
CHAPTEE XL 

THE HYPERELLIPTIC CASE OF RIEMANN'S THETA FUNCTIONS. 

199. W E have seen (Chap. .) that the hyperelliptic case* is a special 
one, characterised by the existence of a rational function of the second 
order. In virtue of this circumstance we are able to associate the theory 
with a simple algebraical relation, which we may take to be of the form 

2/2 = 4 (x - ) ... (x - ap) (x -• Cj) ... (x - cp+1). 

We have seen moreover (Chap. X. § 185) that in the hyperelliptic case, when 
p is greater than 2, there are always even theta functions which vanish 
for zero values of the argument. We may expect, therefore, that the investi­
gation of the relations connecting the Riemann theta functions with the 
algebraical functions will be comparatively simple, and furnish interesting 
suggestions for the general case. I t is also the fact that the grouping of 
the characteristics of the theta functions, upon which much of the ultimate 
theory of these functions depends, has been built up directly from the 
hyperelliptic case. 

I t must be understood that the present chapter is mainly intended to 
illustrate the general theory. For fuller information the reader is referred to 
the papers quoted in the chapter, and to the subsequent chapters of the 
present volume. 

* For the subject-matter of this chapter, beside the memoirs of Rosenhain, Göpel, and 
Weierstrass, referred to in § 173, Chap. X., which deal with the hyperelliptic case, and general 
memoirs on the theta functions, the reader may consult, Prym, Zur Theorie der Functionen 
in einer zweiblättrigen Fläche (Zürich, 1866) ; Prym, Neue Theorie der ultraellip. Funct. 
(zweite Aus., Berlin, 1885); Schottky, Abriss einer Theorie der Abel. Functionen von drei 
Variabein (Leipzig, 1880), pp. 147—162 ; Neumann, Vorles. über Riem. Theorie (Leipzig, 1884) ; 
Thomae, Sammlung von Formeln welche bei Anwendung der.. Rosenhairisehen Functionen gebraucht 
werden (Halle, 1876) ; Brioschi, Ann. d. Mat. t. x. (1880), and t. xiv. (1886) ; Thomae, Creile, LXXI. 
(1870), p. 201 ; Krause, Die Transformation der hyperellip. Funct. erster Ordnung (Leipzig, 1886) ; 
Forsyth, " Memoir on the theta functions," Phil. Trans., 1882 ; Forsyth, " On Abel's theorem," 
Phil. Trans., 1883 ; Cayley, "Memoir on the . . theta functions," Phil. Trans., 1880, and Grelle, 
Bd. 83, 84, 85, 87, 88; Bolza, Göttinger Nachrichten 1894, p. 268. The addition equation is 
considered in a dissertation by Hancock, Berlin, 1894 (Bernstein). For further references see the 
later chapters of this volume which deal with theta functions. 
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200. Throughout this chapter we suppose the relative positions of the 
branch places and period loops to be as in the annexed figure (4), the branch 
place a being at infinity. 

In the general case, in considering the zeros of the function S (ux>m — e\ 
we were led to associate with the place m, other p places mly ..., mp) such 
that ( > ) has m1} ...,mp for its zeros (Chap. X. § 179). In this case we 
shall always take m at the branch place a, that is at infinity. I t can be 
shewn that if b, b' denote any two of the branch places, the p integrals 

, •••> Up are the jo simultaneous constituents of a half-period, so that 

Ur = ?? 1 > ) !+ + ( )p + 7 V r> x + + ' ' ) , (r = 1, 2, ...,p), 

wherein mly ..., mp, ra/, ..., mp are integers, independent of r ; this fact we 
shall often denote by putting ub>b' = -̂12. I t can further be shewn that if, 
b remaining any branch place, b' is taken to be each of the other 2p + l branch 
places in turn, the 2p + 1 half-periods, ub> b\ thus obtained, consist of p odd 
half-periods, and p + 1 even half-periods. Thus if the branch places, b', for 
which > ' is an odd half-period be denoted by bly..., bp, we have, necessarily, 
S- (ub>bi) = 0, . . . , S- (ub> bp) — 0, and we may take, for the places mìmlì ..., mp) 

the places b,bly ...,bp. In particular it can be shewn that, when for b the 
branch place a is taken, and the branch places are situated as in the figure 
(4), each of ua>ai, ..., na> ap is an odd half-period. We have therefore the 
statement, which is here fundamental, the/miction ò(ux> a — uXi>ai—... —UXP>

 ap) 
has the places xlt ..., xp as its zeros. It is assumed that the function 
& (ux>a) does not vanish identically. This assumption will be seen to be 
justified. 

For our present purpose it is sufficient to prove (i) that each of the 
integrals ub>b' is a half-period, (ii) that each of the integrals u^ a\ ..., ua> ap is 
an odd half-period. In regard to (i) the general statement is as follows: Let 
the period loops of the Riemann surface be projected on to the plane upon 
which the Riemann surface is constructed, forming such a network as that 
represented in the figure (4) ; denote the projection of the loop (ar) by (Ar), 
and that of (br) by (Br), and suppose (Ar), ( .) affected with arrow heads, as in 
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the figure, whereby to define the left-hand side, and the right-hand side ; 
finally let a continuous curve be drawn on the plane of projection, starting 
from the projection of the branch place and ending in the projection of the 
branch place b ; then if this curve cross the loop (Ar) mr times from right to 
left, so that mr is either + 1 or — 1, or 0, and cross the loop ( .) m/ times 
from right to left, we have 

ur = m1Wrt ! + + mpù)rt p + /
 1 r> + + . 

Thus, for instance, in accordance with this statement we should have 

' * = — tùrt J, and ' 1 = }1 — } 2, and it will be sufficient to prove 
the first of these results ; the general proof is exactly similar. Now we can 
pass from cY to aly on the Riemann surface, by a curve lying in the upper 

sheet which goes first to a point P on the left-hand side of the loop fa), 
and thence, following a course coinciding roughly with the right-hand side of 
the loop ( ) , goes to the point P', opposite to P on the right-hand side of 
(frj), and thence, from P ' , goes to . Thus we have 

«i»Ci Ci / , alt P' 
Ur =Ur — Zû) r > J + Ur 

On the other hand we can pass from cx to by a path lying entirely in the 
lower sheet, and consisting of two portions, from c± to P , and from P ' to Oj, 
lying just below the paths from to P and from P ' to aly which are in 
the upper sheet. Thus we have a result which we may write in the form 

ur
l =(ur ) + ( V )• 

[(x 1) _ 
But, in fact, as the integral ux' a is of the form I —-—- 1 dx, and has 

different signs in the two sheets, we have 

f P, c 1 4 / P, ct , , al,P'.f altP' 

(ur ) = - ur , and (ur ) = — ur 
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Therefore, by addition of the equations we have 

„ , a i ' C i ' 

ur = — co r> i, 

which proves the s tatement made. 

I n regard now to the proof tha t ua> a\ ..., ua> ^ are all odd half-periods, we 
clearly have, in accordance with the results ju s t obtained, 

ur'
 l = <Ort i - (œr> i+1 + «V, +i) - - («r, v + ®V, p) + (to'r, i + + a>'rt p), 

which is equal to 

(u>'r, l + w'r, 2 + + <*>'r, ) + («/• , ~~ w r , i+i ~* ~ \ )> 

and if this be written in the form 

\ ; i + + , p + m1
/o),ri + + mf

p<ù Tì   

we obviously have ra^i/ 4- + rnpmp' = 1. 

2£ \ i. We have stated that if b be any branch place there are p other branch places 
bl9 b2i ..., òp, such that * bl, , , ..., ub' ÒP are odd half-periods, and that, if b' be any 
branch place other than b,bly...ybp, tib>b'is an even half-period. Verify this statement in 
case p = 2, by calculating all the fifteen, = J 6 . 5, integrals of the form > ', and prove that 
when b is in turn taken at a, cy cly c2l a19 a2 the corresponding pairs b19 b2 are respectively 

(«i, «2)> (ci> c2)i fe> c)> (c1? ), ( 2, ), (« a). 

Prove also that 

r r »• 

Ex. ii. The reader will find it an advantage at this stage to calculate some of the 
results of the second and fifth columns in the tables given below (§ 204). 

201. Consider now the 2p + l half-periods > wherein b is any of 

the branch places other than a. From these we can form ( 9 J half-

periods, of the form ub> + ub'' a
y wherein b, V are any two different branch 

places, other than a, and ( ^ J half-periods of the form ub>a -f ub'>a + ub">a, 

where 6, b', b" are any three different branch places other than a, and so 

on, and finally we can form ( ^ J half-periods by adding any p of the 

half-periods ub> a. The number 

( \+WK \+1) 
is equal to —1+%[( + 1 ) +1] =0, or to 2 ^ — 1, and therefore equal to the 
whole number of existent half-periods of which no two differ by a period, with 
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the exclusion of the identically zero half-period ; we may say that this number 
is equal to the number of incongruent half-periods, omitting the identically 
zero half-period. 

And in fact the 22p — 1 half-periods thus obtained are themselves incon­
gruent. For otherwise we should have congruences of the form 

1} _^ 2, ^_ +ubr,a= UW, a + ', a + + 8', ^ 

wherein any integral , that occurs on both sides of the congruence may 
be omitted. Since every one of these integrals is a half-period, and therefore 
ub*>a = — ub*> ay we may put this congruence in the form 

ub4a+ub*>a+ +wbm>a = 0, 

and here, since we are only considering the half-periods formed by sums of 
p, or less, different periods, in cannot be greater than 2p. Now this con­
gruence is equivalent with the statement that there exists a rational function 
having a for an m-fold pole and having bly ..., bm for zeros of the first order 
(Chap. VIII. § 158). Since a is at infinity, such a function can be expressed 
in the form (Chap. V. § 56) 

(x, l)r + y(œ, 1)„ 

and the number of its zeros is the greater of the integers 2r, 2p + 1 + s. Thus 
the function under consideration would necessarily be expressible in the 
form (#, l ) r . But such a function, if zero at a branch place, would be 
zero to the second order. Thus no such function exists. 

On the other hand the rational function y is zero to the first order at each 
of the branch places c^,..., ap,cly..., cpi c, and is infinite at a to the (2p+ l)th 
order ; hence we have the congruence 

Ua"a+ + llaP>a+ IIe" a+ -f wcp,a_f_ uc,a = Qt 

202. With the half-period of which one element is expressed by 

?ttiû>r,i+ +mp(ùrìP+ rrhtù'r, J + +WpVr>2>, 

we may associate the symbol 

( fCj, k2, . . . , fCp \ 

fci , ?2 , • • • , fCp I 

wherein k8, equal to 0 or 1, is the remainder when m8 is divided by 2. The 
sum of two or more such symbols is then to be formed by adding the 2p 
elements separately, and replacing the sum by the remainder on division 
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by 2. Thus for instance, when p = 2, we should write (-,-.) + ( n i ) i f j * 

If we call this symbol the characteristic-symbol, we have therefore proved, 
in the previous article, that each of the 2^ — 1 possible characteristic-symbols 
other than that one which has all its elements zero can be obtained as the sum 
of not more than p chosen from 2p + 1 fundamental characteristic-symbols, 
these 2p 4-1 fundamental characteristic-symbols having as their sum the symbol 
of which all the elements are zero. In the method here adopted p of the 
fundamental symbols are associated with odd half-periods (namely those given 
by ua> ai, ..., ua>ap), and the other p+1 with even half-periods. It is manifest 
that this theorem for characteristic-symbols, though derived by consideration 
of the hyperelliptic case, is true for all cases*. We may denote the funda­
mental symbols which correspond to the odd half-periods by the numbers 
1, 3, 5, ..., 2p — 1 , and those which correspond to the even half-periods 
by the numbers 0, 2, 4, 6, ..., 2py reserving the number 2/> + l to represent 
the symbol of which all the elements are zero. Then a symbol which is 
formed by adding k of the fundamental symbols may be represented by 
placing their representative numbers in sequence. 

Thus for instance, for p = 2, Weierstrass has represented the symbols 

CÎ) Q Q ) 
respectively by the numbers 

1 3 0 2 4 5 ; 

and, accordingly, represented the symbol ( J, which is equal ^° ( -i-i ) + ( m J > 

by the compound number 02. The ( J = 10 combinations of the symbols 

1, 3, 0, 2, 4 in pairs, represent the 2^ — 6 symbols other than those here 
written. Further illustration is afforded by the table below (§ 204). 

In case p = 3, there will be seven fundamental symbols which may be 
represented by the numbers 0, 1, 2, 3, 4, 5, 6. All other symbols are 
represented either by a combination of two of these, or by a combination of 
three of them. 

I t may be mentioned that the fact that, for p = 3, all the symbols are thus representable 
by seven fundamental symbols is in direct correlation with the fact that a plane quartic 
is determined when seven proper double tangents are given. 

