
CHAPTER XX. 

TRANSFORMATION OF THETA FUNCTIONS. 

363. IT has been shewn in Chapter XVIII. that a theta function of the 
first order, in the arguments ut with characteristic (Q, Q'), say ^ (u, Q), may 
be regarded as a theta function of the r-th order in the arguments w, with 
characteristic (K, K')y provided certain relations, (I), (II), of § 322, p. 532, are 
satisfied. Let this theta function in w be denoted by (w, K). We confine 
ourselves in this chapter, unless the contrary be stated, to the case when 
(Q» Q) is a half-integer characteristic. Then the function { , Q) is odd or 
even ; therefore, since = Mw, the function (w, K) is an odd or even 
function of the arguments w. Now we have shewn, in Chap. XV. (§ 287), 
that every such odd, or even, theta function of order r, is expressible as a 
linear function of functions of the form 

yfrr (w ; K, K' + ß) = * [ rw ; 2v, 2rv', 2£/r, 2£' I ^ + ^V~\ 
L I K J 
+ e* - rw ; 2u, 2rv\ 2g/r, 2f' | ^ ^ ^ , 

where e is ± 1 , according as the function is even or odd. The most important 
result of the present chapter is that the functions yfrr (w; K> K' + p) which 
occur can be expressed as integral polynomials of the r-th degree in 2P theta 

functions S M W ; 2f, 2i/, 2£, 2£" | ) , whose characteristics are those of a 

Göpel system of half-integer characteristics (Chap. XVIL, § 297); the earlier 
part (§§ 364—370) of the chapter is devoted to proving this theorem. 

The theory is different according as r is odd or even. When r is odd, 
e is e**^1, and we have shewn (§ 327 Chap. XVIII.) that, for odd values of r, 
! Q | = | I, (mod. 2) ; the theory deals then only with functions 

y}rr (w ; K,K' + fi) 
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in which € = e7 'l :,. When r is even, e, though still equal to e^J^i, may or 
may not be equal to eniiKl

t according to the integer matrix which determines 
the transformation; but in this case, also, the value of e in the functions 
^ r (w ; K, Kr + fi) which occur is determinate. 

The proof of the theorem is furnished by obtaining actual expressions for 
the functions y\rr{w\ K, K' + p) as integral polynomials of the r-th degree in 

the 2P functions S- iw ; 2v, 2v, 2£ 2Ç" j ; the coefficients arising in these 

polynomials are theta functions whose arguments are r-th parts of periods, 
of the form (2vm + 2v'm')/r. The completion of the theory of the trans­
formation requires that these coefficients should be expressed in terms of 
constants depending on theta functions with half integer characteristics 
(§ 373). 

Further the theory requires that the coefficients in the expression of the 
function (w ; K) by the functions sfrr (w ; , ' + / ) should be assigned 
in general. In simple cases this is often an easy matter. The general case 
is reduced to simpler cases by regarding the general transformation of the r-th 
order as arising from certain standard transformations for which there is no 
difficulty as to the coefficients, by the juxtaposition of linear transformations 
(§§ 371 -2 )* . 

364. I t follows from § 332, Chap. XVIII. that any transformation may 
be obtained by composition of transformations for which the order r is a 
prime number. I t is therefore sufficient theoretically to consider the two 
cases when r = 2, and when r is an odd prime number. We begin with the 
former case, and shew that the transformed theta function can be expressed 
as a quadric polynomial in 2P theta functions belonging to a special Göpel 
system. A more general expression is given later (§ 370). 

* For the transformation of theta functions, and of Abelian functions, the following may be 
consulted. Jacobi, Creile, vin. (1832), p. 416 ; Eichelot, Creile, xii. (1834), p. 181, and Creile, 
xvi. (1837), p. 221 ; Rosenhain, Creile, XL. (1850), p. 338, and Mém. par divers Savants, t. xi. 
(1851), pp. 396, 402 ; Hermite, Liouville, Ser. 2, t. in. (1858), p. 26, and Comptes Rendus, t. XL. 
(1855); Königsberger, Creile, LXIV. (1865), p. 17, Creile, LXV. (1866), p. 335, Creile, LXVII. (1867), 
p. 58 ; Weber, Creile, LXXIV. (1872), p. 69, and Annali di Mat. Ser. 2, t. ix. (1878) ; Thomae, 
Ztschr. f. Math. . Phys., t. xii. (1867), and Creile, LXXV. (1872), p. 224; Kronecker, Berlin. 
Monatsber., 1880, pp. 686, 854 ; H. J. S. Smith, Report on the Theory of Numbers, British Associa­
tion Reports, 1865, Part vi., § 125 (cf. Weber, Acta Math., vi. (1885), p. 342; Weber, Elliptische 
Functionen (1891), p. 103; Dirichlet, in RiemannJs Werke (1876), p. 438; Cauchy, Liouville, v. 
(1841), and Exer. de Math., ., p. 118; Gauss, Werke (1863), t. ., . 11 (1808), etc.; Kronecker, 
Berlin. Sitzungsber. 1883 ; Frobenius, Creile, LXXXIX. (1880), p. 40, Creile, xcvii. (1884), pp. 16, 
188, Creile, cv. (1889), p. 35 ; Wiltheiss, Creile, xcvi. (1884), p. 21 ; the books of Krause, Die 
Transformation der per elliptischen Functionen (1886), (and the bibliography there given), 
Theorie der Doppeltperiodischen Functionen (1895) ; Prym u. Krazer, Neue Grundlagen einer 
Theorie der allgemeinen Thetafunctionen (1892), Zweiter Teil. See also references given in 
Chap. XXI., of the present volume, and in Appendix n. 
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By means of the equations u = Mw, a function ò(u; 2co, 2 ', 2?7, 2rj \ ), 

with half-integer characteristic [ j , becomes a theta function in wy 

(w ; K, if ') , of order 2, with the associated constants 2i>, 2v\ 2f, 2f' and 
the characteristic (K, K')y where (§ 324, Chap. XVIII.) 

2Mv = 2*>a + 2U)V, 2ilfi/ = 2coß - 2 '/8', 2 (?/ + T/V) = 4£ 

2 ^ / 3 + ,//?') = 4?', K' = âV-ÏÏQ-id(cuO, -K = $Q[-WQ-bd(fiP)t 

and 

äa' = ä'a, ßß' = ß'ß, aß'-ü'ß = ß'cL-ßa' = 2; 

this theta function in w, U(w; , '), can by § 287, p. 463, be expressed as 
a linear aggregate of terms of the form 

yfrr (w ; K> ' + fi) = * |~rw ; 2t/, 2ri/, 2Ç/r, 2 f I ( * ' + ^ r ~ | 

+ - rw ; 2i/, 2ri/, 2f/r, 2 f j ^ ' ^ , 

r being equal to 2 ; here e, = ^^Q''y is ± 1, according as the original function, 
that is, according as the function (w ; K, K'\ is even or odd. For brevity 
we put w = 2vW, vT' = u', and denoting by ® (IF, r) the series 2 2, ' + '7 ' 2, 
we consider the function 

<9r{W\K,K' + p) = &VrW\ ' | ( * ' ^ ) / ~| + 6 © - ; '\ (K'+£)lr\ 

which is equal to e~^v~lto2y}rr (w; , ' +/JL). Throughout the chapter the 

symbols ^ (w\ J, © f W\ J denote respectively 

» [w ; 2v, 2v', 2£ 2Ç' | £ ] , © ( F ; T' | * ' ) . 

Taking the final formula of § 291, p. 472, replacing , ', v> V> ( )> [ ) 

respectively by v, v', Ç, f', \ ( a j , \y J + ( j , multiplying both sides of the 

equation by eiria^'K'-a'\ where p is a row of integers each either 0 or 1, and 
adding the 2P equations obtainable by giving a all values in which each of its 
elements is 0 or 1, we obtain 
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2 ^ - r , e | V - F ; T' | |(«')]e[V+^; ^ | i (^ )+( f ) ] 

= ve^(«'+, £© 2 ; 2 ' |* ( 6 ' + ^ 1 © [2fr; 2 ' |* ( ' + * ' + ^ 1 , 

and hence, replacing F, U respectively by W, 0, 

»% [*WT 2r' J * < ^ * > ] © [O; ST' |* ( /* + + a , ) ] 

= Xe-a(,- *) e | V ; / I i ( £ ) ] | V ; ' I * £ ) + ( * ' ) ] . 

This may be regarded as the fundamental equation for quadric transformation ; 
we consider various cases of it. 

(i) When (Kt K') is the zero characteristic we obtain 

< >|~2 ; 2 , = 2 - ^ ^ ^ ( )2 ; r ' U ( " ' ) ] / ® [ ; 2 ' I ^ ^ l , 

the right-hand side being independent of a', which for simplicity may be 
put = 0. 

We can infer that in any quadric transformation, when the transformed 
function has zero characteristic, it can be expressed as a linear aggregate of the 

2? squares *&2 (w | \ I J ) , in which a' is an arbitrary row of integers {each 0 

or 1) and a has all possible values in which its elements are either 0 or 1. 

