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CHAPTER XII.
A PARTICULAR FORM OF FUNDAMENTAL SURFACE.

222. JAcoBr’s inversion theorem, and the resulting theta functions, with
which we have been concerned in the three preceding chapters, may be
regarded as introducing a method for the change of the independent variables
upon which the fundamental algebraic equation, and the functions associated
therewith, depend. The theta functions, once obtained, may be considered
independently of the fundamental algebraic equation, and as introductory to
the general theory of multiply-periodic functions of several variables; the
theory is resumed from this point of view in chapter XV., and the reader
who wishes may pass at once to that chapter. But there are several further
matters of which it is proper to give some account here. The present chapter
deals with a particular case of a theory which is historically a development*
of the theory of this volume ; it is shewn that on a surface which is in many
ways simpler than a Riemann surface, functions can be constructed entirely
analogous to the functions existing on a Riemann surface. The suggestion is
that there exists a conformal representation of a Riemann surface upon such
a surface as that here considered, which would then furnish an effective
change of the independent variables of the Riemann surface. We do not
however at present undertake the justification of that suggestion, nor do
we assume any familiarity with the general theory referred to. The present
particular case has the historical interest that in it a function has arisen,
which we may call the Schottky-Klein prime function, which is of great
importance for any Riemann surface.

223. Let a, B, v, 8 be any quantities whatever, whereof three are
definitely assigned, and the fourth thence determined by the relation
ad—By=1. Let § ¢ be two corresponding complex variables associated
together by the relation ¢’ = (a& + 8)/(y¢+ 8). This relation can be put into
the form

Cl - B i‘ g_ B
g-ATH A

* Referred to by Riemann himself, Ges. Werke (Leipzig, 1876), p. 413.
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wherein u is real, and B, A are the roots of the quadratic equation
¢=(ag+PB)/(y¢ +8), distinguished from one another by the condition that
w shall be less than unity. In all the linear substitutions which occur in
this chapter it is assumed that B, 4 are not equal, and that u is not equal to
unity. We introduce now the ordinary representation of complex quantities
by the points of a plane. Let the points 4, B be marked as in the figure (6),

Fig. 6.

and a point (' be taken between 4, B in such a way that 1> A4C’/C'B >,
but otherwise arbitrarily ; then the locus of a point P such that AP/PB
=AC’/C"B is a circle. Take now a point C also between 4 and B, such that
CB/AC= uC’'B/AC’, and mark the circle which is the locus of a point P’
for which P'B/AP'=CBJAC; since P’B/AP’ is less than unity, this circle
will lie entirely without the other circle. If now any circle through the
points 4, B cut the first circle, which we shall call the circle (", in the points
P, @, and cut the second circle, C, in P, and @,, P and P, being on the same
side of AB, we have angle AP, B = angle APB, and P,B/AP,=uPB[AP;
therefore, if the point P be ¢ and the point P, be &, we have
g 1 B . C -B
Cl -4 # f_——A ’
the argument of P vanishing when P is at the end of the diameter of the
O’ circle remote from C”, and varying from 0 to 27 as P describes the circle
C’ in a clockwise direction; if then we pass along the circle C in a counter
clockwise direction to a point P’ such that the sum of the necessary positive
rotation of the line BP, about B into the position BF’, and the necessary
negative rotation of the line AP, about A into the position AP, is «, and ¢’
be the point P’, we have
§—B_ .6H—B wb—B
2 S e Rl oy

Thus the transformation under consideration transforms any point ¢ on

the circle ¢’ into a point on the circle C. If ¢ denote any point within €’
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the modulus of (¢ — B)/({ — A) is greater than when ¢ is on the circumference
of ¢V, and the transformed point & is without the circle C, though not
necessarily without the circle ¢". If ¢ denote any point without ¢’ the
transformed point is within the circle C.

224. Suppose * now we have given p such transformations as have been
described, depending therefore on 3p given complex quantities, whereof 3 can
be given arbitrary values by a suitable transformation 2’ =(Pz + @)/(Rz+ S)
applied to the whole plane ; denote the general one by

§’=:§: g‘ , wherein a;8; — Biy; =1, (=12, ..,p),

or also by

&=%¢ £=%7C,

the quantities corresponding to A, B, u, a being denoted by 4;, B;, u;, a;;
construct as here a pair of circles corresponding to each substitution, and
assume that the constants are such that, of the 2p circles obtained, each s
exterior to all the others ; let the region exterior to all the circles be denoted
by S, and the region derivable therefrom by the substitution %; be denoted
by S,,S

If the whole plane exterior to the circle C; be subjected to the trans-
formation Y;, the circle C; will be transformed into C;, the circle C; itself
will be transformed into a circle interior to C;, which we denote by %;C;, and
the other 2p — 2 circles which lie in a space bounded by C; and C; will be
transformed into circles lying in the region bounded by %;C; and C;, and,
corresponding to the region S, exterior to all the 2p circles, we shall have a
region ;S also bounded by 2p circles. But suppose that before we thus
transform the whole plane by the transformation %;, we had transformed
the whole plane by another transformation %; and so obtained, within Cj,
a region %;8 bounded by 2p circles, of which Cj is one. Then, in the
subsequent transformation, %;, all the 2p —1 circles lying within C; will be
transformed, along with Cj, into 2p —1 other circles lying in a region, %;%;8,
bounded by the circle %;C;. They will therefore be transformed into circles
lying within %;C;—they cannot lie without this circle, namely in %;S, because
%;8 is the picture of a space, S, whose only boundaries are the 2p funda-
mental circles C, (Y, ..., Cp, C,". Proceeding in the manner thus indicated
we shall obtain by induction the result enunciated in the following statement,

wherein 9, ! is the inverse transformation to 9, and transforms the circle C;

into C;': Let all possible multiples of powers of S, ¥ Lo, 9, Y, ! be formed,
and the corresponding regions, obtained by applying to S the transformations

* The subject-matter of this section is given by Schottky, Crelle, c1. (1887), p. 227, and
by Burnside, Proc. London Math. Soc. xxu1. (1891), p. 49.



346

DIAGRAM TO ILLUSTRATE THE RELATIONS

Fig. 7.
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BETWEEN THE SUBSTITUTIONS AND THE REGIONS.

Fig. 7.
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corresponding to all such products of powers, be marked out. In any such
product the transformation first to be applied is that one which stands to the
right. Let m be any one such product, of the form

m=...... AR A
Jormed by
...... +ri+rj g, =h
Jactors, and let N be any transformation other than the inverse of S, so that
mYy, 18 formed by the product of h+ 1, not h — 1, factors. Then the region mS
entirely surrounds the region mYS.

Thus, the region ¥;8 entirely surrounds the space %.9;8, and the latter
surrounds 9328, or %,%,%,8; but ;S is surrounded by ;9,728 or S. The
reader may gain further clearness on this point by consulting the figure (7),
wherein, for economy of space, rectangles are drawn in place of circles, and
the case of only two fundamental substitutions, %, ¢, is taken.

The consequence of the previous result is—The group of substitutions
consisting of the products of positive and negative powers of %, ..., Y, gives
rise to a single covering of the whole plane, every point being as nearly reached
as we desire, by taking a sufficient number of factors, and no point being
reached by two substitutions.

225. There are in fact certain points which are not reached as trans-
formations of points of S, by taking the product of any finite number of
substitutions. For instance the substitution & is

(28w
and thus when m is increased indefinitely ¢ approaches indefinitely near to
B;, whatever be the position of ¢; but B; is not reached for any finite value
of m. In general the result of any infinite series of successive substitutions,
K =oapBy..., applied to the region S, is, by what has been proved, a region
lying within a8, in fact lying within a8, nay more, lying within aByS, and
so on—namely is a region which may be regarded as a point ; denoting it by
K, the substitution K transforms every point of the region S and in fact
every other point of the plane into the same point K ; and transforms the
point K into itself. There will similarly be a point K’ arising by the same
infinite series of substitutions taken in the reverse order.

