
PROBLEM 4.2. Mean Value Theorem - Curves - Surfaces

a.
Look at the line determined by p and q and then move this line parallel to itself (in one or the other

direction) until it last touches the curve. Call this parallel transported line of last contact l. The point r of
last contact has a tangent line t. If t is the same as l then we are done. If t is different from l, then pick a
tolerance τ so that in every f.o.v. the angle between t and l can be seen. Then with this tolerance zoom in

PROBLEM 4.1. The Tangent Space

a.
If we have a curve C which intersects a plane Π at a point p, then, if we zoom in on p and find that

the portion of the curve in the f.o.v. becomes indistinguishable from a subset of the plane, then we would
say that C is tangent to the plane at p. But clearly this does not mean that C lies in the plane. Thus, in
general, for a curve that is tangent to the plane at p, as we zoom in, the portion of the curve in the f.o.v.
becomes closer and closer to the plane until it becomes indistinguishable from it. However, when the
curve is straight (such as a vector) then as we zoom in, we see the same picture at all magnifications. See
Figure 4.1 of the text. Which angles we can distinguish depend on the tolerance. With decreasing toler-
ances we will be able to distinguish smaller and smaller angles. In fact the tolerance is essentially a
measure of the smallest angle (subtended at the center) that is not indistinguishable from a line segment.
Thus, straight line is tangent to the plane only if it forms a zero angle with the plane and, thus, is in the
plane.

b. 

The velocity vector will be tangent to the surface and, thus, to the tangent plane. By Part a this
vector then must lie in the plane.

c.

Consider the intersection of M with (n−1)-dimensional subspaces determined by a tangent vector in
Tp M and the whole normal space Np M. See Figure 4.2 (in the text) for a picture of this situation in R3. By
the definition of smooth surface, near p the surface M projects one-to-one onto the tangent plane; thus,
the intersection of the (n−1)-dimensional subspace with M is a curve (near p), which we call C.

Pick rectangular coordinates for Rn so that p=(0,0,0,...,0) and V=(|V|,0,0,...,0). Then let g(a,b,c,...,z)
= (a,0,0,...,0) be the projection onto the tangent line at p. Then g|C (the projection restricted to C) is

one-to-one and there is a function  γ: R → C  such that  g(γ(t)) = (|V|t,0,0,...,0).  This γ gives a parametri-
zation for a neighborhood of p in C and γ ′(0) = V.
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until the curve and t are indistinguishable. In this f.o.v. r is not the last point of contact with the parallel
transported line.

b.
Move L parallel to itself (in one direction or the other) to a parallel hyperplane L′ that last touches

the curve. Call this last point of contact c. Let t be the tangent line to λ at c. By an argument the same as
in Part a, this tangent line must lie in the parallel transported L (and then we are done) or there are points
on λ near c on both sides of L′ and, thus, it was not the last point of contact with λ.

c.  
Move the plane containing the bounding curve until it last contacts the surface. This parallel trans-

ported plane at the last point of last contact is the tangent plane by an entirely similar argument.

d.
Move P parallel to itself until it totally misses M (this is possible because M is closed and, thus,

bounded. Now move P parallel to itself until it first and last contacts the M. These are two points whose
tangent planes are parallel to P.

PROBLEM 4.3. Riemannian Metric

a.

symmetric:  The definition is entirely symmetric.

bilinear:
 If a > 0, then θaXY = θXY  = θXaY and we get

a〈X,Y〉 = a|X| |Y| cos θXY = |aX| |Y| cos θαXY = 〈aX,Y〉 = |X| |aY| cos θXaY = 〈X,aY〉 .              

If a < 0, then θaXY = θXY + π  = θXaY and we get

a〈X,Y〉 = a|X| |Y| cos θXY = −|aX| |Y| (−cos θαXY) = 〈aX,Y〉 = |X| (−−−−|aY|) (−cos θXaY) = 〈X,aY〉 .        

If a = 0, then it is easy to check that all three terms are zero.    
Now look at the following Figure 4.A.

     θXZ

θXY    θX(Y+Z)

      |Y| cos θXY    |Z| cos θXZ

|Y + Z| cos θX(Y+Z)

Figure 4.A. Rieman metric is linear.