(ii) When K' = 0, K=\n is not zero, we obtain 

• [« , *̂ |* :)] [ ! 

where on the right side only 2^-1 terms are to be taken in the summation in 
regard to a, two values of a whose difference is a row of elements congruent 

(mod. 2) to the elements of n not being both admitted. When | ( J is an 

even characteristic we may put a' = 0 ; when \ ( is an odd characteristic we 

may put a = fi. 
In this case, as before, only 2p theta functions enter on the right hand, 

and their characteristics form a special Göpel system. 
The cases (i) and (ii) give the transformation of any theta function when 

the matrix, of 2p rows and columns, associated with the transformation* is 

* For the notation, cf. Chap. XVIII., §§ 322, 324. 
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( j . I t can be shewn that by adjunction of linear transformations every 

quadric transformation is reducible to this case (cf. § 415 below) ; so that 
theoretically no further formulae are required. As it may often be a matter 
of difficulty to obtain the linear transformations necessary to reduce any given 
quadric transformation to this one, it is proper to give the formulae for the 
functions 

Va(W; i f , i r + /*) = ® |~2 ; 2 ' | * ^ ^ ' + - 2 ; 2 I * ^ + * ; 

by this means the problem is reduced to finding the coefficients in the 
expression of any theta function in w, of the second order, in terms of 
functions 4*2 ( ; K, K' + fi) (see § 372 below). Hence we add the following 
case. 

(iii) When K' is not zero, we deduce, by changing the sign of W in the 
fundamental formula, the equation 

2*<H> l o ; 2 ' | * ( ^ + ^ , + / ) 1 ^ 2 ( ; , '+ ) 

= 2 **- . [F; ' |*£')] |V; ' | ig') + (*')] , 
where, putting = \k, ' = £&', we have Ca = 1 + € *(*'+*')+* * When € is 
+ 1, there are 2?-1 values of a for which ah' = k (k' + a') + 1 (§ 295, Chap. XVII.) ; 
for these values (7a = 0 ; when e = — 1, there are 2P~l values of a for which 
ak' = k(k' + a') ; for these values Ca = 0. In either case it follows that the 
right side of the equation contains only 2p~1 terms, and contains only 2P 
theta functions whose characteristics are a special Göpel system. 

I t is easy to see that the results of cases (ii) and (iii) can be summarised 
as follows: when the characteristic ( , ') is not zero the transformed function 
is a linear aggregate of 2^_1 products of the form b[w: A, Pi] b[w; ] 

wherein the 2 ~ characteristics - are of the form J f 1, = f j , and 

Ay are such that* 0*\K\+*Ì\A>Z\-€. 

These results are in accordance with § 288, Chap. XV. ; there being 
2P-1 (1 + e) linearly independent theta functions of the second order with 
zero characteristic and of character e, namely 2^ such even functions and no 
odd functions, and there being 2*>~1 linearly independent theta functions of 
the second order with characteristic other than zero. 

365. Ex. i. When p = ly the results of case (i), if we put Ggh(W ; r') for 

e JP î r '! i ( _ ? ) » a s *s usual, are 

„ , . ,,y^W' r') + e2
01(W; r')_el(W; + ^ ; ') 

ew(2W, * ) — 2 0 o o ( 2 r 0 2êi^j ' 

* Por the notation, see Chap. XVII., § 294. 
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and 
« tow ~y«(Wi ^ ) - 9 Q I ( ^ r')_ej(W; r')-e2

u(W; r') 
e10(2 W; 2r ) ^ ( 2 7 ) 26^(27) ' 

where (2 ') denotes 9 (0 ; 2 '). If then we introduce the notations 

/ _ 1 ') 01(2 ') /jT_e10(T') ^ 01( ') 
^ " a ^ j ' ^ - 6 0 0 ( 2 / ) ' V X - é ^ r ' ) ' ^ - ' 

, - 1_ 11(2 ; 2 ') , - _ 7
 10(2 ; 2 ') . -_ / 77 (21 ; 2 ') 

V 'C"V^Ö01(2Tf; 2 ' ) ' V ^ - V * (2 ; 2 ' ) ' V ' ~ V A eo t (2 ; 2 ') ' 

• / > _ 1 ( ; ') • /" ( ^ ' ) v / ?_. l /ye 0 0(Tf;T ') 
V ^ " V X 01( ; T V V ' - V X 1 ; ' ) ' V f - V X

 01( ; ' ) ' 

we find by multiplying the equations above that 

el{W; r')-el(W; ') = ^0( ; ) - \^¥; ) , 
and therefore that 

X2+X'2=l, 
so that also 

F + £ ' 2 = l ; 

while, comparing the two forms for Qm (2 W; 2 ) , putting TF=0, we obtain 

/ j 1 - ' . . 2 /£ 
V* = — , or b - j - ^ , giving X e ï T Ï ; 

further the equations for 6^(2 W; 2 ') and e10(2W; 2 ') give the results 

from which we find 

q = l - £ , f=l—X2£; thus also y = l-x, z—l-k2x. 

Ex. ii. The equations of case (ii), also for p — 1, give 

2 ; 2 0 = ^ | 2 ^ 1 ^ ) e i i ( 2 r , 2 O = e 1 0 ( ^ T ' ) e (Hr, ^ 

From these we have by division 

^ = ( l - r V ) ^ t > , 
Vl-X2£ 

while from these and the results of Ex. 1, we find 

/ =[1- + ,) / / : ^ , V^=[i-(i-V)f]/\/r::W. 

Ex. iii. When p=l, by considering the change in the value of the function 

a2
 (W) A PnWI 

when w is increased by a period, we immediately find that it is a theta function in w of 

the second order with characteristic \ (A ; hence by the result of case (iii) above, the 

function is a constant multiple of S10 (w) $w (w) ; determining the constant by putting 
w=0, we obtain the equation 

Qoo(T)e1Q(T')[e'n(W; r)e01(W; T')-e'01{W-, T)en(W; r')] 
=en(Oe01(r)e10(TF; / j e ^ f F ; o , 



365] IN THE ELLIPTIC CASE. 605 

which is immediately seen to be equivalent to 

e'n ( ') ( ') w=n d£ 
OOI (r) e10 (r') ; 0 V4^ (i - £) (i - \2£) • 

[We may obtain the theta relation, here deduced, from the addition formula of Ex. i., 

§ 286, p. 457; taking therein ™ = i ( _ J ) , « i e i ( _ î ) > ««=*(_? )> w=0> * e * ( o ) ' 

r=p=^ I j , we immediately derive 

^io M \ ) M ^ii W S o i ( 0 ) = ^ 

if, for small values of v, this equation be expanded in powers of v, and the coefficients of v 
on the two sides be put equal, there results the equation in question.] 

Ex. iv. By differentiating the second result of Ex. ii., putting W=0, and putting 
W=0 in the first result of the same example and in the second value for e00(2W; 2r') in 
Ex. i., we obtain 

e'n^i-Q _ e ' n ( Q 
e<x> (2r') e01 (2r') e10 (2r') ew (r') e01 (r') e10 (r') ' 

so that the second of these functions is unaltered by replacing r' by 2nr', n being as large 
as we please. Hence we immediately find from the series for the functions, by putting 
r = oo, that each of these fractions is equal to -. Hence if the integral occurring in the 
last example be denoted by J we have JZ^TTO2^ (r ) W. In precisely the same way we find 
1=2 \ (2 ) W, where / i s an integral differing only from J by the substitution of x for £ 
and for X. Hence 

as follows from the first result of Ex. 1. 
From these results we are justified in writing the formula of Ex. ii. in the form 

sn|_( + X ) ' Ï+X'J= dn MX) ' 
and this is Landen's first transformation for Elliptic functions. 

Ex. v. The preceding examples deal, in the case p=1, with the quadric transformation 

associated with the matrix ( j . Prove when p = \ that for any matrix of quadric 

transformation the transformed theta function is expressible linearly in terms of one or 
more of the eight functions 

= ew(2W; 2 0 , e2=e10(2TF; 2r'), e0=e01(2TF; 2 '), e , = e n ( 2 F ; 2r'), 

Bi-e(iWiW^y e ( 2 T f ; 2 r ' | - ^ 4 ) , e 5 = e ( 2 ^ ; 2 r ' | 1
( / 4 ) - &{iW ; ^ | ~ ^ * ) , 

e6=e(2iTi 2,'| }g)+*(aTT; v |" JjJ), e7=e(2ïf; 2r'| ^ ) - (2 ; 2 r' |-;jJ). 

Prove in particular that the functions arising for the transformation associated with 

the matrix f J are expressed as follows : 

< ( ^ èrO=e+e2, e01(TF; fr0=e-e2, 10( ; ^ ')= 4, ( ; £ ' )= - ; 
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and that the functions arising for the transformation associated with the matrix I ) are 

expressed as follows : 

e<x>(̂ ; £ '-£)= - 2, 01( ; | '-£)= + 2, 
7 

e«,(W; ir'-J)=e""8"e6, en(W; &-\)=es e7. 
Obtain from the formulae of the text the expressions of the functions 04, 0 , 6, 7 of 

the form 

ö4=^e00(^)e10(n 5 = ^ 01( ) ( 0, e6=C6e01(W)e10(W), eì=Cre00(W)Qn(W)ì 

where C4, Còì C6ì C7 are constants. 