Such points are called the singular points of the group. There is an
infinite number of them ; but two of them for which the corresponding
products of the symbols & agree to a sufficient number of the left-hand
factors are practically indistinguishable ; none of them lie within regions that
are obtained from S with a finite number of substitutions. The most
important of these singular points are those for which the corresponding
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series of substitutions is periodic ; of these the most obvious are those formed
by indefinite repetition of one of the fundamental substitutions; we have
already introduced the notation

¥"S=B;, % *8S=4;,
to represent the results of such substitutions.
226. If Y, ¢ be any two substitutions given respectively by

, at+ B At+ B
U=stvs Y or D

wherein a8 — By =1= AD — BC, the compound substitution ¢ is given by

g = AL+ B)+B(CE+ D) _(ad +80) E+(aB + BD)
"y (AE+B)+8(Ct+ D) (vyA+8C) ¢+ (yB+ 8D)’

and if this be represented by &' =(a’¢+ B')/(v'¢ + &’), we have, in the ordinary
notation of matrices

(o B)=(a B)(4 B)
”y’ 5| "y 5| '0' D |

and o'’ — B'y'=(ad — By) (AD — BC)=1. We suppose all possible substitu-
tions arising by products of positive and negative powers of the fundamental
substitutions %, ..., 9, to be formed, and denote any general substitution by
¢’ = (ag+ B)/(v¢+8), wherein, by the hypothesis in regard to the funda-
mental substitutions, a8 —By=1. We may suppose all the substitutions
thus arising to be arranged in order, there being first the identical substitution
' =(£+0)/(0.¢+1), then the 2p substitutions whose products contain one
factor, §; or &, then the 2p (2p — 1) substitutions whose products are of
one of the forms %,%;, ;97 971, 97957, in which the two substitutions
must not be inverse, containing two factors, then the 2p (2p—1)? substitutions
whose products contain three factors, and so on. So arranged consider the
series
3, (mod 4)7%,

wherein % is a real positive quantity, and the series extends to every sub-
stitution of the group except the identical substitution. Since the inverse
substitution to ¢ =(al+ B)/(v¢+ d) is £=(8& — B)/(— v + «), each set of
2p (2p — 1)™ terms corresponding to products of n substitutions will contain
each of its terms twice over.

Let now @, denote a substitution formed by the product of n factors,
and ©,,, =0,%;, where Y; denotes any one of the primary 2p substitutions

3,9, 1, e Ny, Y, ! other than the inverse of the substitution whose symbol
stands at the right hand of the symbol ®,, so that ©,,, is formed with 2+ 1
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factors; then by the formula just set down o,y = qna;+ 8y, where, if
N, or ¢ =(a&+ B:)/(vi&+ &), be put in the form (¢ — B))/(§ — 4))
= p; (§{ — By)/(§— 4;), we have

a;, B‘i) Yi> Si

respectively equal to

- - - - 3
B;p; ir—AiP? _ 4;:Bi(p; i—Pz%) pi %—pf _ Aipi " — Bip;,

Bi—4; Bi—4; °’ Bi—A4; Bi—4;

the signification of p‘? is not determined when the corresponding pair of
circles is given; but we have supposed that the values of a;, 8;, v;, &; are

given, and thereby the value of pf. By these formulae we have

’Zw= _%Bﬁ' Sn/')'n_ ;Ai‘l'sn/')’n

Ya Pi B;—A; Pi B;—A4;

Herein the modulus of p; may be either u; or p; 1 according as %; is one
of &y, ..., Y, or one of 7%, ..., Y, "; the modulus of p; is accordingly either
less or greater than unity. If now ®,=...y¢; ", where 3, is one of the
2p fundamental substitutions %, ..., Y, ! and therefore ©, 1=%,.¢"\]r“...,
the region ®,'S lies entirely within the region %,.S (§ 224) or coincides with
it; wherefore the point ®," (), or — 8,/y,, lies within the circle C, when
Y, is one of 9§, ..., O, and lies within the circle C,” when ¥, is one of
97 ..., 9, thus the points B; and — §,/vy, can only lie within the same
one of the 2p fundamental circles C,, ..., C,” when r=1 and 9, is one of
Yy, ..., Yy; and the points 4; and — 8, /vy, can only lie within the same one of
the 2p fundamental circles C,, ..., ¢}’ when r=¢ and ¥, is one of Oy L S, 1
Now, if the modulus of p; be less than unity, and » =1, Y, must be one
of 971, ..., Sy Y namely must be & ! since otherwise ©,%; would consist

of n—1 factors, and not n+1 factors; in that case therefore Bi+§‘
n

is not of infinitely small modulus; if, however, the modulus of p; be
greater than unity, and =1, Y, must be %;, namely one of %, ..., Y,, and
in that case the modulus of 4; + 8, /v, is not infinitely small. Thus, according

as |p,—|§1, we may put
I Bt+ Sn/'Yn I >, I Az+ Sn/'Yn ‘>h:

where A is a positive real quantity which is certainly not less than the
distance of B;, A;, respectively, from the nearest point of the circle within
which — 8, /vy, lies.
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It follows from this that we have
-1, -1 1
mod (Yn41/yn) > @, or mod ('Y,.il/')'nl) < s

where o is a positive finite quantity, for which an arbitrary lower limit may
be assigned independent of the substitutions of which @,, is compounded, and
independent of n, provided the moduli p,, ..., pp be supposed sufficiently small,
and the p pairs of circles be sufficiently distant from one another.
Ex. Prove, in § 223, that if ¢’ be chosen so that C’C is as great as possible
1 ee_1-wE 1
Vi ABT TG
and the circles are both of radius d A/p/(1 — p), where d is the length of 4B.
We suppose the necessary conditions to be satisfied; then if v, be the
least of the p quantities mod [(p;? e ¥ — pud &¥™)/(B; — 4,)], and % be posi-
tive, the series 3 mod % is less than

; —-1) , 2p(2p—1)
yo-k[2p+2p(i]iw)+ p(fﬂc )+ ...... ]

and therefore certainly convergent if % > 2p — 1, which, as shewn above, may
be supposed, u,, ..., u, being sufficiently small.

227. Hence we can draw the following inference: Let o, ..., o, be
assigned quantities, called multipliers, each of modulus unity, associated
respectively with the p fundamental substitutions %, ..., %,; with any
compound substitution %"%,..., let the compound quantity o,",2... be
associated: let f(z) denote any uniform function of # with only a finite
number of separated infinities; let ¢'=(af+ B)/(¥{+ 8) denote any sub-
stitution of the group, and o be the multiplier associated with this
substitution : then the series, extending to all the substitutions of the group,

Sof (S05) e+ 8yt

converges absolutely and uniformly * for all positions of ¢ other than (i) the
singular points of the group, and the points ¢=— 8/, namely the points
derivable from {= o by the substitutions of the group, including the point
¢ = oo itself, (ii) the infinities of /(&) and the points thence derived by the
substitutions of the group. The series represents therefore a well-defined
continuous function of ¢ for all the values of ¢ other than the excepted ones.
The function will have poles at the poles of f({) and the points thence
derived by the substitutions of the group; it may have essential singularities
at the singular points of the group and at the essential singularities of

S (@€ + B)/(vE + 9)).

* In regard to {; for the convergence was obtained independently of the value of ¢
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Denote this function by F(¢); if %, denote any assigned substitution
of the group, and & denote all the substitutions of the group in turn, it is
clear that 8%, denotes all the substitutions of the group in turn including the
identical substitution; recognising this fact, and denoting the multiplier
associated with %, by &,, we immediately find

F((@) =0 (7E+ )Y F (D),

or, the function is multiplied by the factor oy (v,&+ &) when the variable
¢ is transformed by the substitution, §,, of the group. Thence also, if G (&)
denote a similar function to F(¢), formed with the same value of k& and
a different function f(¢), the ratio F ({)/G({) remains entirely unaltered
when the variable is transformed by the substitutions of the group. Inorder
to point out the significance of this result we introduce a representation
whereof the full justification is subsequent to the present investigation.
Let a Riemann surface be taken, on which the 2p period loops are cut; let
the circumference of the circle C; of the ¢ plane be associated with one side
of the period loop (b;) of the second kind, and the circumference of the circle
C/ with the other side of this loop; let an arbitrary curve which we shall
call the ¢-th barrier be drawn in the ¢ plane from an arbitrary point P
of the circle C; to the corresponding point P’ of the circle C;, and let the
two sides of this curve be associated with the two sides of the period loop
(a;) of the Riemann surface. Then the function F({)/G (), which has the
same value at any two near points on opposite sides of the barrier, and
has the same value at any point @ of the circle €’ as at the corresponding
point ' of the circle C;, will correspond to a function uniform on the
undissected Riemann surface. In this representation the whole of the
Riemann surface corresponds to the region §; any region %;S corresponds to
a repetition of the Riemann surface; thus if the only essential singularities
of F(§)/G (&) be at the singular points of the group, none of which are
within S, F (§)/G () corresponds to a rational function on the Riemann
surface. It will appear that the correspondence thus indicated extends to
the integrals of rational functions; of such integrals not all the values can
be represented on the dissected Riemann surface, while on the undissected
surface they are not uniform ; for instance, of an integral of the first kind,
u;, the values w;, u;+ 20;, », u; +20% », U+ 20; ,+ 20;,, may be repre-
sented, but in that case not the value u;+ 4w; ,; in view of this fact the
repetition of the Riemann surface associated with the regions derived from
S by the substitutions of the group is of especial interest—we are able to
represent more of the values of the integral in the § plane than on the
Riemann surface. These remarks will be clearer after what follows.