Thus,  〈X,Y+Z〉 = |X| |Y+Z| cos θX(Y+Z) = |X| {|Y| cos θXY + |Z| cos θXZ} = 〈X,Y〉 + 〈X,Z〉

positive definite: 
If X ≠ 0, then |X| ≠ 0 and   〈X,X〉 = |X| |X| cos 0 = |X|2 > 0.
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b. We use Part a to calculate:  〈A,B〉 = 〈 a1X1 + a2X2 , b1X1 + b2X2 〉 =
                                                 =  〈a1X1 , b1X1〉 + 〈a2X2 , b1X1〉 + 〈a1X1 , b2X2〉 + 〈a2X2 , b2X2〉
=
                                                 = a1b1〈X1 , X1〉 + a2b1〈X2 , X1〉 + a1b2〈X1 , X2〉 + a2b2〈X2 , X2〉 =
                                                 = a1b1(1) + a2b1(0) + a1b2(0) + a2b2(1) = a1b1 + a2b2 

c. This follows immediately from the definition of matrix multiplication and the answer to
Part b.

PROBLEM 4.4. Vectors in Extrinsic Local Coordinates
a. b. 

Cylinder:                                         x(�, z) = (R cos�, R sin�, z)
x1(�, z) = (−R sin�, R cos�, 0) and x2(�, z) = (0, 0, 1)

These are clearly C1 and linearly independent.

.g ij =
R2 0
0 1

Cone:                         ,x(�, r) = (r sin � cos 2��
� , r sin � sin 2��

� , r cos�)

where α is the (intrinsic) cone angle and φ is the angle between the axis of the cone and a generator of
the cone with α = 2πsinφ.

,x1(�, r) = (r(sin�) 2�
� (− sin 2��

� ), r(sin�) 2�
� cos 2��

� , 0) = (r(− sin 2��
� ), r cos 2��

� , 0)

.x2(�, r) = (sin� cos 2��
� , sin� sin 2��

� , cos�) =
�

2� cos 2��
� , �2� sin 2��

� , 1 − ( �
2�

)2

For r ≠ 0 and φ ≠ 0, these are linearly independent (since they are orthogonal and nonzero) and C1.

.g ij =
r2 0
0 1

Thus, these are local coordinates for the cone except at the cone point.

Sphere:                          x(θ,φ) = (r cosθ sinφ, r sinθ sinφ, r cosφ),
.x1(�,�) = (−rsin�sin�, rcos�sin�, 0) and x2(�,�) = (rcos�cos�, rsin�cos�, −rsin�)

For φ ≠ 0,π, these are linearly independent (since they are orthogonal and nonzero) and C1.

.g ij =
r2 sin2� 0

0 r2

Thus, these are local coordinates except at the North and South Poles.

Strake:                                    x(θ,r) = (r cos θ, r sin θ, kθ),
                                .x1(�, r) = (−r sin�, rcos�, k) and x2(�, r) = (cos�, sin�, 0)

These are linearly independent (since they are orthogonal and nonzero) and C1.

.[g ij] =
r2 + k2 0

0 1

Here 2πk = h, the height of one revolution of the strake.

Surface of Revolution:         x(θ,x) = (x, f (x) cos θ,  f (x) sin θ),
                    x1(θ,x) = (0,− f (x) sin θ,  f (x) cos θ) and x2(θ,x) = (1, f ′(x) cos θ,  f ′(x) sin θ).
For f (x) ≠ 0, these are linearly independent (since they are orthogonal and nonzero) and C1.
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.[g ij] =
(f (x))2 0

0 1 + (f ∏(x))2

Graph of a Smooth Function:         x(x,y) = (x,y,g(x,y)),
                                       x1(x,y) = (1,0,g1(x,y)) and x2(x,y) = (0,1,g2(x,y)).
These are linearly independent (since projections onto the (x,y)-plane are linearly independent) and C1.

.[g ij] =
1 + (g1(x, y))2

g1(x, y)g2(x, y)

g2(x, y)g1(x, y) 1 + (g2(x, y))2

PROBLEM 4.5. Measuring Using the Riemannian Metric

a.
Using the definition of the Riemannian metric we can express

,sin� = 1 − cos2� = 1 −
…x1,x2  

x1 x2

2
=

…x1 ,x1  …x2 ,x2  −…x1 ,x2  
2

x1
2 x2

2 =
det g

x1
2 x2

2

thus,                                 .det g(u1, u2) = x1(u1, u2) x2(u1, u2) sin�

We can now let ∆u1 and ∆u2 go to zero and integrate over the region V = x(U) to get the following
expression for the area of V:   .¶¶

U det g(u1, u2) du1du2

b.
The surface area of this intrinsic disk on the sphere is (the limit is technically necessary because the

coordinate patch is singular at the North Pole, φ = 0)

.lim�d0 ¶�
r/R ¶0

2�
R2R2 sin2� d� d� = R2 lim�d0 ¶�

r/R
sin� d� ¶0

2�
d� = 2�R2(1 − cos r

R )

For r = 1 km and R = 6360 km, we calculate the surface area on the sphere as 3.14159223 (km)2 as
opposed to πr2 = 3.14159265 (km)2 for the disk of the same radius on the plane.

c.

The desired surface area integral is  ,lim�d0 ¶�
r ¶0
�

r2 d� dr = lim�d0 ¶�
r
r(¶0
�

d�)dr = ¶0
r
�rdr =

�
2 r2

which agrees with the calculation of the area of a sector of the circle in the covering space:  (α/2π)πr2.

d.
From Problem 2.5, the inner radius is 1m, the outer radius 1.2m, and the height of one turn is

h = 10m (thus, k = h/(2π) = 1.592m). The desired area is (see solution to Problem 4.4.)

¶0
2� ¶1

1.2
r2 + k2 dr d� = ¶0

2�
d� ¶1

1.2
r2 + k2 dr =

= 2� r

2 r2 + k2 + k2

2 ln r + r2 + k2
r=1

r=1.2
=

=
2�
2 1.2 (1.2)2

+ k2 + k2 ln 1.2 + (1.2)2
+ k2 − 1 12 + k2 + k2 ln 1 + 12 + k2 =

.= � 1.2 (1.2)2
+ (1.592)2

− 1 + (1.592)2
+ (1.592)2

ln
1.2+ (1.2)2

+(1.592)2

1+ 1+(1.592)2
= 2.432 m2

The annular strip that approximates it has (from the solution to Problem 2.5.b) inner radius equal the
radius of curvature ri = 3.533m and inner and outer arclengths

,li = h2 + (2�r)2
= 100 + 4�2 = 11.810 m

.lo = li
3.533+0.2

3.533 = 12.479 m

Then, using the fact that the area of a circular sector is one-half the arclength times the radius, the area of
the annulus is
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,1
2 lo(ri + 0.2) − 1

2 l iri = 1
2 (12.479)(3.533 + 0.2) − 1

2 (11.810)(3.533) = 2.430 m2

which is extremely close to the area of the strake.

e.

The region V = x(U), where  U = (w, s) | 0 [ w [ c; 0 [ s < ∞

Area (V) = ¶¶
U

det g ij(w, s) dwds = lim
bd∞
¶

0

c ¶
0

b
exp(−s/r)ds dw

= lim
bd∞

c(−r exp(−b/r) + r exp(−0/r)) = lim
bd∞

c(r − r exp(−b/r)) = cr

PROBLEM 4.6. Differentiating a Metric

a.
Using the definition of derivative

d

dt
…X(�(t)), Y(�(t))  = limhd0

1
h
[…X(�(t + h)), Y(�(t + h))  − …X(�(t)), Y(�(t))  ] =

= limhd0
1
h
[…X(�(t + h)) − X(�(t)), Y(�(t + h))  + …X(�(t)), Y(�(t + h)) − Y(�(t))  ] =

= limhd0
X(�(t+h))−X(�(t))

h , Y(�(t + h)) + X(�(t)),
Y(�(t+h))−Y(�(t))

h =

.= d

dt X(�(t)), Y(�(t)) + X(�(t)), d

dt Y(�(t))

Since it is differentiable, it is continuous.

b.
Using the definition of directional derivative and Part a we have, for any curve γ(t) such that

γ(0) = p and γ ′(0) = Zp,

 Zp…X, Y  = d

dt
…X(�(t)), Y(�(t))  t=0 = d

dt X(�(t)), Y(�(t))
t=0

+ X(�(t)), d

dt Y(�(t))
t=0

=

.ZpX, Y(�(0)) + X(�(0)), ZpY = ZpX, Y(p) + X(p), ZpY

c.

Since X and Y are perpendicular everywhere,  .  The0 = Zp…X, Y  = ZpX, Y( p) + X( p), ZpY
desired result follows.