* The theorem is attributed to Weierstrass (Stahl, Creile, LXXXVIII. pp. 119, 120). A further 
proof, and an extension of the theorem, are given in a subsequent chapter. 
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203. If in the haìf-period \ >, of which an element is given by 

2&m, m' =Wiû) r , i + + m 1 , û ) f j l , + W 1 V r j l + + W>p'&' , > 

we write ^m8 = Ms + ̂ kS) \ms' = Ms' + p / , where Ms, Mg' denote integers, 
and each of ks, / is either 0 or 1, we have (cf. the formulae § 190, Chap. X.) 

where 

\ = [2V (M + P ) + 2V ( i f + P ' ) ] [u + œ(M+ + a>' (M' + P ' ) ] 

-^(if+pxir+p'), 
and therefore 

& (« J ifc, 1 &') = " * - « » * (« + l a » , m')-

The function represented by either side of this equation will sometimes be 
represented by Ä (u | \Hmt m>) ; or if £flWj m,=ub"a + ub*>a + + #*> a, the 
function will sometimes be represented by çb(u\ubi>a+ +wò«»a), or by 

We have proved in the last chapter (§§ 184, 185) that every odd half-
period can be represented in the form 

1 =UmPtm__unl,mi_ _ w %-i, wp_^ 

and, when there are no even theta functions which vanish for zero values of 
the argument, that every even half-period can be represented in the form 

£ O' = um*> ™i + + ™** ™v ; 

in the hyperelliptic case every odd half-period can be represented in the 

form 

and every even half-period £ ', for which (£ ) does not vanish, can be 
represented in the form 

| ' = ub*>ai+ +ubp>ap, 

and (§ 182, Chap. X.) the zeros of the function ( > \^£1) consist of the 
place z and the places , ...ynp, while the zeros of the function ^(ux>a\\£l') 
are the places blt ..., bp. In case p = 2 there are no even theta functions 
vanishing for zero values of the argument ; in case p = 3 there is one such 
function (§ 185, Chap. X.), and the corresponding even half-period £X2" is 
such that we can put 

£ " = ua*> a — uXi>ai- ux*> % 
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wherein is an arbitrary place and x2 is the place conjugate to xx. Since 
then ux*>a* = — ux^ a% this equation gives 

now, as in § 200, we easily find 

u
a

r
z' a = — (û)rj 3 -f <o'r x -\- ayTi 2 + ( ' ) 3) , ua*> ttl = ) x — a>r3 2 - &)' , 2, 

and therefore 

W = — fflr, 1 + , 2 — «<V, 3 — ( u / r , 1 + « V , ) ' 

Thus the even theta function which vanishes for zero values of the 

argument is that associated with the characteristic symbol ( J. 

In the same way for p = 4, the 10 even theta functions which vanish for 
zero values of the argument are (§ 185, Chap. X.) associated with even half-
periods given by 

\£l" = ua*> a — > a* _ ua*> a*, 

where is in turn each of the ten branch places. 

204. The following table gives the results for p = % The reader is recommended 
to verify the second and fifth columns. The set of p equations represented by the 

equation (iû)r=m1û)r> ^ ^ + / ^ + / ',. 2 is denoted by putting Jfì = J ( * 2 ) . 

I. Six odd theta functions in the case p = 2. 
1 Weierstrass's j Putting the corresponding half-

Function We have £ ^ ?" period = u^ • a - un* > a*, we 
S y m b o l have forWl respectively 

So«» u^ax = 1 ^ ™\ 02 I (1) a2 

%a2(
u) ua>a* = i ( oi) 2 4 (3) ai 

Katiu) ^ ^ = è(_iì) 0 4 (13) « 

W « ) wCl'C2=è(_ÎÎ) ! j (24) e 

^ M w C l ' c = i ( _ î o ) 13 j W c* 

**(*) «*,< = è ( o _ ! ) 3 (°4) ci 
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II. Ten even theta functions in the case p = 2. 

Weierstrass's ! Putting the corresponding half-
Function We have | ^ ^ °- ! period stA» «i +u&2, «2, we 

this symbol have for 2 

$ac(u) ! ufi,* =*( Ü) 2 3 ( 0 ) Cl' °* 

v w ; «*.*=*( îo) 12 (2) c' '2 

VW «** = i ( oi) 2 i (4) c' Cl 

*»*(*) M*i.«.=i( Jo) 01 (12) I *2' Cl 

V,W **•*=*(_}}) u (23) ai,Cl 

5 («) «*».«*=*( ^ 4 (34) 1 2 

V W «** = * ( Ol) 3 4 (03 ) a» C 

V M wc'ai =*(i~o) °3 (01) a2' c 

The numbers in brackets in the fourth column might be employed instead of the 
Weierstrass numbers ; they are based on the branch places according to the corre­
spondence 

1 3 0 2 4 

1 2 1 2 * 

But the Weierstrass notation is now so fully established that it will be employed here 
whenever any such notation is used. 

I t should be noticed that the letter notation for an odd function consists always 
of two a's or two c's ; the letter notation for an even function contains one a and one c. 

The expression of the half-period associated with any function as a sum of not more 
than two of the integrals ub>a, which has been described in § 202, is of course immediately 
indicated by the letter notation employed for the functions. 

Ex. Prove that if = ^ ( ) 

Ua> ^+a = Ua' a* uc*> c* +a = Ua> c uc> Cl + a = Ua> e* 

uata2 + a^ua,ai , + 5 5 , 1# 

These equations effect a correspondence between five of the odd functions and the branch 
places. 
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205. Next we give the corresponding results for p = 3. Each half-period can be formed 
as a sum of not more than 3 of the seven integrals ub> a (§ 202) ; the proper integrals 
are indicated by the suffix letters employed to represent the function. We may also 
associate the branch places with the numbers 0, 1, 2, 3,4, 5, 6, say, in accordance with the 
scheme 

aD a2i a3> Cì Clì C2i C3 
1, 3, 5, 0, 2, 4, 6 ; 

then the functions ^ (w) , £3(w), $5(u) will be odd, and the functions $Q(u), $2(u), £4(w), $6(u) 
will be even ; and every function will have a suffix formed of 1 or 2 or 3 of these numbers. 
There is however another way in which the 64 characteristics can be associated with the 
combinations of seven numbers, and one which has the advantage that all the seven 
numbers and their 21 combinations of two are associated with odd functions, while all 
the even functions except that in which the associated half-period is zero are associated 
with their 35 combinations of three. I t will be seen in a later chapter in how many ways 
such a scheme is possible. One way is tha t in which the numbers 

1, 2, 3, 4, 5, 6, 7 

are associated respectively with the half-periods given by 

uai> % W«2. a, <*> , % uc> + , a + ^ » a, ? , a-j-^c3, a + uei> a, №•> a + wA, -\- 2,  

By § 201 the sum of these integrals is = 0. The numbers thus obtained are given in the second 
column. Further every odd half-period can be represented by a sum , <*> — uni> ai — , <*> 
and all the even half-periods except one as a sum \> »1 + 2^2, 2 + , « ; the positions of 
nl9 n2 or of bly b2, b3 are given in the fourth column. 

ƒ. 28 odd theta functions for p = 3. 

j j ' j 
nUn2 = 

V ( « ) ! ^ r t l ' a - * ( l O o ) ^2 ' % 

KM 2 ^ " ^ ( o i o ) a^ ai 

%3(u) 3 w a s , a s * ( o O l ) au a* 

SaMu) 12 M » i , « 4 - M « « » a = i ^ J ^ a , a 3 

3aia3(
u) 13 ttai,* + M«3,a = i ( 1 0 J ) \ a , a2 

, /0014 
$aia3(u) 23 № . « + « « . , a = ì ( ^ o n ) « > «i 

use, W 74 *, « + w* » = i ^ \ c2, c3 

& ,( ) 75 ^ • * + « e ' a = i ( o ï o ) ' Cl 

, 20 
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Table ƒ. {continued.) 

&<* ) 7 6 uc3ia + uc,a = ^ f \ Cl, C2 

^ W 56 J ucita + uc3,a = ^f\ \ , cx 

^Clc2(w) 45 M d . a + M ^ . a s j r o J , c3 

S c a ^ M 3 7 wca + ^ . a + ^ e s i f J , a3 

&caxab(u) 27 Mfte + ^ e + ^ e E j l J , «2 

$ca2a3{u) 1 7
 M M + ^ 2 ) a | Ä t t = | l J , « i 

u v i 2 a 3 ( » 14 ^ . H W ^ - H W ^ Ä E J I J cl9 av 

$ 1 2 ) 2 4 ^ „ ^ + ^ - J el9 a2 

Ka,a2{u) 3 4 «1. ^ « = | j cl9 a 3 

$ 2 ( ) 15 Wc.2ja + Ma2, a + ^ a 3 , a = | f J C2, « j 

$ 2 3 ) 2 5 M « 2 , H M " 3 . H № > ^ | l n i j c2 , a 2 

$c2axa2{u) 3 5 + + ^ j c2 , a 3 

^c3a2az{u) l ß ?^3, a + wa2 , a + wa3>a = | f j c3 , ax 

• ^ W i M 26 * , + «8, + »1. = 1 ( ) c3 , a 2 

"9c3aia2(w) 36 , a + ^ a ^ a + ^aa, a = J f j c3, a 3 

•%c2c3(u) 4 W«, + ^2» + ?^ , a = 1 ^ j a , cx 

u s c s d M 5 ^c, + > a + Wi, a = J ( ) a , c2 

&ccxc2(u) 6 «<! , a+Mf i . a + ^ . « = | ) a , <? 

£c l C 2 c 3 M 7 wci.a + wc2 , a + wc3 , a = j / j a ,  
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II 36 even characteristics for p = 3. 

I \ h 2 b 3 

*{u) * 0 I a * a * a * 
^axa^{u) 123 uai>a + ua2,a + ua3,a = % ( \ *a, xy X 

M") 456 uc,a S * ( J S J ) * C2 c3 

**(«) 567 №,> s*(Soo) c c2 ^ 

^ ( « ) 647 tt*,a = * ( o i o ) C Cl 

**(«) 457 «..« = ^ ( o O l ) C c i c2 

^ W 237 ttc.H^.,« - i ( i o o ) C % * 

$caAu) 3 1 7 W»a + Uto*a = i ( m o ) C * ai 

Sca3(u) 127 uca + ua3,a =ì(^) c ai a* 

1 ) 234 u^a + u^a = *(<|£o) Ci a* a s 

) 3 1 4 W«i.« + M*«.« ^ H l i o ) Cl a* ai 

\a3(u) 124 uci,a + w3,a =i( \ ^ a^ ^ 

Be^(u) 235 t ^ . a + tt^.a = i (JJJ) *2 «2 «3 

4 M 3 1 5 M * . « + W * * . « = * ( o 0 o ) c 2 % «i 

4 M 125 vto,a + u<h.a = i ( \ ^ ^ ^ 

^ ( t t ) 236 «*.<• + «*,<» s i ( J J Î ) cs a2 a3 

4 M 316 «* ,« + « * , a ^ i ( o n ) * «3 «i 

$C3a3(U) 126 «*, « + *».,* S *(SSJ ) «i «2 

"4^ M 1 5 6 «ai.a + wca,a + w<Ji,a = ì ( m ) «i ^  

i /010 \ 
4 * M 164 ««i, a + t ^ . e + M e i . e s i ^ J \ 2  

. i /000\ 
4 * * M 145 tcft .a+tt^a + M f c . a ^ ^ j ^ c 3   

4 i (M) 147 tt*i » « + «e. a + Mi » ^ = i ( 0 j «x c2    

20—2 
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Table II. (continued). 

\ bi h h 

%lCc2(u) 157 u<*>i, <*> + №, a +uc2,a=±( \ ax c3 cx 

&W, (M) 167 M«I. « + *. a + wc3, a = J l \ ax cx c2 

, / 100 \ 5 2 ( ) 256 wa2,a + wc2,a + Mc3>a=Ej( 1 1 \ a2 cx   

$ 2 3 ) 2 6 4 tt^.* + tt*.a + ^ i . « = i ( i n J a2 c2   

%^c2(u) 245 W«2»a + MCi»a + WC2>a = ^ ^ J a2 c3 c 

ViW 2 4 7 «as.e + tte.e+ttcasjLj a2 C2   

• W c f a ) 257 w<h,« + ttC« + 2, = ^ j ^ Ci 

S a ^ M 267 *, + , + 3, = j ^ Cj ^ 

3 2 3( 0 356 ^ , + ^ 2, + ^ 3, = £ ^ a3 cx   

< W » 364 M«3,e + MC»,« + M C i . e s 4 ^ ^ «3 C2   

V A M 3 4 5 «oj.e+^.o+^.osjr J a3 c3   

, /000\ 
^ , (w 347 ^« , a + Me, a + ,, a E= £ ( J a3 c2 c3 

i /100 \ 

• W c M 367 Ä a + ^ , a + M c 3 ) a = i Q ^ ^ ^ 

I t is to be noticed that every odd theta function is associated with either (i) any 
single one of au a2, a3 or (ii) any pair of Oj, ct2, a3 or any pair of c, Cj, c2, c3, or (iii) a 
triplet consisting of one of c, cx, c2, c3 and two of at, a2, a3 or consisting of three from 
c, cx, c2, c3. This may be stated by saying that odd suffixes are of one of the forms 

, 2, 2, 2 , 3. Similarly an even suffix is of one of the forms <?, , 2, a3. 