228. In what follows we consider only a simple case of the function
F (¢, that in which the multipliers o, ..., o, are all unity, £ = 2, and
f(©=1/((—a), a being a point which, for the sake of definiteness, we
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suppose to be in the region 8. We denote by &= (8) = (a:f + B:)/(vit + &)
all the substitutions of the group, in turn, and call ¢; the analogue of ¢ by
the substitution in question. The function

D (L a)= 2(7@§+ 81)

Gi—a
has essential singularities at the singular points of the group, and has poles
at the places {=a, {=o and at the analogues of these places. Let the
points @, @ be joined by an arbitrary barrier lying in S, and the analogues of
this barrier be drawn in the other regions. Then the integral of this
uniformly convergent series, from an arbitrary point £ namely, the series
Elogg—i—a =15

§i—a’ a o S

is competent to represent a function of ¢ which can only deviate from uniformity
when ¢ describes a contour enclosing more of the points e and its analogues
than of the points «o and its analogues; this is prevented by the barriers.
Thus the function is uniform over the whole ¢ plane; it is infinite at {=a

like log (¢ — @), and at {=o0 like —log (%) ,as we see by considering the

term of the series corresponding to the identical substitution; its value on
one side of the barrier e is 2wt greater than on the other side; it has
analogous properties in the analogues of the points @, o, and the barriel aw;

further, if £, =%, (£) be any of the fundamental substitutions %,, ..., Y,,
HS’,.wE_n(.S 21 Ein— —El gm 21 Em —31 Ci_q,
@ @ & ® %8 t %8 Em o8 Ez i 8 f,; —a

where ¢, is obtained from ¢ by the substitution %;%,,; since the first and
last of these sums contain the same terms, we have

anyf_ng,f =H§"’§,

o0

and the right-hand side is independent of £, being equal to 1 nw ; in order
to prove this in another way, and obtain at the same time a result which
will subsequently be useful, we introduce an abbreviated notation; denote
the substitution ¥, simply by the letter »; then if j be in turn every sub-
stitution of the group whose product symbol has not a positive or negative
power of the substitution n at its right-hand end, all the substitutions of the
group have the symbol jn*, & being in turn equal to all positive and negative
integers (including zero) ; hence

2 [log (€ —a) = log (£~ a)), = ?% [log (&ur+1—«) —log (& — a)],

1s equal to

% (E) =
gy (ty—a’
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where N=n", M =n~*; but, in fact, &, is B,, and &, 1s 4,; thus Hi’:‘f 18
independent of &; and if we introduce the definition

” 2m ?1 C—%;(A,,)’

where Y, is one of the p fundamental substitutions, and, as before, j denotes
all the substitutions whose product symbols have not a power of n at the
right-hand end, we have

an;é'_ngs _Hgn §_ 271'1;'0
a, © a,

Ez. If for abbreviation we put

s i a
Pii= So;log —
k2 1

prove that
Pt __Ps' f =P% 4 1- 17 % pée
@, o O @,® oy a,®’

¢ being an arbitrary point.

229. Introduce now the function Hi’,i defined by the equation
s —a §i— )
7 ( - (L/ E’L

then, because a cross ratio of four quantities is unaltered by the same linear
transformation applied to all the variables, we have also

(%3 é‘_ s'i—l (a“) ; - S'13_1 (b):| (ar - c ’a'r - f)
=31 = r— 5/ & ¢
Ha ?"g[f—srl(a)/f—si—*(b) gy ¢/ 5 =)
where 7, denoting %,, =%;7%, becomes in turn every substitution of the group.
Thus we have

(953 §§
ab—naw—n

Hg,b—nge, I‘Igné Hii_z
where

a,b b _1 CI,—S']'(BH‘)'I)—S—]-(Bn) _ 1 £, ¢
i = " gri ! [ —%5(4a). b_%j(An):l’ T 2my @?

J

J denoting as before every substitution whose product symbol has not a

positive or negative power of n at the right-hand end and £ being arbitrary ;
hence also

g M o ¥ e (574 =) o ee (G2 52D,

where 7, =47, denotes every substitution of the group.
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There are essentially only p such functions o according as %, denotes
¥, N, ..., Yy; for, taking the expression given last but one, and putting
n = st, that 1s, ¥, =3,Y,, we have

2mivs =nf’" _nfﬂ “+n

n,,n £, &
=g+ 1,
where 7 = &, so that

< a
ve " =15 +1)t )

and in particular, when st is the idenncal substitution, as we see by the
formula itself,
0=v§’a+ vi'_?;

thus, if » denote ?rt'?r;’ S;" ..., We obtain

Bl =nd +7\.pv§’a+ ...... ,
so that all the functions vf.’ * are expressible as linear functions of vf' ‘.. vf,’ N

230. It follows from the formula

S a : % (Bn) ’a_s (Bn)
Un ’_21 (; S(A,,),'a, S(An))

that the function v5 “ is never infinite save at the singular points of the
group. But it is not an uniform function of &; for let ¢ describe the circum-
ference of the circle C, in a counter clockwise direction; then, by the factor

¢— B,, vf,’a increases by unity; and no other increase arises; for, when the
region within the circle C,, constituted by %, 8 and regions of the* form
Y, ¢S, contains a point Y;(B,), the product representing the substitution j has
a positive power of %, as its left-hand factor, and in that case the region
contains also the point %;(4,). Similarly if ¢ describe the circle €, in a
clockwise direction, v+ increases by unity. But if & describe the circum-
ference of any other of the 2p circles, no increase arises in the value of
v,, , for the existence of a point %;(B,) in such a circle involves the existence
also of a point %;(45,).

It follows therefore that the function can be made uniform in the region
S by drawing the barrier, before described, from an arbitrary point P of €, to

the corresponding point P’ of C,. Then o5 is greater by unity on one side
of this barrier than on the other side. Further if m denote any one of
the substitutions %, ..., ¥, we have

)b 1b m m? n?
LI L g AL L 0L

* Where ¢ denotes a product of substitutions in which ! is not the left-hand factor.
¢ p n

23—2
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where £ is arbitrary; thus as Hg’”’;': Hf.""i, the difference is also indepen-

dent of § and we have, introducing a symbol for this constant difference,

Sns O (%4
v — v,

n =Ta,m= Tm, ne

It follows therefore that if the p barriers, connecting the pairs of circles

C,’, C,, and their analogues for all the substitutions, be drawn in the

. . . . L, a S a . . .
interiors of the circles, the functions vf , ..., Up are uniform in the region S,

and in all the regions derivable therefrom by the substitutions of the group.

