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CHAPTER IV

Theory of Ordinary Differential Equations and Systems

Abstract. This chapter treats the theory of ordinary differential equations, both linear and nonlinear.
Sections 1–4 establish existence and uniqueness theorems for ordinary differential equations.

The first section gives some examples of first-order equations, mostly nonlinear, to illustrate certain
kinds of behavior of solutions. The second section shows, in the presence of continuity for a vector-
valued F satisfying a “Lipschitz condition,” that the first-order system y0 = F(t, y) has a unique
local solution satisfying an initial condition y(t0) = y0. Since higher-order equations can always be
reduced to first-order systems, these results address existence and uniqueness for nth-order equations
as a special case. Section 3 shows that the solutions to a system depend well on the initial condition
and on any parameters that are present in F . Section 4 applies these results to existence of integral
curves for a vector field and to construction of coordinate systems from families of integral curves.
Sections 5–8 concern linear systems. Section 5 shows that local solutions of linear systems may

be extended to global solutions and that in the homogeneous case the vector space of global solutions
has dimension equal to the size of the system. The method of variation of parameters reduces the
solution of any linear system to the solution of a homogeneous linear system. Sections 6–7 identify
explicit solutions to nth-order linear equations and first-order linear systems. The “Jordan canonical
form” of a square matrix plays a role in the case of a system. Section 8 discusses power-series
solutions to second-order homogeneous linear equations whose coefficients are given by convergent
power series, as well as solutions that arise in the case of regular singular points. Two kinds of special
functions are mentioned that result from this study—Legendre polynomials and Bessel functions.

1. Qualitative Features and Examples

To introduce the subject of ordinary differential equations, this section gives
examples of some qualitative features and complicated phenomena that can occur
in such equations.
If F is a complex-valued function of n+ 2 variables, a function y(t) is said to

be a solution of the ordinary differential equation

F(t, y, y0, y00, . . . , y(m)) = 0

of mth order on the open interval (a, b) if

F(t, y(t), y0(t), . . . , y(m)(t)) = 0

218



1. Qualitative Features and Examples 219

identically for a < t < b. The equation is “ordinary” in the sense that there is
only one independent variable. The equation is said to be linear if it is of the
form

am(t)y(m) + am−1(t)y(m−1) + · · · + a1(t)y0 + a0(t)y = q(t),
and it is homogeneous linear if in addition, q is the 0 function. A linear ordinary
differential equation has constant coefficients if am(t), . . . , a0(t) are all constant
functions.
Let us come to examples, which will point toward the enormous variety of

phenomena that can occur. We stick to the first-order case, and all the examples
will have F real-valued. Let us look only for real-valued solutions. Pictures
indicating the qualitative behavior of the solutions of each of the examples are in
Figure 4.1.

EXAMPLES.
(1) Simple equations can have relatively complicated solutions. This is already

true for the equation
y0 = 1/t on the interval (0,+∞).

Integration shows that all solutions are of the form log t + c; on an interval
of negative t’s, the solutions are of the form log |t | + c. The c comes from a
corollary of the Mean Value Theorem that says that a real-valued function on
an open interval with 0 derivative everywhere is necessarily constant.1 Another
example, but with no singularity, is y0 = t y. To solve this equation on intervals
where y(t) 6= 0, write y0/y = t , so that log |y| = 1

2 t
2 + a and |y| = eaet2/2.

Thus y(t) = cet2/2, with c 6= 0 constant, on any interval where y(t) is nowhere
0. The function y(t) = 0 is a solution as well, and all real solutions on an interval
are of the form y(t) = cet2/2 with c real. See Figures 4.1a and 4.1b.
(2) Solutions may not be defined on obvious intervals. For the equation

t y0 + y = sin t,
wecan recognize the two sides as d

dt (t y) and
d
dt (− cos t). Therefore t y = c−cos t .

Dividing by t , we obtain y(t) = c−cos t
t on any interval that does not contain

0. What about intervals containing t = 0? If we put t = 0 in the formula
t y = c−cos t , we see that cmust be 1. In this case we can define y(0) = 0 there,
and then y0(0) exists. We obtain the additional solution

y(t) =

( 1− cos t
t

for t 6= 0,

0 for t = 0,
on any open interval containing 0. Figure 4.1c shows graphs of some solutions.

1See Section A2 of Appendix A for further information.
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(a) (b)

(c) (d)

(e) (f)

FIGURE 4.1. Graphs of solutions of some first-order ordinary differential
equations: (a) y0 = 1/t , (b) y0 = t y, (c) t y0 + y = sin t ,

(d) y0 = y2 + 1, (e) y0 = y2, (f) y0 = y2/3.

(3) Even if the equation seems nice for all t , the solutions may not exist for all
t . An example occurs with

y0 = y2 + 1,

which we solve by the steps d
dt (arctan y) = 1, arctan y = t + c, y = tan(t + c).

The solutions behave badly when t + c is any odd multiple of π/2. Solutions
are defined at most on intervals of length π . Figure 4.1d shows graphs of some
solutions for this example.

(4) Some solutions may look quite different from all the others. For example,
with

y0 = y2,

we solve by −1/y = t + c for y 6= 0, so that y(t) = −
1

t + c
. Also, y(t) = 0 is



1. Qualitative Features and Examples 221

a solution. Here the solutions of the form y(t) = − 1
t+c are not defined for all t ,

but the solution y(t) = 0 is defined for all t . We might think of y(t) = 0 as the
limiting case with c tending to ±∞. Figure 4.1e shows graphs of some of the
solutions for this example.

(5) New solutions can sometimes be pieced together from old ones. For
example, the equation

y0 = y2/3

is solved where y 6= 0 by the steps y−2/3y0 = 1, 3y1/3 = t + c, and y(t) =
1
27(t + c)3. But also y(t) = 0 is a solution. In fact, we can piece solutions of
these types together. For example, the function

y(t) =






1
27(t + 1)3 for t < −1,
0 for − 1 ≤ t ≤ 0,
1
27 t

3 for 0 < t,

is a solution on (−∞,+∞). Figure 4.1f shows graphs of some of the solutions
for this example.

One thing that stands out in the above examples is that the set of solutions seems
to depend, more or less, on a single parameter c. The inference is that nothing
much worse than the c occurs because somewhere an integration is taking place
and the Mean value Theorem is controlling how many indefinite integrals there
can be. One way of trying to quantify this statement about how the number of
solutions is limited is to say that for any fixed t = t0 and given real number y0,
there is only one solution y(t) near t0 with y(t0) = y0. This statement is not quite
accurate, however, as Example 5 shows. The uniqueness theorem in Section 2
will give a precise result. The data (t0, y0) are called an initial condition.
Something else that stands out, although perhaps not without the visual aid of

the graphs of solutions as in Figure 4.1, is that the graphed solutions appear to fill
the entire part of the plane corresponding to the t’s under study. In the framework
of the previous paragraph, the statement is that for any fixed t = t0 and given
real number y0, there exists a solution y(t) near t0 with y(t) = y0. The existence
theorem in Section 2 will give a precise result.

WEAK VERSION OF EXISTENCE AND UNIQUENESS THEOREMS. Let D be a
nonempty convex open set in R2, and let (t0, y0) be in E . If F : D → R is a
continuous function such that @

@y F(t, y) exists and is continuous in D, then for
any sufficiently small open interval of t’s containing t0, the equation y0 = F(t, y)
has a unique solution y(t) with y(t0) = y0 such that the graph of t 7→ y(t) lies
in D.
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An improved theorem, together with a proof, will be given in Section 2. The
proof of existence uses “Picard iterations,” and the idea is as follows. First we
convert the differential equation into an equivalent integral equation

y(t) =
Z t

t0
F(s, y(s)) ds + y0.

Secondwe use the right side as input and the left side as output to define successive
approximations to a solution:

y0(t) = y0,

y1(t) =
Z t

t0
F(s, y0(s)) ds + y0,

...

yn+1(t) =
Z t

t0
F(s, yn(s)) ds + y0.

Third we use the Weierstrass M test to show that the series with partial sums
yN (t) = y0 +

PN
n=1 (yn(t) − yn−1(t)) is uniformly convergent. If the limiting

function is denoted by y(t), we check that y(t) satisfies the integral equation from
which we started. Hence y(t) is a solution of the differential equation.

2. Existence and Uniqueness

In this section we state and prove the main existence and uniqueness theorems for
solutions of ordinary differential equations. First let us establish an appropriate
setting more general than the one in Section 1.
The examples in Section 1 were all of the first order. They could all have

been written in the form y = F(t, y) with F real-valued, and we considered
real-valued solutions y(t). From equations as simple as y00 + y0 + y = 0, whose
real-valued solutions are

y(t) = a1e−t/2 cos(t
p
3/2) + a2e−t/2 sin(t

p
3/2),

we know that it can be easier to work, at least initially, with complex-valued
solutions. In this particular case, it is easier as a first step to find all complex-
valued solutions, namely

y(t) = c1 exp
° 1
2 (−1+ i

p
3 )t

¢
+ c2 exp

° 1
2 (−1− i

p
3 )t

¢
,
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and then to extract the real-valued solutions from them. The solution method,
which will be discussed in more detail in Section 6 below, involves finding all
complex solutions of a certain polynomial equation with real coefficients, and the
method is more natural if the coefficients of the polynomial equation are allowed
to be complex.
Thus right away, it is natural to consider first-order equations y0 = F(t, y)

with F complex-valued and to look for complex-valued solutions. The theory in
Chapter III avoided working with functions of several variables in which some of
the variables are complex, and we can update the theory of Chapter III here. The
technique, which is to consider the complex variable y as two real variables Re y
and Im y, is again applicable. Thuswehaveonly to thinkof F(t, y) as a functionof
three real variables, even ifwe do not separate y into its two components inwriting
F(t, y), and the theory of Chapter III applies directly. In adopting the point of
view that y is actually two real variables, we need to apply the same consideration
to y0, and we are led to view y0 = F(t, y) as a system of two simultaneous
equations, namely Re y0 = Re F(t, y) and Im y0 = Im F(t, y). This viewpoint
merely makes our functions conform to the prescriptions of Chapter III. It is not
necessary to work with the expanded notation; all we have to remember is that in
this part of the theory we never differentiate a function with respect to a complex
variable.
The utility of allowing y0 = F(t, y) to represent a system of ordinary dif-

ferential equations has, in any event, been thrust upon us. Let us consider the
notion of a system a bit more. With a little trick the second-order equation
y00 + y0 + y = 0 can itself be transformed into a system, quite apart from the issue
of real vs. complex variables. The trick is to introduce two unknown functions
u1 and u2 to play the roles of y and y0. Then u1 and u2 satisfy u2 = u0

1 and
u0
2 = u00

1 = y00 = −y0 − y = −u2 − u1. In other words, u1 and u2 satisfy the
system

u0
1 = u2,
u0
2 = −u1 − u2.

Conversely if u1(t) and u2(t) satisfy this system of equations, then y(t) = u1(t)
is a solution of y00 + y0 + y = 0. In this way, the given second-order equation is
completely equivalent to a certain system of two first-order equations with two
unknown functions.
Let F be a function defined on an open set D of R × Ckm and taking values

in Ck . A Ck-valued function y(t) = (y1(t), . . . , yk(t)) is said to be a solution
of the system F(t, y, y0, . . . , y(m)) = 0 of k ordinary differential equations of
order m in the open interval (a, b) if F(t, y(t), y0(t), . . . , y(m)) = 0 identically
for a < t < b.
We saw that the single second-order equation y00 + y0 + y = 0 is equivalent to

a certain first-order system of two equations, and the technique for exhibiting this
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equivalence works more generally: a system of k equations of order m that has
been solved for themth-order derivatives is equivalent to a system of km equations
of first order.
We shall consider first-order systems of the form y0 = F(t, y), where F is

continuous on an open subset D of R × Cn and takes values in Cn . The example
y0 = y2/3 in Section 1 fits these hypotheses, and we saw that the hoped-for
uniqueness fails for this equation. In the weak theorem stated at the end of
Section 1, an additional hypothesis was imposed in order to address this problem:
for y0 = F(t, y) with only real-valued solutions of interest, the hypothesis is
that @F/@y exists and is continuous on the domain D of F . Generalizing this
condition presumably means saying something about partial derivatives in each
of the directions yj for 1 ≤ j ≤ n. In addition, we must remember the injunction
against differentiating with respect to complex variables. Thus we really expect
a condition concerning 2n first-order derivatives. Fortunately there is an easily
stated less-stringent condition that is nevertheless good enough. The condition is
that F satisfy a Lipschitz condition in its y variable, i.e., that there exist a real
number k such that

|F(t, y1) − F(t, y2)| ≤ k|y1 − y2|

for all pairs of points (t, y1) and (t, y2) in the domain D of F .
If F is a real-valued continuous function of two real variableswith a continuous

partial derivative in the second variable, then the Mean Value Theorem gives

F(t, y1) − F(t, y2) = (y1 − y2)
@F
@y

(t, ξ)

with ξ between y1 and y2, provided the line segment from (t, y1) to (t, y2) lies in
the domain D of F . The partial derivative is bounded on any compact subset of
D, and thus F satisfies, on any compact convex subset of D, a Lipschitz condition
in the second variable.