Ex. vi. The reason why the matrices ( 0 1 ) > ( 0 2 ) » ( 0 2 ) a r e se^ectec^ Ex. v- w ^ 

appear subsequently (§ 415) ; the matrix ( J gives the transformation which is supple­

mentary to that given by ( ) ; it gives results leading to the equation 

sn [(1 +k) 2 V^/(l + *)] = (! +*) sn (w, k)/[l +k sn2 ( , )] ; 

by combination of these results with those for the matrix ( J we obtain the multiplica­

tion formula 
en(2TT; r') = ^e n (Tf ; r')O01(Tf; r')e10(TF; r')ew(W; r'), 

where A is a constant (cf. Ex. vii., § 317, Chap. XVII. and § 332, Chap. XVIII.). 
The matrix associated with any quadric transformation can be put into the form 

< > • 

where , Q' are matrices of linear transformations ; for instance we have 

with the corresponding equations 

U=rWly W^2W2J W2=-T2W3; r ^ - l / r , r ^ r ^ / 2 , r 3 = - l / r 2 , 

from which we have, for instance, 

e 1 0 (^ 3 ; ) = 0 1 0 (^ ; r) = e - V ; e o i ( ^ i ; *i) = « * ^ ± 0O1 (2 W2 ; 2r2) 

- £ 2 

= e ^ , ; r2)e0l(TT2; r2) = №00(^3 ; 3) 10( 3 ; r3), 

(E, F being constants) whereby the transformation formula for e10 ( W3 ; £r3) is obtained 
from those for 01O (2 W; 2 '), with the help of those arising for linear transformation. 

366. We pass now to the case when the order of transformation is any 
odd number, dealing with the mat te r in a general way. Simplifications tha t 
can theoretically be always introduced by means of linear transformations are 
considered later (§ 372). 
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We first investigate a general formula* whereby the function 

A \rw ; 2v, 2ri/, 2£/r, 2f' | ( * ' ^ 

can be expressed in terms of products of functions with associated constants 
2v, 2i/, 2f, 2£". We shall then afterwards employ the formulae developed in 
Chap. XVII., to express these products in the required form. 

Let <r, <x' be two matrices each of p rows and m columns, whose constitu­
ents are any constants ; let the ^'-th columns of these be denoted respectively 
by a® and c/{j), so that the values of j are 1, 2, ..., m; let Ta denote the 
matrix 2va + 2va', which has p rows and m columns, and let the ^'-th column 
of this matrix, which is given by 2vcr(i] + 2va^), be denoted by T</ ; also, 
K, K' being rows of any p real rational elements, let T^, ZK denote the 
rows 2vK + 2v'K', 2ÇK+2Ç'K'; and use the abbreviation 

w (w; , ') = ZK(w + %TK) - iriKK' ; 

finally, let s = (s(1), ..., s(m)) be a column of m integers whose squares have 
the sum r, so that 

2[«0]» = r ; 
3 

then, using always ^ (w) for ^ (w ; 2v, 2v, 2£, 2£"), the function 

n ( w ) = e-rwfw; ^ ' ] ^ 0 (w + rK~TaS) + rlJ)~\ 

is, in ws a theta f unction of order r with associated constants 2v, 2v, 2Ç, 2f' and 
characteristic (K, K'\ 

For when the arguments w are increased by the elements of the TN, 
where If, N' are rows of p integers, the function 

*[.<*(„+Ï*^) + T«>] 
is multiplied by a factor e*>, where ^ is equal to 

[2£ *< + 2ÇN's^] « > (w + TK~r
T*S) + TÌJ) + vNs^ + t/JV"«0 J 

-7ri[AV'>][iTstf>], 
that is 

the sum of the m values of ^ is given by 
m 

2 ^ = r {Z^ (w + £TTV) - irüMT} + Z^T* - ZNTas + Z^Tas 
7 = 1 

= nsr(w; , J n + ZjyTjjS 

* Königsberger, , LXIV. (1865), p. 28. See Rosenhain, Creile, XL. (1850), p. 338, and 
Mém. par divers Savants, t. xi. (1851), p. 402. 
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also, when w is increased by TV, the function — r-m [w ; KJry K'jr) is increased 
by — ZJETJV; thus the complete resulting factor of (w) is 

of which (§ 190, p. 285) the exponent is equal to 

thus (§ 284, p. 448) (w) is a theta function in w, of the ?̂ -th order with 
(K, K') as characteristic. 

Therefore (§ 284, p. 452) we have an equation 

(w) = 2 A» a- L ; 2t/, 2ri/, 2f/r, 2f ' I ^ + ^ r ] , 

where / is a row of jp integers each positive (including zero) and less than r, 
and the coefficients A^ are independent of w. The coefficients A^ are inde­
pendent of K, K\ as we see immediately by first proving the equation which 
arises from this equation by putting and K' zero, and then, in that equation, 
replacing w by w + 2vK/r -f- 2v'K'/r. 

In this equation, replace K + h, where A is a row ofp integers, each 
positive (including zero) and less than r ; then, using the equation previously 
written (§ 190, p. 286), for integral M, in the form 

b(u; q + M) = e27riMfb(u; q), 

we find 

e-r<m[w; (K+h)lr, K>lr]-2m(K' + e)hlr ™ ^ (j) ( { 2vh + TK-TffS\ + ^ " j 

= 2 A^b-W* a- \rw ; 2vt 2rv', 2?/r, 2f ' | ^ ^ ) / ] , 

where e is taken to be any row of p integers each positive (or zero) and less 
than r ; ascribing now to h all the possible r? values, and using the fact that 

r-p 2 e2iri (t* "e> hlr = 1 or 0 
A 

according as //, - e = 0 or 0, (mod. r), we infer, by addition, the equation 

C^ Irw; 2v, 2rv', 2f/r, 2 f I ( * ' " ^ /   

= te+ » [,<* (w + ̂  + ^ - T ^ ) + ] , 
where 

/ = - [w ; ( + h)/r, K'/r] - 2 (JT + /*) h/r, 

and C>, = WA^ is independent of w and of the characteristic ( , '). 
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367. We put down now two cases of this very general formula :— 

(a) if each of the matrices <r, a consist of zeros, and each of the m 
integers s{1\ ..., s{m) be unity, so that m = r, we obtain 

G^ \rw ; 2v, 2rv', 2g/r, 2f ' | ( * ' * ^ 1 

= ^e-rw[w; (K+h)lr,K'lr\-2wi(K' + p)hlròrr | 2vh + TKl 

In using this equation we shall make the simplification which arises by 
putting w = 2vW, v - 1 v = T', and 

(TP, ') = e-**"-1™2 (w) = X&tirn+Wffl. 
n 

then the equation can be transformed without loss of generality, by means of 
the relations connecting the matrices u, v', f, f' (cf. § 284, p. 447), to the form 

Q - '[ + ' '1 ]-2 '1 ) [TW' \ ^ + ™ 

* V ' I J 

= - @r +
 h + K + T'K'; '1 , (I) 

where G^ is independent of W and of and ÜT'. 
This equation is of frequent application in this chapter; it is of a different 

character from the multiplication formula given Chap. XVII., § 317, Ex. vii., 
whereby the function ® ( , ') was expressed by functions @( , ) with 
different characteristics but the same period, '. 

Ex. i. When r=2, p = 2, we have 

(70e(2TT,2r') = e2(TF1, If,; r') + 62( ï ^ + è , , ; O + e 2 ^ , FT2 + £; r') 

+e2(Tf1+i, +*; '). 
ifo, ii. If X, /z, A be rows of jt? integers each less than r, prove that the ratio 

is independent of W. 

(ß) if the matrix a consist of zeros, and if each of the m integers 
s{1), ..., s{m) be unity, so that ra=r, and if the matrix o-, of p rows and r 
columns, have, for the constituents of every one of its rows, the elements 

0 i ? ^ 
' r' r' ' r ' 

then the matrix T„ will have, for the constituents of its '-th row, the 
elements 

n 5* 15* (r- l )f l , 
' r ' r ' * r 

. 39 
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where Xl̂  is the sum of the elements of the -th row of the matrix 2v, 
so that 

h=i 

also the -th of the p elements denoted by - Tas will be 

1 , ( - 1 ) ( 1 r - 1 
~ ~t~ 1 — 0 **i, 

r \_r r J lr 

and therefore the -th of the elements of tj Tas will be 
r 

Thus, denoting the row (f^, . . . , Q,p) by , the theorem is 

(?„*• \rw, 2v, 2rv', 2g/r, 2 f KÄ ' + / * ^ r l 

Ä j=i L r V r 2r ; j 

where ^ has the same value as in § 366. And as before this result can be 
written without loss of generality in the form 

Q e-2mKTW+ÌT'K'lr}-4niKK'lr © ~ > > + / * ) /  

= S e - 2 ^ A / , ^ +
 & + g

y
+ 7 / g / ) , ' (II) 

where £ = — (r — l)/2r and, for any value of u, 

( ) = ®( ; ') ( +1; A &L + r-^; r') ; 

the number of different terms on the right side of this equation is rp_1 ; 
for if m be a positive integer less than r, the two values of h expressed by 

= ( 1? ..., hp) and h = (h1
/
) ..., hp'), in which A/^Äx + m, ..., A/ = Ap + ra, 

(mod. r), give the same value for  

Eoc.i. Vor p = % r—2, we obtain 

iC0e(2ir,&0 = e ( » r I - i , W 2 - i ; T'JeCÎT.+J, W2+i; r') 
+ e(JT1+J, IT,-J; r ' ) e ( ï » W , JF2 + i ; r'). 