The behaviour of the functions vf’ ‘., vf,’a in the region S is therefore

entirely analogous to that of the Riemann normal integrals upon a Riemann
surface, the correspondence of the pair of circumferences C,, ¢, and the two
sides of the barrier P'P, to the two sides of the period loops (b,), (@), on the
Riemann surface, being complete. And the regions within the circles
C,, ..., ) enable us to represent, in an uniform manner, all the values of the
integrals which would arise on the Riemann surface if the period loops (b,)
were not present. Thus the ¢ plane has greater powers of representation
than the Riemann surface. Further it follows, by what has preceded, that

the integral Hii is entirely analogous to the Riemann normal elementary
integral of the third kind which has been denoted by the same symbol in
considering the Riemann surface. On the Riemann surface the period loops
(ay) are not wanted for this function, which appears as a particular case of a
more general canonical integral having symmetrical behaviour in regard to
the first and second kinds of period loops; but the loops (b,) are necessary ;
they render the function uniform by preventing the introduction of all the
values of which the function is capable. In the & plane, however*, the
function is uniform for all values of & and the regions interior to the circles
enable us to represent all the values of which the function is susceptible.
Thus the introduction of Riemaon’s normal integrals appears a more natural
process in the case of the § plane than in the case of the Riemann surface
itself.

- 231. We may obtain a product expression for 7, ,, directly from the
formula

_1_ Cm -9 (B,,) Em— 9 (An) .
Si o 108 [ = sj](B,,) / [ s,.J(A,,) ] ;

let & denote in turn every substitution whose product symbol neither has a
power of %, at its left-hand end nor a power of %, at its right-hand end;

Tn, m =

thus we may write 3;=9,"%;, or, for abbreviation, j = m~"k; and for every
substitution k, the substitution j has all the forms derivable by giving to &
all positive and negative integral values including zero, except that, when &

* Barriers being drawn to connect the infinities of the function.
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is the identical substitution, if m=mn, k can only have the one value zero;

then applying §; ' to every quantity of the cross ratio under the logarithm
sign, we have

{] 1m — n/ gj-lm - An
To,m = 2 log ( £~ B, Cj‘l_An>

1 s (é‘k Amh+1= By [ e1pp1— Ay )
2mkh Er1mn — By / Ce1mr— Ay

and therefore, if m be not equal to n,
-1 -1
T, m = i S lo (Sk_l (B) = Bn/ S’If_l (B = Aﬁ)
mek k (Am)"Bn Xy (A-m) —A,

while when m =n, separating away the term for which % is the identical
substitution,

o e 2mlog(% 11; é’g A:)

Pt n "Bn - n) — 4ln
b L3 tog (R B= T 56 (B -
2 & N (An)_Bn P (An)—A'n

where 3/ denotes that the identical substitution, S =1, is not included;

thus
1 B - (B'n) Bn— S’s (An) 2
Kn i
g OB () + i > 10 [A —S.(B) / 4,-5,dn)’
where s denotes every substitution of the group other than the identical
substitution, not beginning or ending with a power of %,, and excluding
every substitution of which the inverse has already occurred.

T,

,7}

These formulz, like that for v5 % are not definite unless the barriers §227)
are drawn.

232. Ez.i. Ifw) “=u,,+ a0, , Uy, T, being the real and imaginary parts of 'vf,’ a, prove,
as in the case of a Riemann surface, by taking the integral [ u dw round the p closed

curves each formed by the circumferences of a pair of circles and the two sides of the
barrier joining them, that the imaginary part of ¥ 27, +...... +2N Nyrpp+...... is positive,

g; .

Ny, ..., N, being any real quantities and u+iw=1Vlvf’ T +Np'v Prove also the

result 7, ,=1,, . by contour integration.
Ez. ii. Prove that the function of ¢ expressed by

GE_d g -
T —dana.b‘“i(')'ra‘ksr) p _(— . f]

has analogous properties to Riemann’s normal elementary integral of the second kind.

FEz. iii. Prove that
I‘i’i ¢ = (‘Y@ a+ 8;)2 I‘f’" f,
where a;=(a;a+8:)/(yia+8,).
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Ez. iv. With the notation

_ g (248,72
@(z, {)‘E zr_{ ’

prove that
(2 Cu)—® (3 §)=21rigz =0 (2 £)- 2 (3 &),

where £ is an arbitrary point, and hence prove that if z, ¢;, ..., ¢, £ be any arbitrary
points, and £&=29, (§), ..., £&=29, (£), the function of { expressed by

!‘I’(Z; ()1 @ (2, f)a & (z, 51):-'-) ‘I’(Z; gp) |7
ij@(cl,o, ® (e, &), ey &), ey B(er, &)

D(cp, (), B(cp, &), @(cps &)y .-y B (py &p)
1, 1, 1, ., 1|

is unchanged by the substitutions of the group, and has simple poles at z ¢, ..., ¢,, and
their analogues, and a simple zero at £, and its analogues. Thus the function is similar to
the function y (#, a; z, ¢;, ..., ¢p) of § 122, and every function which is unchanged by the
substitutions of the group can be expressed by means of it.

As a function of z, the function is infinite at z=¢, 2=¢, beside being infinite at z=w,
and its analogues ; when (a;z+48:)/(y:2+8;) is put for 2, the function becomes multiplied
by (y:iz+8)% This last circumstance clearly corresponds with the fact (§ 123) that
¥ (%, a; 2 ¢, ..., p) is not a rational function of z, but a rational function multiplied by

dz
a (cf. Ex. iii.)

Ex. v. Prove that

S & 1 1 )
r»>*=3 -— ).
e T(“‘Cr a_ér

Ez. vi. In case p=1, we have

Sa_ 1 S:_B/“—B $¢ oo &
v —2m'IOg<{—A a—d) Tap=log I

a,—{ ’a_r_E ___1_ i
(br—c/ I»—&)’ ™= o 108 (B,

where ]
(@, — B)/(a,— 4)=(ue*)" (a— B)/(a— A).

Putting, for abbreviation, g=¢™ = v ,;eT‘, and

o 2 —_ — n }
o= § (g (24 /=),

prove, by applying the fundamental transformation once, that

n__1¢{-4 [a—4d _ _ -5 %10
O Y LICEEE o),
and shew that © (¢) is a multiple of the Jacobian theta function © (v* % g ; %, %)-
Ezx. vii. Taking two circles as in figure 6 (§ 223), let ("B/AC'=¢ and g—g / %=y H

take an arbitrary real quantity o, and a pure imaginary quantity m'=£ log p, and let
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@ () denote Weierstrass’s elliptic function of » with 2w, 20’ as periods. Then prove,
if @, ¢ denote points outside both the circles, a’ denote the inverse point of « in regard to
either one of the circles, and P, @ be arbitrary real quantities,

(a) that the function
® ¢(—-B\%?/a—B ¢c—B ® a—B [¢e—DB7)) 1
el (t29) [a ) aeeih J

is unaltered by the substitution (¢'—B)/(¢'— A)=p (¢ - B)/(¢— 4), and has poles of the
first order, outside both the circles, only at the points {=a, {=ec.

(B) that the function,
P+iQ P—1Q

+
@ 1¢-8 ® 1 a-5b ® 1¢-8 ® 1a-8
Pl cca | P80 aa] i8¢ Plal8sa=a

is real on the circumference of each circle, and, outside both the circles, has a pole of the
first order only at the point ¢(=a. The arbitraries P, @ can be used to prescribe the
residue at this pole.

Ez. viii. Prove that any two uniform functions of ¢ having no discontinuities except
poles, which are unaltered by the substitutions of the group, are connected by an algebraic
relation (cf. § 235) ; and that, if these two be properly chosen, any other uniform function
of ¢ having no discontinuities except poles, which is unaltered by the substitutions of the
group, can be expressed rationally in terms of them. The development of the theory on
these lines is identical with the theory of rational functions on a Riemann surface, but
is simpler on account of the absence of branch places. Thus for instance we have a
theory of fundamental integral functions, an integral function being one which is only
infinite in the poles of an arbitrarily chosen function . And we can form a function such
as E (x, ) (§ 124, Chap. VIL); but the essential part of that function is much more
simply provided by the function, @ (¢, y), investigated in the following article.

