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CHAPTER XI.

THE HYPERELLIPTIC CASE OF RIEMANN’S THETA FUNCTIONS.

199. WE have seen (Chap. V.) that the hyperelliptic case* is a special
one, characterised by the existence of a rational function of the second
order. In virtue of this circumstance we are able to associate the theory
with a simple algebraical relation, which we may take to be of the form

P=d(x—a)...(@—ay)(@—0¢)...(x — Cp1)-

We have seen moreover (Chap. X. § 185) that in the hyperelliptic case, when
p is greater than 2, there are always even theta functions which vanish
for zero values of the argument. We may expect, therefore, that the investi-
gation of the relations connecting the Riemann theta functions with the
algebraical functions will be comparatively simple, and furnish interesting
suggestions for the general case. It is also the fact that the grouping of
the characteristics of the theta functions, upon which much of the ultimate
theory of these functions depends, has been built up directly from the
hyperelliptic case.

It must be understood that the present chapter is mainly intended to
illustrate the general theory. For fuller information the reader is referred to
the papers quoted in the chapter, and to the subsequent chapters of the
present volume.

* For the subject-matter of this chapter, beside the memoirs of Rosenhain, Gopel, and
‘Weierstrass, referred to in § 173, Chap. X., which deal with the hyperelliptic case, and general
memoirs on the theta functions, the reader may consult, Prym, Zur Theorie der Functionen
in einer zweiblittrigen Fliche (Zirich, 1866); Prym, Neue Theorie der ultraellip. Funct.
(zweite Aus., Berlin, 1885); Schottky, Abriss einer Theorie der Abel. Functionen von drei
Variabeln (Leipzig, 1880), pp. 147—162 ; Neumann, Vorles. iiber Riem. Theorie (Leipzig, 1884) ;
Thomae, Sammlung von Formeln welche bei Anwendunyg der . . Rosenhain’schen Functionen gebraucht
werden (Halle, 1876) ; Brioschi, Ann. d. Mat. t. x. (1880), and t. x1v. (1886) ; Thomae, Crelle, Lxx1.
(1870), p. 201 ; Krause, Die Transformation der hyperellip. Funct. erster Ordnung (Leipzig, 1886);
Forsyth, ¢ Memoir on the theta functions,” Phil. Trans., 1882 ; Forsyth, ¢ On Abel’s theorem,”
Phil. Trans., 1883 ; Cayley, ‘‘Memoir on the. . theta functions,” Phil. Trans., 1880, and Crelle,
Bd. 83, 84, 85, 87, 88; Bolza, Gittinger Nachrichten 1894, p. 268. The addition equation is
considered in a dissertation by Hancock, Berlin, 1894 (Bernstein). For further references see the
later chapters of this volume which deal with theta functions.
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200. Throughout this chapter we suppose the relative positions of the
branch places and period loops to be as in the annexed figure (4), the branch
place a being at infinity.

Fig. 4.

In the general case, in considering the zeros of the function & (u®™ —e),
we were led to associate with the place m, other p places m,, ..., m,, such
that ¥ (™) has m,, ..., m, for its zeros (Chap. X. § 179). In this case we
shall always take m at the branch place a, that is at infinity. It can be

shewn that if b, " denote any two of the branch places, the p integrals

ui” b’, . uf,’ ¥ are the p simultaneous constituents of a half-period, so that

y

b, o N /
Uy =M@y 1+ ceenn. + mpwy, p +miw’, .. +mpe’, ,, (r=1,2,...,p),

wherein my, ..., m,, m/, ..., m, are integers, independent of r; this fact we
shall often denote by putting u»?=310. It can further be shewn that if,
b remaining any branch place, b" is taken to be each of the other 2p+1 branch
places in turn, the 2p + 1 half-periods, u® ¥, thus obtained, consist of p odd
half-periods, and p + 1 even half-periods. Thus if the branch places, &', for
which %> is an odd half-period be denoted by b,, ..., b,, we have, necessarily,
S (ht)=0,..., Y (ut %) =0, and we may take, for the places m, m,, ..., m,,
the places b, by, ..., b,. In particular it can be shewn that, when for b the
branch place a is taken, and the branch places are situated as in the figure
(4), each of um®, ..., u® % is an odd half-period. We have therefore the
statement, which is here fundamental, the function ¥ (u® % —u®> % —... —u?»: %)
has the places @, ..., xp as its zeros. It is assumed that the jfunction
S (u ) does not vantsh identically. This assumption will be seen to be
jJustified.

For our present purpose it is sufficient to prove (i) that each of the
integrals w® Y is a half-period, (ii) that each of the integrals u® @, ..., u® % is
an odd half-period. In regard to (i) the general statement is as follows: Let
the period loops of the Riemann surface be projected on to the plane upon
which the Riemann surface is constructed, forming such a network as that
represented in the figure (4) ; denote the projection of the loop (a,) by (4,),
and that of (b,) by (B,), and suppose (4,), (B,)affected with arrow heads, as in



298 THE ZEROS. [200

the figure, whereby to define the left-hand side, and the right-hand side;
finally let a continuous curve be drawn on the plane of projection, starting
from the projection of the branch place & and ending in the projection of the
branch place b; then if this curve cross the loop (4,) m, times from right to
left, so that m, is either +1 or — 1, or 0, and cross the loop (B,) m,” times
from right to left, we have

vy
Up =M@y 1+ ... + Mpr, p + MWy 1 e + my' e’y p.

Thus, for instance, in accordance with this statement we should have
ay , C; . . .
' =— ' ;, and wy ‘_wr,l—wm, and it will be sufficient to prove

the first-of these results; the general proof is exactly similar. Now we can
pass from ¢, to a,, on the Riemann surface, by a curve lying in the upper

Fig. 5.

(1)

(@)

-,
“ao
e,
L

sheet which goes first to a point P on the left-hand side of the loop (b,),
and thence, following a course coinciding roughly with the right-hand side of
the loop (a,), goes to the point P’, opposite to P on the right-hand side of
(b,), and thence, from P, goes to a,. Thus we have

a, ¢ Py e

a,P’
Up = Up "2(1’7 1w

On the other hand we can pass from ¢, to a, by a path lying entirely in the
lower sheet, and consisting of two portions, from ¢, to P, and from P’ to a,,
lying just below the paths from ¢, to P and from P’ to a@,, which are in
the upper sheet. Thus we have a result which we may write in the form

u:ncx ( ch) +( au )

But, in fact, as the integral «”® is of the form f ff%il dz, and y has
different signs in the two sheets, we ha,ve

s , P r
P 01) __uf 0)’ and (uﬁ‘ )’=—ug” .
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Therefore, by addition of the equations we have

Qs € ’
Uy =—w7‘,1:

which proves the statement made.
In regard now to the proof that u® %, ..., u® % are all odd half-periods, we
clearly have, in accordance with the results just obtained,

a a;
Uy P = i — (@, 141+ @O ip1) — e — (@, p+ @, p) + (@, 1+ -en.. + @) p)

which is equal to
(w'r, 1+ (0',., aF cerens + w',, 1;) + (m,., i @y i1 ™ ceeens — W, p))

and if this be written in the form

Ez. i. We have stated that if 5 be any branch place there are p other branch places
by, by, ..v) by, such that wb By bbb e oare odd half-periods, and that, if & be any
branch place other than b, by, ..., b,, > % is an even half-period. Verify this statement in
case p=2, by calculating all the fifteen, =4 6. 5, integrals of the form «»?, and prove that
when b is in turn taken at @, ¢, ¢;, ¢, a;, @, the corresponding pairs b;, b, are respectively

(ay; ag)y (c1y o) (Cas €, (€15 ©), (g, @), (a5, a).
Prove also that
. w® @ gyl Gy G2,
r r ”

Ex. ii. The reader will find it an advantage at this stage to calculate some of the
results of the second and fifth columns in the tables given below (§ 204).