Ex. ii. For p=2, r='A, we obtain, omitting the period ' on the right side, 

*Cee(3W; 3r') = e(TT1, lT , )e(Fi-J , fT,-J)e(1Fi+i, TF2 + i) 
+e(ir1, TT2-j)e(Tr1+i, w y e ( f i w , 2- ) 
+ e(W1 + l, F i -J)e(Fi - i , (IF,, TF2 + i). 
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368. We consider now the expression of the function 

Vr(W; K,K' + f*) = ®[rW; rr'\(K'+/)/r~j +e® [ - r T T ; W\{K'+/)/r] , 

in terms of functions © \ W ; \ , in the case when r is odd. We 

suppose as before (K, K') to be a half-integer characteristic, and we suppose 
€ = e7r*|jfir|, so that e is + 1 according as the characteristic ( , ') is even or 
odd*. I t follows from § 327, Chap. XVII I , if { , ') has arisen by trans­
formation of order r from a characteristic (Q, Q'), that e is also equal to eni ' Q ' 
and is + 1 according as the function is even or odd. 

I t is immediately seen that equation (I) (§ 367) can be put into the form 

= veM
K'+ï> Br \W , h-(r-l)(K + r'K') j K'-\. 

* L r l A ' J ' 
from this equation by changing the sign of W, we deduce the result 

= 2 -*»'(^+ )* L -2ni(r-l)K>fV® + a | * " | + eM(r-l) J T ^ _ a | * " | 1 ̂  

where we have replaced €e~*nirKK', = €e~vir\Ki, by unity, and a denotes the 
expression [h — (r — 1) { + ')\1 which is an r-th part of a period. We 
proceed to shew that the function 

e-M(r-i)K'w®r \ w + a j K 1 + ^«(r-DJT'irer | j p _ a | *'] 
L !A j L ^ J 

can be expressed as an integral polynomial of the r-th degree in 2? functions 
®r[W; T'\APÌ], where A Pi are the characteristics of any Göpel system of 
half-integer characteristics whereof ( , ') is one characteristic. 

From the formula of § 311, p. 513, putting G = 0, A' = , = P = \ (q V 

and replacing U, V, W, ( -, ( J]€j respectively by W, a, 6, -, €j we 

obtain, if Pa = i(qa\ 

* Thus, when 2( ' + / )= , m being integral, 

as in § 287, Chap. XV, and 

*V(W; K, K' + IL) reduces to 26 VrW, ' "^ 1 . 

39—2 
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&>@(W +a; A + P)@(W + b; A) 

= S ^(a'^'P'fi-.%eae-i^^®(W+a + b; A + P + Pa)@(W; A + P.) , 
e % (a + o, U ; .r, e) a 

where 

X(«,t>; P , e ) = 2 e „ e - i * . 0 ( t t ; 4 + P + P a ) @ [ > ; A+Pa]; 
a 

the function ^ (u, v ; J., P , e) may be immediately shewn to be unaltered by 
the addition of an integral characteristic to the characteristic Pa of one of its 
terms ; we may therefore suppose all these characteristics to be reduced 
characteristics, each element being 0 or \. 

Hence we get 

2P®*(W + a-, A) = Xx%}a^°>€\Xea®{W+2a; A+Pa)®{W; A + P.) , 
e X\*a> ^> ^> €/  

and hence 2%>®3(W+a; A) is equal to 

2 ©( ; ^ + )2 22 / - ^ ' ^ © ( + ; A + Pa+Pß)Q(W;A+Pß)9 
e a e' 0 

where 
% ( , ; 0, ) „ (2 , ; > e) # 

1
 % ( 2 , 0 ; 0 , ) ' ^ % ( , 0 ; , ' ) ' 

proceeding in this way we obtain 2{r~1)p ®r ( + ; J.) 

= 12@15 ©2 . . . S tfr_1%(TT+m, TT; P a i + . . . + _2; er-ù, ( I l l ) 
«1 1 2 «U _ 

where each of , Ptt2, ... becomes in turn all the characteristics of the 
group (P), and e1} e2, ... relate respectively to the groups described by 
P a i , , . . . ,and further 

Hm = x[ma>a; P a i + . . . - ^ , ] - x [ ( m + l ) a , 0; P a i + ... + Pa^, e«], 
(w = l, . . . , r - l ) , 

©w = e . ^ 6 ( ; L̂ + P a J , \m = - £iri ( ^ + ... + ' -1) ? , 

(m = l, . . . , r - 2 ) . 

The equation (III) expresses ®r(W + a; A) as an integral polynomial 
which is of the (r — l)th degree in functions ®(W; A + Pa)> whose charac­
teristics belong to the Göpel system {AP\ and is of the first degree in 
functions ®[W + ra; A + P a ] . But it does not thence follow when a is an 
r-th part of a period, that © ( + ; A) can be expressed as an integral 
polynomial of the r-th degree in functions [ ; + ]; for instance 
if the Göpel system be taken to be one of which all the characteristics are 
even (§ 299, Chap. XVII.), it is not the case that the function ® 3 ( ^ + J ) > 
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which is neither odd nor even, or the function 6 3 ( JT+ J) — ®*(W— J), which 
is odd, can be expressed as an integral polynomial of the third degree in the 
functions of this Göpel system ; differential coefficients of these functions 
will enter into the expression. The reason is found in the fact noticed in 
§ 308, p. 510 ; the denominator of _ may vanish. 

Noticing however, when P is anj^ characteristic of the Göpel group 

(P), that % ( - u , -v) P , €) = ™1 1+™] > 1 ( > yJ P> e)> s o t n a t t n e co~ 
efficients Hm are unaltered by change of the sign of a, and putting the 

( Kf\ 
jf J, we infer, from the equation (III), that 

2<r-i)JP [e-2*i(r-i)K'W®r ( + a ; ^ ) + e2«i(r-i)K>JV®r (W_ a . ^)] 

is equal to 

2 2 Hr_x [e-^(r-i)K'wx ( + m, Tf ; P , er_x) 

+ e^(r-DK'wx ( - , ; P , e M ) ] , 

where P denotes P a i + ... + P a ; and it can be shewn that when a becomes 

equal to [h — (r — 1) ( + ' ')]/ , the limit of the expression 

U= Hr_, [e-™(r-i)K>wx(|f + rCLf W. p ? € M ) + e2ni(r-i)K'wx(W-ra,a; P , e M ) ] , 

if it is not a quadratic polynomial in functions ©( ; ^ P a ) , is ^ero. The 
consequence of this will be that Wr [ W ; , ' + / ] is expressible as a 
polynomial involving only the functions % (W; APa). 

For the fundamental formula of § 309, p. 510, immediately gives*, for 
any values of a, b, 

X(W+a, F + Ò; P , € ) % ( a + 6, 0; P , e) = %(a, b; P , e)X(W + a + 6, TT; P , e), 

and hence, replacing 6r_x simply by e, the expression ?7 is equal to 

2€ae-W*a {e-*rt(r-DK>w® ( Tf + a ; ^ + P a ) © [ + (r - 1 ) a ; J. + P + P a ] 

+ #*&-»*'*& (W-a; A+Pa)®[W-(r-l)a; ^ l + P + Pa]}, 

where P , = -|MM, is used for P a i + + P«r_2 and e^ e2,... for (eMX, 

(er_!)2,.... Replacing ra in this expression by the period — ( — 1)( + ' '), 
and omitting an exponential factor depending only on r, h} K, K' and P , it 
becomes 

2 . - ^ ^ . { [ + ; 4 + .] [ - ; + P + P J 

+ @ [ Ï F - a ; ^ l + P a ] © [ T f + a; 4 + P + P J } , 

* We take the case when the characteristics , A of § 309 are equal. It is immediately 
obvious from the equation here given that in the expressions here denoted by the value of the 
half-integer characteristic A is immaterial. 
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A being as before taken = („) and fa = € «[ - (« )^ ] , + - * ^ > ^ « ; and this 

is immediately shewn to be the same as 

( 1 + ? p ( p ) e ~ ^ 1 P I ) 2 ? a e ~ W ' a e ( T f + a ; A+P«)®(W-a> A+P + Pa), 

where eP is the fourth root of unity associated with the characteristic P of 
the Göpel group (P), which is to be taken equal to 1 in case P = 0. Thus 

the expression vanishes when fP = — &ni ' p ' ( p ) • Hence, in order to prove 

that when the expression U is not a quadratic polynomial in functions 
© ( W ; APa), it is zero, it is sufficient to prove that the only case in which 

U is not such a quadratic polynomial is when fP = — e?ni ' p I ( p ) . 