Theorem 4.1 (Picard–Lindelöf Existence Theorem). Let D be a nonempty
open set in R1 × Cn , let (t0, y0) be in D, and suppose that F : D → Cn is
a continuous function such that F(t, y) satisfies a Lipschitz condition in the y
variable and has |F(t, y)| ≤ M on D. Let R be a compact set in R1 × Cn of the
form

R =
©
(t, y)

Ø
Ø |t − t0| ≤ a and |y − y0| ≤ b

™
,

and suppose that R is contained in D. Put a0 = min{a, b/M}. Then there exists
a solution y(t) of the system

y0 = F(t, y)
on the open interval |t − t0| < a0 satisfying the initial condition

y(t0) = y0.
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REMARKS. A variant of Theorem 4.1 takes D to be in R1 × Cn but insists
only on continuity of F , not on the Lipschitz condition. Then a local solution still
exists for |t− t0| < a0. This better result, known as the “Cauchy–Peano Existence
Theorem,” appears in Problems 20–25 at the end of the chapter and is proved by
an argument using Ascoli’s Theorem. However, Example 5 in Section 1 shows
that there is no corresponding uniqueness theorem, andwithin the text we omit the
proof of the better existence theorem. Another variant of Theorem 4.1 assumes
that the domain D of a given FR lies in R1× Rn , FR takes values in Rn , and y0 is
in Rn . Then y0 = FR(t, y) has a solution y(t) such that y(t0) = y0 and the range
of y is Rn . In fact, when FR satisfies a Lipschitz condition in the y variable, this
variant is a consequence of Theorem 4.1 as stated. To derive this variant, one
extends the given function FR from the subset of R1 × Rn to a subset of R1 × Cn

by making it constant in Im y. Specifically the new system is y0 = F(t, y) with
F(t, y) = FR(t,Re y), and the initial condition remains as y(t0) = y0. The part
of the system corresponding to equations for Im y0 is just Im y0 = 0, since F is
real-valued, and therefore Im y(t) is constant. Since y0 is real, Im y(t) must be
0. Thus Theorem 4.1 yields a solution y(t) with range Rn under these special
hypotheses.
PROOF. The first step is to see that the set of differentiable functions t 7→ y(t)

on |t − t0| < a0 satisfying y0 = F(t, y) and y(t0) = y0 is the same as the set of
continuous functions t 7→ y(t) on |t − t0| < a0 satisfying the integral equation
y(t) =

R t
t0 F(s, y(s)) ds + y0.

If y is differentiable and satisfies the differential equation and the initial con-
dition, then y is certainly continuous and hence s 7→ F(s, y(s)) is continuous.
Then

R t
t0 F(s, y(s)) ds is differentiable by the Fundamental Theorem of Calculus

(Theorem1.32), and the differential equation shows that y(t) and
R t
t0 F(s, y(s)) ds

have the same derivative for |t − t0| < a0. Thus they differ by a constant. The
constant is checked by putting t = t0, and indeed y satisfies the integral equation.
Conversely if y is continuous and satisfies the integral equation, then

s 7→ F(s, y(s)) is continuous, and the Fundamental Theorem of Calculus shows
that

R t
t0 F(s, y(s)) ds is differentiable. This function equals y(t) − y0 by the

integral equation, and hence y is differentiable. Differentiating the two sides of
the integral equation, we see that y satisfies the differential equation. Also, if
we put t = t0 in the integral equation, we see that y satisfies the initial condition
y(t0) = y0.
Thus it is enough to prove existence for a continuous solution of the integral

equation. For t0 − a0 ≤ t ≤ t0 + a0, define inductively

y0(t) = y0,

y1(t) = y0 +
Z t

t0
F(s, y0(s)) ds,



226 IV. Theory of Ordinary Differential Equations and Systems

...

yn(t) = y0 +
Z t

t0
F(s, yn−1(s)) ds,

with the usual convention that
R t
t0 = −

R t0
t . Let us see inductively that the graph

of yn(t) lies in the set

R0 =
©
(t, y)

Ø
Ø |t − t0| ≤ a0 and |y − y0| ≤ b

™
,

for |t − t0| ≤ a0. The graph of y0(t) = y0 is just
©
(t, y0)

Ø
Ø |t − t0| < a0

™
,

and this lies in R0. The inductive hypothesis is that (t, yn−1(t)) lies in R0 for©
(t, y0)

Ø
Ø |t − t0| ≤ a0}. Then

|yn(t) − y0| =
Ø
Ø
Ø
Z t

t0
F(s, yn−1(s) ds

Ø
Ø
Ø ≤ M|t − t0| ≤ Ma0 ≤ b,

and therefore (t, yn(t)) lies in R0 for |t − t0| ≤ a0. This completes the induction,
and hence the graph of yn(t) lies in R0 for |t − t0| ≤ a0.
Now write

yN (t) = y0(t) +
NX

n=1
[yn(t) − yn−1(t)]

for N ∏ 0. We shall use the Weierstrass M test (Proposition 1.20), adapted to a
series of functions with values inCn , to prove uniform convergence of this series.
Thus we are to bound |yn(t)− yn−1(t)|, and we shall do so inductively for n ∏ 1.
We start from the inequality |F(t, y)| ≤ M on R0 and the Lipschitz condition

|F(t, yj (t) − F(t, yj−1)| ≤ k|yj (t) − yj−1(t)| for j ∏ 1.

Say that t0 ≤ x ≤ t0 + a0 for definiteness. Then

|y1(t) − y0(t)| =
Ø
Ø
Ø
Z t

t0
F(s, y0(s)) ds

Ø
Ø
Ø ≤ M(t − t0)

and

|y2(t) − y1(t)| =
Ø
Ø
Ø
Z t

t0
[F(s, y1(s)) − F(s, y0(s))] ds

Ø
Ø
Ø

≤
Z t

t0
|F(s, y1(s)) − F(s, y0(s))| ds
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≤
Z t

t0
k|y1(s) − y0(s)| ds

≤
Z t

t0
kM(s − t0) ds from the previous display

=
Mk(t − t0)2

2!
.

Nowwe carry out an induction. The base case is the estimate carried out above for
|y1(t)− y0(t)|. The estimate for |y2(t)− y1(t)| suggests the inductive hypothesis,
namely the inequality

|yn−1(t) − yn−2(t)| ≤
Mkn−2(t − t0)n−1

(n − 1)!
.

Then we have

|yn(t) − yn−1(t)| ≤
Z t

t0
|F(s, yn−1(s) − F(t, yn−2(s))| ds

≤
Z t

t0
k|yn−1(s) − yn−2(s)| ds

≤ Mkn−1
Z t

t0

(s − t0)n−1

(n − 1)!
ds by inductive hypothesis

=
Mkn−1(t − t0)n

n!
,

and the induction is complete. The argument when t0−a0 ≤ t ≤ t0 is completely
similar, and the form of the estimate for the two cases combined is

|yn(t) − yn−1(t)| ≤
Mkn−1|t − t0|n

n!
for |t − t0| ≤ a0.

There is no harm in assuming that k is > 0, and consequently

|yn(t) − yn−1(t)| ≤
M
k
kn(a0)n

n!
independently of t . Since

P∞
n=0 (n!)−1kn(a0)n = eka0 is finite, the M test applies

and shows that our series converges uniformly.
Thus yN (t) converges uniformly for |t − t0| ≤ a0, necessarily to a continuous

function. We call this function y(t). For |t − t0| ≤ a0, we have
Z t

t0
F(s, y(s)) ds =

Z t

t0
[F(s, y(s)) − F(t, yN (s))] ds +

Z t

t0
F(s, yN (s)) ds

=
Z t

t0
[F(s, y(s)) − F(s, yN (s))] ds + yN+1(t) − y0.
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On the right side, we have limN [yN+1(t) − y0] = y(t) − y0. Because of the
Lipschitz condition the absolute value of the first term on the right side is

≤ a0k sup
|t−t0|≤a0

|y(t) − yN (t)|,

and this tends to 0 as n tends to infinity. Thus
Z t

t0
F(s, y(s)) ds = y(t) − y0,

and y(t) is a continuous solution of the integral equation. §

Theorem4.2 (uniqueness theorem). Let D be a nonempty open set inR1×Cn ,
let (t0, y0) be in D, and suppose that F : D → Cn is a continuous function such
that F(t, y) satisfies a Lipschitz condition in the y variable. For any a00 > 0,
there exists at most one solution y(t) to the system

y0 = F(t, y)

on the open interval |t − t0| < a00 satisfying the initial condition

y(t0) = y0.

PROOF. As in the proof of Theorem4.1, it is enough to prove uniqueness for the
integral equation. Suppose that y(t) and z(t) are two solutions for |t − t0| < a00.
Fix ≤ > 0. Then |y(t)−z(t)| is bounded by some constantC for |t− t0| ≤ a00−≤,
and F is assumed to satisfy aLipschitz condition |F(t, y1)−F(t, y2)| ≤ k|y1−y2|
on D.
We argue as in the proof of Theorem 4.1, working first for t0 ≤ t and starting

from
|y(t) − z(t)| ≤ C

and from

|y(t) − z(t)| =
Ø
Ø
Ø
Z t

t0
[F(s, y(s)) − F(s, z(s))] ds

Ø
Ø
Ø

≤
Z t

t0
|F(s, y(s)) − F(s, z(s))| ds

≤
Z t

t0
k|y(s) − z(s)| ds

≤ Ck(t − t0).
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Inductively we suppose that

|y(t) − z(t)| ≤
Ckn−1(t − t0)n−1

(n − 1)!
.

|y(t) − z(t)| ≤
Z t

t0
|F(s, y(s)) − F(s, z(s))| dsThen

≤
Z t

t0
k|y(s) − z(s)| ds

≤ Ckn
Z t

t0

(s − x0)n−1

(n − 1)!
ds =

Ckn(t − t0)n

n!
,

and thus |y(t) − z(t)| ≤ C(n!)−1kn(t − t0)n for all n. A similar estimate is valid
for t ≤ t0, and the combined estimate is

|y(t) − z(t)| ≤
Ckn|t − t0|n

n!
.

Since
P
C(n!)−1kn|t − t0|n converges, the individual terms tend to 0. Therefore

y(t) = z(t) for |t−t0| ≤ a00−≤. Since ≤ is arbitrary, y(t) = z(t) for |t−t0| < a00.
§

3. Dependence on Initial Conditions and Parameters

In abstract settings where the existence and uniqueness theorems play a role, it
is frequently of interest to know how the unique solution depends on the initial
data (t0, y0) such that y(t0) = y0. To quantify this dependence, let us write the
unique solution corresponding to y0 = F(t, y) as y(t, t0, y0) rather than y(t).
We continue to use y0 to indicate the derivative in the t variable even though the
differentiation is now actually a partial derivative.

Theorem 4.3. Let D be a nonempty open set in R1 × Cn , let (t, y∗) be in D,
and suppose that F : D → Cn is a continuous function such that F(t, y) satisfies
a Lipschitz condition in the y variable. Let R be a compact set in R1 × Cn of the
form

R =
©
(t, y)

Ø
Ø |t − t∗| ≤ a and |y − y∗| ≤ b

™
,

suppose that R is contained in D, and let M be an upper bound for |F | on R. Put
a0 = min{a, b/M}. If |t0 − t∗| < a0/2 and |y0 − y∗| < b/2, then there exists a
unique solution t 7→ y(t, t0, y0) on the interval |t − t0| < a0/2 to the system and
initial data

y0 = F(t, y) and y(t0, t0, y0) = y0,
and the function (t, t0, y0) 7→ y(t, t0, y0) is continuous on the open set

U =
©
(t, t0, y0)

Ø
Ø |t − t0| < a0/2, |t0 − t∗| < a0/2, |y0 − y∗| < b/2

™
.

If F is smooth on D, then (t, t0, y0) 7→ y(t, t0, y0) is smooth on U .
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REMARK. It is customary to summarize the result about continuity qualitatively
by saying that the unique solution depends continuously on the initial data.
PROOF OF CONTINUITY. Let us first check that there is indeed a unique solution

for each pair (t0, y0) in question and that its graph, as a function of t , lies in

R0 =
©
(t, y)

Ø
Ø |t − t∗| ≤ a0 and |y − y∗| ≤ b

™
.

For this purpose, fix t0 and y0 with |t0 − t∗| ≤ a0/2 and |y0 − y∗| ≤ b/2. Use
of the triangle inequality shows that the closed set with |t − t0| < a0/2 and
|y − y0| < b/2 lies within R. Thus |F | ≤ M on this set. Theorem 4.1 shows
that there exists a solution with graph in this smaller set for |t − t0| < a00, where
a00 = min{a0/2, (b/2)/M}. Now

min{a0/2, b/(2M)} = 1
2 min{a

0, b/M} = 1
2a

0,

and hence there exists a solution for |t− t0| < a0/2 with graph in R. This solution
y(t, t0, y0) is unique by Theorem 4.2, and it is the result of the construction in the
proof of Theorem 4.1.
The idea is to trace through the construction in the proof of Theorem 4.1 and

to see that the function (t, t0, y0) 7→ y(t, t0, y0) is the uniform limit of explicit
continuous functions on U . Imitating a part of the proof of Theorem 4.1, we
define, for (t, t0, y0) in U ,

y0(t, t0, y0) = y0,

y1(t, t0, y0) = y0 +
Z t

t0
F(s, y0(s, t0, y0)) ds,

...

ym(t, t0, y0) = y0 +
Z t

t0
F(s, ym−1(s, t0, y0)) ds.

We shall show by induction that yn(t, t0, y0) is continuous on U . Certainly
y0(t, t0, y0) is continuous on U .
For the inductive step we need a preliminary calculation. Let I1 be the closed

interval between t0 and t , and let I2 be the closed interval between t 00 and t 0.
Suppose we have two functions f1 and f2 of a variable s such that

(i) f1 is defined for s between t0 and t with | f1| ≤ M there,
(ii) f2 is defined for s between t 00 and t 0 with | f2| ≤ M there, and
(iii) | f1(s) − f2(s)| ≤ ≤ on their common domain.