In the tables just given the fundamental characteristic-symbols, denoted by the num­
bers 1, 2, 3, 4, 5, 6, 7, are those associated with sums of integrals which may be denoted by 

rtj, a2î
 a3i CCtf^ CC3Cli cc\c2i C1C2C3' 
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We can equally well choose seven fundamental odd characteristic-symbols, associated with 
the integrals denoted by any one of the following sets : 

, , • & , ( / 1 • / 

] , Ci 2 , ^1 » 1 2^3> C^gOtjj Cj&jGkjî 2 3 

^2^ î ^2 ^1 » ^2 ^3 ' ^2^2*^3 î ^2^3^1 » ^2° ^2 » ^ ^3^1 

, 1, 3 2 , c3a2ci'2y c^azaiì czaiazi G c\c% 

ötj, afjCÏ2> 1 1 2 3» 2^2 3? 2 3> Cöt2^3 

öt2, 2 3> ^2^1? 1 1> 2 3^1> C3 t t3aH Cöt3ötj_ 

^ 3 dopi' i , (%Q do ) & , CnCb\Cbt\ , CoCC-tCtn , CQj^Ctic^ 

The general theorem is—it is possible, corresponding to every even characteristic e, to 
determine, in 8 ways, 7 odd characteristics a, ß, , , X, /*, i/, such that the combinations 

a, ft , , X, /i, v, ea/3, * , eX/x 

constitute all the 28 odd characteristics, and the combinations 

f, aßy, , ß-

constitute all the 36 even characteristics. In the cases above e = 0 . The proof is given in 
a subsequent chapter. 

206. Consider now what are the zeros of the functions 

a-(w), ( \ » + + *» ), 

where blt..., bk denote any k of the branch places other than a(k ^p), and  
is given by 

wr = wr + + wr , ( r = l , 2, . . . ,p) , 

the functions being regarded as functions of #!. 

The zeros of ^ (u) are the places zx, ..., zp determined by the congruence 
ypi » ai -f. - | - | ^ % > %> = uxi » ^ — < ^ i , — — yZp, dp 

or, by* 
uZi>a + uz*>** + + UZP> *p = 0. 

Provided the places a,x2i ..., be not the zeros of a -polynomial, that is, 
provided none of the places x2) ...,œp be at a, and there be no coincidence 
expressible in the form xi — x^ the places zY, z2t..., zp cannot be coresidual 
with any p other places (Chap. VI. § 98, and Chap. III.) and therefore (Chap. 
VIII. § 158) this congruence can only be satisfied when the places zlf ...}zp 

are the places 
Qj) X% y X$ y . . . , Xp 'y 

these are then the zeros of ( ) , regarded as a function of a .̂ 

* The two places for which x has the same value, and has the same value with opposite 
signs, are frequently denoted by x and x. 
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The zeros of ò(u\ubi>a+ + ubk>a) are to be determined by the 
congruence 

ux*>ai + +uxp>ai>+ ub"a -f +ubk>a = ux*>a — uz"ai — — uzp>ap, 

or, by 
" 6i -f uz*>** + + ^ » ^ + ub*>a + + ubk>a = 0, 

which we may write also 

in particular the zeros of *&(u\ub>a) are the places b, x2) ..., Xp. 

207. Now, in fact, if the sum of the characteristics qly ..., qn differs from 
the sum of the characteristics rlf ..., rn by a characteristic consisting wholly 
of integers, n being an integer not less than 2, then the quotient 

f( = ( ; gi)fr(tt; ga) ; gn) 
JW *("; n)M^;0 a(w; rn) 

is a periodic function of u. 

For, by the formula (§ 190, Chap. X.) 

where m denotes a row of integers, we have 

and if 2g' — 2 / , 2# — 2r, each consist of a row of integers the right-hand 
side is equal to 1. 

Hence, when the arguments, u, are as in § 206, the function f(u) is a 
rational function of the places x1} ...,xp. 

208. I t follows therefore that the function 

( \ > )  
2( ) 

is a rational function of the places œlt ...,œp. By what has been proved 
in regard to the zeros of the numerator and denominator it has, as a function 
of xu the zero 6, of the second order, and is infinite at a, that is, at infinity, 
also to the second order. Thus it is equal to M (b — a^), where M does not 
depend on xx. As the function is symmetrical in xlf x2, ...,xpi it must 
therefore be equal to (b — x±) ... (6 — xp), where is an absolute constant. 
Therefore the function 

/ : TT* TL 1 *{ \ > ) 

may be interpreted as a single valued function of the places xly ...,Xp, 
on the Riemann surface, dissected by the 2p period loops. The values of 
the function on the two sides of any period loop have a quotient which is 
constant along that loop, and equal to + 1. 
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The function has been considered by Rosenhain*, Weierstrass f, RiemannJ and 
Brioschi§. We shall denote the quotient S ( \ > )/ - ( ) by qb ( ). There are 2p +1 such 
functions, according to the position of 6. Of these qa (u), ..., q^W are odd functions, 
and qc (u), qc (w), ..., qc (u) are even functions. The functions are clearly generalisations 

of the functions V#=sn , \ / 1 - ;= , \ / l — #te=dn obtained from the consideration 
of the integral 

_ fx dx_ 
U~ J \ /4 ' ( 1 - ; ) (1~^%) ' 

209. Consider next the function 

b(u\ub"a+ + 6 *) - 1 ( » 
( \ > ) ( \ > ) ' 

wherein blt . . . , 6* are any branch places other than a. We consider only 
the cases <p + 1. By what has been shewn, the function is rational in xlt 

and if zlf . . . , zp denote the zeros of { \ ^ + +&*.*) the zeros of the 
numerator, as here written, consist of the places 

Zlf . . . , Zp, QJ X% , . . . , Xp 

and the zeros of the denominator consist of the places 

0lt 02, . . . , Ofc, # 2 , • • • » XV 

Thus the rational function of xx has for zeros the places z1} . . . , zp, a*-1, 
and, for poles, the places blt ..., bk,x2f ...} xp. I t has already been otherwise 
shewn tha t these two sets of p + - 1 places are coresidual. Now any 
rational function, of the place x, which has these poles, can (Chap. VI. § 89) 
be written in the form 

uy + v (x — ) . . . {x — bk)  
{x-bx) ...(x-bk)(x-x2) ...( -

wherein u, v are suitable integral polynomials in x, so chosen tha t the 
numerator vanishes a t the places x2, . . . , xv. The denominator, as here 
written, vanishes to the second order at each of bly . . . , &*, and also vanishes 
a t the places x2j x2y . . . , xP) xp. 

Let X, fi be the highest powers of x respectively in and v. Then, in 
order that this function may be zero at t he place a, tha t is, a t infinity, to the 
order k— 1, i t is necessary tha t the greater of the two numbers 

2 \ + 2 + 1 - 2 ( 2 ) + - 1 ) , 2 +2 -2( + -1) 

* Mémoires par divers savants, t. xi. (1851), pp. 361—468. 
t By Weierstrass the function is multiplied by a certain constant factor and denoted by al{u). 
X In the general form enunciated, as a quotient of products of theta functions, Werke 

(Leipzig, 1876), p. 134 (§ 27). 
§ Annali di Mat. t. x. (1880), t. xiv. (1886). 
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(wherein 2(p + k — 1) is the order of infinity, at infinity, of the denominator) 
should be equal to — (& —1). Since one of these numbers is odd and the 
other even, they cannot be both equal to — ( — 1). Further in order that 
the ratios of the X + /u, + 2 coefficients in u, v may be capable of being chosen 
so that the numerator vanishes in the places x2, ..., xp, it is necessary that 
X + fi + 1 should not be less than p—1. And, since a rational function 
is entirely determined when its poles and all but p of its zeros are given, 
these conditions should entirely determine the function. 

In fact we easily find from these conditions that the case 2 \ + 2 p + 1 > 2 (//,+&) 
can only occur when is even, and then X = JA — 1 , / = — 1 — ^ , and 
that the case 2X + 2p + 1 < 2fi + 2k can only occur when is odd, and then 
^ = ì ~~ 3), p = p — I (k + 1). In both cases X + / + 2 =p. 

By introducing the condition that the polynomial ay + v (x — ) ... (x - b^) 
should vanish in the places x2y ..., xv we are able, save for a factor not 
depending on x, y, to express this polynomial as the product of (x—b^)... (x—bk) 
by a determinant of p rows and columns of which, for r > 1, the rth row is 
formed with the elements 

-i 
&'r /* -1 -. 

wherein ( ) denotes ( — )... ( — ) , the first row being of the same 
form with the omission of the suffixes. 

Therefore, noticing that F is symmetrical in the places u/j, ... f Xp, vv e 
infer, denoting the product of the differences of xl} ...,xp by A(x1) ..., xp), 
that 

( \ »* + + **) -1( ) _ \ ( '"" (* ' " " I 
( \ » ) ( \ *> ) A(xlt ...,a?p) 

where G is an absolute constant, and the numerator denotes a determinant 
in which the first, second, ... rows contain, respectively, xu x2, ...; and here 

when is even, X = ^& —1, = — 1 — \ 

and when is odd, X = \(k — 3), / —p — \ (k -f 1). 

210. By means of the algebraic expression which we have already 
obtained for the quotients S- ( \ > )/ ( ) , we are now able to deduce an 
algebraic expression for the quotients 

^ (u\ub» a + + u**> )/ ( ) ; 

since it has already been shewn that by taking in turn equal to 1, 2, ...,£>, 
and taking all possible sets bl} ..., b^ corresponding to any value of k, the 
half-periods represented by ub^a+ + ubk>a consist of all possible half-
periods except that one which is identically zero, it follows that, in the 
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hyperelliptic case, if denote uXi>a* -f + ^ » ^ , and q denote in turn all 
possible half-integer characteristics except the identically zero characteristic, 
all the 2^ — 1 ratios ( ; q)fò ( ) can be expressed algebraically in terms of 
xi> •••> by the formulae which have been given. 

The simplest case is when = 2 ; then we have X = 0, /n = p — 2, and 

( \ 1> + *> ) ( ) _ r | yr 1 
l*(u\ub"aj¥(u\iib*>a) " rZi ( a v - 6J(av - b2) R' (xr)' 

where JR (X) = {X — XJ) (X — x2) ... (x — xp), and is an absolute constant. 
Denoting the quotient S- (u\ub*>a + 0** )/ ( ) by qbu &2, we have 

where J.1)2 is an absolute constant; and there are p(2p + l) such 
functions. 

When = 3, we have A, = 0, /x =^> — 2, and, if qbit &2> &3 denote the quotient 
S- (u\ub*>a + ub*>a + ^&3' *)/$- ), we obtain 

_ R £ j/r 1 
ft, &2, &3 - A, 2, . f t M ^ * (^TQ (ev_ ^ S4S7) > 

where , 2) 3 is an absolute constant. I t is however clear that 

9bltb2 _ 1} 3 /£ __ j \ 1} 2, 3 

, 2 3  

so that the functions with three suffixes are immediately expressible by those 
with one and those with two suffixes. 

More generally, the 2^ — 1 quotients ^ ( ; )/ ( ) , depending only on 
the p places œ1,...,œp, must be connected by 22*> — p — 1 algebraical rela­
tions; and since (Chap. IX.) any argument can be expressed in the form 
uXi>a* + •\-uxp>aPi it follows that these may be regarded as relations 
connecting Riemann theta functions of arbitrary argument. This statement 
is true whether the surface be hyperelliptic or not. 

Of such relations one simple and obvious one for the hyperelliptic case under con­
sideration may be mentioned at once. We clearly have 

and therefore 

^ f ^ S 6 A (») Sbl (u)+^3b3bl ( ) ( ) + ^= S 6 l 6 . » S f t » = 0. 
^ 2 3 ^31 ^ 1 2 

It is proved below (§ 213) that A2^ : A2
31 : A\2 = (b2~b3) : (b^bj) : (b^b2). 

Other relations will be given for the cases p = 2, p — 3. A set of relations connecting 
the q>s of single and double suffixes, for any value of p, is given by Weierstrass (Creile LIL 
Werke I. p. 336). 
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211. Ex. i. Prove that the rational function having the places xXi ..., xp, a, as poles, 
and the branch place b as one zero, is given by 

Z=^ V-^i^bwky 
where Ä (£} = (£-#) (£ — #i) (£~#P)> an(*> m ^ne summation, x0i y0 are to be replaced 
by #, y> 

Prove that if denote the argument 

u = ux>a + ux»ai + + !***»"*, 
then 

S2(u\ub>a)^ Z* 

) A (b-x)(b-x1) ( -  

where A is an absolute constant. 

Prove for example, in the elliptic case, with Weierstrass's notation, that 

Ex. ii. If Zr denote the function Z when the branch place br is put in place of 6, and 
R (br) denote (6r—x) (br- xj {br-xp\ and we put 

&{ \ » + + ub*'a)S*-i(u) 
$(u\ub»a) $(u\ubk'a) 

prove that 

*z> * - * * < * > > ^ / ^ ^ - ^^-
-7" ( 7, X19 . . . , Xp)ì 

where is an absolute constant, A (x, xXi ..., xp) denotes the product of all the differences 
of the (p + l) quantities x, xlf ..., xpy (xr) = (xr — bt) (xr—bk), and the determinant is 
one of p-\-1 rows and columns in which, in the first row, x0, y0 are to be replaced by x, y. 

Prove that, when is even, X=£(&-2), = -%&, and, when h is odd, \—\{k — 1), 

# (u I ubl ' a + 4- wb)t' a) i&r. iii. Hence prove that the function —— ÏTT-T^ *s a constant 

multiple of 

This formula is true when k=l. 

* Ä iv. A particular case is when h=2. Then the function £ (w | w&1 *a+w*2 • a) / $ (u) is 
a constant multiple of 

Vft-^Xfti-*,) &-**,) V&-*)ft-*t) Ä-**>| (* - (^- ^ )» 

wherein Ä tf) = tf-*)«-*i) (f-orp). 

i£r. v. Verify that the formula of Ex. iii. includes the formulae of the text (§ 210) ; 
shew that when x is put at infinity the values of X, fi in the determinant of § 209 are 
properly obtained. 
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Ex. vi. Verify tha t the expression \f,(x, b; a, xx, . . . , xp) of § 130, Chap. VII . , takes 
the form given for the function Z of Ex. i. when a is the place infinity. 

