
of Sp(n — 1) andSp(n — 1) x Sp(1) in the given representation &(n).
Thus in principle Theorem 9.18 will follow from an explicit branching
theorem for passing fronsp(n) to Sp(n — 1) x Sp(1). We shall state
such an explicit branching theorem and sketch its proof, leaving for the
Historical Notes a derivation of Theorem 9.18 from it.

Theorem 9.50(Lepowsky). ForSp(n), the irreducible representation
with highest weight. = a;e; + - - - + a,&, decomposes under the subgroup
Sp(n — 1) x Sp(1) into the sum of representations with highest weights
U= C1€& + - -+ Ch_1€1_1 + Co&, and multiplicitiesm;, (1) as follows. The
multiplicity is O unless the integers

A; = a; — max@y, C1)
A, = min(ay, ¢;) — maxag, Cy)

An_1 = min(an_1, Ch_2) — Max@,, Ch_1)
An = min(ay, Cy_1)

are all> 0 and alsac, has the same parity 367 ;& — >/~ ¢;. In this
case the multiplicity is

m,(u) = P(Aer+- - -+ Ane — Coen) — P(Are1+- - -+ Aner + (Cot+2)&n),
whereP is the Kostant partition function defined relative to the Bet
lete|l<i<n-1}.

REMARK. The conditionA; > 0 fori < n is equivalent with the
existence of integers as in (9.19) and is equivalent also with the 2 3
inequalitiesay > ¢ fori <n—1andg > g, fori <n-—2.



586 IX. Induced Representations and Branching Theorems

The multiplicity being computed is again as in (9.26). The members
of the Weyl group\\s are of the formw = sp with s a sign change and
a permutation, the roots IB are theg £ e, withl <i <n-1,ands is
ne, + (n — e + - -- + 1e,. The partition functiorP satisfies

(v, +---+€,) isevenand
(v,eg)>0forl<i<n-1
because every member Bfsatisfies these properties.

The argument proceeds in the same style as for the unitary and rotation
groups except that there are more steps, specifically three lemmas and three
propositions. After the first proposition we pause to develop some needed
properties of general partition functions. The three propositions, together
with the first lemma below, prove Theorem 9.50.

(9.51) P(v) =0 unless {

Lemma 9.52.Every term of (9.26) is 0 unless has the same parity as
-1
Z?:laj - Z?:l G-
PROOF. For anyw € Wg, we have the following congruence modulo 2:
(WA+S) — (u+d), €1+ -+ &) =((A+5) — (utd), e+ -+ &)

-1
= Z?:l a — Z?:l ¢ — Co.
According to the first condition in (9.51), the left side must be everi¥or
to be nonzero, and hence the right side must be even.

Lemma 9.53.Write w = sp with s a signh change and a permutation.
Then thew'™ term can contribute to (9.26) onlysfequals 1 os equals the
root reflections,, .

PROOF. The proof is the same as for Lemma 9.37.

Lemma 9.53 divides the relevant elements of the Weyl group into two
kinds, p ands,, p for permutationg. SinceP(s,, v) = P(v), we have

P(S2e, P +8) — (1 +8)) = P(P(A + 8) — Spe, (0 + 9))
=P(Pp(A+8) — (u+3) + (2c + 2ey).

In other words the term fos,, p behaves like the term fop except that

Co gets replaced by-(¢, + 2). This observation enables us to treat the
two kinds of elements separately. In fact, even in the final answer for the
multiplicity, the contributions from the two kinds of Weyl groups elements
remain separate: the permutatignsontributeP(Ase;+- - -+ An€n—Co&n),

and the elements,, p contributeP(Ae; + - - - + A&, + (Co + 2)&,) with

a minus sign. Thus from now on, we work only with elememntsf Wg

that are permutations.



5. Proofs of Classical Branching Theorems 587

Lemma 9.54.Fix a permutatiorw. If ¢c; > a3, ¢ > a4, ... ,Ch2 > &y
hold, thenP(w(x 4+ 6) — (u + 8)) = 0 unless every equalitye = g
impliesj >i — 1.

PROOF. Suppose thatthe termis not0. Fix, and defing bywe = g,.
We may assume thgt < n andi > 3 since otherwise there is nothing to
prove. We have

(WA +8) —(n+90),)=(r+65,e)—(u+d,g)=@—-c)+(] —1).

By (9.51) the left side is= 0. On the other hand, if < i — 1, then the
inequalitiesa; < ¢;_, and—c; < —C_, imply

@ —-c)+(j—1)<(G2—C_—1<0,
and we have a contradiction.
Proposition 9.55.1f ¢; > a3, ¢, > a;,... ,Ch_2 > &, holdand ifg; < ¢

forsome < n, thenP(w(A +68) — (u+8)) = O for every permutation.

PrROOF. Suppose that the term is nonzero. Defingandk by g = we,
ande, = w'g. Lemma 9.54 gives < j +1andk < i + 1. The claimis
thati < j —1andk < i — 1. For this purpose we may assume that n.
To see that < j — 1, we write

(wh+8) —(u+d,g)=@—-c)+( —1) <@ —¢)+(—1).

By (9.51) the left side is= 0. Ifi > j — 1, then both terms on the right
side are< 0, and we have a contradiction. Similarly to see thati — 1,
we write

(WA +8) —(n+3d),8)=@—-Cc)+ -k <@—a)+{-k.

If kK > i — 1, then both terms on the right side ae0, and we have a
contradiction to the fact that the left sidexs0.
Therefore we havevg = ¢ andwe, = 6 with k < i < j. Since

j > i, w{e,...,e} does not contairg, and thusw{e,..., e}
meets{e;,...,g}. Sincek < i, g is not inw{g,,...,€}. Hence
wi{€1,..., 6} Meets{e, ..., e_1}. Consequently there exist indices

andswith we, =e,s>i+1,andr <i — 1. Butthenr < s—1,in
contradiction to Lemma 9.54. This completes the proof.
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For the proofs of the last two propositions, we shall need three identities
concerning partition functions. It will be helpful to derive these in some
generality. Let2 be a finite set lying in an open half space of a Euclidean
space. For our purposes each membeRafill have multiplicity 1, but
higher multiplicity can be handled by giving different names to the different
versions of the same element. We wrg€ for the associated partition
function: P%(v) is the number of nonnegative-integer tuples | » € Q}
suchthat = 3" o n.o. Ifas, ..., ¢ are members a2, we writeP?
for P% when$' is the sef2 with oy, . . ., a, removed.

Let us derive the identities. #f is in 2, then

PLW) = P2 — a) + PE(v)

forallv. Infact, the left side counts the number of expansionsiofterms

of , and the right side breaks this count disjointly into two parts—the first
part for all expansions containiregat least once and the second part for all
expansions not containirg Iterating this identityn > 0 times, we obtain

(9.56) Pw) — P2y — na) = ZPQ(U —jo)

forall v. If « andg are both inQ2 and ify = « — 8, then we can write a
version of (9.56) foB, namely

n-1

P —ny) —Pv—ne) =Y P —ny—jp),

=0

and the result upon subtraction is

|_‘

(9.57)7>Q(v)—799(u—ny)= [Pe(v—ja) =P —ny —jB)].

j

I
o

Now suppose thab # 0 is in the Euclidean space and tlats the
only member of® for which (¢, w) # 0. Let us normalizev so that
(¢, w) = 1. Ifan expansion of in terms ofQ2 involvesn¢, then(v, w) = n.
Applying (9.56) forn and them + 1, we obtain

(9.58) PEW) =P — (v, 0)¢) = PF(v — (v, 0)¢)

provided(v, w) is an integer= O.
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Proposition 9.59. If ¢; > a3, ¢, > a4, ..., C_» > @&, hold and if
a > ¢ forall j < n, then the sum of (w)P(w(x +8) — (u+8)) over all
permutationsv is P(Ae; + - - - + An€, — Co&n).