If a0 is ∏ the maximum distance among t0, t, t 00, t 0, let us show that
Ø
Ø
Ø
Z t

t0
f1(s) ds −

Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M(|t0 − t 00| + |t − t 0|) + a0≤. (∗)
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To show this for all possible order relations on the set {t0, t 00, t, t 0}, we observe
that there is no loss of generality in assuming that t0 is the smallest member of
the set. There are then six cases.
Case 1. t0 ≤ t 00 ≤ t 0 ≤ t , so that (iii) applies on [t 00, t 0]. Then
Z t

t0
f1(s) ds−

Z t 0

t 00
f2(s) ds =

Z t 00

t0
f1(s) ds+

Z t 0

t 00
( f1(s)− f2(s)) ds+

Z t

t 0
f1(s) ds

and hence
Ø
Ø
Ø
Z t

t0
f1(s) ds −

Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 00 − t0| + ≤|t 0 − t 00| + M|t − t 0|.

Therefore (∗) holds in this case.
Case 2. t0 ≤ t 00 ≤ t ≤ t 0, so that (iii) applies on [t 00, t]. Then
Z t

t0
f1(s) ds−

Z t 0

t 00
f2(s) ds =

Z t 00

t0
f1(s) ds+

Z t

t 00
( f1(s)− f2(s)) ds−

Z t 0

t
f2(s) ds,

and hence
Ø
Ø
Ø
Z t

t0
f1(s) ds −

Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 00 − t0| + ≤|t − t 00| + M|t 0 − t |.

Therefore (∗) holds in this case.
Case 3. t0 ≤ t ≤ t 0 ≤ t 00. Then

Ø
Ø
Ø
Z t

t0
f1(s) ds

Ø
Ø
Ø ≤ M|t − t0| ≤ M(|t 00 − t0| − |t 00 − t 0|)

Ø
Ø
Ø
Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 00 − t 0|,and

so that (∗) holds in this case.
Case 4. t0 ≤ t 0 ≤ t 00 ≤ t . Then

Ø
Ø
Ø
Z t

t0
f1(s) ds

Ø
Ø
Ø ≤ M|t − t0| = M(|t 00 − t0| + |t − t 00|)

Ø
Ø
Ø
Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 0 − t 00| = M(|t − t 0| − |t − t 00|),and

so that (∗) holds in this case.
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Case 5. t0 ≤ t ≤ t 00 ≤ t 0. Then

Ø
Ø
Ø
Z t

t0
f1(s) ds

Ø
Ø
Ø ≤ M|t − t0| ≤ M|t 00 − t0|

Ø
Ø
Ø
Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 0 − t 00| ≤ M|t 0 − t |,and

so that (∗) holds in this case.
Case 6. t0 ≤ t 0 ≤ t ≤ t 00. Then

Ø
Ø
Ø
Z t

t0
f1(s) ds

Ø
Ø
Ø ≤ M|t − t0| = M(|t 00 − t0| − |t 00 − t |)

Ø
Ø
Ø
Z t 0

t 00
f2(s) ds

Ø
Ø
Ø ≤ M|t 00 − t 0| = M(|t 00 − t | + |t 0 − t |),and

so that (∗) holds in this case.
With (∗) proved we can now proceed with the inductive step to show that

yn(t, t0, y0) is continuous on U . Thus assume that yn−1(t, t0, y0) is continuous
on U . If (t, t0, y0) and (t 0, t 00, y

0
0) are in U , then

yn(t, t0, y0) − yn(t 0, t 00, y
0
0)

= (y0 − y0
0) +

Z t

t0
F(s, yn−1(s, t0, y0)) ds −

Z t 0

t 00
F(s, yn−1(s, t 00, y

0
0)) ds

= (y0 − y0
0) +

Z t

t0
f1(s) ds −

Z t 0

t 00
f2(s) ds,

where f1(s) = F(s, yn−1(s, t0, y0)) and f2(s) = F(s, yn−1(s, t 00, y
0
0)). Thus (∗)

gives

|yn(t, t0, y0) − yn(t 0, t 00, y
0
0)| ≤ |y0 − y0

0| + M(|t0 − t 00| + |t − t 0|) + a0≤ (∗∗)

if ≤ is chosen such that | f1(s) − f2(s)| ≤ ≤ on the common domain of f1 and f2.
Let ≤ > 0 be given, and choose some δ > 0 for uniform continuity of F on

the set R. By uniform continuity of yn−1, choose η > 0 such that

|yn−1(s, t0, y0) − yn−1(s, t 00, y
0
0)| < δ whenever |(s, t0, y0) − (s, t 00, y

0
0)| < η.

Then |(s, t0, y0) − (s, t 00, y
0
0)| < η implies | f1(s) − f2(s)| ≤ ≤ on the common

domain of f1 and f2, and hence (∗∗) holds. Therefore yn is continuous as a
function on U . This completes the induction.
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We know that yn(t, t0, y0) converges to a solution y(t, t0, y0) uniformly in t if
(t0, y0) is fixed. Let us see that the convergence is in fact uniform in (t, t0, y0).
The proof of Theorem 4.1 yielded the estimate

|yn(t, t0, y0) − yn−1(t, t0, y0)| ≤
M
k
kn(a0)n

n!
,

and this is independent of (t, t0, y0). Therefore the Weierstrass M test shows
that yn(t, t0, y0) converges to y(t, t0, y0) uniformly on U . The uniform limit of
continuous functions is continuous by Proposition 2.21, and hence y(t, t0, y0) is
continuous. §

PROOFOF SMOOTHNESS. Under the assumption that F is smoothonD, we are to
prove that y(t, t0, y0) is smooth onU . We return to the earlier proof of continuity
of y(t, t0, y0) and show that each yn(t, t0, y0) is smooth. This smoothness is
trivial for n = 0, we assume inductively that yn−1(t, t0, y0) is smooth, and we
form

yn(t, t0, y0) = y0 +
Z t

t0
F(s, yn−1(s, t0, y0)) ds.

The function on the right side is the composition of (t, t0, y0) 7→ (t, t0, t0, y0) fol-
lowed by (t, t0, s0, y0) 7→

R t
t0 F(s, yn−1(s, s0, y0)) ds. The chain rule (Theorem

3.10), the Fundamental Theorem of Calculus (Theorem 1.32), and Proposition
3.28 allow us to compute partial derivatives of this function, and another argument
with (∗) allows us to see that the partial derivatives are continuous. There is no
difficulty in iterating this argument, and we conclude that yn(t, t0, y0) is smooth.
The same argument in the proof of Theorem 4.1 that enabled us to estimate

the size of yn(t, t0, y0) − yn−1(t, t0, y0) allows us to estimate any iterated partial
derivative of this difference. New constants enter the estimate, but the qualitative
result is the same, namely that any iterated partial derivative of yn(t, t0, y0) con-
verges uniformly to that same iterated partial derivative of y(t, t0, y0). Applying
Theorem 1.23, we see that y(t, t0, y0) is smooth. §

CONCLUDING REMARK. Sometimes a given system y0 = F(t, y) with initial
condition y(t0) = y0 involves parameters in the definition of F , so that effectively
the system is y0 = F(t, y, ∏1, . . . , ∏k). A natural problem is to find conditions
under which the dependence of the solution on the k parameters is continuous or
smooth. The answer is that this problem can be reduced to the problem addressed
by Theorem 4.3. We simply introduce k additional variables zj , one for each
parameter ∏j , together with new equations z0j = 0 and new initial conditions
zj (t0) = ∏j .
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4. Integral Curves

IfU is an open subset ofRn , then a vector field onU may be defined as a function
X : U → Rn . The vector field is smooth if X is a smooth function. In classical
notation, X is written X =

Pn
j=1 aj (x1, . . . , xn)

@
@xj , and the function carries

(x1, . . . , xn) to (a1(x1, . . . , xn), . . . , an(x1, . . . , xn)). The traditional geometric
interpretation of X is to attach to each point p of U the vector X (p) as an arrow
based at p. This interpretation is appropriate, for example, if X represents the
velocity vector at each point in space of a time-independent fluid flow.
In Chapter II we defined the term “path” in ametric space tomean a continuous

function from a closed bounded interval of R1 into the metric space. Then in
Chapter III we used the term “curve” to refer to any continuous function from
an interval, not necessarily closed, into Rn . In this chapter the term curve in a
metric space will be used to refer to a continuous function from an open interval
of R1 into the metric space.
A standard problem in connection with vector fields on an open subset U of

R2 is to try to draw curves within U with the property that the tangent vector
to the curve at any point matches the arrow for the vector field. An illustration
occurs in Figure 4.2. This section abstracts and generalizes this kind of curve.

FIGURE 4.2. Integral curve of a vector field.

Let X : U → Rn be a smooth vector field on U . A curve c(t) is an integral
curve for X if c is smooth (i.e., of class C∞) and c0(t) = X (c(t)) for all t in
the domain of c. Depending on one’s interpretation of the informal wording in
the previous paragraph, the present definition is perhaps more demanding than
the definition given for R2 above: the expression c0(t) involves both magnitude
and direction, and the present definition insists that both ingredients match with
X (c(t)), not just the direction.

Proposition 4.4. Let X : U → Rn be a smooth vector field on an open subset
U of Rn , and let p be in U . Then there exist an ε > 0 and an integral curve
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c : (−ε, ε) → U such that c(0) = p. Any two integral curves c and d for X
having c(0) = d(0) = p coincide on the intersection of their domains.
PROOF. Apart from the smoothness the first conclusion is just a restatement

of a special case of Theorem 4.1 in different notation. The conditions on c are
that c be a solution of c0 = X (c) and that c(0) = p. The existence of a solution
is immediate from Theorem 4.1 if we put F = X , c = y, t0 = 0, and y0 = p.
The way in which this application of Theorem 4.1 is a special case and not the
general case is that F is independent of t here. The smoothness of c follows from
Theorem 4.3, and the uniqueness follows from Theorem 4.2. §

The interest is not only in Proposition 4.4 in isolation but also in what happens
to the integral curves when X is part of a family of vector fields.

Proposition 4.5. Let X (1), . . . , X (m) be smooth vector fields on an open subset
U ofRn , let p be inU , and let V be a bounded open neighborhood of 0 inRm . For
∏ in V , put X∏ =

Pm
j=1 ∏j X ( j). Then there exist an ε > 0 and a system of integral

curves c(t, ∏), defined for t ∈ (−ε, ε) and ∏ ∈ V , such that c( · , ∏) is an integral
curve for X∏ with c(0, ∏) = p. Each curve c(t, ∏) is unique, and the function
c : (−ε, ε) × V → U is smooth. If m = n, if the vectors X (1)(p), . . . , X (n)(p)
are linearly independent, and if δ is any positive number less than ε, then the
Jacobian matrix of ∏ 7→ c(δ, ∏) at ∏ = 0 is nonsingular.
REMARK. In the final conclusion of this proposition, the open neighborhood

of 0 within V is allowed to depend on δ. It follows from the final conclusion that
the Inverse Function Theorem (Theorem 3.17) and its corollary (Corollary 3.21)
are applicable to the mapping ∏ 7→ c(δ, ∏) at ∏ = 0. These results produce a
smooth inverse function carrying an open subneighborhood of 0 within V onto
an open subneighborhood of p ofU . In effect the inverse function assigns locally
defined coordinates in ∏ space to a neighborhood of U .
PROOF. We set up the system of equations c0 = X∏ ◦ c, i.e.,

c0
i =

mX

j=1
∏j X

( j)
i (c),

with initial condition c(0) = p. This is a smooth system of the kind considered
in Theorem 4.3, and the ∏j with 1 ≤ j ≤ m are parameters. The parameters
are handled by the concluding remark in Section 3: we obtain unique solutions
c(t, ∏) for t in some open interval (−ε, ε), and (t, ∏) 7→ c(t, ∏) is smooth.
Now suppose that m = n, that the vectors X (1)(p), . . . , X (n)(p) are linearly

independent, and that 0 < δ < ε. The function c satisfies

c0
i (t, ∏) =

nX

j=1
∏j X

( j)
i (c(t, ∏)), (∗)
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and we use this information to compute the Jacobian matrix of ∏ 7→ c(δ, ∏) at
∏ = 0. The Fundamental Theorem of Calculus, Proposition 3.28, and (∗) give

@ci
@∏j

(δ, ∏) =
@ci
@∏j

(0, ∏) +
Z δ

0

@c0
i

@∏j
(t, ∏) dt

=
@ci
@∏j

(0, ∏) +
@

@∏j

Z δ

0
c0
i (t, ∏) dt

=
@ci
@∏j

(0, ∏) +
Z δ

0
X ( j)
i (c(t, ∏)) dt +

nX

k=1
∏k

@

@∏j

Z δ

0
X (k)
i (c(t, ∏)) dt.

Now ci (0, ∏) = pi for all∏, and hence @ci
@∏j

(0, ∏)
Ø
Ø
∏=0 = 0. Also, c(t, 0) is constant

in t by (∗), and the constant is c(0, 0) = p. Finally when ∏ is set equal to 0 in
the term

Pn
k=1 ∏k

@
@∏j

R δ

0 X
(k)
i (c(t, ∏)) dt , each ∏k becomes 0, and thus the whole

term becomes 0. Thus the above equation specializes at ∏ = 0 to

@ci
@∏j

(δ, ∏)
Ø
Ø
Ø
∏=0

= 0+ δX ( j)
i (p) + 0.

