
PROBLEM 3.1. Smooth Surfaces and Tangent Planes

*a.
If the surface is infinitesimally planar at p and the tangent planes vary continuously, then, for every

tolerance τ/4 there is a field of view with center p and radius ρ, such that, if p and x are both on the
surface in the field of view, then each point on the surface is within τρ/4 of the tangent plane Tp and each
point on Tp is within τρ/4 of the tangent plane Tx. Then, for every q on the surface such that |p − q| < ρ/2,
every point on the surface within ρ/2 of q is within τρ/4 of Tp which in turn is within τρ/4 of Tq. Thus
every point on the surface within ρ/2 of q is within τρ/2 of the tangent plane Tq. Thus continuously infini-
tesimally planar implies smooth (uniformly infinitesimally planar).

If the surface is smooth then for every tolerance τ/4 there is a radius ρ such that if p and x are on the
surface and |p−x| < ρ then we have that x is indistinguishable from a point on the tangent plane Tp and the
same ρ works for each point q in the field of view. Thus if q is on the surface within ρ/2 of p then in a
f.o.v. of radius ρ/2 centered at q every point on the surface is within τρ/4 of both the tangent plane Tp and
the tangent plane Tq. Thus, in the field of view, the tangent planes Tp and Tq are within 2(τρ/4) = τρ/2 of
each other. Thus the tangent planes are varying continuously.

b.
If the partial derivatives are linearly independent then they span a plane which is the tangent plane.

Since the partial derivatives vary continuously the tangent planes must also vary continuously and thus
by Part a the surface is smooth.

The function x(x,y) = (x3,y) is a coordinate patch for the plane but the partial derivatives with respect
to x are zero when x = 0 and thus, the partial derivatives are not linearly independent.

c.
One may use the coordinate patches for these surfaces from Chapter 1 and check that the partial

derivatives are linearly independent, using Part b. Or, one may argue geometrically that each of these
surfaces has tangent planes and for every tolerance τ the same ρ will work for all points except on the
cone. On the cone there are obvious tangent planes which are tangent to the cone along a generator and
for every tolerance τ the amount of zooming necessary is dependent (in a linear fashion) on how far the
point is from the cone point, and thus, the amount of zooming is uniform over neighborhoods whose
closures miss the cone point.

d.
If the function f is smooth then the partial derivatives are x1(θ,x) = (1, f ′(x) cos θ, f ′(x) sin θ) and

x2(θ,x) = (0, − f (x) sin θ, f (x) cos θ), which vary continuously and are nonzero and perpendicular (and
thus linearly independent) as long as f (x) is not zero. Thus, by Part b the surface is smooth.

If the surface is smooth, then the tangent planes along the curve θ = 0 are perpendicular to the plane
θ = 0 and thus intersect that in lines which are tangent to the graph of f. Thus, by 2.2, f is continuously
differentiable.
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*e.
In this case the coordinate patch is  x(x,y) = (x,y,g(x,y)).  If g has continuous partial derivatives then

the partial derivatives of x are  x1(x,y) = (1,0,g1(x,y))  and  x2(x,y) = (0,1,g2(x,y)),  which are always
linearly independent because neither can be a linear multiple of the other. Thus, by Part b the surface is
smooth. The tangent planes must project one-to-one onto the (x,y)-plane because the partial derivatives
which span the tangent planes project to the standard basis {(0,1),(1,0)}.

If the surface is smooth with every tangent plane projecting one-to-one onto the (x,y)-plane, then the
tangent planes intersected with the planes x = a or y = b are the tangent lines to the graphs of the
functions g(a,y) and g(x,b). By Part a these tangent planes and tangent lines vary continuously and thus,
(using 2.2) the partial derivatives of g exist and are continuous.

f.
Let the vertical axis be the z-axis and then at each z we have the following picture:
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Figure 3.A. Relating R(z), r, ∆∆∆∆z, and ∆∆∆∆R.
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We can get the same differential equation by using Problem 1.8.c which implies that the circle at
height z has circumference 2πre−s/r, where s is the arclength along the surface from (0,r) to (z,R(z)). Then,
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If we separate variables we get  .  A Table of Integrals like those in most calculus
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books yields  ,  where r is the constant radius of the annulus and R is az = r2 − R2 − r ln
r+ r2−R2

R + C

variable. When z = 0 we have R = r and thus C = 0. So  .  Here z is az = r2 − R2 − r ln
r+ r2−R2

R

continuously differentiable function of R and the derivative (for z ≠ 0) is never zero, hence R is also a
continuously differentiable function of z. Since R is never zero, Part d applies and, thus, we can conclude
that this hyperbolic surface of revolution is a smooth surface.

PROBLEM 3.2. Extrinsic Curvature - Geodesic on Sphere
a.