REMARK. By the same proof, an analogous summation formula ap-
plies for the elements,, p of the Weyl group and yields the other term
—P(AeL + - - -+ Are, + (Co + 2)&,) for the multiplicity in Theorem 9.50.

PrOOE The idea is to reduce matters to the case that
(9.60) Ci1>a, C;>4as,..., C_1 > a.

If these inequalities are satisfied, then the proof of Lemma 9.28 shows that
Pw(r+38)—(u+68)) = 0exceptforw = 1. Forw = 1, these inequalities
makeA; = a — ¢ for j < n, and consequentlys + §) — (u + 8) =
Aer + --- + Ase, — e, Thus the proposition is immediate under the
assumption that (9.60) holds.

In the general case suppose that Y| a/g andu’' = Y/ cle +
Co&, are given withc; > aj, ¢, > ay, ..., c,_, > a,, with aj’ > ch for
all j < n, and with¢' < &/, for somei < n. We may assume that
is as small as possible with this property. Defte= &/, a1 = ¢,
¢ =cforj#i,andg = a for j #i+ 1. Thenleth = Z;’zlaje,
andp = Z;‘;ll Ci§ + Co&y. A quick check shows that andu satisfy the
hypotheses of the proposition, that tAg's are unchanged, and that the
firstindex j, if any, with¢; < a4, hasj > i. Writing (i i+1) for the
transposition of andi + 1, we shall show that

(9.61) P(w(r +38) — (u+8) — Pw(i i+1)(h+38)— (u+39))
Z P +8) — (' +8) — Pw(i i+1)( +38) — (' +98))

for all permutationsw. When this identity is multiplied by (w) and
summed onw, it shows that twice the sum efw)P(w (A +8) — (u + §))
equals twice the sum af(w)P(w(A’ + 8) — (1’ + 8)). Consequently an
induction on the index reduces the proposition to the case where (9.60)
holds, and we have seen that it holds there.

Thus the proposition will follow once (9.61) is proved. Possibly replac-
ingw by w( i+1) in this identity, we may assume thate — e ) > O.
Definer andsbye = we ande; = we 1. Our normalization ofv makes
r < s. The argument of Lemma 9.28, applied with- 1 in place ofi,
shows that all four terms in (9.61) are O unlesg = ¢ for j <i — 1.
Thus we may assume that> i. Let us prove that we may take=i.
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If r > i, then thej with we, = & cannot be ori + 1 and thus has to
satisfyj > i + 2. Consequently Lemma 9.54 shows that the first term on
each side of (9.61) is 0. Similarly thé with w(i i4+1)g, = & cannot be
i ori 4+ 1 and thus has to satisfy > i + 2. Hence Lemma 9.54 shows
that the second term on each side of (9.61) is 0. Therefore we may assume
thatr =i.

We now compute the respective sides of (9.61) using (9.56), (9.57),
and (9.58). There will be two cases< n ands = n. The first case will
be the harder, and we handle that first. Atthe end we indicate what happens
whens = n. To simplify some of the notation, we abbrevige— e, as
€ab-

We begin with the left side of (9.61). The difference of the arguments
of P in the two terms on the left side {& + §, € ;,1)&s. We are going to
apply (9.57) withy = e.. Herey = o — g witho = g, andg = e,.
Application of (9.57) shows that the left side of (9.61) is

Qi —ajy1

(9.62) = Y [Pa,(wrA+8)— (u+8)— j&n)

j=0

— Pey W +8) = (L +8) — (A + 8, 614108 — j&)].

In the first term of (9.62), the" component of the argument &fis

(WA +8) —(n+9) — jen, &) =a —C — |.
Forj > a — ¢, the term drops out by (9.51). Thus we need not sum the
first term beyond = a — ¢. Since we have arranged that> a1, we
can change the upper limit of the sum for the first term fym- a,,; to
a — G . Inthe second term of (9.62), th component of the argument of
Pisa,; — ¢ — 1, and this is< 0 for everyj. Thus every member of the
second sumin (9.62) is 0.

We apply (9.58) to the first term of (9.62), takisy= X —{e,}, ¢ =
e + &, andw = g. Inthe second term of (9.62), we subtract from the
argument a multiple oé + e, to make thes™ component 0; this does
not affect anything since every member of the sum remains equal to O.
After these steps we interchange fffeands™" arguments in the second
term, taking advantage of symmetry. The resulting expression for (9.62)
simplifies to
9 —G

> [P +8) — (u+8) + (@ —a)e + (@ —a +2j)e)
P +8) — (u+8) + (G —a)e — (G —C) + (s—)e
+((cs—a)+( —9) +2j)ey].
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The difference in the arguments of the two terms works out to be
(6 —¢Cs) + (s—1i))(e + &,). Thus (9.56) withae = e + €, shows
that the above expression is

af (G —Cs)+(s—i-1)
j=0 k=0

Pore,(WA+8) — (u+8) + (G —a)e + (¢ —a+2j)e, — k(es+ey)).

The coefficient ok in the argument is

(A+d,84)—(n+d,6)—k=@u1—0C)+(s—i—-1—Kk,
and so the term drops outkf> (a1 — Cs) + (s—i — 1). Sincec, > a4,
we can replace the upper limit in the sumday,, — ¢;) + (s —i — 1). For

the terms that have not dropped out, we apply (9.58) with ey, and the
result is that the left side of (9.61) is

g—C (ai+1—Co)+(s—i—1)

(9.63) =)

j=0 k=0
Pw® +8) = (1 +8) = (@1 — &) + (s —i = D)e&
+@ -8+ @n—a+6 -G+ (s—i-1+2)—2ke).

Now we compute the right side of (9.61). The formulas that relate
Aandu’ tou are

(9.64) AMN=r+(@G-ae1 and u' =p— (G —a11)6.

The difference of the arguments Bfin the two terms on the right side of
(9.61) is(a, — ¢ + 1)es. Thus (9.57) shows that the right side of (9.61) is

a—Ci
(9.65) =) [Pe,(w +8) — (' +8) — j&n)

i=0

— Py, (w' +8) — (' +8) — (M +6,€,41)8s — j&n)].

In the first term of (9.65), the™ component of the argument @ is
& —a,1—] > G —a, > 0. Inthe second term th&" component
of the argumentiga, —¢c) + (s—i)—j > (G —C) + (s—i) > 0. We
apply (9.58) to both terms, using= & + &, in the firstand; = e; + &,
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in the second, and then we interchangeith@ands™ components in the
second term. The result is that (9.65) simplifies to

a—GCi

kel

[Pw®' +68) — (W' +8) — (& — a6 — (& — a1 — 2))€)
—Pw}' +8) — (W +8) — (& —a41)8 — (@41 — C+S— )&
— (@& —CG+s—i—2je)].

J

I
(=}

The difference in the arguments for the two terms is now equal to
(81— Cs+Ss—i)(es+e,). Thus (9.56) withw = e+ €, shows that (9.65)
simplifies further to

af (8j41—Cs)+(s—i—1)
a j=0 k=0
Pete, (WA +8) — (W' +8) + (&1—a)e — ke + (@ 1—a+2) — K)ey).

The coefficient ok in the argument is
(A‘/ + 89 a-‘rl) - <M/ + 89 eS) - k’

andthe smallestthatthisgetstobgisa;,; > 0. Thuswe canapply (9.58)
with ¢ = ey, and we find that (9.65) simplifies finally to (9.63). Thus the
left side in (9.61) agrees with the right side, and (9.61) is proved in the case
thats < n.