The vectors X ( j)(p) are by assumption linearly independent, and hence the de-
terminant of the matrix [X ( j)

i (p)] is not 0. Consequently the Jacobian matrix
∏ 7→ c(δ, ∏) at ∏ = 0 is nonsingular if δ 6= 0. §

5. Linear Equations and Systems, Wronskian

Recall from Section 1 that a linear ordinary differential equation is defined to
be an equation of the type

an(t)y(n) + an−1(t)y(n−1) + · · · + a1(t)y0 + a0(t)y = q(t)

with real or complex coefficients. The equation is homogeneous if q is the 0
function, inhomogeneous in general. In order for the existence and uniqueness
theorems of Section 1 to apply, we need to be able to solve for y(n) and have all
coefficients be continuous afterward. Thus we assume that an(t) = 1 and that
an−1(t), . . . , a0(t) and q(t) are continuous on some open interval.
Even in simple cases, the theory is helped by converting a single equation to a

system of first-order equations. In Section 1 we saw an indication that a way to
make this conversion is to put
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y1 = y y0
1 = y2

y2 = y0 y0
2 = y3

... and get
...

yn−1 = y(n−2) y0
n−1 = yn

yn = y(n−1) y0
n = −a0(t)y1 − · · · − an−1yn + q(t).

If we change the meaning of the symbol y from a scalar-valued function to the
vector-valued function y = (y1, . . . , yn), then we arrive at the system

y0 = A(t)y + Q(t),

where A(t) is the n-by-n matrix of continuous functions given by

A(t) =









0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−a0(t) −a1(t) −a2(t) · · · −an−1(t)









and Q(t) is the n-component column vector of continuous functions given by

Q(t) =









0
0
...
0
q(t)









.

In a general linear first-order system of the kind we shall study, A(t) can be
any n-by-n matrix of continuous functions and Q(t) can be any column vector
of continuous functions; thus the first-order system obtained by conversion of a
single nth-order equation is of quite a special form among all first-order linear
systems.
For a system y0 = A(t)y + Q(t) as above, the Lipschitz condition for the

function F(t, y) = A(t)y + Q(t) is automatic, since

|F(t, y) − F(t, y∗)| = |A(t)(y − y∗)| ≤ kA(t)k|y − y∗|

and since the function t 7→ kA(t)k is bounded on any compact subinterval of our
domain interval. By the uniqueness theorem (Theorem 4.2), a unique solution
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to the system is determined by data (t0, y0), the local solution corresponding to
(t0, y0) being the one satisfying the initial condition that the vector y(t0) equal the
vector y0. If we track down what these data correspond to in the case of a single
nth-order equation, we see that a unique solution to a single nth-order equation
of the kind described above is determined by initial values at a point t0 for the
scalar-valued solution and all its derivatives through order n − 1.
First-order linear systemsof size one can be solved explicitly in terms of known

functions and integrations. Specifically the single homogeneous first-order equa-
tion y0 = a(t)y is solved by y(t) = c exp

° R t a(s) ds
¢
, and the solution of a

single inhomogeneous first-order equation can be reduced to the homogeneous
case by the variation-of-parameters formula that appears later in this section.
However, there need not be such an elementary solution of a first-order linear
system of size two, not even a system that comes from a single second-order
equation. Elementary solutions exist when the coefficient matrix has constants
as entries, and we shall address that case in the next two sections. Sometimes
one can write down tidy power-series solutions when the coefficient matrix has
nonconstant entries, and we shall take up that matter later in the chapter. For
now, we develop some general theory about first-order linear systems, beginning
with the homogeneous case. The linearity implies that the set of solutions to
the system y0 = A(t)y on an open interval is a vector space (of vector-valued
functions) in the sense that it is closed under addition and scalar multiplication.

Theorem 4.6. Let y0 = A(t)y be a homogeneous linear first-order n-by-n
system with A(t) continuous for a < t < b. Then

(a) any solution on a subinterval (a0, b0) extends to a solution on the whole
interval (a, b),

(b) the dimension of the vector space of solutions on any subinterval (a0, b0)
is exactly n,

(c) if v1(t), . . . , vr (t) are solutions on an interval (a0, b0) and if t0 is in that
interval, then v1, . . . , vr are linearly independent functions if and only if
the column vectors v1(t0), . . . , vn(t0) are linearly independent.

PROOF. We begin by proving (c). If c1v1(t) + · · · + crvr (t) is identically 0
for constants c1, . . . , cr not all 0, then c1v1(t0) + · · · + crvr (t0) = 0 for the same
constants. Conversely suppose that c1v1(t0) + · · · + crvr (t0) = 0 for constants
not all 0. Put v(t) = c1v1(t) + · · · + crvr (t). Then v(t) and the 0 function are
solutions of the system satisfying the same initial conditions—that they are 0 at
t0. By the uniqueness theorem (Theorem 4.2), v(t) is the 0 function. This proves
(c).
The upper bound in (b) is immediate from (c) since the dimension of the space

of n-component column vectors is n.
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Let us prove that n is a lower bound for the dimension in (b) if the interval
containing t0 is sufficiently small. By the existence theorem (Theorem 4.1), there
exists a solution vj (t) on some interval |t − t0| < εj such that vj (t0) = ej . The
vj (t) are then solutions on |t − t0| < ε with ε = min{ε1, . . . , εn}, and they are
linearly independent by (c). Hence the dimension of the space of solutions is at
least n on the interval |t − t0| < ε or on any subinterval containing t0.
We are not completely donewith proving (b), but let us now prove (a). Let v(t)

be a solution on (a0, b0). If we have a collection of solutions on different intervals
containing (a0, b0) and each pair of solutions is consistent on their common
domain, then the union of the solutions is a solution. Consequently we may
assume that v(t) does not extend to a solution on any larger interval. We are
to prove that (a0, b0) = (a, b). Suppose on the contrary that b0 < b. We use
t0 = b0 in the previous paragraph of the proof; the result is that on some interval
|t−b0| < ε with ε sufficiently small and at least small enough so that a0 < b0 −ε,
the space of solutions has dimension n with a basis {v1, . . . , vn}. By (c), the
column vectors v1(b0 − ε), . . . , vn(b0 − ε) are linearly independent, and thus the
restrictions of v1, . . . , vn to (b0 − ε, b0) are linearly independent. The restriction
of v(t) to the interval (b0 − ε, b0) is a solution, and thus there exist constants
c1, . . . , cn such that

v(t) = c1v1(t) + · · · + cnvn(t) for b0 − ε < t < b0.

But then the function equal to v(t) on (a0, b0) and equal to c1v1(t)+· · ·+cnvn(t)
on (b0 − ε, b0 + ε) extends v(t) to a solution on a larger interval and contradicts
the maximality of the domain of v(t). This proves that b0 = b. Similarly we find
that a0 = a. This proves (a).
We return to the unproved part of (b). Fix t0 in (a0, b0). On a subinterval

about t0, the space of solutions has dimension n, as we have already proved. Let
{v1, . . . , vn} be a basis. By (a), we can extend v1, . . . , vn to solutions on (a0, b0).
Then the space of solutions on (a0, b0) has dimension at least n, and (b) is now
completely proved. §

EXAMPLE. Let us illustrate the content of Theorem 4.6 by means of a single
second-order equation, namely y00 + y = 0. We know that c1 cos t + c2 sin t is a
solution for every pair of constants c1 and c2. To convert the equation to a system,
we introduce y1 = y and y2 = y0. The system is then

y0
1 = y2,
y0
2 = −y1,

and hence the matrix is A(t) =
≥

0 1
−1 0

¥
, a matrix of constants. The scalar-valued

solutions cos t and sin t of y00 + y = 0 correspond to the vector-valued solutions
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≥
cos t

− sin t

¥
and

≥
sin t
cos t

¥
, respectively; each of these has a scalar-valued solution in

its first entry and the derivative in the second entry. In either case, both solutions
are defined on the interval (−∞,+∞). The theorem says that the restrictions
of these two functions to any subinterval span the solutions on that subinterval.
According to (c), the linear independence of the scalar-valued solutions cos t and
sin t is reflected by the linear independence of the column vectors

≥
cos t0

− sin t0

¥
and

≥
sin t0
cos t0

¥
for any t0 in (−∞,+∞). The latter independencewecan see immediately

by observing that the matrix
≥

cos t0 sin t0
− sin t0 cos t0

¥
has determinant equal to 1 and not 0.

The kind of matrix formed in the previous example is a useful tool when
generalized to an arbitrary homogeneous linear system, and it has a customary
name. Let v1(t), . . . , vn(t) be solutions of an n-by-n homogeneous linear system
y0 = A(t)y with A(t) continuous. TheWronskian matrix of v1, . . . , vn is the
n-by-n matrix whose j th column is vj . If vi, j denotes the i th entry of the j th
solution, then

W (t) =




v1,1(t) · · · v1,n(t)

...
. . .

...
vn,1(t) · · · vn,n(t)



 .

Since each column of W (t) is a solution, we obtain the matrix identity W 0(t) =
A(t)W (t).

EXAMPLE, CONTINUED. In the case of the single second-order equation
y00 + y = 0, we listed two linearly independent scalar-valued solutions as cos t
and sin t . When the equation is converted into a 2-by-2 homogeneous linear
system, the Wronskian matrix is

W (t) =

µ
cos t sin t

− sin t cos t

∂
.

For a general nth-order equation with v1, . . . , vn as scalar-valued solutions, the
Wronskian matrix of the associated system is

W (t) =







v1(t) · · · vn(t)
v0
1(t) · · · v0

n(t)
...

. . .
...

v
(n−1)
1 (t) · · · v

(n−1)
n (t)





 .

Proposition 4.7. If v1(t), . . . , vn(t) are solutions on an interval of an n-by-n
homogeneous linear system y0 = A(t)y with A(t) continuous, then the following
are equivalent:

(a) v1, . . . , vn are linearly independent solutions,
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(b) detW (t) is nowhere 0,
(c) detW (t) is somewhere nonzero.

PROOF. By Theorem 4.6c, (a) here is equivalent to the linear independence
of v1(t0), . . . , vn(t0), no matter what t0 we choose, hence is equivalent to the
condition detW (t0) 6= 0, no matter what t0 we choose. The proposition follows.

§

We shall use the Wronskian matrix of a homogeneous system to analyze the
solutions of any corresponding inhomogeneous system.

Proposition 4.8. For an inhomogeneous linear system y0 = A(x)y + Q(t)
with A(t) and Q(t) continuous for a < t < b, any solution y∗(t) on a subinterval
(a0, b0) of (a, b) extends to be a solution on (a, b), and the most general solution
y(t) is of the form y(t) = h(t) + y∗(t), where y∗(t) is one solution of y0 =
A(t)y + Q(t) and h(t) is an arbitrary solution of the homogeneous system y0 =
A(t)y.

PROOF. If y∗ and y∗∗ are two solutions of y0 = A(t)y + Q(t) on (a0, b0), then
(y∗∗ − y∗)0(t) = (A(t)y∗∗(t)+Q(t))−(A(t)y∗(t)+Q(t)) = A(t)(y∗ − y∗∗)(t),
and h = y∗∗ − y∗ solves y0 = A(t)y on (a0, b0). Conversely if h solves y0 =
A(t)y + Q(t) on (a0, b0), then

(y∗ + h)0(t) = y∗0(t) + h0(t)
= (A(t)y∗(t) + Q(t)) + A(t)h(t) = A(t)(y∗ + h)(t) + Q(t),

and y∗ + h is a solution of y0 = A(t)y + Q(t) on (a0, b0).
We are left with showing that any solution y∗ of y0 = A(t)y+Q(t) on (a0, b0)

extends to a solution on (a, b). As in the proof of Theorem 4.6a, we can form
unions of functions and thereby assume that y∗ cannot be extended to be a solution
on a larger interval. The claim is that (a0, b0) = (a, b). Assuming the contrary,
suppose, for example, that b0 < b. By the existence theorem (Theorem 4.1), there
exists a solution y∗∗(t) of y0 = A(t)y+Q(t) for |t−b0| < ε if ε is small enough.
By the result of the previous paragraph, y∗(t) = y∗∗(t)+h(t) on (b0 −ε, b0) for a
suitable choiceofh that solves thehomogeneoussystem y0 = A(t)y on (b0−ε, b0).
Since y∗∗(t) is given as a solutionof y0 = A(t)y+Q(t)on (b0−ε, b0+ε) and since,
by Theorem 4.6a, h(t) extends to a solution of y0 = A(t)y on (b0 − ε, b0 + ε), we
see that y∗∗(t)+h(t) extends to a solution of y0 = A(t)y+Q(t) on (b0−ε, b0+ε).
Then the function equal to y∗(t) on (a0, b0) and to y∗∗(t)+h(t) on (b0 −ε, b0 +ε)
extends y∗(t) to a solution of y0 = A(t)y + Q(t) on a larger interval, namely
(a0, b0 + ε). We obtain a contradiction and conclude that b0 must have equaled
b. Similarly a0 must equal a. Thus every solution of y0 = A(t)y + Q(t) on a
subinterval extends to all of (a, b), and the proof is complete. §
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Theorem 4.9 (variation of parameters). For an inhomogeneous linear system
y0 = A(x)y+ Q(t) with A(t) and Q(t) continuous for a < t < b, let v1, . . . , vn
be linearly independent solutions of y0 = A(t)y on (a, b), and let W (t) be their
Wronskian matrix. Then a particular solution y∗ of y0 = A(t)y+ Q(t) on (a, b)
is given by

y∗(t) = W (t)u(t), where W (t)u0(t) = Q(t).

That is,

y∗(t) = W (t)
Z t

W (s)−1Q(s) ds.