201. Consider now the 2p+1 half-periods > wherein b is any of

the branch places other than a. From these we can form (2]0 ; ]) half-
periods, of the form u» ®+u?: ¢, wherein b, b’ are any two different branch

2p+1
3
where b, b/, b” are any three different branch places other than @, and so

places, other than a, and ( ) half-periods of the form w? @ + 4> o 4 4" a,
2p+1 . .
on, and finally we can form < » ) half-periods by adding any p of the
half-periods u* % The number
2p+1 2p+1 2p+1
(Fy )+ (P )+t ()

is equal to —1 4§ [(z +1)®*],_,, or to 2 —1, and therefore equal to the
whole number of existent half-periods of which no two differ by a period, with
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the exclusion of the identically zero half-period ; we may say that this number
is equal to the number of incongruent half-periods, omitting the identically
zero half-period.

And in fact the 2% —1 half-periods thus obtained are themselves incon-
gruent. For otherwise we should have congruences of the form

Wb @ poybsse Jubme=qybhe ey + ubs> e,

wherein any integral % @ that occurs on both sides of the congruence may
be omitted. Since every one of these integrals is a half-period, and therefore
ube: @ = — ube @, we may put this congruence in the form

wb @ ybo e L, + ubms @ =0,

and here, since we are only considering the half-periods formed by sums of
p, or less, different periods, m cannot be greater than 2p. Now this con-
gruence is equivalent with the statement that there exists a rational function
having @ for an m-fold pole and having b,, ..., b,, for zeros of the first order
(Chap. VIII § 158). Since a is at infinity, such a function can be expressed
in the form (Chap. V. § 56)

(z, l)r +y (w’ l)s’

and the number of its zeros is the greater of the integers 2r,2p+1 +s. Thus
the function under consideration would necessarily be expressible in the
form («, 1),. But such a function, if zero at a branch place, would be
zero to the second order. Thus no such function exists.

On the other hand the rational function y is zero to the first order at each
of the branch places a;, ..., @, ¢y, ..., 6y, ¢, and is infinite at @ to the (2p+ 1)th
order ; hence we have the congruence

SR +ut T Ut L +ur 4 uth2=0.
202. With the half-period of which one element is expressed by
M@y 1+ oeneen +Mpy, p+ M0’y 1+ ... +mp'w’,

we may associate the symbol

(kl’, k), ..., k,,')
yy kyy ooey byl

wherein k,, equal to 0 or 1, is the remainder when m;, is divided by 2. The
sum of two or more such symbols is then to be formed by adding the 2p
elements separately, and replacing the sum by the remainder on division



202] WITH THE BRANCH PLACES. 301

. . 01 11 10
by 2. Thus for instance, when p= 2, we should write (11) + (01> = (10) .

If we call this symbol the characteristic-symbol, we have therefore proved,
in the previous article, that each of the 2% — 1 possible characteristic-symbols
other than that one which has all its elements zero can be obtained as the sum
of mot more than p chosen from 2p+1 fundamental characteristic-symbols,
these 2p + 1 fundamental characteristic-symbols having as their sum the symbol
of which all the elements are zero. In the method here adopted p of the
JSundamental symbols are associated wnth odd half-periods (namely those given
by u® &, ..., u® %), and the other p + 1 with even half-periods. It is manifest
that this theorem for characteristic-symbols, though derived by consideration
of the hyperelliptic case, is true for all cases*. We may denote the funda-
mental symbols which correspond to the odd half-periods by the numbers
1, 3,5, ..., 2p—1, and those which correspond to the even half-periods
by the numbers 0, 2, 4, 6, ..., 2p, reserving the number 2p +1 to represent
the symbol of which all the elements are zero. Then a symbol which is
formed by adding % of the fundamental symbols may be represented by
placing their representative numbers in sequence.

Thus for instance, for p = 2, Weierstrass has represented the symbols
10) 01) (00) 10) Ol) OO)
(11 (01 11 (01 (OO (00
respectively by the numbers

1 3 0 2 4 5

. 10 Sy 00 10
and, accordingly, represented the symbol (1 0), which is equal to (11> + (01> )
5

2
1,8, 0, 2, 4 in pairs, represent the 2% — 6 symbols other than those here
written. Further illustration is afforded by the table below (§ 204).

by the compound number 02. The ( ):10 combinations of the symbols

In case p =3, there will be seven fundamental symbols which may be
represented by the numbers 0, 1, 2, 3, 4, 5, 6. All other symbols are
represented either by a combination of two of these, or by a combination of
three of them.

It may be mentioned that the fact that, for p=3, all the symbols are thus representable
by seven fundamental symbols is in direct correlation with the fact that a plane quartic
is determined when seven proper double tangents are given.

* The theorem is attributed to Weierstrass (Stahl, Crelle, Lxxxvir. pp. 119, 120). A further
proof, and an extension of the theorem, are given in a subsequent chapter.
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203. Ifin the half-period 4y, w, of which an element is given by

we write ym; =M, + ks, $m/ =M/ + ik, where M;, M, denote integers,
and each of &y, k" is either 0 or 1, we have (cf. the formulze § 190, Chap. X.)

Yu+4Qm m)=N(u; M+3k, M +3k)e,
where
A=[2n(M+3k)+ 20" (M +3F)] [u+ o (M+ k) + o' (M + $E)]
—at (M +3k) (M’ + k),

and therefore
S (u; 3k, 3 K)=ermMES (4 3 Q).

The function represented by either side of this equation will sometimes be
represented by & (u|$Qum, ) ; or if §Qu = ubr o+ uboo4 +ub 2 the
function will sometimes be represented by & (u|u’ *+...... +ub %), or by

N0,0,... 5 (1)

We have proved in the last chapter (§§ 184, 185) that every odd half-
period can be represented in the form

FQ=ume ™ — gyt — L — -1, Mp-1,

and, when there are no even theta functions which vanish for zero values of
the argument, that every even half-period can be represented in the form

in the hyperelliptic case every odd half-period can be represented in the

form
O = @ = — et

and every even half-period 1, for which % (3’) does not vanish, can be
represented in the form

1 =wbo it Ll + ubps %,

and (§ 182, Chap. X.) the zeros of the function % (u®?|4Q) consist of the
place z and the places n,, ..., n,, while the zeros of the function % (u% %|1Q)
are the places b, ..., b,. In case p=2 there are no even theta functions
vanishing for zero values of the argument ; in case p =3 there is one such
function (§ 185, Chap. X.), and the corresponding even half-period % Q" is
such that we can put

%Q" = Ul @ — yFrr G — T o
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wherein z, is an arbitrary place and @, is the place conjugate to z;. Since
then u%» % = — u®> %, this equation gives

3N =u 0 —
now, as in § 200, we easily find

as, @ __ ’ ’ ’ Aoy @y ’
Uy __(wr,3+wr,1‘|'mr,2+“-’r,s): U =Wy — Wy 2~ Dy o,

and therefore
%Qu E—wr 1t 0Op s — ) 35— (w,r, 1+ w’r, 3)-
Thus the even theta function which vanishes for zero values of the

101
)-

argument is that associated with the characteristic symbol <111

In the same way for p =4, the 10 even theta functions which vanish for
zero values of the argument are (§ 185, Chap. X.) associated with even half-
periods given by

%Q" = Ul & — b A5 _ g, @
where b is in turn each of the ten branch places.