Whens = n, we proceed similarly with each side of (9.61), but the
simpler formula (9.56) may be used in place of (9.57). Once (9.58) has
been used once with each side, no further steps are necessary, and we find
that the left and right sides of (9.61) have been simplified to the same
expression.

Proposition 9.66. If one or more of the inequalitiey > as, ¢, > ay,
..., Ch_o > a, fails, thenm, (1) = 0.

PrROOF. Fix ani < n—2with¢ < a.,. The idea is to show that the
sum ofe (w)P(w(r + 8) — (u + 8)) over all permutations) cancels in sets
of six. To describe the sets of six, we need some facts about the symmetric
groupS,,, on the integergu, u + 1, ..., v}. Let us writec, for the cyclic
permutation withk < | that sendk intok + 1,k + 1 intok + 2, ...,
| —1lintol, andl into k. If k # k' are integers> u, thenc;vlckfu cannot
be inS, -1, and it follows thatS, , = ,_, CkvSu.,—1. Similarly we have
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Suv = Surro Ui, Cu. Iterating the first kind of decomposition and then
the second, we find that each membasf S; , has a unique decomposition
asw = pzq with

P = CnCiy 1n-1- - Ci,sita aNd g =GC_1) ,C_2) , - Cuy,

and with allk; > i, alll; < n, andz € §;;;,. A set of six consists of all
w with a commonp and a commoig. The properties op andq that we
need are

I <p@i)<pi+1<pd+2),

(9.67) gli)<q i+ <qgti+2<i+2

Definei’ =i + 1 andi” =i + 2, and abbreviate, — &, ase,, during
the remainder of the proof. Figp andqg as above, and defime= p(i),
s = p(i’), andt = p(i”), sothati <r < s < t by (9.67). The proof
divides into two cases$,< nandt = n. The case thdt= nis the simpler,
and its proof can be obtained from the proof when n by replacing by
n and by dropping some of the terms. Thus we shall assume than
from now on.

For z equal to 1 org;, or ¢;», an application of (9.57) witlx = e,
B = en, andy = ey gives

P(PZA(A +8) — (1 + 8)) — P(PGi»Zd(A +8) — (1 +8))
(8,07 2 te) -1
= D [Pa (PG48 — (1 +9) — j&n)
j=0

— Pa, (PZ(A+38) — (u+8) — (A+8,q7'Z 'gir)ey — jen)].

We multiply this equation by (z) and add for the three values af On

the left side we have our desired sum of six terms of (9.26), apart from a
factor of ¢(pq), and on the right side we have six sums, three involving
Pe,, and three involvingP,,,. The limits of summation for the two sets of
three sums are the same; with their coefficient signs in place, they are

(A+8.91g/n) -1 (A+8.97'ein) -1 (A+8.97'ei)-1
N S N
i=0 i=0 j=0

The middle one we break into two parts as
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(A+8,97ein)—1 (A+8.97'ein)—1  (A+8.971gi)—1
(9.69) -y =y - ¥
j=0 j=( 48,97 e) j=0

With the first sum on the right side of (9.69), we change variables using
i’=1j—(x+6,qte;), and then we changg back toj. The new limits

of summation are from 0 tG. + 8, q~*e,,) — 1. This adjusted sum gets
lumped with the first sum in (9.68), and the second sum on the right side
of (9.69) gets lumped with the third sum in (9.68). The expression we get
is

(A+8,9 eyin)—1

= Y [P (PAGH8) — () — jew)

j=0

— Pe, (PG +8) — (1 +8) — (j + (A + 8,9 '&))en)]
(A+8,9 "grn)—1

=2 [PaPaG 8 — (48 = (48 a7 e en — jen)

j=0
— Pa, (PCi (A +8) — (u+8) — (A + 8,9 &) ey
—(j+(+48,q'ei)en]

(A+8,97'gi) -1
— ) [Pen(PCiQG +8) — (1 + 8) — k)
k=0
— Pe, (PCirA(A + 8) — (1t + 8) — kes) ]
(46,9 tei) -1
+ ) [Pan(PGiQG A+ 8) — (u+8) — (A +8,9 '6) ey — kern)

k=0

— Pa, (PGir QA 4 8) — (1 +8) — (A + 8,97 & )ey — ke .

In this expression we have four sums of differences, and we find that the
respective differences of the argument$adre

(A+3.97'er)en, (A+35.97'ai)en,
(A+8,97'gie, and (A +6,97'e)&s.
To handle the first and second sums of differences, we use (9.56) with

a = &,. For the third sum of differences, we use (9.57) witk- &, and
B = e,. For the fourth sum of differences, we use (9.57) with- e, and
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B = esn. The expression is then

(A+8.97'en)—1 (A+8.97'e;)—1

= 2

j=0 k=0

[Peven (PAGL +8) — (1 + ) — j&sn — kern)

— Panen(PA +8) — (0 +8) — (A + 8,97 '8 )€ — j&n — k&n)

— Peern (PG QA +8) — (1 + 8) — K€y — j€rn)

+ Peyan (PG +8) — (1 +8) — Keyy — jan — (A + 68,97 e e)

+ Pap.an(PGIAL +8) — (4 8) — (A + 8,9 'gir)es — ke — jern)

— Papen(PGIA(L +8) — (u+8) — (A + 8,9 ' )ex — ke, — jen
— (A +68.97'ei)es)].

Let us call the terms within bracke®s, B, C, D, E, F. The proof is
completed by showing for eaghandk that A cancels withC, B cancels
with E, andD cancels withH-. We compute the differences of the arguments
of P for the three pairs, seeing that they &fe+ 8, q~'e;) —k+ j) times
&s, &1, andey in the three cases. The proofs of cancellation are similar in
the three cases, and we give only the one for canceliagdC.

Theideaisto apply (9.58) twice to each®&ndC, once with; = e +e,
and once witlt = e+ e,. The arguments of andC differ only in ther ™
ands™ components, and the inner products of the argumentseyithe,
are equal. Hence simplification éfandC by means of (9.58) will make
the arguments equal, and the terms will cancel.

To be able to apply (9.58) in this way, we have to know thatrthe
ands™ components of the arguments AfandC are> 0 for everyj and
k. This verification will be the only place where we use the hypothesis
C < a,. To begin with, we know thak < (A + §,qe;), and thus
(A +68,97te;) —k+ j)is> 0. Then for eaclij, k), we have

(argumentA), &) — (argumentC), &) = ((= 0)&, &) = 0,

from which it follows that both arguments havé component> 0 if C
does. Similarly both arguments has® component> 0 if A does. We
have

(argumentC), &) = (pGiq(A +6). &) — (u+ 5. &) — j
=(A+8,q'e)—(u+de)—]j
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(A+8,97'e) —(u+6.e)+1
(A+d,e)—(n+d,8)+1
=g —G+({,e —6)+1
=a.2—G -1

> 0.

=
=

The three inequalities above respectively use the upper bourjd e
inequalities (9.67), and the hypothesis< g, ,,. Also

(argumentA), &) = (pa(r + 9), &) — (u + 8, &) — |
=(A+68.07'e)—(n+d &) —]

> (A+8,9'e)—(u+8,8)—| sincer <s

> 0,

the last step following from the preceding computation. This completes

the proof.

6. Tensor Products and Littlewood—Richardson Coefficients

Let us return to the framework of 84 of finding the multiplicities of the
irreducible representations@fin L2(G/H)whenG/H can be constructed
from a succession of compact symmetric spaces. The starting point is
branching theorems in the context of compact symmetric spdgés.

In this section we begin a discussion of some further results of this kind
beyond those proved in 85. Some of them have the property of handling
only some representations 0f or K, but they are still applicable to the
problem of analyzind_2(G/H).