Ex. vii. Iîf{x) denote the polynomial 

+ ^+ ^ - +x2p+2^+2, 
prove tha t any rational integral polynomial, F(x, z\ which is symmetric in the two 
variables x, z and of order p + 1 in each of them, and satisfies the conditions 

is of the form 
F (x, z) = / {x, z) + (x- zf + (x, z), 

where (cf. p. 195), with X0=X, X 2 p + 3 =0, 
P+i 

ƒ fo z)= 2 a*z* {2\ + \21 + 1 (x+z)}, 
=0 

and yfr (x} z) is an integral polynomial, symmetric in x, z, of order p-1 in each*. 

In case p = 2, and f(x) = (x-a1) (x — a2)(x-c) ( - ^){ — c2), prove that a form of 
F(x, z) is given by 

F(x, z) = (x-aj(x-a2)(z-c)(z-c1)(z-c2) + (z-al)(z-a2)(x-c)(x-c1)(x-c2). 

Ex. viii. If for purposes of operation we introduce homogeneous variables and write 

. 2j>+2 2p+l 2p+l 2p+2 
f(X) = \X2 + 4 2 X1-\- +\2p+1X2Xi +\2p + 2Xi , 

prove that a form of F(x, z) is given by 

where, after differentiation, xly x21 z19 z2 are to be replaced by #, 1, z, 1 respectively. 

This is the same as that which in the ordinary symbolical notation for binary forms is 

denoted by ƒ (#, z) — ̂ ax az , ƒ (x) being a / . 

jKr. ix. Using the form of Ex. viii. for i^tf, z\ prove that if 1 e2, x, xu . . . , .rp 

be any values of x, we have 

I ƒ for) , y y / f o r , *«) _ ƒ fa) • ƒ W , 7fa> «g) 
[ 6 ' (*r)P + Ö" (*r) &<*.) [<?' fa)]2 + [ 0 ' ( * ) ] » + 0 ' te) G' (e,) ' 

where ^ (£)=(g - ex) (£ - e2) (£ - x) (£ - #x) (£ - #p), and the double summation on the 
left refers to every one of the \p (p + l ) pairs of quantities chosen from x, xly . . . , xp. 

Ex. x. Hence it followsf, when y 2 = / ( x ) , yr
2=f(xr\ etc., and R(£) = {£-x) ( f - # i ) ••• 

( £ - ? ), that 

n , M n f , r | T f(e1)R(e2) / f a ) * fa) / f a , e,) 
Ä W wLofa-*r)fa-^)#(*r)J te-e2)

2Äte) fa-*)»Ä(^ + fa~-4)* 
is equal to 

{e,) K{e2) 22 Q, ^ Q, ^ , 

* It follows that the hyperelliptic canonical integral of the third kind obtained on page 195 
can be changed into the most general canonical integral, Rx

z* " (p. 194), in which the matrix a 

has any value, by taking, instead of/( , z), a suitable polynomial F (.r, z) satisfying the conditions 
of Ex. vii. 

t The result of this Example is given by Bolza, Götting. Nachrichten, 1894, p. 268. 
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where the summation refers to every pair from the p + l quantities x, xu ..., xp, and 
ƒ ( ;, z) denotes the special value of F(x, z) obtained in Ex. viii. 

Ex. xi. It follows therefore by Ex. iv. that when bx, b2 are any branch places of the 
surface associated with the equation y2—f(x)=0, there exists an equation of the form 

s>(u\ub»a+ub»a)_j>(h,R{h,ss2 . - / te» ,g . ) 7(&i,62) 

where (7 is an absolute constant, G(£) = (£ — &!)(£ — b2){i~ — x)(£-x^) (£ -#p), and 
w = ux' a+^ ' ai + + w^' ap. The importance of this result will appear below. 

212. The formulae of §§ 208, 210 furnish a solution of the inversion 
problem expressed by the p equations 

xl,al xPiap / • i » \ 
+ + = \ ( i = 1, 2, . . . , jp) . 

For instance the solution is given by the 2p + 1 equations 

from any of these equations j, •.., ocp can be expressed as single valued 
functions of the arbitrary arguments , ..., up. 

And it is easy to determine the value of J.2. For let blt ..., bp, 6/, ..., bp 

denote the finite branch places other than b. As already remarked (§ 201) 
we have 

(c, cu ..., cp) = (a, (h> •-., dp) 
and therefore 

(Ò,Ò!, ..., ) = ( , \ ..., 6/). 

Now we easily find by the formulae of § 190, Chap. X. that if P be a set 
of 2p integers, P1} ..., Pp, P / , ..., Pp\ 

y ( t t + j Q g , t n g ) = ( ) ^ 

hence, if ub> a = £flPf ^ , and i^ = ^ . « + + »» we have, by the formula 
under consideration, writing bly ..., bp in place of ^ , ..., , the equation 

and, writing 6/, ..., bp' in place of a?!, ..., xp, we have 

( . + |« ) 

a»(tt + ^ . ) - = = i l < ò - 6 » > - ( ò - ^ ) ì 

thus, by multiplication 

- = ^ ( 6 _ b 1 ) . . . ( 6 - bp) (6 - &/) ... (b - V) . 
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and hence 
*( \ > «) = ( 6 - aQ (6 - a?2)... (6 - q,) 

where ƒ (x) denotes (x — a2) . . . (x — a^) ( — ) ( — c^ . . . (x — and eir*/>i> = ± 1 
according as i£ò>a is an odd or even half-period. 

The reader should deduce this result from the equation (§ 171, Chap. IX.) 

by taking Z to be the rational function of the second order, x. 

When u = ux>a+uXi>ul+ +ux*>>a*>, we deduce (see Ex. i. § 211) 

V{u\ub>«)_ (o -aQf t -^ ) ( - ) g _ ^ I H * 
^ M " 4 Ve*"^ ƒ (6) = ? - 6 Ä' W J ' 

where Ä ( ö = №-*)(«-*i ) (É- ). 

If in particular we put ò in turn at the places aly . . . , ap, te 
P ( ) = (œ - 2) . . . ( ? - ) and Q ( ) = ( ? - ) ( - ) . . . ( - ) , and use the 
equation 

( - ) . . . (x — xp) -. £ ( ^ - Q .. . ( - - xp) 

P(x) i ( - ) ' ' 

we can infer that œlt . . . , xp are the roots of the equation* 

«V'V ' * -* --*<">• 
where ê  is ± 1 and is such that we have 

( |- « .«) = ( { -^) . . . (^- ) 

^2(w) €' V-P'(aOQ(a7) 

Another form of this equation for #1? . . . , xp is given below (§ 216), where 
the equation determining yi from Xi is also given. 

213. We can also obtain the constant factor in the algebraic expression of the 

function $(u\ubl>a+ub*>a)3 (u)+$ {ulub**a) $(u\ub*'a). 

Let , b2 denote any branch places, and choose zly ..., zp so that 

ux"a' + +^P' eP+tt f t i . e=tt»i» e«4. +i/P'CT*>; 

then 1? ..., zPì a are the zeros of a rational function which vanishes in xli ..., #p, bx. 
Such a function can be expressed in the form 

+{ - )( ,\ -* 
( # - # l ) ( - 7 ) ' 

* Cf. Weierstrass, Math. Werke (Berlin, 1894), vol. i. p. 328. 
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where {xi l)**-1 is an integral polynomial in x whose coefficients are to be chosen to satisfy 
the p equations 

-yi + to-bjfa, 1)P-I = 0, ( =1, 2, ...,p) ; 
thus the function is 

where F(x) = (x — x1) ••• (x-#P) \ and, if the coefficient of x2p + 1 in the equation associated 
with the Riemann surface be taken to be 4, we have 

and therefore, putting b2 for x, 

(6,-*i) (62 -^) ^ ^ L " i ( * i - * i ) ( * i - b i ) ^ " ( * * ) J ' 

Now we have found, denoting ux" "' + + tc*r""1'by u, and " , + -)- > », 
the results 

S*(u\ub»a)= & - * , ) (6,-afc) » (»!«»>•«)_ ,(6,-%) fo-fr) 

S 2 « V e « ^ / ' ( è ) ' â»(») ' ~ V>*"7'(ò) ' 

where '2 ' s = J û p p. ; hence we have 

«(«|«*—)ffl(«) ., . . . * ,- 1  
52 (*) 52 (« | UN- «) - u 2; L " i te - bi) to - h) F' (^)J ' 

which, by the formulae of § 190, is the same as 

S(u\ub"a)ä(n\ub*'a) V X 2 A 2 ( ^ - , ) ^ , - ^ ) ƒ"(*<)' 

where e is a certain fourth root of unity. 

Thus the method of this § not only reproduces the result of § 210, but determines the 
constant factor. 

Ex. Determine the constant factors in the formulae of §§ 208, 210, 211. 

214. Beside such formulae as those so far developed, which express 
products of theta functions algebraically, there are formulae which express 
differential coefficients of theta functions algebraically; as the second 
differential coefficients of b(u) in regard to the arguments u1} . . . , up are 
periodic functions of these arguments, this was to be expected. 

We have (§ 193, Chap. X.) obtained* the formula 

— Çi(ux>m — ux"m* — — UXP>™P) + Çi(ur>m — ux"m* — — UXP> "»p) 

= Lx,fl + S h, [(# x) - (afc, /*)] - ^ ; 
k=i at 

* Cf. also Thomae, Creile, LXXI., XCIV. 
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we denote by hr the sum of the homogeneous products of xlf ...,xptr together, 
without repetitions, and use the abbreviation 

Xp-i (x ; a?i, •.., xp) = x*-* - hxP-i-1 + h2xP-^ - + (_)^A^. ; 

further, for the p fundamental integrals t*f*, ..., up **, we take the integrals 

Cx dx xdx x?-1 dx 

'h IT' '"'L y ' 
then it is immediately verified that 

Xp-i(vk; Xi> ...,xp) /dxk  

^- F>*) ~dt ' 

where F (x) denotes (x — ) . . . (x — xp). 

Thus, if ft, v denote the values of x and at the place /A, we have, writing 
a, Oj, ..., ap for w, ..., mp (§ 200), 

— Çi(ux>a-uxi>a>- _wsp,%>)+ f t ( ^ ' a - w * ^ - — ' ) 

_ r«.* , i g:&>->• *; ̂  •••,#1>) + * * + "| , 

therefore, also, the function 

£(***. • + **.* + + u*p> *>) + Jff » - » 1 ^ ^ , f* V * '' Xp) £U!* 
"*=1 * {®k) X-Xk 

is equal to 

which is independent of the place x. 

Now let R (t) denote (t — x)(t—x1)... (t — xp), and use the abbreviation 
given by the equation 

yXv-i(x'>xi>--->xp) . yiXp-i(xi', *>X2, ...,a?p) % - ( ?1>; ?, #i, • • •, œP-i) 

=jp—i \xi x1} ..., ? ) 5 
then also 

2/iXp-i-i (a?i ; ?», ..., ) , , ypXp-i-i(xP> fri» • • - >xP-i)_ s ,œ v 

Now %p_i ( ?! ; , ?2, ..., ? ) - XP-Ì Oi '•> *> • • • » *V) 

is equal to 

[« * - ^" '"4*+ *i) + «r*"a № + *.)- + (-iy-ixkp_i_1] 
- [x\~% - xl'1'1 (Xl + ) + A?î~1"2 0»i&i + *a) ~ + (- ly-^kj^i^l 
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wherein kr denotes the sum of the homogeneous products of x2y . . . , xp, 
without repetitions, r together, and is therefore equal to 

fa-x) [xV1 - xV'% + + (-)^V*_J 
or to 

( x) Xp—i—i \X1 J X2, . . . , Xp). 

Hence 

Xp-i(xi',a,œ29 ...,xp) = XP-ÌQi ; xlt x2, ...,xp) + (x1-x)xp-i-i(^i; œ2, ...,xp) 
R'(xY) (xl-x)F'(x1) 

— _ XP—J v30*'*> xi> xi> • • • y œp) 1 , Xp-i—i \xi'•> œï> • • • > ^y) 
jT(^i) x-x, F'{xY) 

While, also, 

Xp—* \ x i xi> • " » xp) _ y Xp—j ^ î ^ I » • • • » ĵ>/ £_ 

Thus 

ƒ p _ W ^ , . . . , ^ - ^ ( ^ ^ _ ^ + ƒ r — i № , . . . , a y . 