204. The following table gives the results for p=2. The reader is recommended
to verify the second and fifth columns. The set of p equations represented by the
equation (3 Q),=myw,, 1+ Mowy, 5 +my @'y, { +m,'0’,, 5 is denoted by putting $0=4% ZIZ2> .

17y

I. Siz odd theta functions in the case p=2.

. ‘ Weierstrass’s | Putting the corresponding half-
Function We have number asso- period = 2020 E_ 15 81 o
t‘l::{‘sst:gx:kl)m have for n; respectively
10 i
Saa, (1) ut =} ( Lo 02 | 1) a,
11
"9““2 <u) ua, ay =% 01 24 (3) a
!
Ya,a, (1) wh, =3\ _ 1y 04 (13) a
10 |
Yo (1) | wewe =} (_ : 1) 1 (29 ¢
|
11 i
'90131 (’tlf) U1, ¢ = 13 f (02) Cy
-10
Seey () | weme = (g ~ }) 3 (04) o
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II. Ten even theta functions in the case p =2.

1

Welerstrass's Putting the corresponding half-
Function We have “3.‘;"2’3' ‘:ist;o- period =u’1> &1 _,,ubz, a2 we
this symbol have for b;, by
00
9 (u) 3 ( OO) 5 ay, oy
11
Iae () wa e =} ( oo) 23 ) P
'gacl (u) : U, ¢ =% ( ?g) 12 (2) c, Cy
10
Sac, (v) uts & =4 ( 01> 2 (4) ¢, 0
3 (I 01
e, () u, & =% 00) 12) ay, ¢
[0)
"9‘11"2 (u) UC2s T = % (‘1) 1) 0 (14) gy Cy
11
Jae, () wo=k(_ 14 (23) ay, ¢,
01
Jase, (%) ues, @ =4 00 4 (34) ay, ¢
-gca,2 (u) ue a2 —.é < g?) 34 (O3> ay, ¢
0—-1 \
Sml (’M) u & % (1 O) 03 (Ol) Qg, C

The numbers in brackets in the fourth column might be employed instead of the
Weierstrass numbers ; they are based on the branch places according to the corre-

spondence
1 3 0 2 4

a a, ¢ ¢ o
But the Weierstrass notation is now so fully established that it will be employed here

whenever any such notation is used.

It should be noticed that the letter notation for an odd function conmsists always
of two s or two ¢’s; the letter notation for an even function contains one a and one c.

The expression of the half-period associated with any function as a sum of not more
than two of the integrals «% ¢, which has been described in § 202, is of course immediately
indicated by the letter notation employed for the functions.

Ez. Prove that if a=% ?i)

u® a|+aEu“: @z w2 pa=u®° wS C 4 a=u® C;
u® B g=yP N u» 2 fa=u® o,

These equations effect a correspondence between five of the odd functions and the branch
places.
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205. Next we give the corresponding results for p=3. Each half-period can be formed
as a sum of not more than 3 of the seven integrals «®¢ (§ 202); the proper integrals
are indicated by the suffix letters employed to represent the function. We may also
associate the branch places with the numbers 0, 1,2, 3,4, 5,6, say, in accordance with the
scheme

A1y Ay, A3y G Cpy Gy C3
1, 3 5 0, 2 4, 6;

then the functions 9, (), 9;(u), 9;(w) will be odd, and the functions 9, (x), 35(w), I,4(%), I¢(x)
will be even ; and every function will have a suffix formed of 1 or 2 or 3 of these numbers.
There is however another way in which the 64 characteristics can be associated with the
combinations of seven numbers, and one which has the advantage that all the seven
numbers and their 21 combinations of two are associated with odd functions, while all
the even functions except that in which the associated half-period is zero are associated
with their 35 combinations of three. It will be seen in a later chapter in how many ways
such a scheme is possible. One way is that in which the numbers

1, 2, 3 4, 5 6 7
are associated respectively with the half-periods given by
Uy &y Uz, @y Uds, By UG C+UCs, B4 UCs, By UG B+ UCs; B UCL, @y UC, THUCH, XU, @,
UCLy T4 UC2s @4 UC3 @,

By § 201 the sum of these integrals is =0. The numbers thus obtained are given in the second
column. Further every odd half-period can be represented by a sum s, & — u#:, @ — y#, @,
and all the even half-periods except one as a sum b, @+ ubs, @4 ubs, & ; the positions of
7y, 7y or of by, by, bs are given in the fourth column.

1. 28 odd theta functions for p=3.

Ny, Nyg=
a, (1) 1 ut, e=4 (i%) @y, dy
a, () 2 uty, a=} (éig) agy a,
Y, (u) 3 uls, a=% ((l)(l)b ay, Ay
Sa,a, (%) 12 Uy, C 4 uley =4 (?ig) a, a,
Ya,as (%) 13 U, G4 uls, a=% ((1)(1)} a, a
Ya,a, () 23 uls, &4 uds, =% ﬁi) ‘@, @
Iee, () 74 uen, G4t a=14 G(l)(l)) Cgy C3
Iee, (u) 75 U2 Ay a=% g}é) Cgy €4

B, 20
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BY ACTUAL CALCULATION

Table I. (continued.)

1

My Ng=
001
ee, (u) 76 ucs, @+ ut e=% (001> 5 Cy
010
o,e, () 56 U2 A4 ucs, a=4% (011) ¢, 0
11
Jege, () 64 U @+ ucs» QE%(IO(I) c, e
e, (0) 45 ue, a4ucs, 0=4% G(l)g) c,C
Seara, (%) 37 Ul G, G- yls, 0 =14 (}(l)(l)) ¢, ay
Yeaa, (2) 27 U @+ ut, a4 uds, 6=% (ig?) ¢, a,
eaa, (@) 17 U G4 Uz, & 4y, 4=} ((l)}g) ¢, a
Se,a,aq (%) 14 UC1s @+ U2y O+ Y3, “E% (CI)(I)i) Cyy @
3 011
oaza, (%) 24 UG @+ ulls, G4yt a=4 001 ¢y, @y
Sc,a,az (u) 34 UCH T4 U, @+ YQs, ‘laé (gig) Cpy Qg
101
-90241.2% (u) 15 UC2s T4 UR2s G Y3y GE% 001 Coy @y
111
Sc,aa, () 25 U2, @4 uls, a4 uty, a=4 1 Coy Qg
9 110
caa, (4) 35 w2 Gt U, O yds, e =14 100 Cyy @y
9 111
catoas (%) 16 UCs T U2, U s, G=} 010 3 @
9 101
esasa, () 26 O3> @t uls, C 4y, a=}% 100 3, Qg
Sesa,a, () 36 UCs @4 U1, B4 Uk, E=} (i??) Cqy g
Yecye, () 4 U T UCes AU & = (é?i) a, ¢
eese, (%) 5 U, @4 uls, @t uey, & =4 (?g}) a, ¢
ec,e, (%) 6 UG @ 4ue, aucy, a=4% (?ié) a, c
“9010203 (u) 7 UCH @4 uC2» @+ UCss a‘E%(O;?) @, c

[205
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II. 36 even characteristics for p=3.