The first such result, given below as Theorem 9.70, handles the trivial
representation oK. WhenU is semisimple, Theorem 9.70 is a direct
translation, via Riemannian duality, of part of Helgason’s Theorem (The-
orem 8.49) because Lemma 8.48 shows tafixes a nonzero highest
weight vector if and only ifM acts by the trivial representation in the
highest restricted-weight space. For genéialTheorem 9.70 follows
from the result in the semisimple case because Theorem 4.29 shows that
the semisimple part df is closed and because the additional contribution
to M comes from the identity component of the subgroup of the center
fixed by ®.
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Theorem 9.70. Let U be a compact connected Lie group with Lie
algebrau, let K be the identity component of the set of fixed elements
under an involution®, let ¢ be the differential ofb, and letu = ¢ ® g
be the eigenspace decompositioniainderp. Choose a maximal abelian
subspace of g, lets be a maximal abelian subspace of the centralizer of
bin ¢, and putt = b @ s. Let M be the centralizer of in K. Impose
an ordering on(it)* that takes b beforeis. Then an irreducible finite-
dimensional representation of U has a nonzerd fixed vector if and
only if M fixes a nonzero highest-weight vectormof

A particularly simple yet illuminating example is the case of tensor
products for a compact connected Lie gradp As we saw in 84, this
case arises from the compact symmetric spack withU = G x G and
K = diagG. Let us examine this case in detail.

First let us consider the example directly, writiggfor an irreducible
representation o& with highest weighi and writing ;. for its character.
By (4.13), (4.15), and Corollary 4.16, the multiplicity of in 7;, ® 7, IS
just

(971) [T)Ll ® T)Lz . Tﬂ] = / X)LlX)‘ZX_MdX.
G

If « = 1, then the integral is nonzero if and onlyyxf, = x;,, thus if and
only if 7;, is equivalent withrf . In this case the multiplicity is 1.

Now let us consider this example from the point of view of Theo-
rem 9.70. Ifc is a Cartan subalgebra of the Lie algebra&fthen we
can takeb = {(X,—X)|X € ¢}. We are forced to let = diagc,
and we havet = ¢ ® ¢. A member(ry, Ap) Of (it)* decomposes as
T(A1 — A2, A2 — A1) + 3(A1 + A2, Ay + A2) With the first term carried
onib and the second term carried ofnn Roots are of the fornjwx, 0)
and (0, @) with « € Ag, and their corresponding decompositions are
(o, —a) + 3(a, ) and 3(—a, @) + 3(, @). Sinceib comes befores,
according to the hypotheses of Theorem 9.70, the sigix,d) is deter-
mined by%(a, —a). Thus(a, 0) > 0 implies(0, —«) > 0. Consequently
A{; is determined by a choice df’; and is given by

Ay ={(@.0)|a e AL} U{©, —a) |a € AL}

Dominance for(i4, A,) therefore means that,, o) > 0 and(i,, o) <0
foralla € A§. Thatis,A; and—2, are to be dominant fan . We know
from 84 that every irreducible representation®x G is an outer tensor
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product; suppose that the irreducible representatioty ofiith highest
weight (A, A,) is the outer tensor produa:@r’. Thent is justz,, up

to equivalence, but’ haslowest weighti,. Sot’ is an irreducible repre-
sentation whose contragredient has highest weight In other words,
T =1, andt’ = ¢, , up to equivalence. Thus the irreducible repre-
sentation ofu with highest weight(14, 1,) is equivalent Withnl@rsz.

To understand the content of Theorem 9.70 for this example, we need to
identify M. The groupM is the subgroup of elementg, x) in G x G
with Ad(x, X)(X, —X) = (X, —X) for all X in ¢. By Corollary 4.52 an
elementx of G with Ad(x) X = X for all X in ¢ must itself be in exp, and
henceM = exps. The condition of Theorem 9.70 is th@t;, A,) vanish
ons, hence thak; + A, = 0. Then—Xx, = X, andq@rsz is equivalent
with TM@Tfl-

Theorem 9.70 detects only what tensor products contain the trivial
representation. With any of our tools so far—namely the multiplicity
formula (9.71), Kostant's Branching Theorem (Theorem 9.20), or even
Problem 17 at the end of this chapter—we are left with a great deal of
computation to decompose any particular tensor product. For example,
if N is the order of the Weyl group d&, then the Kostant formula for
checking a multiplicity within a tensor product hbig terms.

For particular group§&, there are better methods for decomposing tensor
products. Of particular interest is the unitary groa@p= U (n). Before
giving results in that case, we need one general fact.

Proposition 9.72. In a compact connected Lie gro@ let A" be any
highest weight int, ® t,/, i.e., the highest weight of some irreducible
constituent. Then” is of the formA” = A + u’ for some weight’ of ..

PROOF. Write aA” highest weight vector in terms of weight vectors of
v, andr, asv =) .. (v, ® v,), allowing more than one term per
choice ofyu, if necessary, and taking thg.’s to be linearly independent.
Chooseu = o as large as possible so that there is a nonzerodg@v,, .
If E, is aroot vector for a positive roat, then

O0=E,v= Z (Eqv, ®vy) + Z (v, ® Equy).
A=A HAp=2"
The only way a vector of weight, +« can occur in the first member of the
tensor products onthe right side is from tef&®,,,®v,, with &' = 1" — .
Since the corresponding vectars are linearly independeng,v,, is O
for eachv,,, that occurs. Therefore any sugcl) is a highest weight vector
for 7,. We conclude thai,, = A and that,” is of the required form.
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Now we examine tensor products wh@ns the unitary groupJ (n). It
is traditional to study representationsldfn) in a normalized form that
can be obtained by multiplying by a suitable power of the 1-dimensional
determinant representation: A representatioof U (n) is apolynomial
representation if all of its matrix coefficientsx — (z(X)y’, ¥) are
polynomial functions of the entrieg;. Equivalently all of the matrix
coefficients of the holomorphic extension ofto GL(n, C) are to be
holomorphic polynomials of the entries of the matrix@i (n, C). This
notion is preserved under passage from a representation to an equivalent
representation and under direct sums, tensor products, and subrepresenta-
tions. Consequently any irreducible constituent of the tensor product of

two polynomial representations is again a polynomial representation.
n

An integral formv = } ", vjg for U (n) is nonnegativeif v; > 0 for
all j. Restricting a polynomial representation to the diagonal matrices,
we see that every weight of a polynomial representation is nonnegative.
Conversely we can see that any irreducible representation whose highest
weight is nonnegative is a polynomial representation. In fact, the standard
representation, with highest weight is a polynomial representation. The
usual representation in alternating tensors of talids in thek-fold tensor
product of the standard representation with itself and is therefore polyno-
mial; its highest weight isZ}‘:l(-},. Finally, if we adopt the convention
thati,.1 = 0, a general highest weight= Zj”:l Aj€ can be rewritten as

the sumi = > (Ak — Akya) Zik:l €. Anirreducible representation with
highest weight. thus lies in a suitable tensor product of alternating-tensor
representations and is polynomial.

The classical representation theory for the unitary group deals with irre-
ducible polynomial representations, which we now know are the irreducible
representations with nonnegative highest weight or, equivalently, with all
weights nonnegative. The restriction that an irreducible representation
have nonnegative highest weight is not a serious one, since any irreducible
7 is of the formz’ ® (detp~N with ¢/ polynomial if the integeN is large
enough.

Let 7, be an irreducible polynomial representation with highest weight
A= Z?:l 1;€. We define thelepth of 7, or A to be the largest > 0 such
that; # 0. If A has deptid, theparts of A are thed positive integers,;.

To 7, or A, we associate diagram, sometimes called a “Ferrers diagram.”
This consists of a collection of left-justified rows of boxes:in the first
row, A, inthe secondrow,. ., A4 inthed row. The integenis suppressed.
For example, the highest weighe4+ 2e;, + e; + €4 is associated to the
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diagram

[ ]

We shall allow ourselves to replace the boxes in a diagram by various
integers, retaining the pattern. Thus if we use 0’s in place of boxes above,
we obtain

0000

00
0
0

as the diagram.