233. The preceding investigations are sufficient to explain the analogy
between the present theory and that of a Riemann surface. We come now
to the result which is the main purpose of this chapter. In the equation

z,¢__ Zi_g Zi— 9\ _ .o
2= Slog (325 /22Y) - S1og £ o/ o0

where {{, /2, ¢;} denotes a cross ratio, let the point z approach indefinitely
near to ¢, and the point ¢ approach indefinitely near to ¢; then separating
away the term belonging to the identical substitution, and associating with
the term belonging to any other substitution that belonging to the inverse
substitution, we have, after applying a linear transformation to every element
of the cross ratio arising from the inverse substitution
se_1.E=0C=7) sy (E=Oi—y) (=) (=)
=18 =0 T ¥ e @D o =t

where 3/ denotes that, in the summation, of terms arising by a substitution




360 INTRODUCTION OF THE FUNDAMENTAL FUNCTION [233

and its inverse, only one is to be taken, and the identical substitution is
excluded. Thus we have*

. —mE Sy AG—=V)(ri—9)
LRt e me T = I e i

== 1}’{4‘, v/vi &

where II' has a similar signification to 2’ and {{, v/v;, &} denotes a cross
i i
ratio. Consider now the expression

= (& v), =(&—=7) EI & v/vi &l

it has clearly the following properties—it represents a perfectly definite
function of ¢ and v, single-valued on the whole {-plane; it depends only on
two variables, and @ (&, y) = — @ (y, {); as a function of ¢ it is infinite, save
for the singular points of the group, only at {= o, and not at the analogues
of {=o0; it vanishes only at {=+ and the analogues of this point, and
limit;_, = (§, 4)/(§ —y) =1. Thus the function may be expected to generalise
the irreducible factor of the form # — a, in the case of rational functions, and
the factor o (w — a) in the case of elliptic functions, and to serve as a prime
function for the functions of ¢ now under consideration (cf. also Chap. VII.
§ 129 and Chaps. XIII. and XIV.). It should be noticed that the value of
= ({, ) does not depend upon the choice we make in the product between
a,ny substitution and its inverse; this follows by applying the substitution
9,7} to every element of any factor.

234. We enquire now as to the behaviour of the function = (&, ) under
the substitutions of the group. It will be proved that

w(;ﬂ;ﬂ_(_ )9 +h e~ 21”( Y+%Tn.n)
w(é’, 7) 'yn§+5 ’

where (— 1)%, (— 1)*» are certain + signs to be explained.

This result can be obtained, save for a sign, from the definition of = (&, v),

as a limit, from the function Hi;l; but since, for our purpose, it is essential
to avoid any such ambiguity, and because we wish to regard the function
@ (§ ) as fundamental, we adopt the longer method of dealing directly with
the product (§— o) 11" {§, y/y:, &} We imagine the barriers, each connecting

$a

. . . . ,a
a pair of circles, which are necessary to render the functions # , ..., v,

* This function occurs in Schottky, Crelle, c1. (1887), p. 242 (at the top of the page). See
also p. 253, at the top. The function is modified, for a Riemann surface, by Klein, Math. Annal.
xxxv1. (1890), p. 13. The modified function occurs also, in particular cases, in a paper by
Pick, Math. Annal. xx1x., and in Klein, Math. 4nnal. xxx1. (1888), p. 367. For p=1, the
theta function was of course expressed in factors by Jacobi. The function employed by Ritter,
Math. Annal. xuiv. (p. 291), has a somewhat different character.
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uniform, to be drawn; then the quantities Tn m, Ta,» given in § 231, and

defined by 'v,f’”xg, 'vf,"ng are definite; so therefore is also eriv%’” and the quan-
tity em™.», which is equal to

Lix ’ Bn_ (Bn)s / B _(A )s
% 2UKn n n
pme 11 [An—wn)s/ A, =@’

where s denotes a substitution, other than the identical substitution, not
beginning or ending with a power of %,, and excluding the inverse of a
substitution which has already occurred. This formula raises the question
whether «,, which we take positive, is to be regarded as less than 27 or not,
since otherwise the sign of e¥*» is not definite. But in fact, as it arises in

this formula, from v5»$, log pn + ik, is the value of log (g, :-gl' / g—: f:") when

¢’ has reached &, from ¢ by a path which does not cross the barriers. Thus «,
is perfectly definite when the barriers are drawn, and the sign of the
quantity

; S\ Bn - (B/n)s 1 Bﬂn - (An)s—
—WiTn, n 3tk T/
¢ Ken® l;[ [A n- (Bn)s / An - (An)s_

is perfectly definite and independent of the barriers. We denote it by
(= 1y~ The annexed figure illustrates two ways of drawing a barrier
PP’. In the first case «, is less than 27. In the second case ¢’ must pass

Fig. 8.

once round the point B, and «, is greater than 27. When «, is thus

determined, the expression by means of «, of the pi which occurs in
the formulae connecting a,, By, ya, 8, and A,, B,, p,, for instance in the
formula pf,=(1 +pn)/ (o, +3,), is also definite; it may be pi = pi efn or
ph=— pb etien.  We shall put pf, =(— 1ynud et If the whole investigation
had been commenced with a different sign for each of a,, B,, yn, &4, b, would

have become h,— 1, but g,, depending only on the circles and the barrier,
would have the same value.

We have
W(fﬂt:'f):é‘g:jnrgiu—v vi— & &i—¢
w(&y) C—v i Gi—y vi—§ Cm-8C
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where 7 denotes in turn all substitutions which with their inverses give the
whole group, except the identical substitution ; thus < denotes all substitutions
n* for A=1, 2, 3, ..., 0, as well as all substitutions n*sn* where s has the
significance just explained and A, k take all positive and negative integer
values including zero. Therefore

ﬁ;(gnﬁ) _ §117:7 i Emrr1—y ) ynr — o & =¢
K (é’, 'Y) C—'y A cﬂA -9 Yar— e ;a"“‘l — &
I Cnhmk+l — Y VYnhsnk — gn gn"sn" - é’

h,s, k é'nhsnk—'Y .')’nhsn"'c .fnhsn"ﬂ_gn

_ iy g G-y =8 gy =& Tw+1-¢
- g'—')' l;I Cn)“—'y 1—4{;71'\'*'1—;1:\:[ ‘Yn)""g'gn)""‘l—gn

(sz)nhs -y (Aa)wrs—¢ il Vbt — &n Eppenr+1— &
h,s (An)""s - (Bn)nhs - § h, 8, k Ynhsnk — e ) Cnhsnk+1 — &n ’

the transformation of the second part of the product being precisely as in the
first part,

_c'nj'Y B’n—'y tn_é‘n'y:_:1tlf)‘ ﬁ:é‘n_"\

B é’—’y .Cn'—")"Bn‘C A 'Y_gn‘)‘ -gn"‘gnl—"
(Bn)’ﬂ"s -7 (An)nhs— g 1| 'Y_Zn-"a-lnl—h C’n“"{n—ks—ln—h
h, s (A71)n"s—')" (Bn)nhs - é‘ hoak VY — gn—ksﬂ-h ’ Cn‘{n-ks—lnl—h

- B, — 'Y' Cnr f¥§~ Y- é: En—dn I (Bn)nhs —v (Aa)urs— &

B, — C C— Y 7 An' é'n - { h,a(An)nhs—'Y. (Bn)nhe_ (
7= Bolactiot fam (Aductes,
51 Y~ (Aa)n-rs-1 “Cn—(Bu)n-ks-1’

since b and —k have the same range of signification we may replace — k by 7,
in the last form, and obtain, by a rearrangement of the second product,

= (L, 'Y) _ B, —y &n—4d, I é“" (An)n"s v (Bn)n"s

(&) Bi=8 q—Auns = Buws ¥ — Au)rs

I b (Bn)nf's-l g'n - (An)n'ls—l A
51— (An)urs—1 “Cn— (Bn)nhs-l ’

but, from the formula

oY = _L 3 log E=9(Bn) v—9(4,)
n 27 j

where j can have the forms n's, n*s™, or be the identical substitution,
we have

21riv£'
e

—4, ) Y- Bn h, 8 C —(An)n"s ' Y (Bn)'nhs s h C—(An)n"s—l ’ Y= (Bn)fnhs-l ’

‘/= g—_' Bn '7 - An 1 C— (Bn)nhs b (An)n"s I C- (Bn)nhe"l b (An)ﬂnhs-l .
C ~
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therefore
@ (§n, 7)'62‘“'”5’ Y - Cn 4, I & (Bn)nhs 1 En— (A'n)nhs 1
w (;» ’)’) C An 8 ht'n— (Bn)n’ls 1 C (An)nhc 1
— cn Cam h— B Zm]l h—
C Ans,thnl h_B cm n—A
_tu— Ay [ (A =B, (B)—
g A’n s (Bn)s B (An)s An ’
and hence
= , 2’"”5 Y wity, . n—Ay,
e =T 1t e

now from the formula ({n—Bn)/(Cn—An)=p,,(§—Bn)/(g—An), and the
values of @,, B, ya, 8, given in § 226, we immediately find

(C_ An)/(g'n - An) = [é’ A — Pa (C Bn)]/(B An)
8+ 8= [, * (6= Au) = p} (¢ = B)V(Bn — 4r);
thus, as p! = (— 1) u} ™" we have
(E—A)/(Ga— An) = (= 1 i} ¥on (o + 8.)
hence, finally

- 21r1(v Yy 370 0)

= (o y) _ e v o Tmv
ety e

where (—1)’»¢ ™»n¢"™ is independent of how the barriers are drawn, and

(=1)mmry,, (—1)"§, are independent of the signs attached to v, and §&,.