Now the denominator of _ is 

26ae-W<?a © [ra ; A + P + P a ] ® [0 ; 4̂ + P a ] , 
a 

where P still denotes P a j + ... + Par_2 and ea has the set of values of er_2; 
save for a non-vanishing exponential factor this is equal to 

2 ? . »(0; APa), 
a 

or ( l + r p ( p ) e - ^ i i p l ) S & e - è 7 r t Y ^ © [ 0 ; + P + P,,] © [0 ; ^ + ], 

according as P = 0 or not, where, in the second form, Pß is to describe a 
group of 2^_1 characteristics such that the combination of this group with 
the group (0, P ) gives the Göpel group (P). We shall assume that, when 

fp is not equal to — efr™ ' P ' ( p ) » neither of these expressions vanishes for 

general values of the periods r'. 
Since the function M^ ( W ; K, K' + fi) is certainly finite, we do not 

examine the finiteness of the coefficients Hm when m is less than r — 1 , 
these coefficients being independent of W ; further, in a Göpel system (AP), 
any one of the characteristics APa may be taken as the characteristic A ; 
the change being only equivalent to adding the characteristic Pa to each 
characteristic of the group (P); hence (§ 327, Chap. XVIII.), our investigation 

gives the following result :— Let any 2? functions ò(u; 2œ, 2Û>', 2rj, 2?/ J, 

whose (half-integer) characteristics form a Göpel system, syzygetic in threes, be 
transformed by any transformation of odd order; let (AP) be the Göpel 

system formed by the transformed characteristics ( J ; then every one of the 
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original functions is an integral polynomial of order r in the 2P functions*  
(w ; 2v, 2v', 2 £ 2f' | AP) : as follows from § 288, Chap. XV., the number of 

terms in the polynomial is at most, and in general, ^ (rp -t-1). 
For the cases p = 1, 2, 3, and for any hyperelliptic case, it is not necessary 

to use the addition formula developed in Chap. X V I I I . We may use instead 
the addition formula of § 286, Chap. XV. I t is however then further to be 
shewn tha t only 2^ the ta functions enter in the final formula. For the case 
p = 3 the reader may consult Weber, Ann. d. Mat 2a Ser., t. IX. (1878), 
p. 126. 

369. We give an example of the application of the method here followed. 
Suppose p = \, r = 3j and that the transformation is that associated with the matrix 

Q ^) ; then (§ 324, Chap. XVIJL) taking Jf=3, the function 

or 301 («), is equal to £01 (Sw ; 2v, 6v', 2f/3, 2f ') or ^e^" 1 " 2 ¥3 ( W; - %, 0). Now we have, 
witha = (A+l)/3, 

Co*s(W; - i , 0 ) = 2[eJ l(Tr+a) + e i ( T r - a ) ] ; 
h 

also 0^ ( W+ a) is equal to 

if we take the Göpel system to be ^ ( J , | ( ) ,so that Px = \ I ) , this is equal to 

ej^ («)+«i ejfo(e) , W) e01 (2a) e01 ( )+ / 10 (2a) e10 (a) 
ï « e w ( 2 a ) e a i + 61e1o(2a)e1o

 olK \> eQ1^a)QQ1 + ̂ elÇi{Za)Q10 ° 

e^W+c^fo) e10 (2a) e01 (a) - w/ e01 (2a) e10 (a) E 
¥

e e 0 1 (2a)e 0 1 + € le10(2a)e1( )
€ l 1(A \ , 01 ( ) 0 1 - 0 1( )0 1 *' 

where e01 denotes 0O1(O), etc., and 

^o = Öoi ( W+3a) e01 ( W)+ e/0 l o ( W+3a) 01O( W), 
^ i = e10 ( W+3a) 0O1 ( - / ,,! ( + ) 10( W). 

Now, in accordance with the general rules, the denominator of the fraction 

G10 (2a) e01 (a) - 601 (2a) 01O (a) 
e10 (3a) 0O1 - ûi'Goi ( ) 01 

vanishes when */ = -«** ^ e * < * - W * ' + - u * ' f t namely, as ( ^ = i ( _ ° ) = ^ , when 

y = - «<№+1>> and a = (Ä + l)/3 ; in fact, putting =( + 1+ )/3, 

01 (3 ) 0 0 1 - ^ 0 0 ! ( ) 0lo=e™(7t+1) 01O ( ?) e01 - ^ ' e ^ ( ?) 01O, 
= ( + 1 ) [ ; ; 1 _ ; ; 1 ] ^ 

* The expression of the transformed theta function in terms of 2*> = 4 theta functions is given 
by Hermite, Compt. Rendus, t. XL. (1855), for the case p = 2. For the general hyperelliptic case 
cf. Königsberger, Creile, LXIV. (1865), p. 32. 
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for small values of x, when ic1' = evi(h+1\ because the differential coefficients of the even 

functions, being odd functions, vanish for zero argument ; thus the denominator of the 

fraction vanishes to the second order. We find similarly, for 1 ' = , ** + 1 \ a = J ( A + 1 +#) , 

that the numerator of this fraction is equal to 

.*«»[ ,(*±1) ,.(*±1)- .,.(^) .1( ) ] , : 

in the same case also we find tha t the expression E1 is equal to 

e«i (*+i) [ , ( W) 1 ( W) _ e V ( W) e i o ( W)] Xi 

while the expression 91 0 ( W- Za) 9 0 1 ( W)-ie1'eol ( W- Za) e1 0 ( W) is equal to the negative 

of this. Thus the function e3
01 ( W+ a) can be expressed by the functions G10 ( W\ e0 1 ( W)> 

and their differential coefficients of the first order ; but the function 9 ^ ( W+ a) + 9 ^ ( W- a) 

can be expressed by the functions 91 0 ( W), 0O1 ( W) only. 

In the function 9 ^ ( W+ a) + 9 ^ ( W- a) the par t 

910 (2a) 90 1 (a) - / 9 0 1 (2a) 910 (a) £ 

e' 9 1 0 ( 3 a ) 9 0 1 - û 1
, 9 0 1 ( 3 a ) 9 1 0

 1 

furnishes only the single term for which '= - (h+l\ namely, 

« (*+D e °4 3 ; M 3 ; 9oi ( W) 0io ( W)a 

Ex. i. Prove that the final result is tha t \C^\X (u) is equal to 

[ {[ W 01+ 10 W lo] " ( } 

- [eJo (i) ej, - «u (J) eJJ \ («) »I («)} 

, e i 0 e01 (j) [ 10 eQl + e01 e n J n , , „2 , , , J , . 
+ [e*(i)e: i+ef0(i)e>Me10 V - > V " H , V - X 

where 0O1, 91 0 denote 90 1 (0) and 01O (0) respectively. 

Ex. ii. Prove tha t 

e01(HW)e10(H4i)-e10(^-J)e01(lF+i) 

= 2 ;, - (|) ,0 ( ^ ( ) _ 8 , ( ) ( ( 

Ö 1 0 U 0 1 ~ ö01 ö10 

370. General formulae for the quadric transformation are also obtainable. 
The results are different, as has been seen, according as the characteristic 
( , ') of the transformed function is zero (including integral) or not. The 
results are as follows :— 

When (K> K') is zero, the transformed function can be expressed as a 
linear aggregate of the 2^ functions b2(w\A, Pi), whose characteristics are 
those of any Göpel system. 
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When (K, K') is not zero, the transformed function can be expressed as a 
linear aggregate of the 2^_1 products ò(w\A, Pi) (w | , , in which 
the characteristics Pi are those of any Göpel group whereof the charac­
teristic Ky = (UT, '), is one constituent, and A is a characteristic such that 
| , | = | |, or | Ay | = | | + 1 (mod. 2), according as the function to be 
expressed is even or odd*. 

When (K> K') is zero, the equation (I), § 367, putting K = K' = fi = 0t 

and then increasing W by \^ \ where / is a row of quantities each either 
0 or 1, gives 

C® (2 W; 2r' 1 ^ 2 ) = 2 - ^ 2 (w + \h ; ' I ^ 2 ) ; 

hence, from the fundamental formula of § 309 (p. 510), writing therein 

v = 0tU=W+a>b = a = h/2, A=i(fy,Pi = i ^ , and ( ^ ) ^ ' ,= ,, 

we obtain 

2 * C < H > ( 2 F ; 2 x ' | ^ 2 ) 

where is independent of fi. I t is assumed that the sum 2&©2(0 ; T ' I APi) 

is different from zero for each of the 2^ sets of values of the fourth roots &. 
This formula suffices to express any theta function of the second order with 
zero characteristic. 