PROBLEM 4.7. Expressing Normal Curvature

a.
If n is differentiable along C, then Tp n (being the derivative of a unit vector) is perpendicular to n

and, thus, in Tp M. Let γ(s) be a parametrization of C by arclength such that γ(0) = p. Then the curvature
of C at p is, by definition, . And, by definition of directional derivative,����(p) =

d

ds T(�(s))s=0 = TpT

.Tpn =
d

ds n(�(s))s=0

Also, note that T and n are perpendicular everywhere and, thus,   using the����n(p) = …����(p), n(p) n(p)
Riemannian metric which is the usual inner product in R3. Then, by 4.6.c,

����n(p) = …����(p), n(p) n(p) =
d

ds T(�(s))s=0, n(p) n(p) = TpT, n(p) n(p) =

.− T(p), Tpn n(p) = T(p), −Tpn n(p)

b.

Note that 〈Tp ,−−−−Tpn〉 depends on Tp but not on γ. Thus, the normal curvature does not depend on the
curve but only on the unit tangent vector. By 4.1.c this normal curvature is the extrinsic curvature of the
curve defined by intersecting the surface with the plane determined by n and Tp. Here we see a first hint
of why it may be possible for the normal curvature (the curvature due to the curving of the surface) to
produce an intrinsic quantity because, even though n is an extrinsic quantity, its derivative Tp n (being
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the derivative of a unit vector) is a tangent vector at p (Why?) and, thus, is intrinsic and depends only on
Tp.

*c.
For example, take the curves in Figure 2.6 and cross them with the real line. Note that on a circle of

radius R, the derivative of n (with respect to arclength) has magnitude equal to 1/R.

d.
Since the normal (by Part a) does not depend on the curve but only on the tangent vector, it is

enough to check this for great circles. Great circles have their normal curvature equal to their extrinsic
curvature which is 1/R.

PROBLEM 4.8. Differential Operator

a.
Just before Problem 4.6 in Theorem 4.5 we showed that for a real-valued function f if  is C1 thenf ) x

Xp f does not depend on the curve chosen and if Xp = X 1x1 + X 2x2, then  Xp  f = X 1x1 f + X 2x2 f .  Now
apply this to each component of F(p) = (f1, f2,...).

b.
If Xp = X 1x1 + X 2x2 and Yp = Y 1x1 + Y 2x2, then 

(Xp + Yp)F = (X 1+Y 1)x1F + (X 2+Y 2)x2F = X 
1x1F + Y 1x1F + X 2x2F + Y 2x2F = XpF + YpF ,

and  (aXp)F = aX 1x1F + aX 2x2F = a(X 1x1F + X 2x2F) = a(XpF).  Note: If α, β, γ are curves on the surface
such that  α′(0) = Xp, β′(0) = Yp, γ ′(0) = Xp+Yp,  and α(0) = β(0) = γ(0) = p,  then in Rn it is possible to
specify that γ(s) = α(s) + β(s) but this is NOT possible in general on a surface because there is no global
notion of addition.

c.

Let γ(t) be a curve such that γ(0) = p and γ ′(0) = Xp. Then

Xp( f F) =  = (Xp f )F + f (Xp F)d

dt
[f (�(t))F(�(t))] t=0 = d

dt f (�(t)) F(�(0)) + f (�(0)) d

dt
[F(�(t))]

d.                                                 
Note that xj is a (tangent) vector-valued function of the coordinates (u1,u2) or, equivalently, is a

function of the points q = x(u1,u2) in M. Thus x1(a,b) can also be written x1(x(a,b)) as a tangent vector
at the point p = x(a,b) and

x1(a, b)x2 = lim
hd0

x2(x(a + h, b)) − x2(x(a, b))
h

= lim
hd0

x2(a + h, b) − x2(a, b)

h
=

= lim
hd0

1
h limgd0

x(a + h, b + g) − x(a + h, b)
g − limgd0

x(a, b + g) − x(a, b)
g =

.= lim
hd0

limgd0
1
h

1
g [x(a + h, b + g) − x(a + h, b) − x(a, b + g) + x(a, b)]

Since the limits exist and are continuous we take the limits in either order. If we reverse the order of the
limits then the last expression becomes 