Therefore the expression 

is equal to 

In this equation the left-hand side is symmetrical 1 0 X j X j , *. ., Xp , and the 
r ight-hand side does not contain x. Hence the left-hand side is a constant 
in regard to xt and, therefore, also in regard to xl9 . . . , xp. Tha t is, the left-
hand side is an absolute constant, depending on the place fi. Denoting this 
constant by — we have 

-Çi(u*>a + u*»*i+ + u*p>ap) = L*^ + 1%^ + +i?,ft 

—i \x'i xi> • -• > xp) __ ypXp—i \œp> œ> Xi> •••> xp-i) • ri 
2R'(x) 2R'(xp)

 + u " 

215. From this equation another important result can be deduced. I t 
is clear tha t the function 

- & ( ^ « + ^><*1 + + 5 .« ) - 2 ? , 1 - -LT"* 

does not become infinite when x approaches the place a, tha t is, the place 
infinity. If we express the value of this function by the equation jus t 
obtained, i t is immediately seen tha t the limit of 

-ykXp-i(xk> x> xi> - > ) • _ ykXp-i-i(œk', xi> ••> xp) 
2R'(xk) - 2F'(xk) 
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and that the expression 
VXp-i(x'i x^ • - •> ? ) 

2R'(x) 
1 2 

when expanded in powers of t by the substitutions x = -,y = -—i (1 + At2 +.. .) , 
where A is a certain constant, contains only odd powers of t. Hence the 
limit when t is zero of the terms of the expansion of this expression other 
than those containing negative powers of t, is absolute zero, and therefore, 
does not depend on the places x1} ..., xp. The terms of the expansion which 
contain negative powers of t are cancelled by terms arising from the integral 

Li . Since this integral does not contain xly ..., ocp we infer that the 
difference 

jx, p __ - ( ', ®I> ••> ) 

2R' (x) 

has a limit independent of x1} ..., xp, and, therefore, that 

-ri(^..«.+...+^.«p)=i?'a4...+i?,'"',-l^^=Hfefv^1^' 
k=\ ** \Xk) 

no additive constant being necessary because, as Çi(u) is an odd function, 
both sides of the equation vanish when xlf ..., xp are respectively at the 
places Oi, ...,ap. As any argument can be written, save for periods, in the 
form ux»ai+...+iixP'ap, this equation is theoretically sufficient to enable us to 
express & 0') f° r value of u. 

Ex. i. It can easily be shewn (§ 200) that 

uc,a + ucìtaì + + ucp,ap = 0 

Thus the final formula of § 214 immediately gives 

~Ci{u + + U ]~Ll + + A *!i 2(xk-c)F'(xk) 

Ex. ii. In case p=l we infer from the formula just obtained, and from the final 
formula of § 214, respectively, the results 

where D is an absolute constant. Thus 

tx (ux> a + ux»*) = &№ e0 + u(«?" ai)+i^i~D-
This is practically equivalent with the well-known formula 

f(« + ») = f(i*) + f(*) + i ^ ^ . 

The identification can be made complete by means of the facts (i) The Weierstrass 
argument is equal to ua>x, in our notation, so that y=--f (u), (ii) ux* a' = <o 4- a>' - u, so 

that & ( ^ ' a 0 = f i ( • + • ' - « ) = - Z ? e i = - f * ^ , as we easily find when Z ^ is 

B. 21 
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chosen as in § 138, Ex. i., (Hi) d(u = , (iv) therefore d(ux'ai)= -fw, (v) the branch 

places cu 1 are chosen by Weierstrass (in accordance with the formula 1+ 2+ =0) 

so that the limit of —rÀ, when =0, is 0. The effect of this is that the constant 

D is zero. 

Ex. iii. For p — 2 we have 

_ f i ( ^ a + ^ n «i + w*2, a*) = L*' »+Lx"l*+Lx*>fJ-

y{x-xx-x2) - - 2) y 2 (^2-^ -^ i ) , c 

2(x — xl) (x - x2) 2 (xx — x) (x^—x2) 2 (x2 — x) (x2 — x1 ) * 

-C*(w* a + uXl' axJmXly "*) = &>* + LX»»+LX*> * 

I \ 2h + c 
2(x-x1)(x-x2) 2(xl-x)(x1-x2) 2(x2-x)(x2-x1)

 2 

and 

-&(uXlt ai + ux*> a2) = Za;i'ai + Zf ' « s - ^ - i ^ 2 , -f2 (uXi> a* + ux*>a*) = LXi> a*+Lx*> a\ 
*• * ~~~ X2 * * 

where with a suitable determination of the matrix a which occurs in the definition of the 

integrals Lx' * and in the function $ (u), we may take (§ 138, Ex. i. Chap. VII.) 

LT=\l % (V+ax^+ax^), zf *-ƒ * J 6  

For any values of ̂ ? we obtain 

- ( ^ , 1 + + ux*»at>)=Lx»ai + + Z ^ » a ï > = ^ i 1 I fxk^m 
p P 4 k=i J ak y 

Ex. iv. We have (§ 210) obtained 22^ - 1 formulae of the form 

S(u\ub"a+ +«**'") y 
) 

where Z is an algebraical function, and the arguments ult ..., up are given by 
u = uXl>ai + + ^ , ; 

the integrals being taken as in § 214, these equations lead to 

^ V ~ <*Xr XP-i K^r'ì •#!> " M ^ p / 

bu~Vr^ dt~Vr F'(xr) 
Hence we have 

For instance, when = 1, and Z is a constant multiple of ^{ — ) (&i—&p), we 
obtain 

so that 

Xp-t (#rî # »•»» ^p) [ 
#r-& J 

_rxl,aì , i %, ^ Xp-i(xr'> A? #i> ••» > #p) 
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By means of the formula 

( +4 =1 ,1 + +%i»V^iA' + , ^ + , , 
which is easily obtained from the formulae of § 190, we can infer that the formula just 
obtained is in accordance with the final formula of § 214. 

Ex. v. We have seen (§ 185, Chap. X.)that in the hyperelliptic case there are ( ^ \ 

even theta functions which do not vanish ; and the corresponding half-periods are con­
gruent to expressions of the form 

ux^a' + + >> . 

It may be shewn in fact that these half-periods are obtained by taking for xu ..., xp the 

( P J possible sets of p branch places that can be chosen from a19 ..., aPi cy cl9 ..., cp. 

Hence it follows from the formula of the text (p. 321) that if ^Qk be any even half-period 
corresponding to a non-vanishing theta function, we have 

u(io*) = (*A)i. 

This formula generalises the well-known elliptic function formula expressed by £&= }. 
To explain the notation a particular case may be given ; we have 

U(«i.r, *>2,r, - «p,r)=%r, or ( *+ ^ = _ *> + « 
and 

ft (•'!.« • '*« ..., *' . )= \ > « Ci№T9ar) =~V?**. 
Thus each of the 2p2 quantities , r , rfit r can be expressed as f-functions of half-

periods. 

Ex. vi. The formula of the text (p. 321) is equivalent to 

-U(«ari 'ai + + ̂ » e p )=Z?" e i + +2?P' eP-£l J^*-, 
=1 + i 

where 
« =t t*i.ei + + u**>aP, 

i r r 

For example when p=2 

-f8(«) - Z f ' ^ + Z ^ * 

216. It is easy to prove, as remarked in Ex. iii. § 215, that if 

u = ux"a* 4- + ^«p.ep, 

and the matrix a (§ 138, Chap. VII.) be determined so that the integrals 

L*'* have the value found in § 138, Ex. i., then 

/ , £  

ft=l./afc   

Therefore, if — ^— Çr (w) be denoted by p r, < (u), we have 

21—2 
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and thus, as follows from the definition of the arguments u, 

ft», i W - i V » - ^ > 

where F (x) denotes (x — ) ... (œ — xp). 

Whence, if x be any argument whatever, 
p 

**-' ft, i (u), = i V» —^ - ^ . 

but we have 

S x*-1 %>P} i ( ) 2 xk fPt i (u) 

( ~ =^i(x~-xk)F'(xk)-
Thus 

p 
I'Kp^xl = 2 x\~ pPt i (u). 

Thus, if we suppose X^+j = 4, the values of ?0 . . . , xp satisfying the 
inversion problem expressed by the equations 

= uXi» ai 4- + uxv> °p 

are the roots of the equation 

F(œ) = aP-aP~*Pnp(u)-a^ÇbP-i(u)- " f e i W = ö. 

In other words, if the sum of the homogeneous products of r dimensions, 
without repetitions, of the quantities xly ...,xp be denoted by hTi we have 

hr = (-) r~1^ ) : p_ r + 1 (u). 

Further, from the equation 

'àocjc = ykXp-i(œk', Xi> ...» Xp)  

F' (xk) 

putting p for , we infer that 

because ^ ( ^ ) = 0. Thus, if we use the abbreviation 

dF(x) 

we obtain 
?/* = ^ ( ?*). 
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These equations constitute a complete solution of the inversion problem. 
In the ^-functions the matrix a is as in § 138, Ex. i., and the integrals of the 
first kind are as in § 214. 

We have previously (§ 212) shewn that x-±f . . . y oCp are determinable from 
p such equations as 

2 (u\uai> a) = j (dj - Xj) . . . (dj - Xp) ^(di-Xi)... (dj-Xp) 

Thus we have p equations of the form 

b2(u\uai>a) p - p-2 ,  

Ex. i. For j9 = lwe have 

/*i~ \2(u) = « i - P b i W » = «i+g£2 log5fa)-

This is equivalent to the equation which is commonly written in the form 

sn2 {u \lex — e3) 

Ex. ii. For p = 2 we have 

Ml y W = «l2 - «1 P2, 2 W - jf>2,1 fa), 

We may denote the left-hand sides of these equations respectively by /x^2 , /x2^2
2-

ifo. iii. Prove that, with ^ qx
2=%2 - « ^ 2 , 2 fa) ~ Pi, 2 fa)»etc-> Mi = ± V - ƒ ' («1), we have 

al — a2 

= P22 fa) Pl2 fa') - Pu fa) P22 fa') + («1 + «2) [Pl2 fa) - P12 fa')] + OA [#>22 fa) - ^ fa')]. 

Ex. iv. Prove that 

ifo?. v. If, with P (x) to denote (x - ax) (x - ap), we put 

V = [Xl P № dx f*P P(x)dx 

prove that 

bVj *dVp~ dup' 

Ex. vi. With the same notation, shew that if 

<* •£'<*!• 
then 

dG_ (aj-Xi) ( - ) 
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The arguments V19 . . . , Vp are those used by Weierstrass (Math. Werke, Bd. i. Berlin, 
1894, p. 297). The result of Ex. iv. is necessary to compare his results with those here 
obtained. The equation y r = ^ ( ^ r ) is given by Weierstrass. The relation of Ex. vi. 
is given by Hancock (Eine Form des Additionstheorem . s. w. Diss. Berlin, 1894, 
Bernstein). 

With these arguments we have 

Ex. vii. Prove from the formula 

fc=i at 
where 

== > + + uxP'a*>, 

tha t the function 

8 1 2( *,< ) •-2 , ?<1 *x*-d*i*i>->*p) 
3«/0gL F(x) e r = 1 J F(x) 

is independent of the place x. is an arbitrary place and F(x)=(x-x1) (x-xp). 

Ex. viii. If ? " denote the integral i f ' a - 222a< ,• u": c ux: a, obtained in § 138, and 

F^ a denote ^ 3 i Ç ", prove that in the hyperelliptic case, with the matrix a determined as 

in Ex. i. § 138, when the place a is at infinity, 

j?x,».= +i * 
2 if* ' 

Hence, when X2P + 1 = 4, shew tha t the equation obtained in § 215 (p. 321) is deducible 
from the equation (Chap. X. § 196) 

FZl>m> + + FzP>mi>=- I ur (w)f r ( t t* l ' W l + + u?»tnb). 
m m r=1

 n ' *  

Ex. ix. We can also express the function CP(U+V)-£P(U)~CP(V)> which is clearly a 
periodic function of the arguments vy in an algebraical form, and in a way which 
generalizes the formula of Jacobi's elliptic functions given by 

Z(u) + Z(v)-Z(u+v) = k2 s n u s n v s n (u + v). 

For if we take places x19 . . . , £py such tha t 

u=uXl,ctl + +uXp* aP 

v=uZli ai + + UZP> at> 

-U-V = litl>ai + +14?*»% 

these 3p places will be the zeros of a rational function which has a19 . . . , ap as poles, each 
to the third order. This function is expressible in the form (My+NP)IP\ where P 
denotes(x-a{) (x-ap), Mis an integral polynomial in x of order p-l, and N is an 
integral polynomial in x of order p. Denoting this function by Zy we have 
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by § 154, Chap. VIII . , where / = X j " = ÌA 2 p + 1 / —— . W r i t i n g - i n the form 
J n  

(Axp-i + ) + ( + )P 

pi » 

and taking X2P + 1 = 4 , we find the value of the integral to be - 2.4. 

But from the equation 

N*P-A2PQ = (x-Xi) {x-xp){x-zx) {x-zp){x-Cd (x-Q, 

where Q=(x-c)(x-cl) (x-cp)y we have, putting for x, 

& = 2 V - Q («0 (Aa*-l +...), ( = 1, 2, . . . ï j P ) , 

where ^ ( < - ) ( - ) , qi=sj{ai-zl) ifli-zp\ ^i = \f{ai-Q ( a* -£ P ) ; 
solving these equations for .4 we eventually have* 

fp(«HfpW-fp(m-^bS-_. f'*g* . 

Ü&?. x. Obtain, for >̂ = 2, the corresponding expression for fx (u) + ( (v) — ( ( + v). 

Ex. xi. Denoting by Ciy the equation 

p 
(P(U) + CP(V)-£P(U + V)= 2 Cipigli 

i=i 
gives 

# tr\ tr) 

-ft* r («0 + ftb r W= 2 Cl[pi Vi-Wi ] Vi, (r=h 2, ..., p), 
= 1 

where £> - denotes ~— \/( ^ — a?jj ( — xp). I t has been shewn that pi is a single valued 

function of and it may be denoted by pi (u). Similarly * is a single valued function 
of u + v, being equal to pi(-u-v). The equation here obtained enables us therefore to 
express pi(u+v) in terms of Pi(u), pi(v), and the differential coefficients of these; for 
we have obtained sufficient equations to express jppt r (u\ %>Pì r (v) in terms of the functions 
Pi (u)> Pi M* -A- developed result is obtained below in the case p = 2, in a more elementary 
way. 