One can check this by using the explicit extrinsic parametrization of the geodesics which we devel-
oped in Chapter 1. On the cylinder the geodesics are the helixes and generators and in each case (except
for the vertical generators which have no extrinsic curvature) we have already calculated (in the solution
to Problem 2.5) that the curvature vector point in a direction which is perpendicular to the surface. On the
cone one can also use the extrinsic parametrization of geodesics on the cone given in the solution to
Problem 1.4.e, but this is an algebraically messy computation. Alternatively, we can argue geometrically
that for any geodesic on the cone or cylinder if there were a component of the extrinsic curvature in the
plane tangent to the surface then there would be an intrinsic experience of curving.
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b.
If the extrinsic curvature did not point towards the center of the sphere then the osculating circle

would not lie in a plane through the center of the sphere and thus the osculating plane will intersect the
sphere in a non-great circle and we would intrinsically experience it as curving.

c.
Now, for a curve on a sphere which is not planar, since the osculating plane pivots around the

tangent line, it is not possible (by Problem 2.6a) for two nearby osculating planes to both contain the
center of the sphere and, thus, both points cannot have extrinsic curvature vectors that point towards the
center of the sphere.  It follows from Problem 3.2.b that any geodesic on the sphere must lie in a plane
and again 3.2.b implies that the plane must contain the center of the sphere. Since the intersection of such
a plane with the sphere is a great circle it follows that the only geodesics on the sphere are arcs of great
circles. 

PROBLEM 3.3. Intrinsic Curvature - Curves on Sphere

a.
Locally and intrinsically, we can do on the cone and cylinder exactly what we did on the plane. In

particular, when we subtract T(p + h) − T(p − h) we must use the fact that the cone and the cylinder are
locally isometric to the plane to move the two tangent vectors to parallel copies that can be subtracted.
One way to do this is to do all constructions and parallel transporting in the covering space. Again, we
must interpret the normal vector and the angle θ intrinsically or in the covering space. We can figure out
what to do here intrinsically only because of the planar covering space. For a general surface we wish to
do the same things but it will take us until Chapter 8 to accomplish.

b.
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Figure 3.B. Circle on sphere with four centers.

Consider a cone that is tangent to the sphere with radius R along the latitude circle. We see from the
similar triangles in Figure 3.B that      , R cos � = r = extrinsic radius of the latitude circle

and then    .  Only the great circles have no intrinsic curvature.sin� = r
s =

R cos �
s or s = R cot�

Note that the latitude circle in Figure 3.B has four different centers:  The extrinsic center (or center

of extrinsic curvature) is the point c in the plane of the latitude at the center of the circle. The intrinsic

center is the point b which is the center of the circle with respect to the surface of the sphere — it is the
center of the circle from the point of view of a 2-dimensional bug on the surface. Then there is the point
a which is the intersection of all the planes tangent to the sphere along the latitude circle. The point a can
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be called the center of intrinsic curvature. Then the point d is the center of the sphere and is the center

of normal curvature for the latitude circle.

c.
For cylinders the extrinsic curvature is perpendicular to the surface and thus projects to zero. This is

appropriate because the extrinsic circles on the cylinder are geodesics on the cylinder.
For cones and spheres we have the situation of Part b and Figure 3.B. We now redraw the relevant

parts (Figure 3.3 of the text). We see that the projection is in the direction towards the intrinsic center of

the circle on the cone, and we see that the projection has length  ���� sin� =
sin�

r =
sin�

R cos � = 1
R cot� = 1

s

.  Since s is the intrinsic radius of the circle on the cone, the projection must be the intrinsic curvature
vector.

d.

The length of the projection onto the normal is  .  The fact that we���� cos � =
cos�

r =
cos �

R cos� = 1
R

get 1/R for every latitude circle makes sense because this is the component of the curvature of the curve
that is due to the surface and the sphere curves the same in all directions at every point.

PROBLEM 3.4. Geodesics on Surfaces — the Ribbon Test

a.
If the curve is extrinsically straight then its extrinsic curvature is zero and thus the projection onto

the tangent plane is zero and there is no intrinsic curvature. Examples include generators of cones and
cylinders, horizontal segments on the strake, the center line of the helicoid.

b.

i. When the ribbon is laid tangent on a plane the center line is (intrinsically and extrin-
sically) straight and, thus, the intrinsic curvature is zero.

ii. When the ribbon is isometrically embedded into another space then intrinsically there
is no change to the ribbon and, thus, the intrinsic curvature κκκκg of the centerline is still
zero. Therefore, since κ κ κ κ = κκκκn + κκκκg, we conclude that κ = κ = κ = κ = κκκκn and, thus, that  κ κ κ κ is
perpendicular to the tangent space TpR  of the ribbon at each point p.

iii.When the (isometrically embedded) ribbon is tangent to a surface M along the center-
line then, at every point p along the centerline, Tp R coincides with the tangent space
of the surface Tp M. Thus, by ii, the curvature κκκκ is perpendicular to Tp M and thus
κκκκg = 0 on the surface and the centerline is a geodesic on the surface.

c.
Clearly, each curve with constant θ is the center line of  ribbon tangent to the surface of revolution.

The same is true for each generating circle, z = constant, at which r′(z) = 0, but note that in the case when
this value of z is an inflection point (thus, not a local extrema), then the ribbon (though tangent) will lie
partly inside and partly outside the surface.

d.
Clearly, each curve which runs radially along the annuli is the center line of a ribbon laid tangent to

the surface in the extrinsic embedding produced in Problem 3.1.f is a geodesic. In addition, since any
extrinsically straight curve is a geodesic, we can find the geodesic joining any two points by holding the
annular hyperbolic plane by these points and pulling until there is an extrinsically straight line between
them.
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