When ( , ') is other than zero, by putting in the equation (I), § 367, 
r = 2, /- = 0, adding \ to Wy where h! is a row of quantities each either 
0 or 1, and then changing the sign of Wy we obtain 

- + *) ^ 2 ( T f ; Ky K'+ h') = X[(*MW®*(W + a) + €e-2"iK'w®2(W-a)], 
h 

where , = -f h. X' = ' -f A', and G is the same constant as before, indepen­
dent of Wy , K'y Ifiy and a = £X + £ ' ', the period being omitted on the 
right side. Hence, taking the fundamental formula of § 309 (p. 510), putting 
therein v=0f u= W+a, b=at J .=0, B=A, and then writing a=JX+£T'X'+^#, 
where ? is a row of p equal quantities, we find, provided | K, Pi \ = 0, (mod. 2), 

* When ( , ') is zero, the function is necessarily even (§ 288, p. 463), and therefore | | = | |. 
We have seen (§ 327, Chap. XVIII.) that this is always true when r is odd. When r is 2, it is not 
always so, as is obvious by considering the transformation, for 2> = 1, in which a = 2, /3=0, a' = 0, 
/8' = 1, and(Ç, e') = (J , i ) ; then we find ( , JT) = (i» 1) ; thus |Q| = 1, | # | = 2. 
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and e==eri|A-| + «M,jrij bh&b-2?C4ra(W; K, K'+ h') is equal to the limit, 
when x vanishes, of the expression 

'{ +^ ')^ - ^ ^ . - ' 1@ ( . A,Pt){%{W + as\A, , P{) 

+ e(W-œ\A,K,Pi)}, 

where & = ( ' J e " W - ) e i , and 

2Ki <r^*-*A)q:-M* ©2 ^ x +%K + \T'K' j i Q + Pi) 

E i = * 2ke-«*'«i® {w\A, K, Pi) B(0;A, Pi) ' 

I t can easily be proved (cf. § 308, p. 510) that the denominator of E$ 
vanishes, for x = 0, for the 2P'1 sets of values of the fourth roots & in which 
the fourth root corresponding to the characteristic of the group (P) has 

the value — ( «J ^^ and that the corresponding expressions  

{= ^ * % ( ¥; A,Pi){B(W + œ\A, K, Pi) + ®(W-x\Ai K, Pi)} 
i 

have the limit zero ; the summation 2 is therefore to be taken only to extend 
i 

to the 2p~1 sets of values in which this fourth root =-f [ jJ\ e^ 'W. I t may 

however happen that the denominator of E$ vanishes for other sets of values 
of the fourth roots Çiy when x = 0. We assume that for such sets of values 
the sum multiplying E$ in the expression Uç does not vanish for x = 0 ; by 
recurring to the proof of the formula of § 308, it is immediately seen that 
this is equivalent to assuming that the expression 

2e,e»(ür; Pi) 
i 

is not zero for general values of the arguments U for any set of values of the 
fourth roots ei (cf. (/3), p. 514). That being so, the value of Eç when its 
denominator vanishes for x = 0, can always be obtained from the limiting 
expression given, by expanding its numerator and denominator in powers 
of x. 

Eoe. Applying the formula of this page for the case p= 1 to the function 

en(2TT; 2 r ' ) = i * 2 ( ^ ; - 4 , 1 ) , 

for which (ÜT, K') = { - J , 0) and A' = l, we immediately find that the Göpel system in terms 

of which the function can be expressed is {A, AP^)> where A =^ ( J, PX = K= J ( ] ; we 

are to exclude the value of the expression Uç in which £ 1 = - ( J = 1 ; the value of E* for 

f i= - 1 is easily found to be 
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of which both numerator and denominator vanish for x = Q. The final result of the 
formula is 

Ceu(2W; 2 r ' ) = - 4 e 1 0 ( i ; r ' ) e ; o ( i ; r')en{W; r')el0(W; rO/e^O; r ' )ew(0 ; r'). 

Prove this result, and also 

Ce01(2W ; 2r') = 2 e ^ ( i ; O e j l f ; r')eol(W; 0 / 6 ^ ( 0 ; r') 0O1 (0 ; r'), 

and (cf. § 365) obtain the formulae 

©io (i ; *0 e'10 (è ; r') = - 1 e*0 (o ; r') e^ (J ; r'), 

eJo(è; 0=40^(0; r')e01(0; ; O+ej^O; T')], 

0^(0 ; 2r') = i [ e ^ ( 0 ; r ' ) + e^ (0 : r ' ) ] , 

C = V 2 [ e ^ ( 0 ; r ' ) + e ^ ( 0 ; r ' ) ] . 

371. The preceding investigations of this chapter enable us to specify in 

all cases the form of the function S-fw; 2w, 2U>', 2rjy2rj,\ J or S- (u\ ) 

when expressed in terms of functions S- (w ; 2v, 2i/, 2£ 2f' j J or S- ( w J. 

In many particular cases it is convenient to start from this form and 
determine the coefficients in the expression by particular methods. But it 
is proper to give a general method. For this purpose we should consider 
two stages, (i) the determination of the coefficients in the expression of the 

function Ò lu \ J by means of functions yjrr (w ; K} K'-f ) , (ii) the determi­

nation of the coefficients in the expression of the functions y{rr(w ; , ' +/ ) 

by means of functions ^ ( w j J. The preceding formulae of this chapter 

enable us to give a complete determination of the latter coefficients in a 
particular form, namely, in terms of theta functions whose arguments are 
fractional parts of the periods 2v, 2v ; but this is by no means to be regarded 
as the final form. 

372. Dealing first with the coefficients in the expression of the function 

( \ \ by functions ^r(w\ , '+ ft), there is one case in which no 

difficulty arises, namely, when the transformation is that associated with the 

matrix ( - J ; then ^ (u I J is equal to (rw ; 2v, 2rv', 2f/r, 2Ç" ' j , 

the row K' being in fact equal to rQ\ namely (u\ J is \tyr (w ; , '). 
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Now it can be shewn*, that if fl r be the matrix associated with any 
transformation of order r, and r be a prime number, or a number without 
square factors, then linear transformations, , ', can be determined such 

that fl r = fl ( 1 12'. Hence, in cases in which the matrices , fi' have been 

calculated, it is sufficient, first to carry out the transformation il upon the 

given function ò(u\ j ; then to use the formulae for the transformation 

( r 0\ 
) , whereby the original function appears as an integral polynomial of 

order r in 2? theta functions ; and finally to apply the transformation ' to 
these 2^ theta functions. All cases in which the order of transformation is 
not a prime number may be reduced to successive transformations of prime 
order (§ 332, Chap. XVIII.). 

We can however make a statement of greater practical use, as follows. It 
is shewn in the Appendix II. (§§ 415, 416) that the matrix associated with 

any transformation of order r can be put into the form I R, J, where X2 

is the matrix of a linear transformation, and that, in whichever of the possible 
ways this is done, the determinant of the matrix B' is the same for all. In 
all cases in which this has been done the required coefficients are given by 
the equation 

V| o> | \Q J 

\/\M\\V\\B'\ » L ! J 

wherein, (Q, Q') being a half-integer characteristic, € is an eighth root of unity, 
u—Mw, \M\ is the determinant of the matrix M, etc., fi is in turn every 
row of integers each positive (or zero) and less than r, which satisfies the 

condition that the p quantities - B'p are integral, and, finally, denotes the 

symmetrical matrix BB'. while d denotes the row of integers formed by the 
diagonal elements of 7. I t is shewn in the Appendix II., that the resulting 
range of values for /i is independent of how the original matrix is resolved 
into the form in question. For any specified form of the linear transformation  

the value of e can be calculated (as in Chap. XVIII., §§ 333—4); if e0 

* Cf. Appendix IL; and for details in regard to the casep = 3, Weber, Ann. d. Mat., Ser. 2a, 
t. ix. (1878—9). We have shewn (Chap. XVIII., § 324, Ex. i.) that the determinant of the 
matrix of transformation is ±rP. From the result quoted here it follows that that determinant 
is +fP. 
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denote its value when the characteristic (Q, Q') is zero, its value for any other 
characteristic is given by 

€ / € o _ ß-irilQi+hdipp')] [Q1+H(»o")]+ir»QQ' 

where = ̂  ^ , and Q/ = pQ'-p'Q-%d(pp'), - Q^âQ'-*'Q-\d{**'). 

To prove this formula, we have first (§ 335, Chap. XVIII.), if = (P, *) , 
\p a-J 

the equation 

.4= *(i*; 2a,, 2o>', 2 ;.. 2r/ I jf ) = 6 * (ti, ; 2*),, 2 >/, 2 ^ , 2 ^ ' I QJ) , 

where u = M1u1, M^ = cop + œ'p, etc. Writing W1 = 2Ü>1ÏT1, U)1
/ = O>1T1, we 

have 

- ( ; 2»,, 2 < , 2 * . 2 „ ' I J ' ) = e W V © ( ̂  ; Tl I * ' ) , 

and the equations ^ = M2w, M2v = av i , iHf2i/ = + w/i?', give, if w — 2vW, 
v = ', and in virtue of AB' = r, the equations Ĉ  = JL Wy = J-T'-A — BA, 
while, by the equation r%= M^A, we find ?;1û)1~

1^2 = rÇi;~1w;2. Now it is 

immediately seen that the exponent of the general term of © ( U1 ; \ ) 

gives 

^ + Mi-Tin* = 27 > f m + - J + fftiV (m + -J + 7 f m + - J 

— *7 (7 2 + dm) — 27 m — yp,2, 

wherein 7 = BB', and d denotes the row of diagonal elements of 7, and m, p, 
are obtained by putting An — rm + p,,m being a row of integers, and /i a row 
of integers each less than r and positive (including zero) ; this equation is 

equivalent to n — B'm = -B'p,\ corresponding to every n it determines an 
TV 

unique m and an unique p. for which — is integral ; corresponding to any 
TV 

assigned p, for which —— is integral, and an assigned m, the equation 

determines an unique n. Since then 7m2 + dm is an even integer, and, for 
the terms which occur, — - m is an integer, we have 

r 
iridi* ni 2 p . - , 

Increasing, in this equation, U1 by Qx 4- ̂ Q / , we hence deduce 

/ I ^ ' \ rijrJ, in ^'2 tridui irivll2 I / w ' i \/™~l 

© (Ux; Tl ' ) = e'rdK +^K le'—'^ 8 \rW; rx' ( * + ^ ) / r l , 
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where K'^ÄQ,', - = 2?&' - B/Q1-^d(BB,)> so that ( , ') is the 
characteristic of the final theta function of w. Since now the matrix 
MvB' = MJÄ&B' = M^AB' = >1 and therefore \M\ \ v 11B' j = r*> \M1 \ \œi\9 

we have, by multiplying the last obtained equation by e^iU>i u* = e^v~lw2, the 
formula which was given above. 