235. The function = (&, ), whose properties have thus been deduced
immediately from its expression as an infinite product, supposed to be
convergent, may be regarded as fundamental. Thus, as can be imme-
diately verified, the integral 117, is expressible by = (¢ v), in the form

ve | w(n D (p0)
My =18 o ) w (& o)

Y (, 1 2n, 2

and thence the integrals 5" arise, by the definition v, =g Moy » and
thence, also, integrals with algebraic infinities, by the definition
sv_ d o
| e T= dz nz,z

(cf. Ex. ii, § 232). Further, if ¥ () denote any uniform function of ¢ whose
value is unaltered by the substitutions of the group, which has no discontinui-
ties except poles, it is easy to prove, by contour integration, as in the case of
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a Riemann surface, (i) That F'({) must be somewhere infinite in the region S,
(ii) That F(&) takes any assigned value as many times within S as the sum
of its orders of infinity within S, (iii) That if a,, ..., a; be the poles and
B, ..., Bk the zeros of F (&) within S, and the barriers be supposed drawn,

B, a Bk, ax .
T/ N + v; =m;+m' T+ ... + my Ti p, (=1,...,p),
where m,, ..., my, m/, ..., my are definite integers. Thence it is easy to

shew that the ratio

w 1) eeeeee . —2mi(m o+ v ®
R [T G T (o )

is a constant for all values of & And replacing some of B, ..., a; in this
expression by suitable analogues, the exponential factor may be absorbed.

Ex. In the elliptic case where there is one fundamental substitution (¢'— B)/({'— A)=
p (¢ = B)/(¢ - 4), we have (¢(;— B)/(¢i— 4)=p*({ - B)/({ — 4), and thence putting u, », respec-
tively for the integrals o5 ¥, so that €¥™%= ({-B)/({—4), €™ =(y— B)|(y—4), we
immediately find

{—vi ¢=¢ 1—2ptcos 2m (u—v)+p¥ §_7=€;A sin 7 (% — )

Y=y v-t (L—piy? ’ 2¢  sinzusin zv’
and hence
B—4 sinm(u—v) = 1—2pcos2m (u—v)+p?
@ (&)= 2; sin wusin@v ,-El (1-p92 ’

which*, putting ¢™" = p}, is equal to

EB—;,‘QZ" e~ (@=" (94 (u—v); 20, 20r]+sin ou sin wv,
{20

where o is an arbitrary quantity, and

236. The further development of the theory of functions in the { plane
may be carried out on the lines already followed in the case of the Riemann
surface. We limit ourselves to some indications in regard to matters bearing
on the main object of this chapter.

The excess of the number of zeros over the number of poles, in any
region, of a function of § f(¢), which is uniform and without essential
singularities within that region, is of course equal to the integral

* See, for instance, Halphen, Fonct. Ellipt. (Paris, 1886), vol. 1. p. 400,
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taken round the boundary of the region. If we consider, for example, the
function Q,(§),= =dvs Y/d¢, which is nowhere infinite, in the region S, the

number of its zeros within the region S is

ori s~ o |

where the dash denotes a differentiation in regard to ¢, and the sign of

summation means that the integral is taken round the circles ¢y, ..., 0/, in

a counter-clockwise direction. Since Q, (&) = (v,{+ 8,) 2, (), the value is
f 2d¢

2m 1 &= 1(oo)

or 2p; thus as Q, (¢) vanishes to the second order at {= o in virtue of the

denominator d§, we may say that dv5” has 2p — 2 zeros in the region S, in
general distinet from &= o0. The function Q, () vanishes in every analogue
of these 2p — 2 places, but does not vanish in the analogues of &= 0.

The theory of the theta functions, constructed from the integrals vf,’ 7 and
their periods 7, m, will subsist, and, as in the case of the Riemann surface
there will, corresponding to an arbitrary point m, which we take in the
region S, be points m, ..., m, in the region S, such that the zeros of the
function @ (¥5™ — vS-™ — ... —v%,™) are the places &, ..., &. And
corresponding to any odd half period, $Q, ,, there will be places ny, ..., n,,,
in the region S, which, repeated, constitute the zero of a differential dv$ v, and
satisfy the equations typified by

30, ¢ = V™ — T — L — Y- 1 M-,

The values of the quantities e™™»» and the positions of m,, ..., m, may
vary when the barriers which are necessary to define the periods 7,,, are
changed.

But it is one of the main results of the representation now under
consideration that a particular theta function is derivable immediately from
the function = (§, v); and hence, as is shewn in chapter XIV., that
any theta function can be so derived. Let v denote the integral whose
differential vanishes to the second order in each of the places ny, ..., n,_,.
Consider the expression ¥dv/d¢ in the region S. It has no infinities and it is
single-valued in the neighbourhood of its zeros, as follows from the fact that
the p zeros of dv/d{ are all of the second order. Hence if the region S be
made simply connected by drawing the p barriers, and joining the p pairs of
circles by p — 1 further barriers (c,), ..., (¢p—), of which (¢,) joins the circumfer-
ence C,’ to the circumference C,,,, V. dv/d¢ will be uniform in the region S so
long as ¢ does not cross any of the barriers. For the change in the value of

Vdv[d¢ when ¢ is taken round any closed circuit may then be obtained by
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considering the equivalent circuits enclosing the zeros. But in fact the
barriers (c,), ..., (¢p-1) are unnecessary; to see this it is sufficient to see that
any circuit in the region S which entirely surrounds a pair of circles, such
as C), C,, encloses an even number of the infinities of dv/d{ which are at the
singular points of the group. Since these infinities are among the logarithmic

zeros and poles of v¥7, ..., v57, whereof v is a linear function, the proof
required is included in the proof that any one of the functions 7, .., vf;'y is

unaltered when taken round a circuit entirely surrounding a pair of the
circles, such as C/, C;. Thus when the barriers which render the functions
vf’y, vees vf,’y uniform are drawn, the function v db/df is entirely definite within

the region S8, save for an arbitrary constant multiplier, provided the sign of
the function be given for some one point in the region S. And, this being
done, if ¢ be any point, the function 3—2 ZTI; is independent of this sign.
This function, with a certain constant multiplier, which will be afterwards
assigned, may be denoted by - (£).

237. We proceed now to prove the equation

CIGARS ST Y JCAEE T 1) ,
¥ (&) (D

where 5’2" = sl’vlg’ T + sp'vf,’ ”,and 4 is constant, independent of ¢ and

7. It is clear first of all that the two sides of this equation have the same
poles and zeros in the region S. For ® (v + 30, ;) vanishes to the first
order at the places vy, ny, ..., n,,, and r(¢) vanishes to the first order at
ny, ..., Ny, 0, while = (& «) vanishes to the first order at {=r, and is
infinite to the first order at £= o *. Thus the quotient of the two sides of the
equation has no infinities within the region S. Further the square of this
quotient is uniform within the region S, independently of the barriers; for
this statement holds of each of the factors

w (;: 'Y): ‘\I"g (C), 0 (v" Y+ %Qs,s’), e?';ris’v{’ 'Y.