b b b
000
$() ooo) | @ @ o
3 ; _L /101 | 4 _
e, (%) 123 UL & yls, @ pys, A=} 111) a, x, %
e (u) 456 ue, a =3 ((1)(1)(1)> G C G
e, () 567 U1 @ =4 (ggg) c ¢ ¢
I, (u) 647 U2, @ =} ((1)(1)8> c ¢ ¢
e, () 457 ucs, @ =} ((1)(1)(1)> c ¢ ¢
011
ea, (%) 237 u &4y, a =4} ( 100) c ay ag
ca, (1) 317 uCs G+ uas, @ =3 (8?3) c az; @
Sea, ) | 127 | we aguss,a =3 (g) ¢ ay a
3¢,a, () 234 UL, &4, @ =3 <(1)008> ¢ @y da
110
e.a, (4) 314 UL &+ Ula, @ =3 110 ¢ a; @
111
‘9"1“3 (M) 124 s @+ uds, @ = % (] 01> G @ A
¢,a, (%) 235 U2 &y, @ =3 (‘13(1)8) Cy Ay as
Yoy @) | 315 | wematuma =4 (gég) 6 a4 @
11
b | 5 | werume =y (00| 4 0 o
010
3c,a, (u) 236 U3 O+ U ¢ E% (] 01) C; Qg Qg
000
«9c;az (u) 316 UCas €+ Uz, @ = % (011) C3 a3 O
001
Seya, () 126 | wfs G4us 0 =} (000> e; @ ay
110
Y00, (%) 156 UG, @ uls, G4 uls, € =F (111) a; ¢ ¢
010
Ya,eqc, (4) 164 uths +ucs G+uc, ¢ =% (001 a4 & ¢
000
3axc;cz (’ll) 145 U, G4yl O+ Ul & = é (010) a ¢ ¢
011
Ia,ce, (%) 147 U, @4 ut, & +ucn,a =% 000 a; ¢ C

20—2

307



308

METHODS OF NOTATION.

Table 11. (continued).

b, by b
111
Sa,ce, (u) 157 U, B UG & Uy, @ =% (110> a ¢ ¢
101
a,cc, () 167 U, A4 us @ L ucs, e =% (lOl a, ¢ ¢
100
a0, (1) 256 Uz, &4 Uuce, 4 uCs, ¢ =4 (OOI) a, ¢ ¢
000
Sazeqe, (1) 264 U, @4 UC3, 41, O E% (111) a, ¢ ¢
10
ga,.zclcﬂ (u) 245 Ul2s @+ UC1y T YCyy @ E-é- (‘1)00) a ¢ ¢
001
Suge, @) | 247 | warune tune=h(10) | @ oa o
101
Sace, (u 257 Uz, E4 U, @ 4 ycy, a =} ady C. C
2CCy 000 2 3 1
11
Sa,ce, (%) 267 Uy @4 uc, @ fycs, e =% (01;) a, ¢ ¢
101
Yatgeses () 356 Ultss @ 4-UuCe, @+ ucsy @ =4 010 a, ¢ ¢
1
Yage, (1) | 364 | was aducnatue,a= (‘1)80 4 o o
011
‘9%01113 (u) 345 uan.a+u¢x,a+w-‘z,a5§ (111) as c3 ¢
000
Sagee, (u 347 | wesatue e uc,e=} (101 ay ¢ ¢
100
agee, (u) 357 U3, G4 G, @ 4ucs, A= (Ol I> as ¢ ¢
110
Sazees () 367 Uz, atuca uc,a=4% 000 a, ¢ C

[205

It is to be noticed that every odd theta function is associated with either (i) any
single one of a;, a,, a; or (i) any pair of a,, a,, a; or any pair of ¢, ¢;, ¢;, ¢;, or (iii) a
triplet consisting of one of ¢, ¢, ¢, ¢; and two of ¢;, @,, @; or consisting of three from
¢, ¢, Cy, C3. This may be stated by saying that odd suffixes are of one of the forms

a, a?, ¢%, a%, ¢3. Similarly an even suffix is of one of the forms ¢, ac, ac?, a3

In the tables just given the fundamental characteristic-symbols, denoted by the num-
bers 1, 2, 3, 4, 5, 6, 7, are those associated with sums of integrals which may be denoted by

@), Oy, (g, CCxlyy CCLy, CCiCy, C€1CoCs.
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We can equally well choose seven fundamental odd characteristic-symbols, associated with
the integrals denoted by any one of the following sets :
€Cy CCyy C 03y Clyl3, Cagly, C0ay, €003
€€y 0103y CyCyy Oy, CiQgly; €y, € Cylg
CC 5 C3Cpy CgC3y Collylly, Cpllzlly, Collyly, C C30y
Cs€ y C3Cpy C3Cpy Callyly, O3y, C30hUp, C G0y
Ay 0y, A3, Cillyly, Colla®3, C3dpdz, Cdyly
gy Apltyy  Uylyy O30,  Colzty, O3y, CAzdy
A3, A3y, G3dy, C1A gy  ColyQy,  C3lyly, CAp
The general theorem is—it is possible, corresponding to every even characteristic e, to
determine, in 8 ways, 7 odd characteristics a, 8, y, , A, p, », such that the combinations
a, By, k% Ay p, v, €aB, eax, eAp
constitute all the 28 odd characteristics, and the combinations
¢, aBy, ak), Byx

constitute all the 36 even characteristics. In the cases above e=0. The proof is given in
a subsequent chapter.

206. Consider now what are the zeros of the functions

¥ (u), Y (u|utr ¥+ ... + ubb a),

where b, ..., b; denote any % of the branch places other than a (£ $p), and u
is given by

1y Oy

Up = Uy +......+ufp’“", r=12,...,p),
the functions being regarded as functions of .
The zeros of % (u) are the places 2, ..., 2, determined by the congruence

wr M4 L Ut =yt — g G— L — U O,

or, by *
ol ur T L+t B = (),

Provided the places a,@;,, ..., &, be not the zeros of a ¢-polynomial, that is,
provided none of the places ,,...,, be at @, and there be no coincidence
expressible in the form x;=%;, the places 2, 2, ..., 2, cannot be coresidual
with any p other places (Chap. VI. § 98, and Chap. IIL.) and therefore (Chap.
VIIIL § 158) this congruence can only be satisfied when the places z, ..., z,

are the places
a, @2, i:b cee ips

these are then the zeros of & (u), regarded as a function of ;.

* The two places for which x has the same value, and y has the same value with opposite
signs, are frequently denoted by x and .
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The zeros of N (u|ubv%+...... +u% %) are to be determined by the
congruence

uP B4 L Ut b O + Uk 8= P yh e — — u?pr O,

Wby T +u T b g L, +ubk e =0,
which we may write also
(21, 22y vy 2p, ) =(by, oo, by, T, oo, Tp) s
in particular the zeros of % (u|u?: %) are the places b, Z,, ..., Ty
207. Now, in fact, if the sum of the characteristics ¢, ..., ¢, differs from

the sum of the characteristics r, ..., 7, by a characteristic consisting wholly
of integers, n being an integer not less than 2, then the quotient

f(u)=%(u; )Y (u; q) ... S (u; qn)
S (u; )Y (u; 1) ... S (u; )
is a periodic function of .
For, by the formula (§ 190, Chap. X.)
S (Ut Qp; q) = +2mmd=mDy (u; g),
where m denotes a row of integers, we have

S Ut On) _ i tmag -3 -m (5q-3)
Q) ’
and if 2¢’ — 3¢/, Zg— Zr, each consist of a row of integers the right-hand
side is equal to 1.
Hence, when the arguments, u, are as in § 206, the function f(u) is a
rational function of the places «y, ..., zp.