217. We have obtained in the last chapter (§ 197) the equation 

22|>u (**•m - *» "i - - ^ "*) / ( ?) Mi = DxD^R^c. 
i 3 

Hence, adopting that determination of the matrix a, occurring in the 

integrals i f , and the function {u) (§ 192, Chap. X.), which gives the 

particular forms for i f ** obtained in § 138, Ex. i., we have in the hyperellip-

tic case 

22p< , ( a + ^ > * + + ***» M ahW'1 = ̂  V / "" 2 J y r » 
p+i 

where ƒ ( , ) = S #V [ 2 ^ + - ( + s)]. This equation is, however, m-

* This equation, with the integrals Lx'a on the left-hand side, is given by Forsyth, Phil. 
Trans. 1883, Part i. 
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dependent of the particular matrix a adopted. For suppose, instead of the 
particular integral 

x
 2 +1~1 

Li , = — 2 Xk+1+i (k + 1 - i) at, 
J k = i 

we take 
i

x> I - v n x> ** 
i — ^ ^itk

uk y 
k=l 

where Ci)k= Ck)i] then (§ 138) this is equivalent to replacing the particular 
matrix a by a + J C, where is an arbitrary symmetrical matrix, and we 
have the following resulting changes (p. 315) 

Rz]c (p. 194) becomes changed to Rz]c - ^ ' uk , so that, 

ƒ (x, z) (p. 195) becomes changed to ƒ O, z) - 4 (x - z)2 22Gif
 1~^ -\ 

( ) (§ 189) becomes multiplied by e?Cu\ 

and thus fi ( *) is increased by ^ ^ - + Ci)Pup> and instead of %>ij(u) 
we have faj (u) — Cit j . 

Since now ux>a + uXs>a* = ux*>a + ux>as, we have \p (p + 1) equations of the 
form 

where u=u^a+ux"a* + + uxp>ap, r = 0, 1, ..., p, and Ó* = 0, 1, ..., p. 
Hence, if ely e2 denote any quantities we obtain by calculation 

here the matrix a is arbitrary, the polynomial f (xr, x8) being correspond­
ingly chosen, and 

G(0=(f-ft)(f-*)(f-*)(f-aO...(f-<*,), Ä(ö=(f-*)(f-*i)...(f-«»). 

Suppose now that ƒ ( , ) =f(x, z) + 4 (# — . )2 2 2 ^ j#V #i~ , where 
j 

f(xj z) is the form obtained in Ex. viii. § 211 ; then we obtain 

22 to, j («) - ,,] 4" W"1 = R <*) (*) 22 2l#£ÎPl$. 

and by Ex. x. § 211 this is equal to 

iR(e)R(e)lî Vr- - — T - /<*>*<*>— 
4 W ^ |̂ z ( e j _ ^ ^ _ a . } , (av)j 4 ( e i _ ^ ( ß ] ) 

ƒ(eä) (et) / (e i , e,) 
4(e 1 -e s ) 2

J R(e 2 )" t ' 4 (e I -e 2 ) 2 ' 
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and therefore 

22*, («) ̂  = JU <*) (*) [ f fc-^fo,**)^*)]* 
f(ei)B(e2) / ( * ) (*) ƒ ( * , *) 

4 ( 1 - 2)
2 ( 1) 4 (<?x - e2)

3 (e,) 4(e , -e 2 ) 3" 

This is a very general formula* ; in it the matrix a is arbitrary. 

I t follows from Ex. xi. § 211 that if bu 62 be any branch places, we have 

SS^OO&x 62 = ̂ _ ^ + ^ , 

where i? is a certain constant (cf. §§ 213, 212). This equation is also inde­
pendent of the determination of the matrix a. 

By solving i p ( p + l ) equations of this form, wherein bu b2 are in turn 
taken to be every pair chosen from any p + 1 branch places, we can express 

22^-, j (n) el"1^"1 as a linear function of \p (p + 1) squared theta quotients, 

Ci, e2 being any quantities whatever. 

By putting b2 at a, that is at infinity (first dividing by b£ ), and putting 
x also at a, this becomes the formula already obtained (§ 216) 

b4u\uai>a) p p-i , ,  
— ^ •=«» - a * if>p,p(w)- - P P , I ( M ) . 

^7. i. When p = l) taking the fundamental equation to be 
2 = 4 ?- 2 - 3, 

the expression 
p+i 

f(x,z), = 2 xW[2\2i + \2i + l(x+z)], = -2g3-g2(x+z)+4xz(x+z),  

and 
2 * - / ( ^ ) _ »- ( 8 + ^) + 4 ( ^ - ^ ) ( - ^ ) _ , / -«\» 

A{x-z? ~ 4(x-z)2 ^~ *\x-z) ' 
if s2=4z3-#22-y3 . 

Therefore, by the formula at the middle of page 328, taking the matrix a to have the 
particular determination of § 138, Ex. i., 

@11 > + 1> *)=-( 1- )( 1- 1)( 2- )( 2- 1), n W
V^ X\}

f -, 

—-««CEO"' 
this is a well-known result. 

Ex. ii. When jp = 2, we easily find 

R (ej R (e2) _̂  (x - ) (x - e2) 1 
G' (xr) G' (x8) {x — xr) (x - x8) (xr - xs)

2 

* It is given by Bolza, Göttinger Nachrichten, 1894, p. 268. 
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and thus the expression 
Pi. 1 M + («l + «2) g>l, 2 (tt) + «l*2 P* 2 M 

is equal to 
_ ( ^ - e i ) ( ^ - e 2 ) 2ff1y2-/(#1 , .r2) _ ( ?1-%)( ?1-^) 2 2 - / ( ^ ^ 2 ) 

( ? - ^) ( ? - #2) 4 ( ?! - ?2)
2 ( ?! - ) ( 1 - ?2) 4 ( ; - # 2) 2 

_ ( 2- 1)( 2- 2) -ffaxi)^ 
( 2 - ) ( 2 - ?!) 4 ( ; - ^)2 

Herein the matrix a is perfectly general. Adopting the particular determination of 
§ 138, Ex. i., we have, since the term in f(x, z) of highest degree in x is A2p+i#p + 12pi =4 2, 
say, by putting the place x at a, that is at infinity, the result 

where u=uXl' ai + uXi' a\ 

Ex. iii. Prove, for jt? = 2, when the matrix a is as in § 138, Ex. i., that 

where 6? , e2 are any quantities, u = uXli ai + uX2' a\ and /»j, p2 are as in § 216 (cf. § 213). 

JEfc. iv. From the formula, forp=2 (§§ 217, 216, 213), 

ftl (*) + Pl2 («). K + a2) + ̂ 2 2 W . « l « 2 = ^ r *12* + ^ 2 > 

where %, t/2 are the branch places as before denoted, infer (§ 216, Ex. iii.) that 

Pn («) - fu (tO+*»u(«0 ̂ 22 (»') - Vu («') £>22 (v)=^ üJ-ïJ-iiW+vWl-

Prove also that, for any value of and any position of x, 

Ex. v. If &!,..., 6p + 1 be any (p + 1) branch places, and eu e2 any quantities whatever, 
and L (x) = (x- ) (# —òp+1), M(x) = (x — ex) ( ? — 02) ( ? — òx) (#— &p+i), prove that 

where the matrix a has a perfectly general value, r, s consist of every pair of different 
numbers from the numbers 1, 2 , . . . , Qt? + 1), and Er% ê are constants. 

218. We conclude this chapter with some further details in regard to 
the case p = 2, which will furnish a useful introduction to the problems of 
future chapters of the present volume. We have in case p = 1 such a formula 
as that expressed by the equation 

<r (u + u') a (u — u') , ,4 ,  

W ) V ( < ) ' -P(«>-P(«>; 
we investigate now, in case p = 2, corresponding formulae for the functions 

( + ') ( - ') ( + '\ ' ) ( - ') 
( ) a» (» ' ^(M)^2(W') ; 
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by division of the results we obtain a formula expressing the theta quotient 
( + '| 5» )-5-^( +' ') by theta quotients of the arguments u, v! ; this formula 

may be called the addition equation for the theta quotient Sr (u ub> a) -f- ^ (u). 
Though we shall in a future chapter obtain the result in another way, it will 
be found that a certain interest attaches to the mode of proof employed here. 

Determine the places /j , X2 y X-± y X2 oU that 

= ux" ai + u** * **, u' = ux*>tti 4- ux* >a* ; 

then, in order to find where the function b(uXi>ai+ ux*>a* + tiXi'>ai + ux*>a*) 
vanishes, regarded as a function of xly we are to put 

uxlt ax _|_ uxit a2 _|_ yxjt ax _j_ ux2', ai = uxlta_ uzlt a, __ uz2, a^ 

or (a, x2, xi, xi, zlt z2) = (ax
3, a2

3) ; 

thus the places zx, z2 are positions of x1 for which the determinant 

V - l M L _ I L , i l v - P(xi)' P&y Xl> 

I P(x2)> P(x2)>
 X*> 

œ^yi yi , , 
P(xiy P{xiy Xl> 

! P « > ' PM)' Xì' ! 

wherein P (x) denotes (x — ai) (x — a2), vanishes. By considerations analogous 
to those of § 209 we therefore find, V denoting the determinant derived 
from V by changing the sign of yi, yi, 

( + ') ( - ') = VVP(xj) P{xj)P (xj) P(xj)  
S* ( ) 2 ( ') ~ ( , - x2f (xi - x2J ( - xi) fa - xi) (x2 - ?/) (x2 - xi) ' 

where A is an absolute constant. 

Now, if J ; 1 = ^ 1 / P (#j), etc,, we find by expansion and multiplication, 

V V = (W2+4iV )2 (#1 - ^2)2 W - '̂2' 2 - [forti' + Wa') W - xi) W - *a) 
- (W+W) W - ) W - ̂ i)P, 

and, if a = (a?/ - xx) (x2 - x2), ß=(x{ — x2) (.r2' ~~
 A,i)> a — ß = (x{ — x2) (#j - *2) » this leads to 

~5=(V - nP) ivi - m'*) « - M-*") Ow* - ") ß - -£ Oh - 2)2 (*' - W)2 ; 
but, puttingy2=4JP(x)Q(x), = i(x-a1)(x-a2)(•»-c)(x- ,) ( ;-c2), we have 

^ [ (, l2_ W2) (^2.^2) a-W-^) tâ-ni*) ffl 

_ 16 rg^P^-g j f r 'P^ Qx2Px{-Qx^Px2 

\Xl — X2) \%\ ~~ x2 ) L ^2 — *̂ 1 "̂ 1 — ^2 

_ QxlPx1'-Qx1'Px1 Qx2Px2'-Qx2'Px2~\ 
Xi X2 I 
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and this expression is equal to 

16 U?«!. Qa2 + J ^ 2 fa - xx) fa - x2) fa - ') fa - x2) 

+ Fa ^2 " ̂  ^2 " ̂  ^2 " ̂  ^2 " X*A ' 
as may be proved in various ways ; now we have proved (§§ 208, 212, 213) that 

fa-xj fa-x2) = ± V-P ' (« i )6 (« i ) ft2» («2-^1) («a- ^2)= ± V--P ' («2) § («2) ?22 

and 
1 / V z 3 a Y = + * gi22 

where qx=S(u\vhta)+b(u\ q2=$(u\ua»a)+$(u), qh2=$(u\ua» a + ua*> a)+$(u) ; thus 

as g i 2 y 2
2 gi a g2 2 = iy / \ z>7, /ì ^ » w e h a v e 

*i ï2 ï i Ï2 /> (tti) p ' ( ^ ^ 
JL_ 3 (> + < )£ ( a - Q = V V P fa) P fa) P fa') P fa') 

9*( ) *( ') ' aß(a-ß)2 

- 1 6 ^ ^ 2 L P'a2
qiqi P'ax

q*q* J 1 ( « ! -a 2 ) 2 !?12^12' 
where however we have assumed that the sign to be attached to the quotient 

fa - xx) fa - x2) -7- \/-P'fa)Qfa) 2 

is the same for the places x{y x2 as for the places xly x2. The product s/ — P' fa) Q fa) 

V - P' fa) Q fa) is, of course, here equal to - P' fa) Q fa). Now, 

P' fa) = fa-a2)= -P' (a2) ; 

thus we obtain 

S- ( + ') ( - ii') 2 , /0 ,0 0 , „ 
( ) ( ') = * + »ft + * 2 ? 2 + ' » Y l 2 ' 

the value of the constant multiplier, ^ 2, = [S- (0)]2, being determined by 
putting u' = 0, in which case j / , £2', , 2 all vanish. 