And, if ¢ be replaced by ¢,, the square of the quotient of the two sides of the
equation becomes (cf. § 175, Chap. X.) multiplied by the factor

[(- 1)9a%h, %%ﬂ 2 ’

which is equal to unity. Now+ a function of ¢ which is unaltered by the
substitutions of the group, and is uniform within the region S, and has no

w({,y)=4

* At the analogues of {=w neither @ ({, %) nor 1/ y ({) becomes infinite.

+ If U+iV be the function, the integral [UdV, taken round the 2p fundamental circles is
expressible as a surface integral over S whose elements are positive or zero. In the case
considered the former integral vanishes.
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infinities, must, like a rational function on a Riemann surface, be a constant.

Since the square root of a constant is also a constant the proof of the equation
is complete.

From it we infer (i) that

Y (E)/r (§) = (= 1pwthn (L + 8,) (— 1),
and (ii) that the values of ¥ ({) on the two sides of a barrier have a quotient
of the form (—1)*». The constant factor to be attached to - ({) may be

chosen so that 4 =1. For this it is sufficient to take for the integral » the
expression

2 0’ (10 Sy
v= _21 {3 Qs 0) v,
i=

where ©; (u) =00 (u)/ou;. Then (cf. § 188, p. 281) the right-hand side,
when ¢ is near to «, is equal to 4 ({— ) +..., while the left-hand side has
the value ({— ) +....

238. The developments of an equation analogous to that just obtained,
which will be given in Chap. XIV. in connection with the functions there
discussed, render it unnecessary for us to pursue the matter further here.
The following forms an interesting example of theta functions, of another kind.

Suppose that the quantities u,, ..., up are small enough to ensure (cf. § 226)
the convergence of the series

>

ME W =3 ["Y,g_t %-]j

wherein p denotes an arbitrary place within the region S, and ¢ denotes a
summation extending to every substitution of the group. It will appear that
this function is definite in all cases in which the function = (&, u) is definite.
The function is immediately seen to verify the equations

7\'(fm ®) =('Yn§+ Sn))" (& u), 2 (& pn) = (ynpe + Sn) A (S, ©),
1

T B Elyen+8)

s b

i 8= Bi—p(—vif+a)

_ (’Yr:"‘ 3,.)__]_

“TF -m

where r denotes the substitution inverse to that denoted by «. Thus

AEGp)==2(p O

The function has one pole in the region S, namely at u, and no other
infinities, and if the series be uniformly convergent near { = o, as we assume,

and A, &)=

2
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the function vanishes to the first order at £ =w. The excess of the number
of its zeros over the number of its poles in S, which is given by

1% f[x (Cn, ) _ N (&, M)} de
271 n=1 A (Cn’ I"‘) A (C’ ”‘) ’

where the dash denotes a differentiation in regard to &, and the integrals are

taken counter-clockwise round the circles €y, ..., C,/, namely by

1% f S

2mip=1 JE— V0 ’
is equal to p. Thus the function has p zeros in S other than {= oo ; denote
these by u,, ..., up. Within any region %, the function has the analogue of
w for a pole, and the analogues of u,, ..., p, for zeros; it does not vanish at
the analogue of {=o. This result may be verified also by investigating
similarly the excess of the number of zeros over the number of poles in any
such region; the result is found to be p — 1.

Consider the ratio

ﬂD=D@mW+%,

where v is any linear function of vf’y, e, vf,’y; let &, ..., &ps denote the
zeros of dv. Then f(&) is uniform within the region S, and is unaltered by
the substitutions of the group. It has poles u?, &, ..., {p—s, and no other
infinities in S, and has zeros w2, ..., u,?, the square of a symbol being written
to denote a zero or pole of the second order. Thus we have, precisely as for
the case of rational functions on a Riemann surface,

fp, s Sy 1 Coy 1 9 "
RN M B A T + v, -3

or (§ 179, p. 256),

P-1+v,f?p—2»"ll-1£0, r=12...,p),

(l"?’ gl, seey C?p—?) = (/"12’ crey f"pz);
and therefore, if my, ..., m, denote the points in S, derivable from u (§ 236),
Ty My

such that ® (o%*—o™ ™ — ... —
have (§ 182, p. 265).

) vanishes in &=ux, ..., {=1,, we

(s ooes )= (2, .o, myd).
When the barriers are drawn, let
A R + " =y B+ I ey e + k) 70 p), (=12, ..., p),
ky, ..., kp, k), ..., by’ being integers.

Now consider the product A (¢, ) = (¢, ). It has no poles, in S, and its
ZEros are fii, ..., bp. 1t is an uniform function of ¢ and, subjected to one of
the fundamental substitutions of the group it takes the tactor

A (é’ny f"‘) ‘F’?G'n, ﬂ) —(— . 2mi ('uf': "'+%T”, ")
MG mw (G p) @ - T '
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Hence the function
o)=L M T & L) it v

® (’Ug’ *—10) ’
wherein &** denotes Bt 4 +Icp’vf; ¥, and Q denotes the p quantities
R 7 ST + k' 7;, p, has, within S, no zeros or poles, and is such that,

for a fundamental substitution,

F(£a)/F ()= (= Tyntinte

(cf. § 175, Chap. X.); thus, as in the previous article, F(¢) is a constant
thus, also, g, + kn — k, is an even integer, = 2H,, say, and we have

M p) @ (L p)=demHEF Q5" 1 P),

where P denotes the p quantities g; + ki + k)7 1+ ...... + k7,5, and A4 is
independent of ¢ But, if ¢ describe the circumference C,,, the left-hand side
is unchanged, and the right-hand side obtains the factor e~™*» Thus the
integers k/, ..., k, are all even; put k,’=2H,’; then, as

e (vgu _g-flz-h —--rH’) =e21riH'<u§"‘—"’_“;_") - wirH? g (v;,#_g*" )
2 b

where the notation is that of § 175, Chap. X., we have

A& w6 w)= B0 (F+-LE0),

wherein B is independent of ¢, and therefore, since the interchange of ¢, u
leaves both sides unaltered, B is also independent of u. The value of B may
be expressed by putting {=p; thence we obtain, finally,

MG w6 ) =0 @ " —5g—h)/O (hg +1h).

This equation may be regarded as equivalent to 27 equations. For if in
one of the p fundamental substitutions %, ¢ = (a,¢ + 8,)/ (v, + 8,), we consider
the signs of a,, By, v», 8, all reversed, the function X (&, ), which involves the
first powers of these quantities, will take a different value. The function

@ (¢, p), the p fundamental circles, and the integrals »* and their periods
Tn,m, and therefore the integers ¢, ..., g,, will remain unchanged, if the
barriers remain unaltered. But the integer &, will be increased by unity.

If, on the other hand, the coefficients @, 3, y, 8 remaining unaltered,
one of the barriers be drawn differently, the left-hand side of the equation
remains unaltered; on the right-hand one of &, ..., h, will be increased by
an integer, say, for example, %, increased by unity, and therefore each of

Ti,r» o+ Tp,» 8lso increased by unity. Putting u for ** —4g—+h, and
B. 24
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neglecting integral increments of u, the exponent of the general term of the
theta series is increased, save for integral multiples of 27ri, by

27 (— &) ny + 03,
which is an even multiple of 77, so that the general term is unchanged.

Ex. i. Prove that the function X (¢{, p) can be written in the form

1 ,
A (G F)=§__F[1+% (ai+3){G Gl s pitds
where the sign of summation refers to all the substitutions of the group, other than
the identical substitution, with the condition that when any substitution occurs its inverse

must not occur, and {¢, ¢;|u, p;} denotes g : / ({,_i:,‘

Ez. ii. In case p=1, where the fundamental substitution is
(- B)/({-A)=p({—B)/({~4),
putting &#™=(¢ — B)/({ — 4), ™ =(u— B)/(u— A), prove that

B-A4 sinm(u—v) sin?w (v — v)

{—n= % smawsnav’ Hxar H}=4P‘1—2p"cos21r(u—v)+p2“
and hence
NG )= 2isinmusinmw [ + 4= 1)*ipkt (1 4 p¥) sin? o (w—v)
(B-A4)sinm (u—v) i1 1—2ptcos2m (w—v)+p%

When %=0 this becomes *
4iw sin wu sin 70 o3 [20 (v —2)]
(B-A4) o3 (0) o[20(w-2)]’

where the sigma functions are formed with 20, 207 as periods, o being an arbitrary
quantity. Thus (§ 235, Ex.) '

(6 N (E, w)e-TreCu-ep 7320 1=0)] 9 (u=0) _© (u-v-1})
((’ l"') ({ f") Ty (0) 30 (0) =) (%) ’
where the symbol 9, is as in Halphen, Fonct. Ellip. (Paris, 1886), Vol. 1. pp. 260, 252.