REMARKS. Linearly independent solutions v1, . . . , vn as in the statement exist
by Theorem 4.6.

PROOF. For any differentiable vector-valued function u(t), y∗(t) = W (t)u(t)
has

(y∗)0 = W 0u + Wu0 = AWu + Wu0 = Ay∗ + Wu0.

Thus y∗ will have (y∗)0 = Ay∗ + Q if and only if Wu0 = Q. Since Proposition
4.7 shows thatW (t)−1 exists and is continuous, we can solveWu0 = Q for u. §

EXAMPLE, CONTINUED. Now consider the single second-order inhomogeneous
linear equation y00 + y = tan t on the interval |t | < π/2. We saw that we can
take W (t) =

≥
cos t sin t

− sin t cos t

¥
. We set up the system

µ
cos t sin t

− sin t cos t

∂µ
u0
1
u0
2

∂
=

µ
0
tan t

∂

of algebraic linear equations and solve for u0
1 and u0

2:

µ
u0
1
u0
2

∂
=

µ
cos t − sin t
sin t cos t

∂µ
0
tan t

∂
=



−
sin2 t
cos t
sin t



 .

A vector-valued function with derivative
≥
u0
1
u0
2

¥
for |t | < π/2 is

µ
u1(t)
u2(t)

∂
=

µ
sin t − log(1+ sin t) + log cos t

− cos t

∂
,

and we thus take y∗(t) = (cos t)u1(t) + (sin t)u2(t). The most general solution
of the given inhomogeneous equation is therefore y∗(t) + c1 cos t + c2 sin t .



6. Homogeneous Equations with Constant Coefficients 243

6. Homogeneous Equations with Constant Coefficients

In this section and the next, we discuss first-order homogeneous linear systems
with constant coefficients. The system is of the form y0 = Ay with A a matrix
of constants. A single homogeneous nth-order linear equation with constant
coefficients can be converted into such a first-order system and can therefore be
handled by the method applicable to all first-order homogeneous linear systems
with constant coefficients. But such an equation can be handled more simply in a
direct fashion, andwe therefore isolate in this section the case of a single nth-order
equation. This section and the next will make use of material on polynomials
from Section A8 of Appendix A.
The equation to be studied in this section is of the form

y(n) + an−1y(n−1) + · · · + a1y0 + a0y = 0
with coefficients inC. Let us write this equation as L(y) = 0 for a suitable linear
operator L defined on functions y of class Cn:

L =
≥ d
dt

¥n
+ an−1

≥ d
dt

¥n−1
+ · · · + a1

≥ d
dt

¥
+ a0.

The term a0 is understood to act as a0 times the identity operator. Since d
dt e

rt =
rert , we immediately obtain

L(ert) = (rn + an−1rn−1 + · · · + a1r + a0)ert .

The polynomial
P(∏) = ∏n + an−1∏n−1 + · · · + a1∏ + a0

is called the characteristic polynomial of the equation, and the formula L(ert) =
P(r)ert shows that y(t) = ert is a solution of L(y) = 0 if and only if r is a root
of the characteristic polynomial. From Section A8 of Appendix A, we know that
the polynomial P(∏) factors into the product of linear factors ∏ − r , the factors
being unique apart from their order. Let us list the distinct roots, i.e., the distinct
such complex numbers r , as r1, . . . , rk with k ≤ n, and let us write mj for the
number of times that ∏ − rj occurs as a factor of P(∏), i.e., the multiplicity of rj
as a root of P . Then we have

Pk
j=1mj = n and

P(∏) =
Yk

j=1
(∏ − rj )mj .

Corresponding to this factorization of P is a factorization of L as

L =
Yk

j=1

≥ d
dt

− rj
¥mj

.

On the right side the individual factors commutewith each other because differen-
tiation commutes with itself and with multiplication by constants. The following
lemma therefore produces n solutions of the given equation L(y) = 0.
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Lemma 4.10. For m ∏ 1 and r in C, all the functions ert , tert , . . . , tm−1ert
are solutions of the mth-order differential equation

≥ d
dt

− r
¥m

(y) = 0.

PROOF. Direct computation gives
° d
dt − r

¢
(tkert) = ktk−1ert , and hence° d

dt − r
¢m

(tkert) = k(k − 1) · · · (k − m + 1)tk−mert . The right side is 0 if
0 ≤ k ≤ m − 1, and the lemma follows. §

Lemma 4.11. Let r1, . . . , rN be distinct complex numbers, and let mj be N
integers ∏ 1. Then the

PN
j=1mj functions

erj t , terj t , . . . , tmj−1erj t , 1 ≤ j ≤ N ,

are linearly independent over C.
PROOF. Let k ∏ 1 be an integer, let r be a complex number, and let P(t) be a

polynomial of degree ≤ k − 1. We allow P(t) to be the 0 polynomial. Then

d
dt [(t

k + P(t))ert ] = r(tk + P(t))ert + ((k − 1)tk−1 + P 0(t))ert ,

from which it follows that

d
dt [(t

k + P(t))ert ] = (rtk + Q(t))ert (∗)

with Q(t) a polynomial of degree ≤ k − 1 or the 0 polynomial.
We shall prove by induction on N that if P1, . . . , PN are polynomials with

complex coefficients such that
PN

j=1 Pj (t)erj t is the 0 function, then all the Pj are
0 polynomials. For N = 1, if P(t)ert is the 0 function, then P(t) is the 0 function.
Since a polynomial of degree k ∏ 0 has at most k roots, we conclude that P has
all coefficients 0. This disposes of the assertion for N = 1. Assume the result
for N − 1, and suppose that we are given that

PN−1
j=1 Pj (t)erj t + PN (t)erN t is the

0 function, where {r1, . . . , rN−1, rN } are distinct. Then

N−1X

j=1
Pj (t)eqj t + PN (t) (∗∗)

is the 0 function when qj = rj − rN for j ≤ N − 1. If PN is the 0 polynomial,
the inductive hypothesis shows that all Pj with j ≤ N − 1 are 0 polynomials.
Otherwise let PN have degree d, and differentiate (∗∗) d + 1 times. If Pj (t) for
j ≤ N − 1 is the sum of anj tnj plus lower-degree terms, then (∗) shows that the
result of the differentiation is that
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N−1X

j=1

°
anj (qj )

d+1tnj + lower-degree terms
¢
eqj t

is the 0 function. By the inductive hypothesis each anj has to be 0, and hence all
coefficients of each Pj have to be 0 for j ≤ N − 1. Then PN (t) is identically 0
and must be the 0 polynomial. This completes the induction.
If we are given a linear combination of the functions in the statement of

the lemma that equals the 0 function, then we obtain a relation of the formPN
j=1 Pj (t)erj t = 0, and we have just seen that this relation forces all Pj to be 0

polynomials. This completes the proof. §

Proposition 4.12. Let the differential equation

y(n) + an−1y(n−1) + · · · + a1y0 + a0y = 0,

with complex coefficients, have characteristic polynomial given by P(∏) =Qk
j=1 (∏−rj )mj with r1, . . . , rk distinct complex numbers andwith themj integers

∏ 0 such that
Pk

j=1mj = n. Then the n functions

erj t , terj t , . . . , tmj−1erj t , 1 ≤ j ≤ k,

form a basis overC of the space of solutions of the given equation on any interval.
PROOF. Lemma4.10 shows that the functions in question are solutions, Lemma

4.11 shows that they are linearly independent, and Theorem 4.6 shows that
the dimension of the space of solutions on any interval is n. Since n linearly
independent solutions have been exhibited, they must form a basis of the space
of solutions. §

If the equation in Proposition 4.12 happens to have real coefficients, it is
meaningful to ask for a basis overRof the spaceof real-valued solutions. Since the
coefficients are real, we have L(ȳ) = L(y) for all complex-valued functions y of
classCn , and it follows that the complex conjugate of any complex-valued solution
is again a solution. Thus the real and imaginary parts of any complex-valued
solution are real-valued solutions. Meanwhile, the characteristic polynomial P
of the equation has real coefficients, and it follows that the set of roots of P is
closed under complex conjugation. In addition, the multiplicity of a root equals
the multiplicity of its complex conjugate. For any integer k ∏ 0 and complex
number a + bi with b 6= 0, we have

Ctke(a+bi)t + Ctke(a−bi)t = Ctkeat cos bt + Ctkeat sin bt.

Thus tkeat cos bt and tkeat sin bt form a basis over C of the space spanned by
tke(a+bi)t and tke(a−bi)t . The functions tkeat cos bt and tkeat sin bt are real-valued,
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and thus we obtain a basis over C consisting of the real-valued solutions of the
given equation if we retain the solutions tkert with r real and we replace any
pair tke(a+bi)t and tke(a−bi)t of solutions, b 6= 0, by the pair tkeat cos bt and
tkeat sin bt .
Let us see that these resulting functions form a basis over R of the real vector

space of real-valued solutions. In fact, we know that they are linearly independent
over R because they are linearly independent over C. To see that they span, we
take any real-valued solution and expand it as a complex linear combination
of these functions. The imaginary part of this expansion exhibits 0 as a linear
combination of the given functions, and the coefficients must be 0 by linear
independence. Thus the constructed functions form a basis over R of the space
of real-valued solutions.

7. Homogeneous Systems with Constant Coefficients

Having discussed linear homogeneous equations with constant coefficients, let
us pass to the more general case of first-order homogeneous linear systems with
constant coefficients. Wewrite the system as y0 = Ay with A an n-by-nmatrix of
constants. In principlewecan solve the system immediately. Namely, Proposition
3.13c tells us that ddt (e

t A) = Aet A, so that each of the n columnsof et A is a solution
of y0 = Ay. At t = 0, et A reduces to the identitymatrix, and thus these n solutions
are linearly independent at t = 0. By Theorem 4.6 these n solutions form a basis
of all solutions on any subinterval (a, b) of (−∞,+∞). The solution satisfying
the initial condition y(t0) = y0 is y(t) = et Ae−t0Ay0, which is the particular
linear combination

Pn
j=1 cj et Aej of the columns of et A in which cj is the number

cj = (e−t0Ay0)j .
In practice it is not so obvious how to compute et A except in special cases in

which the exponential series can be summed entry by entry. Let us write down
three model cases of this kind, and ultimately we shall see that we can handle
general A by working suitably with these cases.

MODEL CASES.
(1) Let

C =













0 1 0 0 · · · 0 0
0 1 0 · · · 0 0

0 1 · · · 0 0
. . .

. . .
...

...
0 1 0

0 1
0















7. Homogeneous Systems with Constant Coefficients 247

be of size m-by-m with 0’s below the main diagonal. Raising C to powers, we
see that the (i, j)th entry of Ak is 1 if j = i + k and is 0 otherwise. Hence

etC =


















0 t 1
2! t

2 1
3! t

3 · · · 1
(m−2)! t

m−2 1
(m−1)! t

m−1

0 t 1
2! t

2 · · · 1
(m−3)! t

m−3 1
(m−2)! t

m−2

0 t · · ·
... 1

(m−3)! t
m−3

. . .
. . .

...

0 t 1
2! t

2

0 t

0


















with 0’s below the main diagonal.
(2) Let

A =













a 1 0 0 · · · 0 0
a 1 0 · · · 0 0

a 1 · · · 0 0
. . .

. . .
...

...
a 1 0

a 1
a













,

so that A = a1 + C with C as in the previous case. Since a1 and C commute,
Proposition 3.13a shows that et A = eatetC . In other words, et A is obtained by
multiplying every entry of the matrix etC in the previous case by eat . A matrix
of this form A for some complex constant a and for some size m is said to be a
Jordan block. Thus we know how to form et A if A is a Jordan block.
(3) Let A be block diagonal with each block being a Jordan block:

A =







block #1
block #2

. . .

block #k





 .

Then

et A =







et block #1
et block #2

. . .

et block #k





 .

Thus we know how to form et A if A is block diagonal with each block being a
Jordan block. A matrix A of this kind is said to be in Jordan form.
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The theorem reduces any computation of a matrix et A to this case.

Theorem 4.13 (Jordan normal form). For any square matrix A with complex
entries, there exists a nonsingular complex matrix B such that B−1AB = J is in
Jordan form.

REMARKS. This theorem comes from linear algebra, but knowledge of it is
beyond the algebra prerequisites for this book. The proof is long and is not in the
spirit of this text, and we shall omit it; however, the interested reader can find a
proof in many algebra books that treat linear algebra. One such is the author’s
Basic Algebra. As a practical matter, the proof will not give us any additional
information, since we already know that et A yields the solutions to y0 = Ay and
the only remaining question is to convert the statement of the theorem into an
explicit method of computation.

Let us see what Theorem 4.13 accomplishes. The solution of y0 = Ay with
y(t0) = y0 is y(t) = e(t−t0)Ay0. Write B−1AB = J as in the proposition. Then
Proposition 3.13d gives

y(t) = e(t−t0)Ay0 = B(B−1e(t−t0)AB)B−1y0

= Be(t−t0)B−1AB B−1y0 = Be(t−t0)J B−1y0.

If we can compute J , then Model Case 3 above tells us what e(t−t0)J is. If we can
compute B also, then we recover y(t) explicitly.
The practical effect is that Theorem 4.13 gives us a method for calculating

solutions. The idea behind the method is that the qualitative properties of B and
J forced by the theorem are enough to lead us to explicit values of B and J . Let
us go through the steps. A concrete example of J is

J =

















a 1 0
0 a 1
0 0 a

a 1
0 a

a 1
0 a

a
b

. . .

















.