Ex. i. When p = l, the transformation associated with the matrix ( J gives rise to 

the function ( W ; Jr') ; we have 

e(W; |r')=e(3TF; ')+ ( ; ST'\l,*) + e(zW; 3r'|-J /3). 

Other simple examples have already occurred for the quadric transformations (§ 365). 

Ex. ii. Prove when p = 2, by considering the transformation of order r (r odd) for 
which 

that 

e l ^ , ru2; -(Tll-2tiT12+H?T22-2\), 2r1 2-2/ 22, rT22] 

Hr-D -2^W2A 
= °> 0)+ 2 e»* f(n, - ), 

n=l 

where yfr ( , n2) denotes e(ru; ?Y L ) + Q[rti; n- ' J. (Wiltheiss, 

Creile, xcvi. (1884), pp. 21, 22.) 

373. In regard now to the question of the coefficients which enter in the 

( i ÜT'\ 
w\ J, 

the problem that arises is that of the determination of these coefficients in 
terms of given constants, as for instance the zero values of the original theta 
functions. The theory of this determination must be omitted from the 
present volume. In the case when the order of the transformation is odd 
these coefficients arise in this chapter expressed in terms of theta functions, 

S- ( ; 2v, 2v, 2Ç, 2Ç'), whose arguments are r-th parts of the 

periods 2v, 2i/. By means of two supplementary transformations, , rar1, 
(as indicated § 332, Chap. XVIII.), or by means of the formulae of Chap. XVII. 
(as indicated in Ex. vii., § 317, Chap. XVII.), we can obtain equations for 
functions b(rw; 2v, 2v', 2Ç, 2f') as integral polynomials of degree r2 in 
functions ^ (w ; 2v} 2v, 2£ 2£"). By means of these equations the functions 

S- ( ; 2t>, 2v\ 2Ç, 2Ç' J are determined in terms of functions 

Sr (0 ; 2v, 2v, 2Ç, 2J') ; or this determination may arise by elimination from 
the original equations of transformation, without use of the multiplication 
equations. There remains then further the theory of the relations connecting 
the functions ^ ( 0 ; 2v, 2i/, 2£ 2£") and the functions ^ ( 0 ; 2a>, 2co', 2V, 2 / ) , 
which is itself a matter of complexity. 
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For the case j o = l , the reader may consult, for instance, Weber, Elliptische Functionen 
(Braunschweig, 1891), Krause, Theorie der doppeltperiodischen Functionen (Erster Band, 
Leipzig, 1895). For the case p = % Krause, Hyperelliptische Functionen (Leipzig, 1886), 
Königsberger, Creile, LXIV., LXV., LXVII. For the form of the general results, the chapter, 
Die Theilung, of Clebsch u. Gordan, AbeVsche Functionen (Leipzig, 1866), which deals with 
the theta functions arising on a Riemann surface, may be consulted. For the hyper-
elliptic case, see also Jordan, Traité des Substitutions (Paris, 1870), p. 365, and Burkhardt, 
Math. Annal, xxxv., xxxvi., xxxvin . (1890—1). 

In particular cases, knowing the form of the expression of the functions 

S (u ; 2<o, 2G>', 2TJ, 2TJ') 

in terms of functions â (w ; 2v, 2t/, 2f, 2f) , we are able to determine the coefficients by the 
substitution of half-periods coupled with expansion of the functions in powers of the 
arguments. See, for instance, the book of Krause {Hyperelliptische Functionen) and 
Königsberger, as above. 

Ex. i. In case p — % r=3, the function e 5 (3JF, 3r') is a cubic polynomial of the 
functions e 6 ( W, T'), 034 ( W, r'), e x ( , r '), 0O2 ( W, r'), of which the characteristics are 

respectively \ (j Q J , $(' _ J , i f ^ _ A i ( { 0 ) 5 t h e s e f o r m a G ö P e l system. 

The only products of these functions which are theta functions of the third order and of 
zero characteristic are those contained in the equation 

e5 (3 w, ')= 1+ 6
 2 + \+ $1+ 1 , 

where 5 = 5 ( , '), etc.; this equation contains the right number £(?* + l ) = 5 of terms 
on the right side. Putt ing instead of the arguments Wx, W2 respectively 

*i, H W ; ^ W - H P U , Wt-i+irni T^-j+jrn, w2+ir21i 

we obtain in turn 

eM(3W, 3r')= ^+ ^ + ^ + ^ + ^ ^, 

e, (31F, )=-* \ - 1 1+ 1 \ + 1 1+ & 02 , 

eM(3TF, ^ - ^- ^ + ^ + ^ + ^ ^, 

whereby the Göpel system of functions e 6 (3 W, 3r'), 634 (3 W, 3r'), 6 t (3 W, 3r'), e0 2 (3 W, ST') 
is expressed by means of the Göpel system 6) , 1} 02. 

From the first two equations, by putting the arguments zero, we obtain 

, Q 5
e 5 - Q 3 4 e 3 4 ^3465 - Q 5 < 

A = 1 — &= T i — T v ' 

where 5 = 5 ( 0 ; 3r'), etc., and e 5 = G 5 ( 0 ; '), e tc . ; by the addition of other even half-
periods to the arguments, for instance, those associated with the characteristics 

*(o|o)' i(o, o)' * ( - i | o ) ' 
we can obtain expressions for C, B, E; these substitutions give respectively 

e^SW; 3r')= ^- ^ + ^ ^- ^ + ^ ^ ^, 

e 4 (31 ; 3r')^Ml ~ , \ - 2 + ^2
13- 3 13, 

12(31 ; ') = 1! + 1 + \ + 12
 2 + 0 , ; 
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putting herein TF=0 we obtain in succession the values of and E, expressed in terms 
of the constants previously used, 05, 034, 05, 0^ and the constants Ügg, 04, Ö12, B^, 0O3, 
B4, 014, 012, 0O>

 e2> eoi« Thus the zero values of each of the ten even functions 0 ( W; r) 
enter in the expression of the coefficients Ay , , , E; there remains then the question 
of the expression of the zero values of the ten even functions in terms of four independent 
quantities (cf. Ex. iv., § 317, Chap. XVII.), and the question of the relations connecting 
the constants 05, 0^ , etc., and the constants 0-, 034, etc. (cf. the following example). 

Ex. ii. Denoting 0O1 (0 ; 3r') 0O1 (0 ; r') by C01, etc., shew that when p = 2 the result of 
Ex. iii., § 292 (p. 477) gives the equations 

64 + ^03 = 5- -\- 12— 0, 

^23+ ^14 = ^5 "~ ^34 ~ ^12 + ^0» 

these being the only equations derivable from that result. By these equations, in virtue of 
the relations connecting the ten constants 0 (0 ; r'), and the relations connecting the ten 
constants 0 (0 ; 3r'), (for the various even characteristics), the three ratios 

034(O; 3r')/05(O,3r'), 012(O; 3r')/05(O; '), 0O(O; 3r')/G6(0; 3r') 

are determinable in terms of the three 

e * ( 0 ; r')/05(O; r'), 012 (O,V)/05 (0 ; r'), 0O(O; r')/06 (0 ; r'). 

By addition of these equations we obtain 

<?01 + ^ 2 + *?4+ ^03+ ^23 + ^14+ ^34 + ^12 + ^0 = «*^5* 

Obtain similarly from the result of Ex. iii., § 292, for any value of p, the equation 

se [o ; 3r' 11(*')] e[o ; r' IJ (*')]=(2*-1) e (0 ; 3r') e ( ; r'), 

where the summation on the left extends to all even characteristics except the zero 
characteristic ; for instance, when p = l, this is the equation 

0O1 (0 ; 3r') 0O1 (0 ; ') + 0IO (0 ; 3r') 01O (0 ; ') = ©oo (0 ; 3/) 0^ (0 ; r'), 

namely (cf. Ex. i., § 365 of this chapter) it is the modular equation for transformation of 
the third order which is generally written in the form (Cayley, Elliptic Functions^ 1876, 
p. 188), __ __ 

As here in the case p = % so for any value of p, we obtain, from the result of Ex. iii., 
§ 292, 2p— 1 modular equations for the cubic transformation. 

Ex. iii. From the formula of § 364 we obtain modular equations for the quadric 
transformation, in the form 

H!0i " 05 2 ( )> °; ' °-' 'KU} 
where s is a row of p quantities each either 0 or 1, so that the right side contains 2*> terms, 
and ky k', s' are any rows of p quantities each either 0 or 1. 

374. I n the fundamental equations of transformation we have considered 
only the case when the matrices a, a', ß, ß' are matrices of in tegers ; the 
analytical theory can be formulated in a more general way, as follows ; t he 
argument is an application of the results of Chap. X I X . 
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Suppose we have the relations expressed (cf. Ex. ii., § 324, Chap. XVIII.) 