If v is a nonnegative integral form, we wrife|| for (v,e; +--- + &,).
This number is the same for all weights of an irreducible representation.
In the example above of a diagram with boxes, the depth is the number of
rows, namely 4, and the common valug|of is the total number of boxes,
namely 8.

Let us suppose that the tensor product of two irreducible polynomial rep-
resentations, andr, of U (n) decomposes into irreducible representations
as

(9.73) L,®TLE Y C,n.

depth(x)<n

The integerscfw, which are> 0, are calledLittlewood-Richardson
coefficients We shall give without proof a recipe for computing these
coefficients that is rapid and involves no cancellation of terms.

Fix u andv and suppose that actually occurs irr, ® t, in the sense
thatcfw # 0. Thena is nonnegative anfiA|| = ||| + ||v|| because every
weight of the tensor product has these properties. A more subtle property
of A is thata is the sum ofw and a nonnegative integral form (and also
the sum ofv and a nonnegative integral form); this follows immediately
from Proposition 9.72. In terms of diagrams, this relationship means that
the diagram ofu is a subset of the diagram af and we consequently
write u C A for this relationship. To find all possibkes, we may think of
enlarging the diagram qf with ||v|| additional boxes or 0’s and hoping to
determine which enlarged diagrams correspondgdhat actually occur.

Of course, the enlarged diagram needs to correspond to a dominant form,
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and thus the lengths of its rows are decreasing. But that condition is not
enough. The additional data that are needed to describe wiielstually
occur are what we shall call the “symbols” of if v = )" v;e has depth

d, thesymbolsof v arev, occurrences of the integer i, occurrences of
the integer 2, .. , andvy occurrences of the integdr The diagram ofx

is written with Q’s in place, and the enlargement is formed by putting the
symbols ofv into place in such a way that the diagram of a dominant form
results. Forexample, lgt = 4e; + 26, +e3+¢e,andv = 3e;+ 6+ 63+ €.

The symbols ob are{1, 1, 1, 2, 3, 4}. One conceivable enlargement of the
diagram ofu is

011

2

[eNeoNeNe
w oo
PO

In fact, this particular enlargement will not be an allowable one in the
theorem below because it does not satisfy condition (c).

Theorem 9.74(Littlewood—Richardson). Let, andzt, be irreducible
polynomial representations bf(n), and letr, be a polynomial representa-
tion of U (n) with ||A]| = |||l + |lv] andu € 1. Represent by a diagram
of 0's, and consider enlargements of that diagram, using the symbuo|s of
to diagrams oft. Then the numbea:fw of times thatr, occurs int, ® 7,
equals the number of enlarged diagrams such that

(a) the integers along each row of the enlarged diagram are increasing
but not necessarily strictly increasing,

(b) the nonzero integers down each column are strictly increasing, and

(c) the nonzero integers in the enlarged diagram, when read from right
to left and row by row starting from the top row, are such that each
initial segment never has more of an integdran an integej with
1<j<i.

In the enlarged diagram before the statement of the theorem, the se-
guence of integers addressed by (c) is 112143. This does not satisfy (c)
because the initial segment 11214 has more 4's than 3’s.

In the theorem if:fw # 0, thenv C A is forced.

ExampLE. Tensor product, ® 7, in U (3), whereu = v = 2e; + €,.

The diagram fop is [O 0], and the symbols of are{1, 1, 2}. The first

0
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symbol ofv that we encounter in (c) has to be a 1, and then no symbol
2 can be placed in the first row, by (a). An enlarged diagram can have at
most 3 rows, in order to correspond to a highest weightf@). We find

6 enlarged diagrams as follows:

0011 0011 001
02 0 012
2
001 001 00
02 01 01
1 2 12

The highest weights of the corresponding irreducible constituents of the
tensor product are the dominant forms corresponding to the above 6 dia-
grams: 4, + 2e, 46, + €, + €3, 36, + 3&,, 36, + 26, + €3, 361 + 26, + €3,

and 2, + 2e, + 2e;. The respective multiplicities equal the number of
times that the forms appear in this list. Thus the constituent with highest
weight 3; + 2e, + e; appears with multiplicity 2, and the four others
appear with multiplicity 1. It would be easy to err by omitting one of
the diagrams in the above computation, but a check of dimensions will
detect an error of this kind if there are no other errors. The giyemas
dimension 8, and thus the tensor product has dimension 64. The dimension
of each constituent is 27, 10, 10, and 1 in the case of the representations of
multiplicity 1, and 8 in the case of the representation of multiplicity 2. We
have 27+ 10+ 10+ 1 + 2(8) = 64, and thus the dimensions check. One
final remark is in order. Our computation retained enlarged diagrams only
when they had at most 3 rows. Rdi(n) with n > 4, we would encounter

two additional diagrams, namely

00 001
01 and 0
1 1
2 2

These correspond te2+ 26, + s + e, and &, + & + €; + €.

7. Littlewood's Theorems and an Application

We continue our discussion of branching theorems in the context of
compact symmetric spactly/K. The first two theorems are due to D. E.
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Littlewood and handle branching for the compact symmetric spaces
U (n)/SO(n) andU (2n)/Sp(n), but only under a hypothesis limiting the
depth of the given representation of the unitary group. We state these
theorems without proof, giving examples for each.

The statements of the theorems involve the Littlewood—Richardson coef-
ficientsc),, defined in (9.73). In computing these coefficients, we are given
A, 1, and several possibilities far, we seek the’s and the coefficients.
These may be computed by changing the emphasis in the method of the
previous section. Here is an example: ket 3e;+ 3, andu = 2e,+e,.

The formula foru tells us the diagram of O’s in the earlier method of
computation, and the formula fartells us the total shape of the diagram.
Let us insert the symbol x for the unknown values in the diagrarh. of

Then we are to start from
00 x

0 x x
Each possibility fon gives us a set of symbols. For exampler 2e; + e
gives us the sdtl, 1, 2}, and we can complete the diagram in just one way
that is allowed by Theorem 9.74, namely to

001
012

Thusc;,, = 1 for thisv.
The hypothesis on the depth can be dropped at the expense of introducing
something called “Newell’s Modification Rules,” but we shall not pursue

this topic.

Theorem 9.75(Littlewood). Letrt, be an irreducible polynomial rep-
resentation ofJ (n) with highest weight., and suppose that has depth
< [n/2]. Leto, be an irreducible representation 80 (n) with highest
weightv.

(@) If nis odd,

~ A
(28 | som — Z Z CvOv-

o nonnegative v nonnegative
nCh, vCA,
w has even parts [|[[+[[vI=[IA]l

(b) If nis even and denotes the Weyl-group element that changes the
last sign, then

T)‘{SO(n) = Z < Z C;)J_UO_V + Z C;}:u(O_v + Usv))-

4 nonnegative v nonnegative v nonnegative
nCA, Sv=v Sv#£v
1 has even parts VEL, VCA,
Ll i=lAl (MEEE]
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EXAMPLES.

1) Withn = 4, letx = 5e; + 2e,. We seek the restriction af, from
U (4) to SO(4). We form a list of the nonnegatiyeg's with even parts such
thatu C A, namely

Oa 2e15 4819 2e]_ + 2e27 481 + 2e2'

Each of these tells us a value fpr|, and we list thev’s that must be
examined for each:

u =0, vl =7, v =5e + 2e

w = 2ey, vl =5, v=>56e or 4e, +& or 3 + 2
w = 4dey, vl =3, v=3e Or 26, + &

nw=2e + 2e, vl =3, v=23e Or 26, +6&

uw = 4e, + 2e,, vl =1, V=e.