208. It follows therefore that the function
92 (ulub, a)
3 (u)
is a rational function of the places «y, ..., #,, By what has been proved
in regard to the zeros of the numerator and denominator it has, as a function
of x;, the zero b, of the second order, and is infinite at @, that is, at infinity,
also to the second order. Thus it is equal to M (b— #,), where M does not
depend on z,. As the function is symmetrical in #;, ,, ..., &, it must
therefore be equal to K (b — ) ... (b —z,), where K is an absolute constant.
Therefore the function

Vo-a)b—a)... (b—a,) =

1 S (ulwh)

VE S (u)

may be interpreted as a single valued function of the places a;, ..., p,
on the Riemann surface, dissected by the 2p period loops. The values of
the function on the two sides of any period loop have a quotient which is
constant along that loop, and equal to + 1.
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The function has been considered by Rosenhain* Weierstrasst+, Riemann} and
Brioschi§. We shall denote the quotient 9 (u|u®2)/ 9 (u) by g, (#). There are 2p+1 such
functions, according to the position of 5. Of these 9, () veey 9ap (u) are odd functions,

and g, (u), g, (%), . ¢ 6 (w) are even functions. The functions are clearly generalisations
of the functions A/z=sn u, A/l —#=cn u, ¥T—#z=dn «, obtained from the consideration
of the integral

we j s dw
T JoNar (1—x) (1—k)

209. Consider next the function

S(u|ub,,a+ ..... + ubk,a)sk—l (u)

F= S (ujubr @) ...... Y (uluk )y

wherein b, ..., by are any k£ branch places other than a. We consider only
the cases k<p+ 1. By what has been shewn, the function is rational in a,,
and if 2, ..., 2, denote the zeros of & (ujub-*+ ...... + % %) the zeros of the
numerator, as here written, consist of the places

k-1 k-1
Zyy s 2p, G5 Ty, L, T

and the zeros of the denominator consist of the places
& _k
by, bsy on, by, T, ol T

Thus the rational function of #, has for zeros the places 2, ..., 2,, a*7,
and, for poles, the places by, ..., bs, @, ..., Zp. It has already been otherwise
shewn that these two sets of p+ k-1 places are coresidual. Now any
rational function, of the place &, which has these poles, can (Chap. VI. § 89)
be written in the form

wy+v(@—2>b)... (x— by
(@=b)...(x—bp)(x—x) ... (x—2p)’

wherein u, v are suitable integral polynomials in x, so chosen that the
numerator vanishes at the places ,, ..., #,, The denominator, as here
written, vanishes to the second order at each of b, ..., b, and also vanishes
at the places @y, T, ..., ©p, Tp.

Let N, u be the highest powers of « respectively in » and ». Then, in
order that this function may be zero at the place @, that is, at infinity, to the
order k— 1, it is necessary that the greater of the two numbers

A+ 2p+1-2(p+k—-1), 2u+2k—-2(p+k—1)

* Mémoires par divers savants, t. x. (1851), pp. 361—468.

+ By Weierstrass the function is multiplied by a certain constant factor and denoted by al(u).

I In the general form enunciated, as & quotient of products of theta functions, Werke
(Leipzig, 1876), p. 134 (§ 27).

§ Annali di Mat. t. x. (1880), t. x1v. (1886).
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(wherein 2(p + &k — 1) is the order of infinity, at infinity, of the denominator)
should be equal to —(k—1). Since one of these numbers is odd and the
other even, they cannot be both equal to —(k—1). Further in order that
the ratios of the A + u + 2 coefficients in u, v may be capable of being chosen
so that the numerator vanishes in the places @, ..., @, it is necessary that
A+pu+1 should not be less than p—1. And, since a rational function
is entirely determined when its poles and all but p of its zeros are given,
these conditions should entirely determine the function.

In fact we easily find from these conditions that the case 2r+2p+1>2(p +k)
can only occur when % is even, and then A=3k—~1, u=p—1—3%k, and
that the case 2\ + 2p + 1 < 24 + 2k can only occur when % is odd, and then
A=%(k—=38), u=p—34(k+1). Inboth casesr +pu+2=p.

By introducing the condition that the polynomial uy +v(z—b,) ... (x — by)
should vanish in the places @, ..., «, we are able, save for a factor not
depending on «, y, to express this polynomial as the product of (z—b,)...(z—bg)
by a determinant of p rows and columns of which, for » > 1, the rth row is
formed with the elements

oy oy
$@) @) " B

wherein ¢ (2) denotes (z—b,)... (£ —b), the first row being of the same
form with the omission of the suffixes.

poop-1
s Ly Ty :'-"1’

Therefore, noticing that F is symmetrical in the places #,, ..., z,, we
infer, denoting the product of the differences of @, ..., @, by A (ay, ..., p),
that

A A-1
LrYr  Lp Yr woop-1

P T, ==L, ﬂ—,w,.,m,. N §
St g AUV (W) _ NP (@) $ @) (@)

S (ulub @) ...... S (ulub @) Az, ..., @p) ’
where C is an absolute constant, and the numerator denotes a determinant
in which the first, second, ... rows contain, respectively, «;, @,, ...; and here
when k is even, A=3k-1, pu=p-1-%k
and when £ is odd, A=3(k—-3), p=p—1(k+1).

210. By means of the algebraic expression which we have already
obtained for the quotients ¥ (u|u® *)/Y (u), we are now able to deduce an
algebraic expression for the quotients

S (ulub o+ ..., + ube )Y (u);
since 1t has already been shewn that by taking %4 in turn equal to 1, 2, ..., p,
and taking all possible sets b, ..., by corresponding to any value of k, the
half-periods represented by w%:%+...... + u% @ consist of all possible half-

periods except that one which is identically zero, it follows that, n the
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hyperelliptic case, if u denote u®> % + ...... + u* %, and q denote in turn all
possible half-integer characteristics except the identically zero characteristic,
all the 27 — 1 ratios ¥ (u; q)/Y (w) can be expressed algebraically in terms of
Zy, ..., By, by the formulae which have been given.
The simplest case is when k=2 ; then we have A=0, u =p— 2, and
S(ulu”l’“+ub2’“)9r(u)_0§ Y 1
S (wlub @) (u|utr )~ .0 (2 — b)) (z, — b,) R ()’

where R (z)=(z—x)(x— 2,)...(x — =), and C is an absolute constant.
Denoting the quotient Y (u|u?: @ + ub» %)/ (u) by ¢4, 5,, we have

- & Yr 1
Qb,, b Al' 2%,92;,21 (.’17,- - bl) (xr - bz) -R/ (‘Z'r) ’

where A,, is an absolute constant; and there are p(2p+1) such
functions.

When k=3, we have A =0, u =p—2, and, if ¢, ;,, 5, denote the quotient
Y (u|ubo @ 4 ubs @ + yba 2) /Y (u), we obtain

-B N !
Qb,, by, by = D1, 2, 3Qb,Qb,9b3r=1 (wr _ bl) (xr — bz) (wr — bs) R (@) ’

where B, , ; is an absolute constant. It is however clear that
96,0 _ Qb6 (b, — by) by, by, b
Angop,  Augsg, Bixqs, 90,9,

so that the functions with three suffixes are immediately expressible by those
with one and those with two suffixes.

More generally, the 2% — 1 quotients % (u; q)/% (u), depending only on

the p places #, ..., 25, must be connected by 2 — p—1 algebraical rela-
tions; and since (Chap. IX.) any argument can be expressed in the form
w4 4+ u?0» %, it follows that these may be regarded as relations

connecting Riemann theta functions of arbitrary argument. This statement
is true whether the surface be hyperelliptic or not.