It is helpful to know the extent of uniqueness in Theorem 4.13. The matrix J is
actually unique up to permuting the order of the Jordan blocks. The matrix B is
not at all unique but results from finding bases of certain subspaces of Cn . The
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first step is to form the characteristic polynomial2 P(∏) = det(∏1 − A) of A.
We have

det(∏1− J ) = det(∏1− B−1AB) = det(B−1(∏1− A)B)

= det(B)−1 det(∏1− A) det(B) = det(∏1− A),

and thus J has the same characteristic polynomial as A. The characteristic
polynomial of J is just the product of expressions ∏ − d as d runs through the
diagonal entries of J . According to Section A8 of Appendix A, the factorization
of a polynomial with complex coefficients and with leading coefficient 1 into
first-degree expressions ∏ − c is unique up to order, and thus the factorization of
P(∏) tells us the diagonal entries of J . We still need to know the sizes of the
individual Jordan blocks.
The sizes of the Jordan blocks come from computing dimensions of various

null spaces—or kernels, in the terminology of linear functions. If a occurs as a
diagonal entry of J , think of forming J − a1 and its powers, and consider the
dimension of the kernel of each power. For example, with the explicit matrix J
that is written above, we have

J − a1 =















0 1 0
0 0 1
0 0 0

0 1
0 0

0 1
0 0

0
nonsingular















,

and dimker(J − a1) is the number of Jordan blocks of size ∏ 1 with a on the
diagonal, namely 4 in this case. Next we consider (J − a1)2. In this case,

(J − a1)2 =















0 0 1
0 0 0
0 0 0

0 0
0 0

0 0
0 0

0
nonsingular















,

2Many books write the characteristic polynomial as det(A−∏1), which is the same as the present
polynomial if n is even but is its negative if n is odd. The present notation has the advantage that
the notions of characteristic polynomial here and in the previous section coincide when an nth-order
equation is converted into a first-order system.
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and dimker(J−a1)2 = 7. This number arises as the sum of the previous number
and the number of Jordan blocks of size ∏ 2 with a on the diagonal. Thus
dimker(J −a1)2−dimker(J −a1) in general is the number of Jordan blocks of
size ∏ 2 with a on the diagonal. Finally we consider (J − a1)3. In this case, the
upper left part of (J−a1)3 corresponding to diagonal entrya is all 0, and the lower
right part is nonsingular; hence dimker(J − a1)3 = 8. This number arises as the
sum of the previous number and the number of Jordan blocks of size ∏ 3 with a
on the diagonal. Thus in general, dim ker(J − a1)3 − dimker(J − a1)2 is the
number of Jordan blocks of size ∏ 3 with a on the diagonal. In our example, the
number dimker(J − a1)k remains at 8 for all k ∏ 3 because 8 is the multiplicity
of a as a root of P(∏), and we are therefore done with diagonal entry a; our
computation has shown that the numbers of Jordan blocks of sizes 1, 2, 3, 4, . . . ,
are 1, 2, 1, 0, . . . , and a check on the computation is that 1(1)+2(2)+3(1) = 8.
Of course, we do not have J at our disposal for these calculations, but A yields

the same numbers. In fact, we have B(J − a1)k B−1 = (A − a1)k , from which
we see that x ∈ ker(A − a1)k if and only if B−1x ∈ ker(J − a1)k. Hence

B(ker(J − a1)k) = ker(A − a1)k .

Since B is nonsingular, the dimension of the kernel of (J − a1)k equals the
dimension of the kernel of (A − a1)k . Consequently

dimker(A − a1) = #{Jordan blocks of size ∏ 1 with a on diagonal},

dimker(A − a1)2 − dimker(A − a1)
= #{Jordan blocks of size ∏ 2 with a on diagonal},

dimker(A − a1)3 − dimker(A − a1)2

= #{Jordan blocks of size ∏ 3 with a on diagonal},
etc.

Repeating this argument with the other roots of P(∏), we find that we can
determine J completely.
Calculating B requires working with vectors rather than dimensions. The

columns of B are just Be1, . . . , Ben , and we seek a way of finding these. Fix
attention on a root a of P(∏). Consider an index i with 1 ≤ i ≤ n, and suppose
that the diagonal entry of J in column i is a. From the form of J , we see that
either the i th column of J −a1 is 0 or else it is ei−1. In the latter case, index i −1
corresponds to the same Jordanblock. Using the identity (A−a1)B = B(J−a1),
we see that either

(A − a1)(Bei ) = B(J − a1)ei = 0
(A − a1)(Bei ) = B(J − a1)ei = Bei−1,or
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and index i − 1 corresponds to the same Jordan block as index i in the latter
case. Thus the vectors Bei corresponding to the columns with diagonal entry a
and with smallest index for a Jordan block lie in ker(A − a1). They are linearly
independent since B is nonsingular, and the number of them is the number of
Jordan blocks corresponding to diagonal entry a. We saw that this number equals
dimker(A − a1). Hence the vectors Bei corresponding to the smallest indices
going with each Jordan block form a basis of ker(A − a1).
Similarly

(A − a1)2(Bei ) = B(J − a1)2ei = 0

(A − a1)2(Bei ) = B(J − a1)2ei = Bei−2,or

and index i −2 corresponds to the same Jordan block as index i in the latter case.
Thus the vectors Bei corresponding to the columnswith diagonal entry a andwith
smallest or next smallest index for a Jordan block lie in ker(A − a1)2. They are
linearly independent since B is nonsingular, and the number of them is the sum
of the previously computed number, namely dimker(A − a1), plus the number
of Jordan blocks of size∏ 2 that correspond to diagonal entry a. We saw that this
sum equals dimker(A − a1)2. Hence the vectors Bei corresponding to the two
smallest indices going with each Jordan block form a basis of ker(A− a1)2. The
new vectors Bei are therefore vectors that we adjoin to a basis of ker(A− a1) to
obtain a basis of ker(A − a1)2.
In setting up these vectors properly, however, we have to correlate the indices

studied at the previous step with those being studied now. The relevant formula is
that the new indices i have the property (A−a1)Bei = Bei−1. To obtain vectors
with this consistency property, we would take a basis S1 of ker(A − a1), extend
it to a basis S2 of ker(A − a1)2, discard the members of S1, apply A − a1 to the
members of S2 − S1, and extend (A− a1)(S2 − S1) to a basis T1 of ker(A− a1).
Then S0

2 = (S2 − S1) ∪ T1 is a new basis of ker(A − a1)2.
We can continue the argument in this way. It is perhaps helpful to read the

general discussion of the argument side by side with the explicit example that
appears below. We continue to find that the construction of new basis vectors gets
in the way of the necessary consistency property with the earlier basis vectors.
Thus we really must start with the largest index k such that ker(A − a1)k 6=
ker(A − a1)k−1. We extend a basis Sk−1 of ker(A − a1)k−1 to a basis Sk of
ker(A − a1)k , and form

(Sk − Sk−1) ∪ (A − a1)(Sk − Sk−1) ∪ · · · ∪ (A − a1)k−1(Sk − Sk−1).

These vectors will be the columns of B corresponding to the largest Jordan blocks
with diagonal entry a. The vectors in

(A − a1)2(Sk − Sk−1) ∪ · · · ∪ (A − a1)k−1(Sk − Sk−1)
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are linearly independent in ker(A− a1)k−2; we extend this set to a basis S0
k−2 of

ker(A − a1)k−2, and we extend S0
k−2 ∪ (A − a1)(Sk − Sk−1) to a basis S0

k−1 of
ker(A−a1)k−1. The adjoined vectors, togetherwith the result of applying powers
of A − a1 to them, will be the columns of B corresponding to the next largest
Jordan blocks with diagonal entry a. The process continues until we obtain a
basis of ker(A− a1)k with the necessary consistency property throughout. Then
we repeat the process for the other roots of P(∏) and assemble the result.

EXAMPLE. Let

A =

√ 4 1 −1
−8 −2 2
8 2 −2

!

.

The characteristic polynomial is P(∏) = det(∏1−A) = ∏3, whose factorization is
evidently P(∏) = (∏−0)3. Computing the kernel of A, we find that dim ker A =
2, so that there are 2 Jordan blocks. Also, A2 = 0, so that dim ker A2 = 3 and
the number of blocks of size ∏ 2 is 3− 2 = 1. Thus

J =

√ 0 1 0
0 0 0
0 0 0

!

.

We form a basis of ker A by solving A

√ x1
x2
x3

!

= 0. The standard method of row

reduction gives x1 = − 1
4 x2 + 1

4 x3 with x2 and x3 arbitrary, so that a basis of

ker A consists of

√− 1
4
1
0

!

and




1
4
0
1



. We extend this to a basis of ker A2 = C3

by adjoining, for example, the vector v1 =

√ 1
0
0

!

. Then Av1 =

√ 4
−8
8

!

. The

vector Av1 is in ker A, and we extend it to a basis of ker A by adjoining, for

example, v2 =

√−1
4
0

!

. Then v1, Av1, v2 form a basis of ker A2 = C3, and the

above general method asks that these vectors be listed in the order Av1, v1, v2.
The matrix B is obtained by lining these vectors up as columns:

B =

√ 4 1 −1
−8 0 4
8 0 0

!

.

The result is easy to check. Computation shows that B−1 =




0 0 1

8
1 1

4 − 1
4

0 1
4

1
4



,

and then one can carry out the multiplications to verify that B−1AB = J .
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8. Series Solutions in the Second-Order Linear Case

In this section we shall consider, in some detail, series solutions for two kinds of
ordinary differential equations.
The first kind is

y00 + P(t)y0 + Q(t)y = 0,

where P(t) and Q(t) are given by convergent power-series expansions for
|t | < R:

P(t) = a0 + a1t + a2t2 + · · · ,

Q(t) = b0 + b1t + b2t2 + · · · .

We seek power-series solutions of the form

y(t) = c0 + c1t + c2t2 + · · · .

The samemethods and theorem that handle this first kind of equation apply also to
nth-order homogeneous linear equations and to first-order homogeneous systems
when the leading coefficient is 1 and the other coefficients are given by convergent
power series. The second-order case, however, is by far the most important for
applications and is sufficiently illustrative that we shall limit our attention to it.
The idea in finding the solutions is to assume that we have a convergent power-

series solution y(t) as above, to substitute the series into the equation, and to sort
out the conditions that are imposed on the unknown coefficients. Our theorems
on power series in Section I.7 guarantee us that the operations of differentiation
and multiplication of power series maintain convergence, and thus the result of
substituting into the equation is that we obtain an equality of a convergent power
series with 0. Corollary 1.39 then shows that all the coefficients of this last power
series must be 0, and we obtain recursive equations for the unknown coefficients.
There is one theorem about the equations under study, and it tells us that the
power series for y(t) that we obtain by these manipulations is indeed convergent;
we state and prove this theorem shortly.
Let us go through the steps of finding the solutions. These steps turn out to be

clearer when done in complete generality than when done for an example. Thus
we shall first make the computation in complete generality, then state and prove
the theorem, and finally consider an important example. The expansions of y(t)
and its derivatives are

y(t) = c0 + c1t + c2t2 + · · · ,

y0(t) = c1 + 2c2t + 3c3t2 + · · · ,

y00(t) = 2c2 + 3 · 2c3t + 4 · 3c4t2 + · · · .
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Substituting all the series into the given equation yields

(2 · 1c2 + 3 · 2c3t + 4 · 3c4t2 + · · · )

+ (a0 + a1t + a2t2 + · · · )(c1 + 2c2t + 3c3t2 + · · · )

+ (b0 + b1t + b2t2 + · · · )(c0 + c1t + c2t2 + · · · ) = 0.

If the series for y(t) converges and if the left side is expanded out, then the
coefficients of each power of t must be 0. Thus

2 · 1c2 + a0c1 + b0c0 = 0,
3 · 2c3 + (a02c2 + a1c1) + (b0c1 + b1c0) = 0,
4 · 3c4 + (a03c3 + a12c2 + a2c1) + (b0c2 + b1c1 + b2c0) = 0,

...

n(n − 1)cn + (a0(n − 1)cn−1 + a1(n − 2)cn−2 + · · · + an−2c1)
+ (b0cn−2 + b1cn−3 + · · · + bn−2c0) = 0.

These equations tell us that c0 and c1 are arbitrary and that c2, c3, . . . are each
determined by the previous coefficients. Thus c2, c3, . . . may be computed in-
ductively. Since c0 = y(0) and c1 = y0(0), this degree of flexibility is consistent
with the existence and uniqueness theorems.

Theorem 4.14. If P(t) and Q(t) are given by convergent power series for
|t | < R, then any formal power series that satisfies y00 + P(t)y0 + Q(t)y = 0
converges for |t | < R to a solution. Consequently every solution of this equation
on the interval −R < t < R is given by a power series convergent for |t | < R.

PROOF. Fix r with 0 < r < R, and choose some R1 with r < R1 < R. Let
the notation for the power series of P , Q, and y be as above. Theorem 1.37
shows that the series with terms |an Rn1 | and |bn Rn1 | are convergent, and hence the
terms are bounded as functions of n. Thus there exists a real number C such that
|an| ≤ C/Rn1 and |bn| ≤ C/Rn1 for all n ∏ 0. We shall show that |cn| ≤ M/rn
for a suitable M and all n ∏ 0.
The constant M will be fixed so that a large initial number of terms have

|cn| ≤ M/rn , and then we shall see that all subsequent terms satisfy the same
inequality. To find an M that works, we start from the formula computed above
for cn:

n(n − 1)cn = −(a0(n − 1)cn−1 + a1(n − 2)cn−2 + · · · + an−2c1)
− (b0cn−2 + b1cn−3 + · · · + bn−2c0).
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If M works for 0, 1, . . . , n − 1, then

n(n − 1)|cn| ≤ CM(n − 1)(R−0
1 r−(n−1) + R−1

1 r−(n−2) + · · · + R−(n−2)
1 r−1)

+ CM(R−0
1 r−(n−2) + R−1

1 r−(n−3) + · · · + R−(n−2)
1 r−0)

= CM(n − 1)r−nr
≥
1+

r
R1

+ · · · +
≥ r
R1

¥n−2¥

+ CMr−nr2
≥
1+

r
R1

+ · · · +
≥ r
R1

¥n−2¥

≤ r−n(CM)(r(n − 1) + r2)
1

1− (r/R1)

and therefore
|cn| ≤ Mr−n

≥ CR1
R1 − r

r(n − 1) + r2

n(n − 1)

¥
.