Then we do the computation with the 0’s and x’s, seeing how many ways
Theorem 9.74 allows for placing the symbolswofFor a sample let us do
= 4e, and thenu = 2e, + 2e,. First consideqn = 4e,. Thev’s to
examine are & and 2, + &, and the diagram to complete is

0000Xx
X X

The respective sets of symbols dtel, 1} and{1, 1, 2}. With the first set
we can complete the diagram with eack-XL, and with the second set we
can put the 2 in the second position on the second line. khasle, gives
us a contribution of one occurrence of eagchNext considen = 2e,+2e,.
We are interested in the sam®g, and the diagram to complete is

00xxx
00

We can complete the diagram with the symbgls1, 1} but not with

{1, 1, 2}. Thus this time we get a contribution from = 3e; but not
from 2e, + 2e,. A similar computation shows for each of the other three
wu's that the diagram can be completed in one allowable way for each
We now add the contributions from each The theorem tells us also to
includesv when the coefficient of, in v is not 0. Abbreviatinge; + be,
as(a, b), we find that the restriction af, from U (4) to SO(4) is

050+ 2030+ 010+ 052405 _5+041+0s_1+032+03_2+0214+07_1.

For a check we can compute the dimension in two ways, verifying that it
comes to 224 both times.
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2) Withn = 3, letA = ae, for somea > 0. We seek to restriat, from
U (3) to SO(3). The values of: to consider are 0,8, 4ey, ... , 2[a/2]e;.
For eachu, we are to consider just ong namelyr — . The symbols for
v are{l,..., 1}, and the relevant diagram of O’s and x’s can be completed
in exactly one allowable way. Thus the restrictionrpto SO(3) is

Oae, + Oa—2e, + -+ (0¢, Or 09).

This decomposition has the following interpretation: One realization of
7, for U(3) is in the space of homogeneous polynomials of degree

in variablesz,, 7,, Z;. The restriction toSO(3) breaks into irreducible
representations in a manner described by Problems 9-14 of Chapter IV
and Problem 2 of Chapter V.

Theorem 9.76(Littlewood). Letr, be an irreducible polynomial rep-
resentation otJ (2n) with highest weight., and suppose thathas depth
< n. Leto, be an irreducible representationgfi(n) with highest weight

v. Then
T)‘}Sp(n) = Z Z Clu0v-

/4 nonnegative v nonnegative
HEA, vCA,
w1 has an even number of| || +[[vII=[IA|l
parts of each magnitude

ExXAMPLE. ForA = 5e; + 2e,, we seek the restriction af from U (4)
to Sp(2). The list of u’s in question is

0, et+e, 26+ 2,

the list includese; + e,, for instance, because + e has 2 parts of
magnitude 1 and 0 parts of all other magnitudes. /et 0, we are led to
v = 5, 4+ 26, and one way of completing the diagram. ko= e + &,
we have||v|| = 5, and they's to consider are &, 4e; + &, and &, + 2e,.
These have the respective sets of symbblg, 1, 1, 1}, {1, 1, 1, 1, 2}, and
{1,1,1, 2, 2}, and the diagram to complete is

0 X X X X
0 x

The diagram can be completed in one allowable way in the second case
and in no allowable way in the other two cases. Thus we get a contribution
to the restriction from &, + &,. Foru = 2e; + 2e,, we have|v| = 3, and
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thev’s to consider are® and 2, + e,. These have the respective sets of
symbols{l, 1, 1} and{1, 1, 2}, and the diagram to complete is

00xxx
00

The diagram can be completed in one allowable way in the first case and
in no allowable way in the second case. Thus we get a contribution to the
restriction from &;. The conclusion is that the restrictiongfto Sp(2) is

O5e, 426, 1 Odey1e, T O3g;-

The dimensions of these constituents are 140, 64, and 20, and they add to
224, as they must.

Now let us pull together some of the threads of this chapter. We have
concentrated on branching theorems for compact symmetric spaces because
S0 many compact homogeneous spaces can be built from symmetric spaces.
The example suggested at the end of 8436K /(K N My)) whenevelG
is semisimple,K is the fixed group of a Cartan involution, and AN
is the Langlands decomposition of a maximal parabolic subgroup. For
example, considegs = SO(p, q)owith p > g, K beingSO(p) x SO(Q).

One parabolic subgroup h&sn My = SO(p — q) x diagSO(q). If we
introduceK; = SO(p—q) x SO(q) x SO(q), thenK /K, andK; /(K NMp)

are compact symmetric spaces. To analyzek /(K N Mg)), we can use
induction in stages, starting from the trivial representatiorKoft M.

We pass tdK;, and the result is the sum o&b ®c ¢ over all irreducible
representations of SO(qg). The passage frorK; to K requires under-
standing those representationsS@ ( p) that contain ®o when restricted

to SO(p — q) x SO(q). These are addressed in the following theorem,
which reduces matters to the situation studied in Theorem 9F%if2q.
Certain maximal parabolic subgroups in other semisimple groups lead to a
similar analysis with groupd (n) and Sp(n), and the theorem below has
analogs for these groups reducing matters to the situation in Theorem 9.74
or 9.76.

Theorem 9.77. Let 1 < n < m, and regardSO(n) and SO(m) as
embedded as block diagonal subgroupSof(n + m) in the standard way
with SO(n) in the upper left diagonal block and wiO(m) in the lower
right diagonal block.
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(@) Ifarer+ - -+ a1 my€1nemy IS the highest weight of an irreducible
representatiolio, V) of SO(n 4+ m), then a necessary and sufficient con-
dition for the subspac¥ S°™ of vectors fixed bySO(m) to be nonzero is
thatan,, = - - = a3 nem) = 0.

(b) LetA = ase, + - - - + a,€, be the highest weight of an irreducible
representatiolio; , V) of SO(n + m) with a nonzero subspadés°™ of
vectors fixed bySO(m), and let(z,,, V') be an irreducible representation
of U (n) with highest weight’ = a;e; + - - - + a,_1€._1 + |an|€,. Then the
representatiory; | som V SO js equivalent with the restriction 8O (n)
of the representatiofx;,, V") of U (n).

ExampLE. Consider branching frorBO(10) to SO(4) x SO(6). If o
is an irreducible representation 80 (10) with highest weight written as
a6 + - - - + as6s, then (a) says that the restrictionoto SO(4) x SO(6)
contains some’'®1 if and only ifas = 0. Inthis case, (b) says that the rep-
resentations’, with their multiplicities, are determined by restricting from
U (4) to SO(4) the irreducible representation 0f(4) with highest weight
a6, + - - - + au&. Theorem 9.75 identifies this restrictioraf = a, = 0.
For example, il = 5e; + 26, is the given highest weight fa8O(10),
then Example 1 following that theorem identifies the representatioas
SO(4), together with their multiplicities, that occur in the restrictioncof
from U (4) to SO(4). Then the representatioas®1 of SO(4) x SO(6),
with the same multiplicities, are the ones in the restrictiaonfwbm SO (10)
to SO(4) x SO(6) for which the representation on ti®O(6) factor is
trivial.

SKETCH OF PROOF OF THEOREM Conclusion (a) is an easy exercise
starting from Theorem 9.16. Let us consider (b) under the assungtien
0. WriteK; = SO(n), K, = SO(m), andK = K; x K,. We introduce the
noncompact Riemannian dual 80 (n + m)/K, which is isomorphic to
SO(n, m)y/K. Theisomorphism,(SO(n4+m), 1) = 7,(SO(n+m)<, 1)
and the unitary trick allow us to exteng holomorphically taSO (n+m)©
and then to restrict to a representation, which we stillgalbf SO(n, m),.
Form the usual maximally noncompact Cartan subalgebra ofthe Lie algebra
so(n, m) of SO(n, m), and the usual positive system of roots relative to it
that takes the noncompact parbefore the compact part. The restricted-
root system is of typ€BC), or B, or D,,, depending on the size af — n.