Of such relations one simple and obvious one for the hyperelliptic case under con-
sideration may be mentioned at once. We clearly have

Dby, 8, b, b, b, b,
Tonbs gy Tt g gy Tl g g
A%szgbs( 2 3) A319b39b1< 3 1) A12qb1 qb,( 1 ) ]
and therefore
_ - b —b
8= b 5, ) 90, () + 252 905, () 95, () + 222 93,0, () 95, (w) =00
A23 A31 ‘AIZ

It is proved below (§ 213) that A2, : A% : A2, =(by~by) : (b3~Db;) : (by~by).
Other relations will be given for the cases p=2, p=3. A set of relations connecting

the ¢’s of single and double suffixes, for any value of p, is given by Weierstrass (Crelle Li1.
Werke 1. p. 336).
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211. Ez. i. Prove that the rational function having the places z,, ..., Z,, @, as poles,
and the branch place b as one zero, is given by

_ 2y 1

Z—(b"x) ...... (b .z'p)E le(x)$
where R (§j=(£—x) (§—2)...... (&€~ ), and, in the summation, %y, ¥, are to be replaced
by =, y.

Prove that if » denote the argument
u=u® Oy Mg +wtr
then
92 (u|u> ) VA
) T o-2)0—2) . (b—2)°

where A is an absolute constant.

Prove for example, in the elliptic case, with Weierstrass’s notation, that

ai(utv) — @ ) 1
=V =} V(@u—e) (Po—e) <f6’u o o) ey
Ex. ii. If Z,. denote the function Z when the branch place b, is put in place of b, and
It (b,) denote (b,—z) (b,— zy) ...... (b, — ), and we put
Sl O 4 %) $1 ()
9 (u|ub ... 9 (u|ub*> %)
prove that

ah, I A1 i R |
B By g T

TA (@ Zyy ooy Tp)y

®Z,...... Zy=BR(b)) ...... R (bs)

where B is an absolute constant, A (2, 2y, ..., #,) denotes the product of all the differences
of the (p+1) quantities , 2y, ..., Zp, ¢ (#,) =2, — b)) ...... (#,— ), and the determinant is
one of p+1 rows and columns in which, in the first row, z,, 7, are to be replaced by z, y.

Prove that, when % is even, A=% (£~ 2), p=p—3%#%, and, when £ is odd, A=} (£—1),
w=p—4%(k+1)
9 (ulu? O+ U Y

0 is a constant

Ez. iii. Hence prove that the function
multiple of
BIEN TR Y - v -
VE @) s R(b,,)ld)(x) 2, 7y ¢(xr),xr,x': ooy Ty 1
A (@, Tyy ooy Tp)
This formula is true when £=1.

"Ex.iv. A particular case is when £=2. Then the function 9 (u|u®’ *+ub %)/ 9 (x) is
a constant multiple of

N =) Br=) oo Gr =)V By =) By=) s Ba=y) 3 (—m # 213:7) ,

wherein R (§)=(é-2)(§—2)) ...... (&—2p).

Ex. v. Verify that the formula of Ex. iii. includes the formulae of the text (§ 210);
shew that when x is put at infinity the values of A, p in the determinant of § 209 are
properly obtained.
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Ex. vi. Verify that the expression ¢ (z, b; a, 7y, ..., Zp) of § 130, Chap. VIL., takes
the form given for the function Z of Ex. i. when a is the place infinity.
Ez. vii. If f(x) denote the polynomial
P D VR U g4 o B2

prove that any rational integral polynomial, ¥ (z, z), which is symmetric in the two
variables , z and of order p+1 in each of them, and satisfies the conditions

P o=y, [ Fwa] =376

F(z,2)=f (2, 2)+(z~2)* ¥ (&, 2),
where (cf. p. 195), with A=}, Ay, . 3=0,
P+l
[z 2)= izo 22 g+ Ngi vy (2 42)}

is of the form

and ¥ (#, 2) is an integral polynomial, symmetric in z, z, of order p—1 in each¥*.

In case p=2, and f(2)=(r—a;) (x—ay)(x—¢)(x—¢,) (x—c,), prove that a form of
F (2, z) is given by

F (2, ))=(2—a)) (2= ) (2= 0) (2= €)) (s - &) +(2— ) G = ay) (v = ©) (v — ;) (@ —¢y).
Ex. viii. If for purposes of operation we introduce homogeneous variables and write

f@)y=ra? +>\1~":p+1

prove that a form of #'(z, z) is given by

Fo =g (e 4m ) )

where, after differentiation, x,, x,, 2z, 2, are to be replaced by #, 1, z, 1 respectively.

2p+ 2p+2
R IR 2 P 1‘2.@1 +)\2,,+2x, ’

This is the same as that which in the ordinary symbolical notation for binary forms is
denoted by 7 (z, z)= 2a£+laz+ , f(2) being e, p+2.

Ez. ix. Using the form of Ex. viii. for F(2,2), prove that if e, e, 2, 21, ..., 7,
be any values of z, we have

2 flz) @ z) _ fle) DACH) f (e, &)
A (e A e T e R TV M A O B T OO
where G'(&)=(£—e,) (E—e)(§—2)(E—2)) eeunen (€—a,), and the double summation on the
left refers to every one of the 3p (p+1) pairs of quantities chosen from #, 2y, ..., ;.

Ex. x. Hence it follows+, when y2=f(2), y.2=f(,), etc., and R(&)=(£—-2) (E—2y) ...
(¢ — ), that

? # FERE) | fle)Re)  Flee
) R 3o i | Gy~ e e o o

is equal to

R(e) R (e;) 33 2 Yo—f (Bry Zs)

G’ (zy) G (m) ’
* It follows that the hyperelliptic canonical integral of the third kind obtained on page 195
can be changed into the most general canonical integral, R::: (p. 194), in which the matrix a
has any value, by taking, instead of f (z, 2), & suitable polynomial F (z, 2) satisfying the conditions

of Ex. vii.
+ The result of this Example is given by Bolza, Gitting. Nachrichten, 1894, p. 268.
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where the summation refers to every pair from the p+1 quantities z, ,, ..., 2, and
(=, z) denotes the special value of F'(x, z) obtained in Ex. viii.

Ex. xi. Tt follows therefore by Ex. iv. that when b, b, are any branch places of the
surface associated with the equation y%—f(x)=0, there exists an equation of the form

9 (uu *+u’ “_ 29,Ys—f (%1, @) _ F (b, b)
O ww ORI G GG ) By b
where C is an absolute constant, G/ (£)=(£—0b,)(£—0b,)(E—2)(E—2y)...... (é-xp), and
w=u" 4w B, +4*2> %, The importance of this result will appear below.

212. The formulae of § 208, 210 furnish a solution of the inversion
problem expressed by the p equations

T35 Oy

u;”" +u " =y ¢G=1,2,...,p)

For instance the solution is given by the 2p + 1 equations

32 (u|ub %)
—’éz—lw—)—=A(b—wl)(b—w2)... b —=p);
from any p of these equations #,, ..., #, can be expressed as single valued

functions of the arbitrary arguments wu,, ..., u,.

And it is easy to determine the value of A% Forlet by, ..., by, b/, ..., b,
denote the finite branch places other than b. As already remarked (§ 201)
we have

(¢, c1, eees ) =(a, @, ..., ap)
and therefore

b,by, ..., 0,) = (a, b/, ..., by).