= lim
gd0

limhd0
1
h

1
g [x(a + h, b + g) − x(a + h, b) − x(a, b + g) + x(a, b)] =

= lim
gd0

1
g limhd0

x(a + h, b + g) − x(a, b + g)

h
− limhd0

x(a + h, b) − x(a, b)

h
=

.= limgd0
x1(a, b + g) − x1(a, b)

g = lim
gd0

x1(x(a, b + g)) − x1(x(a, b))
g =x2(a, b)x1
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e.
On the sphere  .x1(�,�) = (−rsin�sin�, rcos�sin�, 0) and x2(�,�) = (rcos�cos�, rsin�cos�, −rsin�)
Thus,  x12 = x21 = (−−−−r sinθ cosφ, r cosθ cosφ, 0) = (cot φ)x1.  The length of the tangent vector in the latitu-
dinal (east-west) direction of x1 starts off at r2 on the equator but decreases as you move toward either
pole; and x21 is the rate of change of x1 as you move southward along a longitude. Also, note that x12 is
the rate of change of the tangent vector in the longitudinal direction of x2, as you move westward along a
latitude circle and, even though the length of x2 is constantly r2, its direction is changing. I urge the reader
to investigate this on the sphere until it becomes as natural and comfortable as possible.

On the strake,  .  Thus,x1(�, r) = (−r sin�, r cos �, k) and x2(�, r) = (cos�, sin�, 0)

.x12(�, r) = (− sin�, cos�, 0) = x21(�, r)

PROBLEM 4.9. Metric in Geodesic Coordinates

Explain each step in the following argument.

Let x(u1,u2) be geodesic rectangular coordinates, c(x,y), or geodesic polar coordinates, p(θ,r), as in
Figure 4.9 above. According to Problem 4.3 the Riemannian metric can be expressed in local coordinates
as the matrix:

.g = (g ij ) =
…x1, x1   …x1, x2  

…x2, x1   …x2, x2  

a. From the definition of geodesic coordinates, for constant a, the geodesic curves x(a,u2) are
parametrized by arclength and, thus, 

g22(u1,u2) = 1,

because 

,g22(u1, u2) = …x2, x2   = x2
2

the square of the length of the velocity vector of the curve x(a,u2).

b. We now need to find g12(u1,u2). To do this we first differentiate:

 Ø
Øu2 g12(u1, u2) = x2…x1(u1, u2), x2(u1, u2)  =

                        . (By 4.6.b.)= …x21, x2   + …x1, x22  

Now, since x2 is a unit vector

,…x21, x2   = …x12, x2   =
Ø
Øu1 x2, x2 = 0

because the derivative of a unit vector is always perpendicular to the original vector.

       x(a,u2)   x(a,u2)

         γ  γ
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      geodesic polar coordinates                geodesic rectangular coordinates

a

a

base curve



      γ(0) = x(a,0) = x(0,0) x(0,0) x(a,0)

Figure 4.5. Second coordinate curves.

c. Now we focus on the second coordinate curve

γ(u2) = x(a,u2).

(See Figure 4.5.) Since γ(u2) = x(a,u2) is parametrized by arclength, its unit tangent vector is x2(a,u2)
and thus

x22 =
Ø2

(Øu2 )2 x(a, u2) =
Ø
Øu2 x2(a, u2) = ����

is its (extrinsic) curvature vector, since this is just the derivative (with respect to arclength) of the
tangent vector. Since the curve is a geodesic, its curvature vector must be parallel to the normal to the
surface. Thus,

〈x1,x22〉 = 0 and therefore . Ø
Øu2 g12(a, u2) = 0

We can then conclude that g12(a,u2) is a constant independent of u2, because from first semester calcu-
lus any real-valued function of a real variable is a constant if its derivative is equal to 0.

d. By definition of geodesic rectangular coordinates,

g12( u1,0) = 〈x1(u1,0), x2(u1,0)〉 = 0,

because the second coordinate curves are perpendicular to the base curve (u2 = 0).

For geodesic polar coordinates, x(u1,0) = p(θ,0) = p(0,0), a constant. Thus, again,

g12( u1,0) = 〈x1(u1,0), x2(u1,0)〉 = 0,

since x2( u1,0) = 0 being the derivative of a constant.

e. We can now conclude that 

g12(u1,u2) = 0, for all u1 and u2,

since we showed that g12(u1,u2) was a constant and is equal to 0 at u2 = 0.
 Thus, for geodesic rectangular or polar coordinates:

,g(u1, u2) =
(h(u1, u2 ))2

0
0 1

where h(u1,u2) = |x1(u1,u2)| > 0.
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