In all cases the restricted roots of the fogm- g form a subsystem of
type A,_; in which each restricted root has multiplicity 1. The associated
Lie subalgebra ofo(n, m), with all of aincluded, isisomorphic tgi(n, R).
LetL = GL(n, R)q be the corresponding analytic subgrou®af(n, m),.
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Let K. = K N L be the standard copy &0 (n) insideL. The subgroup
K. is embedded block diagonally & = {diagk, 1, 7 (k) | k € Ky},
wheremr is some mapping. Projection &f, to the first factor gives an
isomorphism : K, — Kj.

Letwvo be a nonzero highest weight vectomgfin the new ordering. The
cyclic span ofvy underL is denotedv’, and the restriction cxfrA|L to the
subspac®/’ is denoted;. The representatiofr,, V') of L is irreducible.
Let E be the projection o¥ ontoV*? given byE(v) = [, ax(Kjvdk. If
we take the isomorphism: K. — K into account, then the linear map
E is equivariant with respect t&;. An argument that uses the formula
K = K,K_ and the Iwasawa decomposition@f shows thatE carries
the subspac¥’ onto V Xz,

The groupL and the representatiofr,, V') are transferred from
SO(n, m)y back toSO(n + m), and the result is a strangely embedded
subgroups’ of SO(n+m) isomorphic tdJ (n), together with anirreducible
representation o&’ that we still write ag(t;, V’). The groupK_, being
contained inK, does not move in the passage fr@&®(n, m)y back to
SO(n + m) and may be regarded as a subgroufis6fembedded in the
standard way thaO(n) is embedded itJ (n).

Unwinding the highest weights in question and taking care of any
possible ambiguities in the above construction that might lead to outer
automorphisms oz’ = U (n), we find that the highest weights match
those in the statement of the theorem.

To complete the proof, it suffices to show that the niapf V' onto
VX2 is one-one. This is done by proving that dith = dimVKz:, We
limit ourselves to proving this equality for one example that will illustrate
how the proof goes in general. We take= 2 andm = 4, and we
write highest weights as tuples. Say the given highest weigBtb) is
(2,1, 0). We don = 2 steps of branching via Theorem 9.16 to determine
the irreducible constituents undg8®(m) = SO(4), and we are interested
only in the constituents whef®O (4) acts trivially. Branching fron8O (6)
to SO(5) leads from(2, 1, 0) for SO(6)to (2, 1) +(2,0) + (1, 1) + (1, 0)
for SO(5). The pieces2, 1) and(1, 1), not ending in 0, do not contain the
trivial representation 080 (4), according to conclusion (a) above. For the
other two, branching fron$O(5) to SO (4) gives

(2,0~ (2,00 +(1,0) + (0,0
(1,00 — (1,0) + (0, 0).

Thus we obtain one constituent each time as much as possible of the highest
weight becomes 0 at each step, namely twice. Souffe= 2. To compute
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dimV’, we start with(2, 1, 0) truncated so as to be a highest weight for

U ) = U(2). Thatis, we start witli2, 1). We do branching via Theorem
9.14 a step at a time td (1) and then one more time to arrive at empty
tuples. Specifically we pass fro@, 1) to (2) + (1) and then ta)) + ().

TheU (1) representations are all 1-dimensional, and hence the number of
empty tuples equals the dimension of the representation with highest weight
(2,1). Thatis, itequals dinv’. The pointis that there is a correspondence
between the steps witBO leading to(0, 0) and the steps with) leading

to (). Itis given by padding out the tuples forwith a suitable number of

0’s. Thus dimV’ = dimV¥z,

8. Problems

1. ForU(n), letx = ) ajg be a dominant integral form, defidé = ne; +
(n—1e + --- + 1e, and lett = diag@?, ..., d%). Write &, for the
multiplicative character corresponding to an integral linear form
(@) Show from the Weyl character formula that the charagtesf an irre-

ducible representation with highest weighis given by

0.0 =5 Y e@uguan ® /] (1 - ).

weW k<l
at every point whereé, (t) = 1 for no rootw.
(b) Show that the formula in (a) can be rewritten as

%.() = £_p (1) det{e @FTnHi=al / [T@-eor9).
k<l

(c) Derive Theorem 9.14 by carrying out the following manipulations with
the determinantin (b): Pét, = 0. Replace the first row by the difference
ofthe firstand second rows, the second row by the difference of the second
and third rows, and so on until the last column is 1 intReentry and 0
elsewhere. Reduce the size of the determinanttd.. Divide the factor
(1— &) of the product in the denominator into tHe column of the
determinant, I= | < n — 1. Recognize the first row of the determinant
as the sum od; — a, + 1 natural row vectors of exponentials and expand
the determinant by linearity. Repeat for the second row of each resulting
determinant, using a sum e$ — az + 1 row vectors. Continue through
the (n — 1) row, and match the answer with the sum of the characters of
U (n — 1) indicated by Theorem 9.14.

2. InTheorem 9.18, the branching theorem for passing f8pm) to Sp(n— 1),

prove that the number of integeituples(by, . . ., b,) satisfying (9.19) is equal

to ]'[i“:l(Ai + 1), whereA is as in the statement of Theorem 9.50 akds

assumed to be 0 for alli.
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3. In 84 identify the se® that arises in Kostant's Branching Theorem when
passing fronlJ (2n) to SO(2n).
4. Suppose that a permutation satisfies the condition of Lemma 9.54 that
every equalitywe = ¢ impliesj > i — 1. Prove thatw is a product
of certain transpositions of consecutive integers, with the pairs decreasing
from left to right. For example, witm = 3, show thatw is of the form
(1) or(23) x ((1) or (12).
5. Theorem 9.75 shows how certain irreducible representatiodgmf reduce
when restricted t&O(n). Starting from the irreducibility of the action bf(n)
on each/\I C", use Theorem 9.75 to derive the conclusions of Problems 8-10
of Chapter V concerning irreducibility and reducibility of the alternating-
tensor representations 8D (n).
6. View Sp(n) embedded itJ (2n) in the standard way so that its Lie algebra is
sp(n, C) Nu(2n). Root vectors are given in Example 3 of §lI.1.
(&) Theorem 9.76 shows thatthe irreducible alternating-tensor representation
of U(6) on /\3(C6 decomposes undé&p(3) into exactly two irreducible
pieces, with highest weights + e, + e3 ande;. Show thate, A e; A &3
ande; A (& A &5 + €3 A €) are respective highest weight vectors.
(b) Fork < n,use Theorem 9.76 to find the highest weights of the irreducible
constituents oﬁ\k(CZ” under the action o8p(n). Find a nonzero highest
weight vector for each constituent.

Problems 7-10 deal with the construction of many elements in the space of an
induced representation. Lét be a closed subgroup of a compact grépand
let o be a unitary representation bff on a separable Hilbert spabe

7. Foreach continuous : G — C andv in V, definel;, : G — V by

Ity (), V)y = / f (xh)(o (h)v, v')y dh forv' e V.

Prove thatl¢ , is continuoSs and is a member of the space foﬁind

8. Prove that the linear span of all the functidns in Problem 7 is dense in the
space for inf} o by showing that the 0 function is the only member of the
space for inﬁ o that is orthogonal to all thé .