If in this formula we write v = u+uai' a+ua2ì a in place of u, we obtain, from the 
formulae 

which are easy to verify from the formulae of § 190, Chap. X. and the table of 
characteristics given in this chapter, that 

№.$(U+U'\uai>a + U^>")3(u-U'\lia"a + Ua*>a) ftgg/g _ g2'2gi2 ^ £^2 

№(u\ua"a+ua*>a)№{u') ~ 122 122 2' 
and therefore 

y . 5 ( t t + t Q 5 ( t t - t Q 2 , 2 2 ,„ 2 fS 
S2(w)£2(w') ~*12 î l 2 ? i ? 2 + ? 2 ? i > 
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where 5 (u) denotes $ (u \ u*1* a+utt2' % But we can use the result of Ex. iv. § 217, to give 
the right-hand side a still further form, namely 

V ^ - 2 [ftl («) + jftl («0 + fu («) g>22 («') - g>12 («') #>22 («)]• 
1 2 

Further if uai,a + ua2' a=\Qmi w,, where wi, m' consist of integers each either 0 or 1, 
we find, by adding \Qm,m> to w and u' and utilising the fact (§ 190) that 

\m (u + u') = Zkhm (u) + 2 ( '), 
that 

S 2 (w) # 2 (W ) «1 a 2 

where It should be noticed that 
2 

fa J M = - ^ .̂ l o s ^ <> ; ìm> ìm') ; hence 

this formula can be expressed so as to involve only a single function in the 
form 

^2JLfclM2 (r(u + v)<r(u — v) , 7 , . , , . 

a!^a2 ' o*(u)o*(v) = &u {U) " &u ( V ) + ®12 (U) &22 (V) " ^12 ( ) ?» {U) 

where a- (w) denotes (u i ( - i i ) ) » a n ( i Jf4j(M) = "~â—^log(7(w). In 

Weierstrass's corresponding formula for p = l, the function - ( ) is de­
termined so that a (u)/u = 1 when = 0. To introduce the corresponding 
conditions here would carry us further into detail. (See §§ 212, 213.) 

Ex. Prove that if a3 denote any one of the branch places c, cu c2, a = (a2-a3) , 
ß=(a3-a1), y=(a1-a2)) Pl = {al-xx) (a1-x2), etc., ' ^ (ai - #i') («1-^2')? etc-? a n d 

^ 2̂ 1 1 
L(^l - al) (#1 - ) (#2 - al) (̂ 2 - %) J #2 - X\ ' 

^ yi y2 "I L 

with similar notation for Ä, B', then the determinant can be expressed in the form 

*-p{xx)P(x2) + P{xJ)P(x>) > 
where 

y^X^ÄAf(P1P^P^)+BB'{P2P^P^)-ABf{yaP^yßP^ + PxP^ + P^) 

- A'B (yßPi+yaPt'+PiPj+PJPJ. 

In this form can be immediately expressed in terms of theta quotients. 

219. Consider, nextly, the function 

( + '\ » ) ( - ')  
2 (v) 2 (ii) 
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This is not a periodic function of % id. Thus we take in the first place 
the function 

( + '\ 1> ) ( - ') 
^ (U) (UI vfr > a) ^ (V ) ( \ Ua* ' a) ' 

Put 
a = uXi» ai + UXÌÌ a2, u' = uXi'*ai -f w^2''a'2 ; 

then, as functions of xly the zeros of { ) , { \uai»a) respectively are , œ2 

and ax, 2, the zeros of ( + '\ " ) are found in the usual way to be zeros 
of a rational function of the fifth order having 2, a2

B as poles, and x2) ?/, x2 

as zeros; such a function of xi is Aj/P (^), where P(A?!) = (a?j — ) {xY — a2) and 

Ai = J Vi O i - »1), # i 2 , ^ i , l I, 

?/2 (#2 — ai), # 2
2 , # 2 , 1 I 

Vi (œi - ai)> œi2> ®i, 1 

! ^2' (®2 — <h), 2'
2, X2', 1 ' 

wherein Vi = yi/P (xi), etc. ; the zeros of ( - '), as a function of x1} are 
similarly zeros of a function of the sixth order having 2

3 as poles and 
, . 2, / , x2 for its other zeros ; such a function of xx is A / P ^ ) , where 

= 1 ^ ì^ i , %, ^1, 1 I; 

-7?iV» — ̂ /, #/, 1 

I - «, —V*9 x*> 1 I 
hence we find 

â- ( ) ( | * ' ) * ( ') ̂  ( ' ! i4«i * ) 

_„ Ai ( ?! - 2) ( ?2 - 2) (#/ ~ 2) ( ?/ - 2) 
~ ( ?! - 2 ( ?! - ?/) ( ^ - 2) ( 2 - ?/) (#2 - ?/) ( / - ?/)2 ' 

wherein is an absolute constant ; for it is immediately seen that the two 
sides of this equation have the same poles and zeros. 

We proceed to put the right-hand side into a particular form; for this purpose we 
introduce certain notations; denote the quantities c, c1? c2, which refer to the branch 
places other than aly a2 by 3, 4, a5 in any order; denote ( -xj (a t--x2) by pu 

( — x^) ( — x2') by p( ; denote by m, ,• the expression 

i f 2/2 1 1 

a n d wr i t e p i t 3 - for jOj # , 7^, j , w i th a s imi la r n o t a t i o n 714 ,•, ' -, ,• ; a lso l e t P (x) = (x - at) (x - a2\ 

Then, by regarding the expression 

(x'-x')4x a) ( ^ 2 - « 4 ) ( ^ 2 - ^ 5 ) 
1 2 / v 2 ^ (fl^ - ?8) ( 2 - ?/) ( 2 - ?8') 
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as a function of a2, and putting it into partial fractions in the ordinary way, we find that 
it is equal to 

fa' - #2 ' )2 (#2 - aÙ f TTf *K H / (#1 - X2 ) (X2 - ) 7" T 7 ^ % 

+—̂ —;> to'-**')1 (*»-«*) ^ ' ' " ^ f r ' " ^ ; 
^2 ~ ^2 v^2 ~ *^2/ 4*̂ 2 — *̂ 1 / 

using then the identities 

- (#2 * ) to - #2') = to' - 2) « - «3) - (#l' - #2) to' - «s)> 

to - a3) to' - ?2') = to' - ?2) to' - « ) - to' - #2) to' - -

we are able to give the same expression the form 

i"*<**-ai> to7ÄrS^Fr*'l',(*i'-ei)?n,-*,««',(*s'-«.) j ^ f 
\u^i ^2) \u'2 tÂ/2/ ^1 ~ 2 *"1 — * 2 

+ 3 ~ r to - a4) to - « ) + r / n to - «4) to - « ,)» 

where J J;1
2=(^ — a3) (#! - a4) (xx — %), etc. ; thus 

ivi2 to' - «1) to' - ^ )2+Ï72'2 to' - ai) to' - ^ ) 2 - Ì722 to - «i) to' - ^2')
2 

= - to - «4) to - a6) to' - *<)2 to' - xè to' - A>
2) to - aè to - %) z-2^2 

Pi 2 
+z-72 to' - ) to' ~ ̂ 2) (to' - «2) to' - «3) to' - «4) to' - aù 

F2 
+to' - «2) to' - «3) to' - «J to' - %)} • 

Now we have, by expansion, 

= (71V2+?i V ) to - 2̂) to' - ^2')+(vi m'+%%') to' - 1̂) « - #2) 
- O h ^ ' + W ) to'-^2) to'-^1)1 

1 = m to - «i) to' - 2̂) to' - ^2) to' - #2') - % to - °i) to' - #t) to' - #1) to' - -O 
+ni to' - ai) to' - •%) to' - #2) to - 2̂) - %' to' - «i) to' - #1) to' - #2) to - )̂> 

and in the product there will be two kinds of terms 
(i) -17/172' (4l -173) ( ? - 2) « + 2' - 2^), 

where denotes to' — #x) to' — #2) to'-#i)to'"~#2)» t n e r e being four terms of this kind 
obtainable from this by the interchange of the suffixes 1 and 2, and the interchange of 
dashed and undashed letters, 

(ii) Vlto'-^j)to'-#i)to- ?2)fei'*to'-«i)to'-^+^to'-oi)to'- )2 

-^to-«!)«-^')2}» 
there being three other terms similarly derivable from this one. 

Consider now the expression 

(a2-a4) (a2-a5) (p13p3Pl' +p'nPzPi) +PnP2P'nP'të +P'i2PiPnP46> 

and, of this, consider only the terms 

to- «4) («2 - bòvxM&x+Pviv&'tiP'* ; 
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by substitution of the values for pls etc., and arrangement, we immediately find that these 
terms are equal to 

- 2- (a2 - a4; («g - ab)p1pl ^ _ 

+ÌP1P1P22 fa-x^xî-xjf № " ^ ^ ~ ^ ) ( ?2' " a^ № ~ ) 

+ ( / - 4) ( / - 5) ( ?2' - 2) ( ?2' - 3)} Î 

this expression, as we see by utilising an identity which was developed at the commence­
ment of the investigation, is equal to 

-ÌP1P1WP2'2, ^ ^ ^ , W + xJ-ïaù + i / w , * £?1^ ^, , , 

where / denotes 

Vi fri' 2 « - «1) (#t - ^2)2 + »/2'2 W - «1) « - ^2) - »?22 (#2 - «i) « - #2')
2] 

- »72 fe'2 « - «1) W - #i)2 + ift'2 « - (h) (x2' - #i) - vî2 (#1 - «1) W - *)2]-

Comparing this form with the terms occurring in the expansion for AAlf we obtain the 
result 

1 P\PÎPà>i*bbi 
[ l ~ &2) \p^\ ~&2) №1 ~ &i) x^i ~ &2/ №2 ~~ ^u №2 ~ ^2J 

= («2"«4> («2 - aó) (PuPsPl +P\sPsPl) + 12 2 '23 ' >+ '12 2 23 -

Now we have (§§ 216, 213, 212) the formulae ^= = ±Ì!4~as) ^ H > w e 

Ci Pi PJ 

shall therefore put p{~Mtqu Pi,j = Niìjqi}j ; hence by the formula (p. 334) the quotient 
3- (u+u'\uai>a)$(u-uf) 

is a certain constant multiple of the function 

( 2 - 4) ( 2 - %) MxMzNn {qxzq^î Jrq\^(li) + Ni2N23N^M2 (gi2g2g2sg« + gttft'fcs )-

Also we have ?= 9 N\j= ±iHHjKai^aì)i where ^ = ± V - ƒ ' (a,-) when = 1 or 2, 

and /Xi=±v/ '( a i) when = 3, 4, 5. Hence it is easy to prove that the fourth powers 
of the quantities (a2 - a4) (a2 - a5) A^M^N^, NnN2ZN^M2 are equal. 

Hence we have 

A ( ) ( = € W1^1 + ?1 3?3 ^ + ?12?2? »? 4 5 + ?1 2?2 223?45' 

where J . is a certain constant, and e a certain fourth root of unity. The 
value of e is determined by a subsequent formula. 

220. The equation jus t obtained (§ 219) taken with a previous formula 
gives the result 

c (U + U'\U^ » ) = 6 (ftagsg/ H- g W g i ) + giagag
/23g/45 + g ^ g / ^ s g ^ 
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and limiting ourselves to one case, we may now take the places a3, a4, a5 to 
be, respectively, , 2, , and introduce Weierstrass's theta functions; 
defining* the ten even f unctions 5( ),%3( ))...,%3( ) to be respectively 
identical with the functions { ) , ^ac(^)y •.., ^ ) , and the six odd functions 
0̂2 (u),...,% (u) to be respectively the negatives of the functions ^raai (u),..., %Ci (u), 

the right-hand side of the equation is equivalent to 

€ ^rT5 Jo2 *J o i ^ 12 " ^J5 ^ 02^01^12/ ' *^04 ̂ 24 ** 14 ̂ 3 • ^ 0 4 ^ 24^14^3 . 
^ 2^V '2 l CV 2 < V 2 J - ^V 2 Q V ' 2 - I - ^V 2 Ç V 2 ' 

here ^ denotes ^(u), denotes -( > a n d G is an absolute constant. 
This equation may be called the addition formula for the function ql9 and is 
one of a set which are the generalisation to the case p — 2 of such formulae 
as that arising for p = 1 in the form 

/ ,. sn en u'dn '+ sn en dn  
sn(u + u) = j - — —-, . 

7 1 — k2 sn2 sn2   

By interchanging the suffixes 1 and 2 we obtain an analogous expression 
for ( + \ ** )-7- ( + ')\ if in this expression we add the half-period 
ua^a to we obtain an expression for the function ( + u'\ua"a + ua*>a) 
~ ( + '\ 1> ) ; and if this be multiplied by the expression just developed 
for the function ^ ( M + W I W ^ ' ^ - T ^ ^ + W') we obtain an expression for 
Sr (u + u\ua" a + ua*>a) - - ^ ( -f u!)y and it can be shewn that the form obtained 
can be reduced to have the same denominator as in the expression here 
developed at length. The formulae are however particular cases of results 
obtained in subsequent chapters, and will not be further developed here. 
For that development such results as those contained in the following 
examples are necessary; these results are generalisations of such formulae 
as sn (u 4- K) = en u/dn which occur in the case p = l. 

Ex. Prove, if qi(u)=$(u\uai>a)+S (u), qitj(u) = $(u\uai>a + uaJ>a)+$(u)i etc., that 
(see the table § 204, and the formulae Chap. X. § 190) 

ft (*+«*• a)= -e^/qi(u), ft(« + «e» a)= - ^ J \ 

q2 ( + ' a + ua* >a) = e^ ^ , 

and obtain the complete set of formulae. 

221. In case p = 2 there are five quotients of the form ( \ > ) -^^(u), 
and ten of the form b(u\ubi>a+ ubo->a) + ò(u), wherein b, blf b2 denote any 
finite branch places. Since the arguments may be written in the form 
^«i, «1-1-^,«^ the fifteen quotients are connected by thirteen algebraic 
relations. In virtue of the algebraic expression of these fifteen quotients, 
they may be studied independently of the theta functions. We therefore 
give below some examples of the equations connecting them. 

* Königsberger, Creile, LXIV. (1865), p. 22. In the letter notation (§ 204) the reduced charac­
teristic symbols are such (§ 203) that each of kti k'e is positive, or zero, and less than 2. In 
Weierstrass's notation the reduced symbols have the elements ft', positive, or zero, and the elements 
kt negative, or zero. 