( M, 0 ) ( 2i/, 2i/ ) = ( 2co, 2a/ ) ( a, ß ), 

| 0 , rM-' '; I 2£ 2f' 2T7, 2r7' | | a', /3' | 

where r is a positive rational number, M is any matrix of p rows and columns, 
whose determinant does not vanish, a, ß, a', ß' are matrices of p rows and 
columns whose elements are rational numbers not necessarily integers, , ', 
77, r{ are matrices of p rows and columns satisfying the equations (B), § 140 
(Chap. VII.), and v, v, f, Ç" are similar matrices satisfying similar conditions ; 
then, as necessarily follows, the matrices a, ß, a', ß/ satisfy the relation 
(viii) of § 324 (Chap. XVIIL). 

If now x, y be any matrices of p rows and columns, the relations supposed 
are immediately seen to be equivalent to 

( M, 0 ) ( 2vx, 2v'y ) = ( 2û), 2a>' ) ( ax, ßy ) ; 

I 0 , rSH | | 2&, 2?y | | 277, 2y' I | a'x, ß'y I 

we suppose that x, y are swcA matrices of integers that ax, ßy, a'x, ß'y are 
matrices of integers, and, at the same time, such that rx is a matrix of integers ; 
such matrices x, y can be determined in an infinite number of ways. 

Let u, w be two rows of p arguments connected by the equations = Mw ; 
when the arguments w are simultaneously increased by the elements of the 
row of quantities denoted by 2vxm 4- 2v'ym', in which m, m are rows of p 
integers, the arguments are increased by the elements of the row 2œn + 2o)'n', 
where n = axm 4- ßym', n' = a'xm + ß'ym' are rows of integers. The resulting 
factor of the function ^ (u ; 2co, 2a>', 2rj, 2rj') is eR, where, if Ha = 2va 4- 2r/V, 
etc., (cf. (v), § 324, Chap. XVIII) , R is given by 

R = Hn (u 4- £X2n) — irinri 

= (Haxm 4- H ßym') (Mw 4 Mvxm 4 M v'ym) — irinri 

= {MHa xm 4- M H ßym') {w 4 vxm 4- v'ym) — irinn 

= r (2Çxm 4- 2Ç'ym') {w + vxm + v'ym) — irinri ; 

now, since ß'a = r + ßa', and because ax, ßy, a'x, ß'y, rx are matrices of 
integers, we have 

nn' = œaaxm2 + (yßa'x 4- yß'&%) mm' 4- yß'ßym'2 

=fm -{-f'm' 4- ryxmm' (mod. 2), 

where ƒ, ƒ ' denote respectively the rows of integers formed by the diagonal 
elements of the symmetrical matrices xä'ax, yß'ßy (cf. § 327, Chap. XVIIL). 

Thus, if we denote S ( ; 2co, 2<o', 2 /, 277') by (w), we have 

(W 4- 2 ? 4- 2v'ym') = ^ ( ^ ^ + 2 ^ ̂ 0(^+ / ^ + ^ + (/ +/'?»')+7 (- ^) ' / ^ 

. 40 
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Further if a, b denote the matrices of 2p columns and p rows, given 
respectively by 

a = (2vxf 2v'y\ 2 = (2r(fo 2rf 'y\ 
we have 

% — (äb-ba) = (xv ) (fa?, ) - ( ? ) ( , i/y) 

I *' i I ? ' ! 
= ( x(vÇ-Çv)x, x(yÇ -Çv)y ) 

| y (7 -?!/)*, y(ï7(;'-rv)y I 
= | ( 0 , -xy ) ; 

\ 0 \ 

so that ab — ba = k, say, is a skew symmetrical matrix of integers given by 

äb — ba = k = ( 0 , — rxy ), 

and we have 

*<ß _ _ 
2 « ßmamß' = S (— ray)a ßmamß

f = — ryxmm', (a, ß = 1, ..., p). 

Finally, let X, /u, be rows of _p quantities, the rows of conjugate complex 
quantities being denoted by \lt pl} and let X, p, be taken so that the row of 
quantities a (X, p) consists of zeros, or 

a (X, p) = 2 ? + 2v'yp, — 0, 

so that x\ = — ' / , where* — v-1i/', is a symmetrical matrix, = p + ', say, 
p' and <r' being matrices of real quantities ; then by 

x \ = - /y/ij = - (p - iV) 2//i!, 
we have 

ih (X, /x) (Xj, fr) = - ir {xyp,y - yxX) (Xlt fr) = - ir (yx\p, - /^) 

= iry ( ' / - ' /Afr) = iry [{p - icr') - {p + *V)] y/*/^ 

= 2 1 = 2ravvY, 

in which v = //,, i>i = 1 ; as in § 325, Chap. XVIIL, since r is positive, the 
form ravv1 is necessarily positive except for zero values of p,. 

On the whole, comparing formula (II), § 354, Chap. XIX., the function 
( ) satisfies the conditions o{ §§ 351—2, Chap. XIX., necessary for a 

Jacobian function of w in which the periods and characteristic are given *f* by 

a = (2vx, 2v'y\ 2irib = (2 , 2rÇy), = (£ƒ \f). 

* The determinant of the matrix v is supposed other than zero, as in Chap. XVIH., § 324. 
t In § 351, Chap. XIX., the row letters have a elements ; in the present case a is equal to 2p, 

and it is convenient to represent the corresponding row letters by two constituents, each of p 
elements ; and similarly for the matrices of 2p columns and p rows. 
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To this function we now apply the result of § 359, Chap. XIX., in order to 
express it by theta functions of w. The condition for the matrix of integers 

( rx 0\ 
there denoted by g, namely = k} is satisfied by g = ( ' J, for 

( rx, 0 ) ( 0, - 1 ) ( rx, 0 ) = ( rx, 0 ) ( 0 , - y ) = ( 0 , -rxy ) ; 

I 0 , I I 1, 0 ! I 0 , J J 0., J | r# , 0 I J ryxy 0 | 
hence, with the notation of § 358, Chap. XIX., 

K=ag-* = (2vx, 2v'y)(^œ~\ 0 )=(2v/r, 2i/)> 

I 0 , 2 | 

2 2, = 2 % - 1 = (2rfa?, 2rf'y) ( - x~\ 0 \ = (2f, 2rf')-

I , jr1 I 
Hence, as our final result, by § 359, Chap. XIX., the function (w), or 

( ; 2Û), 2o/, 2?7, 2r[\ can be expressed as a sum of constant multiples of 
functions* (w ; 2v/r, 2v, 2Ç, 2f) with different characteristics, the number of 
such terms being at most V| j = ? | \ \ |, where \x\, \y\ denote the 
determinants of the matrices x, y. This is an extension of the result 
obtained when the matrices a, /3, a', ß' are formed with integers ; as in that 
case there will be a reduction in the number of terms, from rp\x\ \y\, owing 
to the fact that the function (w) is even. A similar result holds whatever 
be the characteristic of the function Sr (« ; 2o>, 2Û/, 2rj, 2?/). The generalisa­
tion is obtained quite differently by Prym and Krazer, Neue Grundlagen 
einer Theorie der allgemeinen Thetafunctionen (Leipzig, 1892), Zweiter Theil, 
which should be consulted. 

Ex. Denoting by E the matrix of p rows and columns of which the elements are zero, 
other than those in the diagonal, which are each unity, and taking for the matrices a, ß, 

a', ß' respectively - E, 0, 0, — E, where m, n are integers without common factor, we have 

the formula 
/n n2 \ msln\ 

mi>e(u ; ) = 2 2 \—u; —„ri ; , 

wherein r, s are rows of p positive integers, in which every element of r is 0 or numerically 
less than m, and every element of s is 0 or numerically less than n. This formula includes 
that of § 284, Ex. iii. (Chap. XV.) ; it is a particular case of a formula given by Prym and 
Krazer {loc. cit., p. 77). 

To obtain a verification—the general term of the right side is e*, where 

* That is, functions $ (rw, 2v, 2rv', 2#r, 2f') ; cf. § 284, p. 448. 

40—2 
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hence 2 ^ = 0 unless Njm is integral ; when N/m is integral, —Mb say, then 2e^=m p e* , 
r r 

where 
= %7riuK+ iirrK2, 

, —nM-\-s, obtaining all integral values when M takes all integral values and s takes all 
integral values (including zero) which are numerically less than n. 

375. The theory of the transformation of theta functions may be said to 
have arisen in the problem of the algebraical transformation of the hyper-
elliptic theta quotients considered in Chap. XL of this volume. To practically 
utilise the results of this chapter for that problem it is necessary to adopt 
conventions sufficient to determine the constant factors occurring in the 
algebraic expression of these theta quotients (cf. §§ 212, 213), and to define 
the arguments of the theta functions in an algebraical way. The reader is 
referred* to the forthcoming volumes of Weierstrass's lectures. 

I t has already (§ 174, p. 248) been remarked that when p > 3 the most 
general theta function cannot be regarded as arising from a Riemann 
surface ; for the algebraical problems then arising the reader is referred 
to the recent papers of Schottky and Frobenius (Creile, cu. (1888), and 
following) and to the book of Wirtinger, Untersuchungen über Thetafunctionen 
(Leipzig, 1895). 

* Cf. Eosenhain, Mem. p. divers Savants, xi. (1851), p. 416 ff.; Königsberger, Creile, LXIV. 
(1865), etc. 