This agrees with the general result ; in putting p%=e ™" we have taken g=1; and, as
stated, % is here taken zero.

When 2=1 we similarly find

A )= 4io 8in rusinay o3 [20 (¥ —v+4)] g2 (u-0),
WE B Aoy () o [20 @—2)]
and hence

o 20 (4=t -ne(u-0) 03 [20 (u~—v+3)] O (u-?)
@ (( WA p)=e o3 (@) ) 0y’

also in agreement with the general formula. In these formulae ©(u) denotes the series

ZeZwiun+ifrrn?= 1+ 2g cos (2ru) +2¢* cos (4mu) +2¢° cos (6ru) +......
where g=¢'™,

* Cf. Halphen, Fonct. Ellip. (Paris, 1886), Vol. 1. p. 422.
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Ez. iii. Denoting

b

’ ('Yl“ + 81) ’ ('Yil"+8i)_m
m s (492 T
A e AL (p—pa

where the summations include all substitutions of the group except the identical sub-
stitution, respectively by u, n, ¥m, n, Prove that, when ¢ is near to p,

W({’:) 1% (¢—p)Pug, g+ (E—pPug, s+ 3 (¢ — p)t[uy, 4 — g, 4 +3%2%, o+ 24, J+...on..

Ez. iv. If 2z, s be two single-valued functions of ¢, without essential singularities,
which are unaltered by the substitutions of the group, the algebraic ¥ relation connecting
z and s may be associated with a Riemann surface, whereon ¢ is an infinitely valued
function ; and if z s be properly chosen, any single-valued function of ¢ without essential
singularities, which is unaltered by the substitutions of the group, is a rational function on
the Riemann surface. But if

6 4= Lg%y (Lrog S}, £ (5,

where {'= df, etc., we immediately find that the value Z=(a{+p8)/(y{+8) gives
& 3={¢ 2;

2
therefore, as {(, 2}, = -{, & / (g—z) , 18 a single-valued function of ¢ without essential
singularities, and is unaltered by the substitutions of the group, we have

{ =21 ),
where [ denotes a rational function. Therefore, if ¥ denote an arbitrary function, and
P=- g—z log (Y 2 g—g) , Y and (Y are the solutions of the equation

a2y arP
TP [ Trime oo,

and if Y be chosen so that Y2 / ;L:, is a rational function on the Riemann surface, the

coefficients in this equation will also be rational functions. Thus for instance we may

take for ¥ the function ,\/ ZILZ(’ in which case P=0, or we may take for ¥ the function

v, = dz j&y , considered in § 236, which is uniform on the ¢ plane when the barriers

are drawn, in which case P= — gz log % , and the equation takes the form (jliv{_'- R.Y=0,
where R is a rational function, or again we may take for ¥ the uniform function of
& A (¢, p), considered in § 238+.

* Ex. viii. § 232.
+ Cf. Riemann, Ges. Werke (Leipzig, 1876), p. 416, p. 415; Schottky, Crelle, Lxxxm1. (1877),
p. 336 ff.
24—2
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Ez. v. If, as in Ex. iv,, we suppose a Riemann surface constructed such that to
every point ¢ of the ¢ plane there corresponds a place (z, s) of the Riemann surface, and
in particular to the point {=¢ there corresponds the place (z, y), and if R, S be functions
of £ defined by the expansions

2 rogar (G, )= — 2+ Fh(s=2) Bt ..oe w({,&) 1 =38 &P,

prove that
dE\?
6 a=2-(3) S,
and that R, § are rational functions of 2 and .

Ez. vi. The last two examples suggest a problem of capital importance—given any
Riemann surface, to find a function ¢, which will effect a conformal representation of the
surface to such a {-region as that here discussed. This problem may be regarded as that
of finding a suitable form for the rational function 7 (z, s). The reader may consult
Schottky, Crelle, Lxxxmr (1877), p. 336, and Crelle, c1. (1887), p. 268, and Poincaré,
Acta Mathematica, 1v. (1884), p. 224, and Bulletin de la Soc. Math. de France, t. xX1. (18 May,
1883), p. 112. In the elliptic case, taking

¢-B
=0 (510825, =0 ),
where § denotes Weierstrass’s function with 1 and = as periods, it is easy to prove that

(z and ¢ \/ Fre are the solutions of the equation

(458~ gy2—g5) @"‘(6 %92) +"2Y—

239. There is one case of the theory which may be referred to in
conclusion. Take p circles C,, ..., Cp, exterior to one another, which are all
cut at right angles by another circle O ; take a further circle C cutting this
orthogonal circle O at right angles; invert the circles C;, C,, ... in regard to
C. We shall obtain p circles CY, C,, ..., G, also cutting the orthogonal
circle O at right angles. The case referred to is that in which the circles
G, 07, ..., Cp, O are the fundamental circles and the angles «,, ..., &, are
all zero, so that, if %, denote one of the p fundamental substitutions, the
corresponding points & %,¢ lie on a circle through 4, and B,. We may
suppose that the circles C,, ..., 0, are all interior to the circle C. It can be
shewn by elementary geometry that 4,, B, are inverse points in regard to
the circle C' as well as in regard to the circle C,, and further that if » denote
the process of inversion in regard to the circle C and w, that of inversion in

regard to C,, the fundamental substitution &, is w,w, so that ©N,0 =%, Lor

oS, =9, '0. Hence if the points of intersection of the circles O, C, be
called a,’, b,/, the points of intersection of O, C, be called an, b,, and the
points of intersection of O, C be called @, b, it may be shewn without much
difficulty that

a.,b a b
’Unr T=Pn,r) vnn ! ‘2L+Qn; vn =%+R) (71,71:1,2)'-':1); n*'r)’
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where P, ,, Q,, R are integers, and the integrations are along the perimeters

of the several circles. Hence it follows that the uniform functions of ¢
s ¢
expressed by emiw b, ¢"'a b are unaltered by the substitutions of the group.

Denote them, respectively, by ,(¢) and « ({). Each of them has a single
pole of the second order, and a single zero of the second order, and therefore,
as in the case of rational functions on a hyperelliptic Riemann surface, we
have, absorbing a constant factor in #, (£), an equation of the form

_a(®)—=(a)
“O= =)
But it follows also that the function

S c (] S, ¢
Y (©) = Mo Gy 4+ I b,

is unaltered by the substitutions of the group. Hence we have*, writing
y, « for y (&), = (), ete,,
— [z —2(a)]...... [w—w(ap)].

[¢—2 b)) ...... [z — 2 (by)]

Thus the special case under consideration corresponds to a hyperelliptic

2 —
Yr=am, ... 2y

Riemann surface; and, for example, the equations 'UZ"’ - 3+ @n, ete., cor-
respond to part of the results obtained in § 200, Chap. XI. It is manifest
that the theory is capable of great development. The reader may consult
Weber, Géttinger Nachrichten, 1886, “Ein Beitrag zu Poincaré’s Theorie,
u. s. w.,” also, Burnside, Proc. London Math. Soc. xx111. (1892), p. 283, and
Poincaré, Acta Math. 111 p. 80 and Acta Math. 1v. p. 294 (1884); also
Schottky, Crelle, cvI. (1890), p. 199. For the general theory of automorphic
functions references are given by Forsyth, Theory of Functions (1893),
p- 619. The particular case considered in this chapter is intended only
to illustrate general ideas. From the point of view of the theory of this
volume, Chapter XIV. may be regarded as an introduction to the theory
of automorphic functions (cf. Klein, Math. Annalen, XXI. (1883), p. 141, and
Ritter, Math. Annalen, XLIV. (1894), p. 261).

* The function & here employed is not identical in case p=1 with the z of Ex. vi. § 238.