For n sufficiently large, the factor in parentheses is ≤ 1. At that point we obtain
|cn| ≤ Mr−n if |ck | ≤ Mr−k for k < n, and inductionyields the asserted estimate.
Thus

P
cntn converges for |t | < r . Since r can be arbitrarily close to R,

P
cntn

converges for |t | < R.
Finally we saw above that c0 and c1 are arbitrary and can therefore be matched

to any initial data for y(0) and y0(0). Consequently the vector space of power-
series solutions convergent for |t | < R has dimension 2. By Theorem 4.6, all
solutions on the interval −R < t < R are accounted for. This completes the
proof. §

As a practical matter, the recursive expression for cn becomes increasingly
complicated as n increases, and a closed-form expression need not be available.
However, in certain cases, something special happens that yields a closed-form
expression for cn . Here is an example.

EXAMPLE. Legendre’s equation is

(1− t2)y00 − 2t y0 + p(p + 1)y = 0

with p a complex constant. To apply the theorem literally, we should first divide
the equation by (1− t2), and then the power-series expansions of the coefficients
will be convergent for |t | < 1. The theorem says that we obtain two linearly
independent power-series solutions of the equation for |t | < 1. To compute them,
it is more convenient to work with the equation without making the preliminary
division. Then the equation gives us

(2c2 + 3 · 2c3t + 4 · 3c4t2 + · · · ) − (2c2t2 + 3 · 2c3t3 + 4 · 3c4t4 + · · · )

− 2(c1t + 2c2t2 + 3c3t3 + 4c4t4 + · · · ) + p(p+ 1)(c0 + c1t + c2t2 + · · · ) = 0,
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which yields the following formulas for the coefficients:

2c2 + p(p + 1)c0 = 0,
3 · 2c3 − 2c1 + p(p + 1)c1 = 0,
4 · 3c4 − 2 · 1c2 − 2 · 2c2 + p(p + 1)c2 = 0,

...

n(n − 1)cn − [(n − 2)(n − 3) + 2(n − 2) − p(p + 1)]cn−2 = 0.

Thus we can write cn explicitly as a product. We can verify convergence ofP
cntn directly by the ratio test: since

cntn

cn−2tn−2
=

(n − 2)(n − 3) + 2(n − 2) − p(p + 1)
n(n − 1)

t2,

we have convergence for |t | < 1. Observe that the numerator in the fraction on
the right is equal to

(n − 2)(n − 3) + 2(n − 2) − p(p + 1) = (n − 2)(n − 1) − p(p + 1),

and this is 0 when p is an integer ∏ 0 and n − 2 = p. Therefore one of the
solutions is a polynomial of degree p if p is an integer ∏ 0. Such polynomials,
when suitably normalized, are called Legendre polynomials.

The second kind of ordinary differential equation forwhichwe shall seek series
solutions is

t2y0 + t P(t)y0 + Q(t)y = 0,

where P(t) and Q(t) are given by convergent power-series expansions for
|t | < R:

P(t) = a0 + a1t + a2t2 + · · · ,

Q(t) = b0 + b1t + b2t2 + · · · .

The existence and uniqueness theoremsdo not apply to this equation on an interval
containing t = 0 unless t happens to divide P(t) and t2 happens to divide
Q(t). When this divisibility does not occur, the above equation is said to have a
regular singular point at t = 0. The treatment of the corresponding nth-order
equation is no different, but we stick to the second-order case because of its
relative importance in applications. For this kind of equation, the treatment of
first-order systems is more complicated than the treatment of a single equation of
nth order.
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Actually, the second-order equation above need not have power series solu-
tions. The prototype for the above equation is the equation

t2y00 + t Py0 + Qy = 0

with P and Q constant. This equation is known as Euler’s equation and can be
solved in terms of elementary functions. In fact, we make a change of variables
by putting t = ex and x = log t for t > 0. Then we obtain

dy
dt

=
dy
dx

dx
dt

=
1
t
dy
dx

d2y
dt2

= −
1
t2
dy
dx

+
1
t
d
dt

≥dy
dx

¥
= −

1
t2
dy
dx

+
1
t
d2y
dx2

dx
dt

= −
1
t2
dy
dx

+
1
t2
d2y
dx2

,

and

and hence the equation becomes

d2y
dx2

+ (P − 1)
dy
dx

+ Qy = 0.

This is an equation of the kind considered in Section 6. A solution is est , where s
is a root of the characteristic polynomial s2+ (P−1)s+Q = 0. If the two roots
of the characteristic polynomial are distinct, we obtain two linearly independent
solutions for x ∈ (−∞,+∞), and these transform back to two solutions t s of
the Euler equation for t > 0. If the characteristic equation has one root s of
multiplicity 2, then we obtain the two linearly independent solutions esx and xesx
for x ∈ (−∞,+∞), and these transform back to two solutions xs and xs log x
for x > 0.
In practice, the technique to solve the Euler equation t2y00 + t Py0 + Qy = 0

is to substitute y(t) = t s and obtain s(s− 1)t s + sPts + Qts = 0. This equation
holds if and only if s satisfies

s(s − 1) + sP + Q = 0,

which is called the indicial equation.
In the general case of a regular singular point, we proceed by analogy and are

led to seek for t > 0 a series solution of the form

y(t) = t s(c0 + c1t + c2t2 + · · · ) with c0 6= 0.

Suppose that the power-series part
P
cntn is convergent. We substitute and obtain

t s(c0s(s − 1) + c1(s + 1)st + c2(s + 2)(s + 1)t2 + · · · )

+ t s(a0 + a1t + a2t2 + · · · )(sc0 + (s + 1)c1t + (s + 2)c2t2 + · · · )

+ t s(b0 + b1t + b2t2 + · · · )(c0 + c1t + c2t2 + · · · ) = 0.
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Dividing by t s and setting the coefficient of each power of t equal to 0 gives the
equations

c0s(s − 1) + sc0a0 + c0b0 = 0,
c1(s + 1)s + ((s + 1)c1a0 + sc0a1) + (c1b0 + c0b1) = 0,
c2(s + 2)(s + 1) + ((s + 2)c2a0 + · · · ) + (c2b0 + · · · ) = 0,

...

cn(s + n)(s + n − 1) + ((s + n)cna0 + · · · ) + (cnb0 + · · · ) = 0.

Since c0 is by assumption nonzero, we can divide the first equation by it, and we
obtain

s(s − 1) + a0s + b0 = 0,

which is the indicial equation for t2y0 + t P(t)y0 + Q(t)y = 0. This determines
the exponent s. Then c0 is arbitrary, and all subsequent cn’s can be found
recursively, provided the coefficient of cn in the (n + 1)st equation above is
never 0 for n ∏ 1, i.e., provided

(s + n)(s + n + 1) + (s + n)a0 + b0 6= 0 for n ∏ 1.

In other words, we can solve recursively for all cn in terms of c0 provided s + n
does not satisfy the indicial equation for any n ∏ 1. We summarize as follows.

Proposition 4.15. If P(t) and Q(t) are given by convergent power series
for |t | < R, then the following can be said about formal series solutions of
t2y00 + t P(t)y0 + Q(t)y = 0 of the type t s(c0 + c1t + c2t2 + · · · ) with c0 6= 0:

(a) If the indicial equation has distinct roots not differing by an integer, then
there are formal solutions of the type xs(c0 + c1t + c2t2 + · · · ) for each
root s of the indicial equation.

(b) If the indicial equation has roots r1 ≤ r2 with r2 − r1 equal to an inte-
ger, then there is a 1-parameter family of formal solutions of the type
tr2(c0 + c1t + c2t2 + · · · ) with c0 6= 0. If r1 < r2 in addition, there may
be formal solutions tr1(c0 + c1t + c2t2 + · · · ) with c0 6= 0, as there are
for an Euler equation.

Theorem 4.16. If P(t) and Q(t) are given by convergent power series for
|t | < R, then all formal series solutions of t2y00 + t P(t)y0 + Q(t)y = 0 of the
type t s(c0 + c1t + c2t2 + · · · ) with c0 6= 0 converge for 0 < t < R to a function
that is a solution for 0 < t < R.
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PROOF. As in the proof of Theorem 4.14, fix r with 0 < r < R, and choose
some R1 with r < R1 < R. Let the series expansions of P(t) and Q(t) be as
above, so that there is a number C with |an| ≤ C/Rn1 and |bn| ≤ C/Rn1 . Choose
N large enough so that

Cr/R1
1− r/R1

µ
|s| + n + 1

|(s + n)(s + n + 1) + a0(s + n) + b0|

∂
≤ 1 (∗)

for n ∏ N . Then choose M such that |cn| ≤ M/rn for n ≤ N . We shall prove
by induction on n that |cn| ≤ M/rn for all n. The base case of the induction
is n = N , where the inequality holds by definition of M . Suppose it holds for
1, . . . , n − 1. The formula for cn is

cn
°
(s + n)(s + n − 1) + a0(s + n) + b0

¢

= −[(s+n−1)a1cn−1+ · · · +sanc0]− [b1cn−1 + · · · + bnc0].

Our inductive hypothesis gives

|cn||(s + n)(s + n−1) + a0(s + n) + b0|

≤ CM(|s| + n)(R−1
1 r−(n−1) + · · · + R−n

1 r0)

+ CM(R−1
1 r−(n−1) + · · · + R−n

n r0)

= CM(|s| + n + 1)r−n
≥ r
R1

+ · · · +
rn

Rn1

¥

≤ Mr−n
∑
C(|s| + n + 1)

µ
r/R1

1− r/R1

∂∏
.

Thus

|cn| ≤ Mr−n
∑
Cr/R1
1− r/R1

µ
|s| + n + 1

|(s + n)(s + n + 1) + a0(s + n) + b0|

∂∏
≤ Mr−n,

the second inequality holding by (∗), and the induction is complete.
It follows that

P
cntn converges for |t | < r . Since r can be arbitrarily close

to R,
P
cntn converges for |t | < R. This completes the proof. §

EXAMPLE. Bessel’s equation of order p with p ∏ 0. This is the equation

t2y00 + t y0 + (t2 − p2)y = 0.

It has P(t) = 1 and Q(t) = t2 − p2, both with infinite radius of convergence.
The indicial equation in general is s(s − 1) + a0s + b0 = 0 and hence is

s(s − 1) + s − p2 = 0

in this case. Thus s = ±p. Theorem 4.16 shows that there is a solution of the
form



260 IV. Theory of Ordinary Differential Equations and Systems

Jp(t) = t p
≥ 1
2p p!

+ c1t + c2t2 + · · ·
¥
,

and this is defined to be the Bessel function of order p. The theorem gives
another solution of the form t−p times a power series except possibly when p is
an integer or a half integer. To determine all these solutions, we substitute the
series t s

P
cntn and get

s(s − 1)c0 + (s + 1)sc1t + (s + 2)(s + 1)c2t2 + · · ·

+ sc0 + (s + 1)c1t + (s + 2)c2t2 + · · ·

+ c0t2 + c1t3 + · · ·

− p2c0 − p2c1t − p2c2t2 − p2c3t3 − · · · = 0.

The resulting equations are

[s(s − 1) + s − p2]c0 = 0 from t0,

[(s + 1)s + (s + 1) − p2]c1 = 0 from t1,

[(s + n)(s + n − 1) + (s + n) − p2]cn + cn−2 = 0 from tn for n ∏ 2.

The first of these equations repeats the indicial equation, giving s = ±p. The
second says that either c1 = 0 or that s + 1 solves the indicial equation. In the
latter case s = − 1

2 and p = 1
2 . The third says that [(s + n)2 − p2]cn = −cn−2.

For the case that s = +p, we obtain

cn =
−cn−2

(p + n)2 − p2
,

and there is no problem from the denominator. The result is that the Bessel
function of order p ∏ 0 is given by

Jp(t) =
t p

2p p!

≥
1−

t2

2(2p + 2)
+

t4

2 · 4(2p + 2)(2p + 4)
− · · ·

¥

=
≥ t
2

¥p ∞X

k=0

(−1)k

k!(k + p)!

≥ t
2

¥2k
.

FIGURE 4.3. Graph of Bessel function J0(t).
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For the case that s = −p, we obtain

cn =
−cn−2

(−p + n)2 − p2
,

and the denominator gives a problem for n = 2p and for no other value of n. If
p is an integer, the problematic n is even and we must have cn−2 = 0, cn−4 = 0,
. . . , c0 = 0. The condition c0 = 0 is a contradiction, and we conclude that there
is no solution of the form t−p times a nonzero power series; indeed, Problems
18–19 at the end of the chapter will identify a different kind of solution. If p is
a half integer but not an integer, then the problematic n is odd, and we are led to
conclude that 0 = cn−2 = · · · = c3 = c1, with c0 and c2p arbitrary. There is no
contradiction, and we obtain a solution of the form t−p times a nonzero power
series.