Now we easily find by the formulae of § 190, Chap. X. that if P be a set
of 2p integers, P, ..., Py, P/, ..., Py,

3 (u+4Qp,30p) D (w)
¥ (w+iQp) B (u; 3P

—-mi PP .
e e s

hence, if u»*=3Qp p, and y,=ubv 2+ ...... + u’: %, we have, by the formula
under cousideration, writing b, ..., b, in place of @, ..., z,, the equation
Si (uo|u> %)

Sy =AG=b) .. (b=0y),

and, writing b/, ..., b," in place of #,, ..., @,, we have

Y2 (u-o + ub a':ub, a)

Sy = A0 G=b);

thus, by multiplication
PP = A2(b—b) ... (b—b,) (b —b,) ... (b—1,),
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and hence

8 (u|u> %) 4 (b—a)(b—m) ... (b—ap)
¥ T ARGy
where f () denotes (« —a,) ... (# — ap) (x —c) (£ —¢)) ... (z — ¢p), and €™ PP = + 1
according as u% @ is an odd or even half-period. -
The reader should deduce this result from the equation (§ 171, Chap. IX.)

X-Z veeeee (X =2
V(Uly seey UP; 51’ 71) ------ V( Ul: erey Up; Ek! ”k):E;_Z((:ll)))) ..... é}_gg:z;;

by taking Z to be the rational function of the second order, .

When u=u" %42 M4 ... +u* %, we deduce (see Ex. i. § 211)
92 (u|ub %) b-2)(b—2) ....ne b-z)[ 2 ¥ 1
’ -* 2 @) )

92 (w) - aV m r=0 Zr—b R’
where R (£)=(£—2) (§—21) veeene (&—zp).
If in particular we put b in turn at the places a,, ..., a,, write

P@)=(z—a)...(z—ap) and Q(z)=(z—c)(z—c,) ... (£ —cp), and use the
equation
(x—x) ... (. —zp) _1 +§ (@i — ) ... (@i — xp)

P (z) 1 (@—a) P (a)

we can infer that «,, ..., z, are the roots of the equation*

o x ) Q@) ¥ (ufu )
v P(y) ai—=

M3

=932 (u),

i

where ¢; is + 1 and is such that we have

Wkt (@) (06— ay)

& () V=P (a:) @ (a:)

Another form of this equation for @, ..., #, is given below (§ 216), where
the equation determining y; from ; is also given.

213. We can also obtain the constant factor in the algebraic expression of the
function 9 (u|u® *4ub>» %) 9 (x)+9 (' ub @) 9 (w2 @)

Let b,, b, denote any branch places, and choose z, ..., 2, so that
UG U Py OB Gy +ufer 9

then z,, ..., z,, @ are the zeros of a rational function which vanishes in z,, ..., x,, b,.
Such a function can be expressed in the form

y+(@=b)(x 1)1
TR (x—ap)’

* Cf. Weierstrass, Math. Werke (Berlin, 1894), vol. 1. p. 328,



318 DETERMINATION OF A CONSTANT FACTOR. [213

where (, 1)»~1 is an integral polynomial in 2 whose coefficients are to be chosen to satisfy
the p equations

_3/"+(xi_bl) (xii ]_)p—l=0’ (i=l, 2, ---’P) 5
thus the function is

1
F( )+(x bl)z§lxt bl (w—2) F" (2)’

where F'(z)=(x—a,) ... (¥~ ,); and, if the coefficient of #?*1in the equation associated
with the Riemann surface be taken to be 4, we have

y2—(rv—b)2 [F (x) ]2[ —1%' b m)] =4(x—2y)...(x— ) (X —7)...(x— 2,) (x— b)),

and therefore, putting b, for z,

(by=2) oooe (by= ) _ v LT
A (s Ot "2)[5, s @i= by (@i by) F° (xa]‘

Now we have found, denoting u® ® 4 ...... +u™2 % by w, and »** ¥ +...... +u®P % by v
the results
P lale®) | (=) by=ap) S (By=r) . (b= 32)
92 (u) A\/efrin’ fl (b) ’ 92 (7)) - 4/em'PP’f, (b) ’

where 4% =10, p; hence we have

LY P@_ 0 12w 1
92 (0) 92 (u | ube> @) =2(Gi-b) [{’ii (= b)) (@i — by) F’(xi)]’

which, by the formulae of § 190, is the same as

9 (u|ub @b %) 9 (u)

9 (u|u™ %) 9 (w]ub> @) =Vbi=b, b2

Yi
=12 (@ — by) (@ — by) F” (27)°
where ¢ is a certain fourth root of unity.

Thus the method of this § not only reproduces the result of § 210, but determines the
constant factor.

Ez. Determine the constant factors in the formulae of §§ 208, 210, 211.

214. Beside such formulae as those so far developed, which express
products of theta functions algebraically, there are formulae which express
differential coefficients of theta functions algebraically; as the second
differential coefficients of % (u) in regard to the arguments w, ..., u, are
periodic functions of these arguments, this was to be expected.

We have (§ 193, Chap. X.) obtained* the formula -
— LA —uto ™ — L —um )+ G (W — ™ — — u%> ™)

Sl - e,
=L +k§11’k,t[(wk» x) — (xx, p)] P

* Cf, also Thomae, Crelle, LXxI, XCIV.
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we denote by %, the sum of the homogeneous products of =, ..., z,, 7 together,
without repetitions, and use the abbreviation

Xo—i (X5 @y, ..., Bp) = 2P~ — PP  hogp—i—2 — +(=)P7hy ;5

farther, for the p fundamental integrals u %, ..., uy *, we take the integrals

3

[, [rode, | [reride,
Y ey ey

then it is immediately verified that

~ xz)—i(wk; Ty, ---,"’Jp)/gﬁk
Ve = Ye F () Cde

where F () denotes (# — ) ... (z — ap).

Thus, if y, » denote the values of # and y at the place u, we have, writing
a, a,, ..., a, for m, my, ..., m, (§ 200),

-G —um i — L, —uB )+ G (u t — P B — L — U %)

LR F S 1C TR TRUN.Y, [y+yk_yk+v] :
: Pt F' (az) Tr—x ap—p)’
therefore, also, the function

2oxpi (X 1y oney Tp) Y —
(% @ z,, @ . 25, Gy ‘.””" xp 1.( ks 415 y Yp 3/ Yk
Gt ure st L+ ute W) + L —%kz,l F(an pranyl
is equal to
2 (@ @, ., Ty) v — Yi
PR (el X7 TE T N +u . ap) — 3 3, X s ? ,
G ) %k=1 F (2) o —

which is independent of the place .

Now let R () denote (¢ — ) (! —=,) ... (t —p), and use the abbreviation
given by the equation

YXp—i (%} wl,---,wp)+yxxp_s(w1; x, ,, ---)wp)+._'+prp—i(‘z‘p; Z, &1y e, Bpoy)

4 ("17) R (.’L']) R ('T'p)
=fp—i (JU, L1y euny (L‘p);
then also
i Xp—im («’6‘1; Ly oy wp) yPXp—i—x(wp; Lyy oo ,a;p_,)= ‘
Fl (wl) + ------ + F/ (xp) fp—;—l (‘7"1: ceey $p),
Now No—i (15 @, Bay oo, Bp) — Xp—i (15 1, X, -.on,y Tp)
is equal to
[mf_i — T N @ k)t T (@ 4 ) — e + (= 1yp—izk, ;]
[ = T T @ k) e T @+ ) — e (= D),
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wherein k, denotes the sum of the homogeneous products of a,, ..., #,,
without repetitions, r together, and is therefore equal to

—a) [ T = e + (=) ey 1]
or to
(z, — ) Xp—i—1 (@15 @, ..,y wp)-
Hence

Xp—l(‘zll; -’JU, ‘/1/.2) crey wp)=xp;l(w1; wl) w2: sy xp)"'(“'l_w)Xp—i-—l ("l’ll; x?: ey wp)

R’ (a) (& — ) F' ()

Xp—i (®1; @, Ty, oo, ap) 1 +Xp—z—1 (@, a0, ...\ @p)
F' () r—x, F' (z)) ’

While, also,
Xp—i (5 @1, ooy 1) Z Xp—i (@ @,y oo, @) 1

R (z) T ope1 F' (z) z—xy

Thus

EXp—t(wk, L1y s Tp) Y — Y

el F'(x) w_wk+j,,_i_,(w1,...,wp).