B. 22 
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Ex. i. There is one relation, known as Göpel's biquadratic relation, which is of 
importance in itself, in view of developments that have arisen from it, and is of some 
historical interest. 

be three functions whose suffixes, together, involve all the five finite branch places. Then 
these three functions satisfy a biquadratic relation, which, if the functions be regarded as 
Cartesian coordinates in a space of three dimensions, represents a quartic surface with 
sixteen nodal points. 

In fact, if pa denote \f(a-xx) (a-x2), and pb b denote the function 

we have 

PLK 

^ 2- 1)( 2- ^)( ;1- 1)( 1- 2)( 1- 3) + 1- 1)( 1- )( 2- {)( 2- 2)( 2- 3)-^1 2 

where bl9 b2, eu e2i ez are the finite branch places in any order ; and if this be denoted by 

it is immediately obvious that y\t (#, x) = 2y2, = 2 / ( # ) , say, and ~- ^ ( ?, z) = ^r— ; thus 

there is (§ 211, Ex. vii.) an equation of the form 

where ƒ (xly x2) is a certain symmetrical expression of frequent occurrence (cf. § 21*7), the 
same whatever branch placesb x i b2 may be, and , , are such that ^ ( ^ D xè vanishes 
when for xly x2 are put any one of the four pairs of values (bly b2\ (e2, e3), (e3, )9 (e19 e2) ; 

therefore the difference between any two expressions such as p2
b b , formed for different 

pairs of finite branch places, is expressible in the form Zxxx2 + M (xx+x2) + N ; thus there 
must be an equation of the form 

Pl^cr^.a+Wl^c+Wl + K 

where X, p, v, p are independent of the places xlt x2. 

Similarly 

#L *=X'K, +SPI, +''PÏ+P'-
But also it can be verified tha t 

P*. a2Pcìt c2-Pai, , c2= - (« - ci) (<h-<*)Pc = , say ; 
thus we have 

and when the expressions pa^ a^ etc., are replaced by the functions qa , etc. (§ 210), this 

is the biquadratic relation in question. This proof is practically tha t given by Göpel 

{Creile, xxxv. 1847, p. 291). 
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Ex. ii. Prove that 
2 2 

a 2 - C l ^ ' = ( a i ~ aù {ai ~ C l ) ' 

2 _ 2 
*c , , » Pa*, c, , 2 / x / x 

* „ +PcMCl-C2)(Cl-"l), 
C2 ~~ al 

V? 2 2 

fV I ^°J I ?A = 1 

and hence develop the method of ifo. i. in detail. 

Ex. iii. For any value of p prove 

(a) that the squares of any p of the theta quotients qbi =3 ( \ > )+$( ) , are 
connected by a linear relation, 

(ß) that the squares of any p of the theta quotients 

%•> ' ^b.V ^ A » 

are connected by a linear relation. (Weierstrass, Math. Werke, vol. 1. p. 332.) These 
equations generalise the relations of Ex. ii. 

Ex. iv. Another method of obtaining the biquadratic relations is as follows ; if 

$ (v) = 2 2 ^ ( +9')+ '1 ( + ')2+2 '2( +2') 

V=^vy and, in Weierstrass's notation, 

^ = ^ W y=^oi(*0> = 4 0 ) , = 0)> 

so that x : : z : t—l : qa e : qa c : qc, and if a, 6, c, c? denote the values of x, g, z91 

when v = 0 , and the linear function cx + dy-az — bt be denoted by (c, e£, — , — b\ etc., 

then it can be proved, by actual multiplication of the series, tha t 

e3*(V) = (c,d, -a, -b), eu*(V) = (d,-c,-b,a), 0 O / (V) = (b, -a, d, -c) 

0 5
2 (F ) = («> b, c, d) , 9X2 (F ) = (6, - a , -rf, ), 0342(T) = («, Ò, - , - d ) . 

Relations of this character are actually obtained by Göpel, in this way. I t will be 
sufficient, for the purpose of introducing the subject of a subsequent chapter, if the 
method of obtaining one of these relations be explained here. The general term of the 
series e0 2 ( V) is (cf. the table § 204 and § 220) 

~   

where q'=\{\ 0), q=% (1, 0), namely is 

M[vx (nl+i)+v2n2'] +hm [ ^ + + ^ + ^ ,) +T 2 2 W 2
2 ]+W (»,+£). 

thus the exponent of the general term in the product 0O2
2 ( V) is where L is equal to 

• » 1 ( ^ + w 1 + l ) + v 2 (w a +»i 2 )+J r 1 1 [ (n 1 +i ) 2 + (m1 + | ) ^ + r M [ (n 1 + 

JT-22 (n2
2 + m2

2) + + mx + 1 ; 

22—2 
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there are therefore four kinds of terms in the product according to the evenness or 
oddness of the two integers n1-\-m1, n2+m2. Consider only one kind, namely when 
7il+m1, n2 + m2 are both even, respectively equal to 2N19 2N2, say ; then L is equal to 

2*i (iV1 + i) + 2v2iy2 + rll ( # ! + £)* + 2r12 ( # i + ì ) àr2 + T22N? 

+ ' (^ * ) ' + ^ ( " ) ( " ) +'22 ( - " ) 2 

+ 2 ^ + 1; 

if now we put —--—-1=Mx, —~—-=M2, we have 

nl = JV1 + M1, 1=- 1 - 1, n2 = N2+M2, m2 = N2-M2; 

thus, to any assigned values of the integers Nu N2, Mx, M2 there correspond integers 
, n2, mly m2 such that + ^ n2 + m2 are both even ; therefore, as 

gîirw, (Nl+h)+27riv2N2+WTll(N1+ì)*+'2iirrl2 ( A ^ + i W + w ^ - N ? 

is a term of the series S I v ; J ( J j , tha t is, of S01 (v), and 

MÌ
2+27TÌTÌ2M1 + Jfa* 

is a term of the series f 0 ; £ ^ J J , tha t is, of £5 (v), and e™ W * 1 ) = — 1, i t follows tha t 

the terms of 0O2
2 ( V) which are of the kind under consideration consist of all the terms of 

the product - # 5 .3 0 1 (v), or - ay. I t can similarly be seen that the three other sorts of 
terms, when n1+m1 is even and n2 + m2 odd, when nl-\-ml is odd and n2+m2 odd or even, 
are, in their aggregate the terms of the sum bx+dz — ct. 

We can also, in a similar way, prove the equations 

2 ( ) 14(7)+ 2 8( ) 5( )= 12 01 1( ) ( ), 
e 0 3

2 =2 (ac- bd), G2 3
2=2 (ad+6c), e 2

2 = 2 (ab-cd), e01
2 = 2 (ab+cd), 

e0
2=a2-b2-c2+d2, 12

2= 2- 2+ 2- , 

e 0 3 denoting e 0 3 (0), etc. 

Hence the equation of the quartic surface is obtainable in the form 

si 2 (ac - bd) (ad+ be) (c, d, -a, - b) (d, - c, - b, a) 

+ \J(a2-b2-c2 + d2)(ab-cd)(b, -a,d, -c)(a,b,c,d) 

= s/(a2-b2 + c2-d2)(ab + cd)(b, - , -d,c)(a,b, - , -d). 

A relation of this form is rationalised by Cayley in Crelle's Journal, LXXXIII. (1877), 
p. 215. The form obtained is shewn by Borchardt, Creile, LXXXIII. (1877), p. 239, to be the 
same as that obtained by Göpel. See also Kummer, Berlin. Monats. 1864, p. 246, and 
Berlin. Abhand. 1866, p. 64 ; Cayley, Creile, Lxxxiv., xciv. ; and Humbert, Liouville, 4me Sér., 
t. ix. (1893); Schottky, Creile, cv. pp. 233, 269; Wirtinger, Untersuchungen über Theta-
funetionen (Leipzig, 1895). 

The rationalised form of the equation, from which the presence of the sixteen nodes is 
obvious, is obtained in chapter XV. of the present volume. 
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Ex. v. Obtain the following relations, connecting the ratios of the values of the even 
theta functions for zero values of the arguments when p~% They may be obtained from 
the relations (§ 212) 

ifi-xx) {b-x2)= ± V < ^ 7 ' (fi) &( \ > ")+$2 {u) 

by substituting special values for xx and x2. 

№ : 3 4 : S4 : 44 : £4 : tf : 34 : £4 : £4 • £4 

Ci c2 alc1 axc2 a2ct a2c2 ca2 ' cax 

= (ci - c2) (̂ 2 - c) (c - cx). (ax - a2) : (ax - a2) (a2 -c)(c- ax). (cx - c2) 

: fa-a^fa-cji^-aj.^-c) : (ax - a2) (a2 - c2) (c2 - ax). (cx - c) 

: (c2-c)(c-ax)(ax-c2).(cx-a2) : (c-cl)(c1-ax)(ax~c). (c2-a2) 

: (c-c2)(c2-a2)(a2-c).(cx-ax) : (c-cx)(cx-a2)(a2-c).(c2-ax) 

: {cx-c2){c2-a2){a2-cx).(ax-c) : (cx-c2)(c2-ax) (ax-cx).(a2-c). 

Infer that 

We have proved (§§ 210, 213) that 

\ja2- cx 3a i (w) %iCl (u) + Vcj - ax $a2 (u) SalCl (u) + \Z«i - «2 ̂ i M $axa2 (u) = 0 

and we have in fact, as follows from formulae developed subsequently, the equation 

cai "&2 

Ex. vi. Obtain formulae to express the ratios of the differential coefficients of the odd 
theta functions for zero values of the arguments. 

Ex. vii. Prove that 

wherein 6lf 62 are any two finite branch places, and e is a certain fourth root of unity. 

This result can be obtained in various ways ; one way is as follows : Writing 

u=uXl'ai + uX2,a\ u+ubl>a=v, and v=uZl> bl + uz*' \ we find, by the formula $(u + QP) 
= { ( ; ), that 

and, by the formula expressing &{ > ™-W*"m>- - ^ ^ - ft ( / • w - / ' ' W l -
_ u*p, >) by integrals and rational functions, the right-hand side is equal to 

- 2 sx s2 "I 

* h - h \lh - h) (*i - h) {4 - h) (z2 - h)A ' 

where sXy zx are the values of y, x respectively at the place zu and s2, z2 at the place z2. 
This rational function of zXi z2 is however (§ 210) a certain constant multiple of 
S (v\ubì' a + ub2' a)/$ (v), and hence the result can immediately be deduced. 

One case of the relation, when bl9 b2 are the places aXì a2ì is expressible by Weierstrass's 
notation in the form 

ji   

\ M ^ %i («) - -̂ 04 M g— h M = f V«! - a2 $02 (u) SM (M), 
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and it is interesting, using results which belong to the later part of this volume, to 
compare this with other methods of proof. We have* 

W o * (« + V) 3 5 (U-V)= ^ («) 5 («) S4 (V) S0 (V) + S2 {U) 5 M («) 502 (V) 5 * (V) 

+ h (*) ^04 W ^4 («0 *0 (*) + ^2 (») 5 M W 502 («) 5 ^ (It), 

where #4, -90 denote £4(0), #o(0)> a n d the bar denotes an odd function; if, herein, the 

arguments vu v2 be taken very small, we may write £ (u+v) = $ (u) + ( vx ~—Y v2 ~— J # (u). 

Thus we obtain, eventually, remembering that the odd functions, and the first differential 
coefficients of the even functions, vanish for zero values of the arguments, 

h («) 4 (») - » («) , («) = ^ 5 4 («) 50 <«)+*s*J&$„ (») * „ («), 
•^4^0 *^4*^0 

where $'(u) = £-9- (u), 5 = 5 (0), = (0). 
< 2 

Thus, by the formula of this example, putting = 0, we infer that 

or £'o4=0» and the result of the general formula agrees with the formula of this example. 

In the cases p>2 we have even theta functions vanishing for zero values of the 
argument ; here we have one of the differential coefficients of an odd function vanishing 
for zero values of the argument. 

Note. Beside the references given in this chapter there is a paper by Bolza, 
American Journal, xvn . 11 (1895), " O n the first and second derivatives of hyper-
elliptic o--functions" (see Acta Math. xx. (Feb. 1896), p. 1 : " Z u r Lehre von den hyper­
elliptischen Integralen, von Paul Epstein"), which was overlooked till the chapter was 
completed. The fundamental formula of Klein, utilised by Bolza, is developed, in 
what appeared to be its proper place, in chapter XIV. of the present volume. See also 
Wiltheiss, Creile, xcix. p. 247, Math. Annal, xxxi . p. 417; Brioschi, Rend. d. Ace. dei 
Lincei, (Rome), 1886, p. 199; and further, Königsberger, Creile, Lxv. (1866), p. 342; 
Frobenius, Creile, LXXXIX. (1880), p. 206. 

To the note on p. 301 should be added the references ; Prym, Zur Theorie der 
Functnen. in einer zweiblätt. Fläche (Zürich, 1866), p. 12 ; Königsberger, Creile, LXiv. p. 20. 
To the note on p. 296 should be added; Harkness and Morley, Theory of Functions, 
chapter vin., on double theta functions. In connection with § 205, notations for theta 
functions of three variables are given by Cayley and Borchardt, Creile, LXXXVII. (1878). 

* Krause, Hyperelliptische Functionen, p. 44 ; Königsberger, Creile, LXIV. p. 28. 