9. Problems

1. For the differential equation yy0 = −t :
(a) Solve the equation.
(b) Find all points (t0, y0) where the the existence theorem and the uniqueness

theorem of Section 2 do not apply.
(c) For each point (t0, y0) not in (b), give a solution y(t) with y(t0) = y0.

2. Prove that the equation y0 = t + y2 has a solution satisfying the initial condition
y(0) = 0 and defined for |t | < 1/2.

3. In classical notation, a particular vector field in the plane is given by
p
x @

@x + 1
2

@
@y .

Find a parametric realization of an integral curve for this vector field passing
through (1, 1).

4. Evaluate
d
dt

Z t2

0

1
s

(sin st) ds.

5. Find all solutions on (−∞,+∞) to y00 − 3y0 + 2y = 4.

6. (a) For each of these matrices A, find matrices B and J , with J in Jordan form,

such that A = BJ B−1: A =

µ
1 1
4 −5

∂
, A =

√ 0 0 −1
0 1 0
1 0 0

!

.

(b) For each of the matrices A in (a), find a basis of solutions y(t) to the system
of differential equations y0 = Ay.
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7. The nth-order equation y(n) + an−1y(n−1) + · · · + a0y = 0 with constant coeffi-
cients leads to a linear system z0 = Az with

A =










0 1 0 0 ··· 0 0
0 1 0 ··· 0 0

0 1 ··· 0 0
...

...
...

...
0 1 0
0 1

−a0 −a1 −a2 ··· −an−1










.

Prove that det(∏1−A) = ∏n+an−1∏n−1+· · ·+a0 by expanding the determinant
by cofactors.

8. (a) Let { fn} be a uniformly bounded sequence of Riemann integrable functions
on [0, 1]. Define Fn(t) =

R t
0 fn(s) ds. Prove that {Fn} is an equicontinuous

family of functions on [0, 1].
(b) Prove that the set of functions y(t) on [0, 1] with y00 + y = f (t) and

y(0) = y0(0) = 0 is equicontinuous as f varies over the set of continuous
functions on [0, 1] with 0 ≤ f (t) ≤ 1 for all t .

(c) Let u(t) be continuous on [a, b]. Prove that the set of functions y(t) on
[a, b] with y00 + q(t)y = f (t) and y(0) = y0(0) = 0 is equicontinuous as
f (t) varies over the set of continuous functions on [0, 1] with 0 ≤ f (t) ≤ 1
for all t .

9. The differential equation t2y00 + (3t − 1)y0 + y = 0 has an irregular singular
point at t = 0.
(a) Verify that

P∞
n=0(n!)tn is a formal power series solution of the equation

even though the power series has radius of convergence 0.
(b) Verify that y(t) = t−1e−1/t is a solution for t > 0.

Problems 10–13 concern harmonic functions in the open unit disk, which were intro-
duced in Problems 14–15 at the end of Chapter III. The first objective here is to use
ordinary differential equations and Fourier series to show that all these functions may
be expressed in a relatively simple form. The second objective is to use convolution,
as defined in Problem 8 at the end of Chapter III, to relate this formula to the Poisson
kernel, whichwas defined in Problems 27–29 at the end of Chapter I. Problems 10–12
here are an instance of the method of separation of variables, a beginning technique
with partial differential equations; this topic is developed further in the companion
volume, Advanced Real Analysis. In all problems in this set, let u(x, y) be harmonic
in the open unit disk.
10. Write u(x, y) in polar coordinates as u(r cos θ, r sin θ) = v(r, θ). Using Fourier

series, show for 0 ≤ r < 1 and any δ > 0 that v(r, θ) is the sum of an absolutely
convergent Fourier series

P∞
n=−∞ cn(r)einθ with |cn(r)| ≤ M/n2 for 0 ≤ r ≤

1− δ for some M depending on δ.
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11. Let Rθ be the rotationmatrix defined in Problem 15 at the end of Chapter III. That
problem shows that (u ◦ Rϕ)(x, y) = v(r, θ + ϕ) is harmonic for each ϕ. Prove
that 1

2π
R π
−π(u ◦ Rϕ)(x, y)e−ikϕ dϕ is harmonic and is given in polar coordinates

by ck(r)eikθ .
12. By computing with the Laplacian in polar coordinates and showing that ck(r)

is bounded as r ↓ 0, prove that ck(r) = akr |k| for some complex constant
ak . Conclude that every harmonic function in the open unit disk is of the form
v(r, θ) =

P∞
n=−∞ cnr |n|einθ , the sum being absolutely convergent for all r with

0 ≤ r < 1.
13. Deduce from Problem 8 at the end of Chapter III that if v(r, θ) is as in the

previous problem and if 0 < R < 1, then v(r, θ)= 1
2π

R π
−π fR(ϕ)Pr/R(θ −ϕ) dϕ

for 0 ≤ r < R, where P is the Poisson kernel and fR is the C∞ function
fR(θ) =

P∞
n=−∞ cn R|n|einθ .

Problems 14–17 concern homogeneous linear differential equations. Except for the
first of the problems, each works with a substitution in a second-order equation that
simplifies the equation in some way.
14. If a(t) is continuous on an interval and A(t) is an indefinite integral, verify that

all solutions of the single first-order linear homogeneous equation y0 = a(t)y
are of the form y(t) = ceA(t).

15. (a) Suppose that u(t) is a nowhere vanishing solution of

y00 + P(t)y0 + Q(t)y = 0

on an interval, with P and Q assumed continuous. Look for a solution of
the form u(t)v(t), and derive the necessary and sufficient condition

v0(t) = cu(t)−2e−
R
P(t) dt

.

(b) For y00 − t y0 − y = 0, one solution is et2/2. Find a linearly independent
solution.

16. Let y00 + P(t)y0 + Q(t)y = 0 be given with P , P 0, and Q continuous on an
interval. Write y(t) = u(t)v(t), substitute, regard u(t) as known, and obtain a
second-order equation for v. Show how to choose u(t) to make the coefficient
of v0 be 0, and thus reduce the given equation to an equation v00 + R(t)v = 0
with R continuous. Give a formula for R.

17. If L(v) = (pv0)0 − qv + ∏rv, show that the substitution u = v
p
r changes

L(v) = 0 into L0(u) = 0, where L0(u) = (p∗u0)0 − q∗u + ∏u with p∗ = p/r .
Problems 18–19 concern finding the form of the second solution to a second-order
equation with a regular singular point. The first of the two problems amounts to a
result in complex analysis but requires nothing beyond Chapter I of this book.
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18. Suppose that
P∞

n=0 cnxn is a power series with c0 = 1.
(a) Write down recursive formulas for the coefficients dn of a power seriesP∞

n=0 dnxn with d0 = 1 such that
°P∞

n=0 cnxn
¢°P∞

n=0 dnxn
¢

= 1.
(b) Prove, by induction on n, that if |cn| ≤ Mrn for all n ∏ 0, then |dn| ≤

M(M + 1)n−1rn for all n ∏ 1.
(c) Prove that if f (0) 6= 0 and if f (x) is the sum of a convergent power series

for |x | < R for some R > 0, then 1/ f (x) is the sum of a convergent power
series for |x | < ε for some ε > 0.

19. Suppose that P(t) and Q(t) are given near t = 0 by power series with positive
radii of convergence. Take for granted that if a(t) is given by a power series with
a positive radius of convergence, then so is ea(t). Form the equation

t2y00 + t P(t)y0 + Q(t)y = 0,

let s1 and s2 be the two roots of the indicial equation, and suppose that the
differential equation has a solution given on some interval (0, ε) by f (t) =
t s1

P∞
n=0 cntn with c0 6= 0.

(a) Using Problem 15a, prove that the differential equation has a linearly inde-
pendent solution given on some interval (0, ε0) by

g(t) = c f (t) log t + t s2
∞X

n=0
kntn with k0 6= 0.

(b) Prove that the coefficient c in g(t) is 6= 0 if s1 = s2.
(c) For Bessel’s equation t2y00 + t y0 + (t2 − p2)y = 0 with p ∏ 0 an integer

and with s1 = p and s2 = −p, show that the coefficient c in g(t) is 6= 0.
Thus there is a solution of the form Jp(t) log t + t−p(power series) on some
interval (0, ε0).

Problems 20–25 prove theCauchy–Peano Existence Theorem, that a local solution
in Theorem 4.1 to y0 = F(t, y) and y(t0) = y0 exists if F is continuous even
if F does not satisfy a Lipschitz condition. The idea is to construct a sequence
of polygonal approximations to solutions, check that they form an equicontinuous
family, apply Ascoli’s Theorem (Theorem 2.56) to extract a uniformly convergent
subsequence, and then see that the limit of the subsequence is a solution. A member
of the sequence of polygonal approximations depends on a number ≤ > 0. With
notation as in the statement of Theorem 4.1, the construction for [t0, t0 + a0] is as
follows: Choose the δ of uniform continuity for F and ≤ on the set R. Fix a partition
t0 < t1 < · · · < tn = t0 + a0 of [t0, t0 + a0] with maxk{tk − tk−1} ≤ min(δ, δ/M).
Define y(t), as a function of ≤, for tk−1 < t ≤ tk inductively on k by y(t0) = y0 and

y(t) = y(tk−1) + F(tk−1, y(tk−1))(t − tk−1).
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20. Check that the formula for y(t) when tk−1 < t ≤ tk remains valid when t =
tk−1, and conclude that y(t) is continuous. Then prove by induction on k that
|y(t) − y(t0)| ≤ M(t − t0) ≤ b for tk−1 ≤ t ≤ tk , and deduce that (t, y(t)) is in
R0 for t0 ≤ t ≤ t0 + a0.

21. Prove that |y(t) − y(t 0)| ≤ M|t − t 0| if t and t 0 are both in [t0, t0 + a0].
22. The function y0(t) is defined on [t0, t0 + a0] except at the points of the partition

and is given by y0(t) = F(tk−1, y(tk−1)) if tk−1 < t < tk . Prove that y(t) =
y0 +

R t
t0 y

0(s) ds for t0 ≤ t ≤ t0 + a0 and that |y0(s) − F(s, y(s))| ≤ ≤ if
tk−1 < s < tk .

23. Writing y(t) = y0+
R t
t0 [F(s, y(s))+[y0(s)−F(s, y(s))]] ds and using the result

of the previous problem, prove for all t in [t0, t0 + a0] that
Ø
Øy(t) −

°
y0 +

R t
t0 F(s, y(s)) ds

¢ØØ ≤ ≤a0.

24. Let ≤n be amonotone decreasing sequencewith limit 0, and let yn(t) be a function
for t in [t0, t0 + a0] constructed as above for the number ≤n . Deduce from
Problem 21 that {yn(t)} is uniformly bounded and uniformly equicontinuous for
t in [t0, t0 + a0].

25. Apply Ascoli’s Theorem to {yn}, and let y(t) be the uniform limit of a uniformly
convergent subsequence of {yn}. Prove that y(t) is continuous, and use Prob-
lem 23 to prove that y(t) = y0 +

R t
t0 F(s, y(s)) ds. What modifications are

needed to the argument to handle [t0 − a0, t0]?

Problems 26–28 use elementary complex analysis as in Appendix B to shed further
light on results and problems in this chapter.
26. Let u(x, y) be harmonic in the open unit disk. Bypassing Problems 10 and 11,

write u(x, y) as the real part of an analytic function f (z), expand f (z) in Taylor
series about z = 0, take the real part of the expansion, and deduce the conclusion
of Problem 12 that u(x, y), when written in polar coordinates as v(r, θ), is of
the form

P∞
n=−∞ cnr |n|einθ , the sum being absolutely convergent for all r with

0 ≤ r < 1.
27. In the context of Problem 18, use the theory of analytic functions to deduce that

if f (z) has f (0) 6= 0 and is the sum of a convergent power series for |x | < R
for some R > 0, then 1/ f (z) is the sum of a convergent power series for |z| < ε

for some ε > 0.
28. This problemderives an integral formula for the Bessel function Jn(z) introduced

near the end of Section 8. The function eiz sin θ is a continuous complex-valued
function for (z, θ) inC×R that is analytic as a function of z for each fixed θ and
is periodic in θ for each fixed z. The problemworks with the Fourier coefficients
of this function.
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(a) Define cn(z) = 1
2π

R π
−π e

iz sin θe−inθ dθ . Why is this an entire function of z?
(b) Using the power series expansion of the exponential function, show that

eiz sin θ =
∞X

p=0

1
p!

≥ z
2

¥p
(eiθ − e−iθ )p,

and justify the interchange of limits that gives

cn(z) =
∞X

p=0

1
p!

≥ z
2

¥p≥ 1
2π

Z π

−π
(eiθ − e−iθ )pe−inθ dθ

¥
.

(c) Write In,p for the expression 1
2π

R π
−π(eiθ −e−iθ )pe−inθ dθ in (b). Show that

In,p =

Ω
(−1)k

°p
k
¢
if p = n + 2k with k ∏ 0

0 otherwise,

and simplify for n ∏ 0 to obtain

cn(z) =
≥ z
2

¥n ∞X

k=0

(−1)k

k! (n + k)!

≥ z
2

¥2k
.

(d) Conclude that cn(z) = Jn(z) if n ∏ 0 and that c−n(z) = (−1)n Jn(z) if
n ∏ 0. In particular,

Jn(z) =
1
2π

Z π

−π
eiz sin θe−inθ dθ

for n ∏ 0.

(e) Obtain the formula ei sin θ = J0(z) +
∞P

n=1
Jn(z)(einθ + (−1)ne−inθ ).