9. Assuming that the given Hilbert spadds not 0, prove that the Hilbert space
forind® o is not 0.

10. Prove that itr is irreducible, thers lies in the restriction fronG to H of
some irreducible representation®f

Problems 11-14 address in two ways the analysis’aif the spher&s*"~1 under
the action ofSp(n). In the first way,Sp(n) acts transitively on the unit sphere
in the spaceé" of n-dimensional column vectors of quaternions, with isotropy
subgroupSp(n—1) at (0, ..., 0, 1). In the second way, the unit sphere is realized
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asK /M for Sp(n, 1). The connection between the two ways results from an action
of the groupSp(1) on column vectors byight multiplication entry-by-entry by
the group of unit quaternions.

11.

12.

13.

14.

Using Frobenius reciprocity and Theorem 9.18, provelthes*" 1) decom-
poses undesp(n) as a Hilbert-space supt,_ g - o(D+ 1) T(a+b)e, +ae,» Where
7, IS an irreducible representation $p(n) with highest weight..

Introduce notation foBp(n, 1) as in the next-to-last paragraph of 84, so that
K > K; D M. The proof of Theorem 7.66 shows th&y M is the sphere
S*-1. Using Frobenius reciprocity, induction in stages, and Theorem 9.50,
prove thatL?(S*~1) decomposes undé¢ = Sp(n) x Sp(1) as a Hilbert-
space sum_._q p-o T(atbyer +ae,®0be,,,» Wherer, is an irreducible represen-
tation of Sp(n) with highest weigh ando, is an irreducible representation

of Sp(1) with highest weighju.

The subspace df?(S*~1) in Problem 12 of functions invariant under the
unit-quaternion subgroupp(1) of K may be regarded as the® functions

on quaternionic projective space. What is the decomposition of this subspace
under the action o$p(n)?

Similarly regardS*™~* both asU (n)/U(n — 1) and ask /M for a group

we could callU (n, 1). What are the decompositions bf(S*"~1) that are
analogous to those in Problems 11 and 127 In analogy with Problem 13, what
is the decomposition of > of complex projective space under the action of
un)?

Problems 15-18 deal with decomposing tensor products into irreducible represen-
tations. LetG be a compact connected Lie group, fix a maximal abelian subspace
of its Lie algebra, and léfV be the Weyl group. I is a dominant integral form
relative to some system of positive roots,4gbe an irreducible representation of

G with highest weighi and lety; be the character of this representation. Denote
the multiplicative character corresponding to a linear forby &, .

15.

16.

17.

Prove that if all weights of; have multiplicity one, then each irreducible
constituent ofr; ® t,» has multiplicity one.

If A is an integral form and if there existsy # 1 in W fixing A, prove that
ngw S(W)fm =0.

(Steinberg’s Formula) Letm, (1) be the multiplicity of the weight in t;,
and define sgp by

0 if somew # 1in W fixesu

SgNU =\ e(w) otherwise, wherev is chosen inW to make
wu dominant.
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Write the character of, as x, = Y m;, (A")&,, write x; as in the Weyl
Character Formula, and multiply. With” denoting the result of applying an
element ofW to u to obtain something dominant, obtain the formula

X Xow = Z M (A)sgL” + A"+ 8) xoor+x+8) —s-

A"=weight of;,

18. Let—u be the lowest weight of,. Deduce from Problem 17 thatif — p is
dominant, therr;,_,, occurs int, ® t,v with multiplicity one.

Problems 19-21 use Problem 17 to identify a particular constituent of a tensor
product of irreducible representations, beyond the one in Problem 18. drad

A" be dominant integral. Lab be inW, and suppose that + wa is dominant.

The goal is to prove that, ., occurs int, ® ;v with multiplicity one.

19. Prove thak” = wa contributesy; .., to the right side of the formula in
Problem 17.

20. Toseethatthereisno other contributiopf ,;, suppose that” contributes.
Then(x' +8+1")Y —8 = '+ wAa. Solve ford”, compute its length squared,
and use the assumed dominance to obfaif? > |wi|2. Show how to
conclude thar” = wa.

21. Complete the proof thaf,, ,, occurs int;, ® 7, with multiplicity one.

Problems 22-24 deal with the reduction of tensor products into irreducible rep-
resentations, comparing Steinberg’s Formula in Problem 17 with the appropriate
special case of Kostant's Branching Theorem (Theorem 9.20)G lbeta compact
connected Lie group, fix a maximal abelian subspace of its Lie algebi&/lé&e

the Weyl group ofG, fix a positive systena ¢ for the roots, let be half the sum

of the positive roots, and let, be an irreducible representation®fwith highest
weightv. Let P™ be the Kostant partition function defined relativelto= A§.

22. Combining Steinberg’s Formula with the formula in Corollary 5.83 for the
multiplicity of a weight, show that the multiplicity of, in 7, ® 7,/ is
D0 ewe@)PMwt +8) — w'(n+8) + X).
weWs w'eWg
23. Using Kostant's Branching Theorem for restriction fr@mx G to G, show
that the multiplicity ofr, in 7, ® t is
Z Z e(w)eWNP" (w4 8) + w (X +8) — 28 — ).
weWs w'eWg
24. Reconcile the formulas obtained in the previous two problems by using the
fact that multiplicities of weights are invariant under the Weyl group.

Problems 25-30 give a combinatorial description, involving no cancellation, for
the multiplicity of a weight in an irreducible representatior bfn). For this set
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of problems, the diagram of a nonnegative dominant integral form will consist

of boxes, and each such box will get an integer from htput into it. The

result is aYoung tableauif (a) the integers in each row are increasing but not
necessarily strictly increasing and (b) the integers in each column are strictly
increasing. Ifm; denotes the number of integejrsn a Young tableau, the tuple

(my, ..., my) will be called thepattern of the tableau. Let. = Z?:l ajg and

w o= Z;‘;ll cjg be dominant integral forms. We say interleaves . if (9.15)

holds. For O<r < n — 1, abranching systemfor U (n) of levelr coming from

a dominant integral is a set{x* | 0 < k < r} such that©® = 1, A\® is a

dominant integral form fot) (n — k), andA® interleaves.®~? for all k > 1; the

end of the system is.".

25. Letr, andt,» be irreducible representationsldin) andU (n —r), respec-
tively, with highest weights. andA™. For 0<r < n — 1, prove that the
number of branching systems for(n) of levelr coming fromx and having
endA ™ equals the multiplicity of;,« in 7, |un_r). Conclude that the number
of branching systems of leval— 1 coming fromx equals the degree of.

26. Let(ty, V) be an irreducible representationldfn) whose highest weigtit
is nonnegative, and 16} be a branching system of levelcoming from
X and ending withh."). For 0<r < n — 1, prove that there exists a unique
decreasing chain of subspadgsof V, 0 < j <r, such thaty; is invariant
and irreducible under the ramksubgroupd (n — j) x U(1) x --- x U(D)
with highest weight. 1) + >, (127D — 2D ])a.

27. In Problem 26, prove for & r < n — 1 that distinct branching systeris®}
of levelr coming fromx and ending with " yield orthogonal subspac#s.

28. Takingr = n—1in Problem 27, show that the result is a spanning orthogonal
system of 1-dimensional invariant subspaces under the diagonal subgroup.

29. Letx be nonnegative dominant integral, [ef¥} be a branching system of
leveln — 1 for it, and define.™ = ¢. Associate to the system a placement
of integers in the diagram of as follows: put the integdrin a box if that
box is part of the diagram of™" but not part of the diagram of"~'+b,

1 < I < n. Prove that the result is a Young tableau and that the pattern of the
tableau is

-1 -2 -1 0 1
(AP = 1A, A2 = a2, 1A = A @),

30. Letx be nonnegative integral dominant 1di(n), and letr; be an irreducible
representation with highest weight Prove that ifu = Zj”:l m;jg is an
integral form, then the multiplicity of the weight in t; equals the number
of Young tableaux for the diagram afwhose pattern igmy, ..., my,).