So—i (@, @y, ..., @) =
Therefore the expression
i (us ® uto 4 4w %)+Lf"‘+ L 4. v LP*— L foi(m, 2y, ..., 2p)
is equal to
Gbeturn o pum w4 L7+ L =L i (@, @, e, ).

In this equation the left-hand side is symmetrical in , #, ..., @, and the
right-hand side does not contain #. Hence the left-hand side is a constant
in regard to , and, therefore, also in regard to a,, ..., z,. That is, the left-
hand side is an absolute constant, depending on the place 4. Denoting this
constant by — C' we have

_é‘i(um,a +uBe 4 . +uxp,ap)=le"“+L:l’“+ ...... +L:>p,n
_YXp—i (&5 @y, -, Tp) _ YoXo—i (@3 7, wl,...,wp_,)+0
SR (z) R’ (@) .

215. From this equation another important result can be deduced. Tt
is clear that the function

el T s SV T S S +u‘”P’“p)—Lf"a’— ...... —Lf”’a”

does not become infinite when « approaches the place @, that is, the place
infinity. If we express the value of this function by the equation just
obtained, it is immediately seen that the limit of

_kaP—i(wk; Z, wl_y L) wp) is — YieXp—ia (wk; Lyy oeny wp)
2R’ (.Tk) 28 (.’L‘k) ’
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and that the expression -
Yxp—i (& @1, ..., Tp)
2R’ () ’

when expanded in powers of ¢ by the substitutions z = t—12 Y= A+4e+...),

t2p+1
where A is a certain constant, contains only odd powers of t. Hence the
limit when ¢ is zero of the terms of the expansion of this expression other
than those containing negative powers of ¢, is absolute zero, and therefore,
does not depend on the places a,, ..., z,. The terms of the expansion which
contain negative powers of ¢ are cancelled by terms arising from the integral

L"". Since this integral does not contain @, ..., 4, we infer that the
difference

Lﬁ_?, I _yXp—i (.1} 5 L1y eens mp)
i IR (a)

has a limit independent of #,, ..., #,, and, therefore, that

215 @ Zp, ap Yr i (e @1, -0, Tp)
L@ttt ) =L;"" .+ L 721 o 28 (xk) =
no additive constant being necessary because, as & (v) is an odd function,
both sides of the equation vanish when ,, ..., x, are respectively at the
places @, ...,a,. Asany argument can be written, save for periods, in the
form w® ®+...+u?» %, this equation is theoretically sufficient to enable us to

express ;(u) for any value of u.

Ez.i. Tt can easily be shewn (§ 200) that
uS Cut B +ufrr =0,
Thus the final formula of § 214 immediately gives

@1,“'1 Zp, ¢ p?/kX z(xk: Cy ZLyy o 7‘”)
G O, o) = 15 O, Lo 3 Do~ 1 ey Ty
GO b )= * 2 2@ F @)

Er. ii. In case p=1 we infer from the formula just obtained, and from the final
formula of § 214, respectively, the results

z, al zn a,

—& (@B ) =1L, T15 , =& (W O p Wy=1, %J "/1+D
where D is an absolute constant. Thus
G 080 e )= (05 ) 4 6, )+ 3L 7Y D,
1

This is practically equivalent with the well-known formula

(arn=¢a+eo+i 5

The identification can be made complete by means of the facts (i) The Weierstrass

argument u is equal to «% %, in our notation, so that y= — @' (»), (ii) M=o+ o’ —u, S0

that ¢ (u® %) ={(wto—u)=— Ly "= fx @, as we easily find when L7'" is

a Y
B. 21
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chosen as in § 138, Ex. i,, (iii) d{u:j%lw, (iv) therefore ¢, (u™ ®)= —(u, (v) the branch
places ¢, @, ¢ are chosen by Weierstrass (in accordance with the formula e,+¢,+¢;=0)
so that the limit of Qu — 1% , when #=0, is 0. The effect of this is that the constant
D is zero.
Ez. iii. For p=2 we have
— & (@ U™ BT ) = L‘l" kLT o Lo b

_Ye-m-z)  p(@—w-m,) Y (p—2—ay) +C
2(w—a) (w-2y) 2(2—2) (@—2) 2(2—2)(2g—2) '

— (2 (ux, a+uxu a;+ux-z, az)_—_—L:: F-+ L‘;n "'+L:” [

_ - 1 o Y2
S o—my) 2@ -a) @y 2(e—w) (ry—a) T 2

and

— & (> BT By = [Tn Oy [E0 0} i,:%-’/

z::, =& (WP Bt B = [P G [P0

where with a suitable determination of the matrix ¢ which occurs in the definition of the
integrals L7 * and in the function 9 (u), we may take (§ 138, Ex. i. Chap. VIL.)

z, z d_’y X z dy
Ll 'L=f,,, ;1—?;()\3.70+2)\,x2+3)‘5x3), L: F=f“ @)‘5.1‘2.

For any values of p we obtain

A A + o )= L7 @ s Lo P01 § fz"“ih.
» b4 4 =1/ ¥
Ezx.iv. We have (§ 210) obtained 2% — 1 formulae of the form
(u|ubr ... % “_
9 (w) o
where Z is an algebraical function, and the arguments u,, ..., %, are given by
u=u" M4 ... 44" %,
the integrals being taken as in § 214, these equations lead to
B.z__-,.=ﬂ .d_x,= Xp—i (Trs Zyy eaey Zp)
du; i Y F'(z,)

Hence we have

X b, a by ay _ 4. _2 Xp—i(""'r; 215 "'9wp)la_z
(,(ulu +otu ) (@(u)—rzl% F’(-Z',.) Za.r,.'
For instance, when #=1, and Z is a constant multiple of /(b,—%,)...... (by—zp), we
obtain
» —i(@ps 2y ey 2 1
Gl == B g, e ) 0
so that

»
=& (u|u® H=L7 M ... +L:’P’ o _rzlé%xr) Xo—i1(@r3 Ty veey Tp)
+ Xp—i (Zr; Zpy ooy xp)]

Z,—b

» _i(@es by 2y, ey 2p)
— J%, o Zp, p Yr Xp t( ry P 1y D,
=Lt L= 3 e :
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By means of the formula

G(u+d8p, p)=n;,  Pr+...... +1i,p Po+0s, 1 Py e +7's,p Py’ + 6 (u| 3 Qp, p),

which is easily obtained from the formulae of § 190, we can infer that the formula just
obtained is in accordance with the final formula of § 214.

Ex.v. We have seen (§ 185, Chap. X.) that in the hyperelliptic case there are 2p ; 1)

even theta functions which do not vanish ; and the corresponding half-periods are con-
gruent to expressions of the form

T +aP O,
It may be shewn in fact that these half-periods are obtained by taking for #,, ..., 2, the
(940; 1) possible sets of p branch places that can be chosen from ay, ..., @y, ¢, ¢, ..., ¢;.

Hence it follows from the formula of the text (p. 321) that if 40x be any even half-period
corresponding to a non-vanishing theta function, we have

$i (3 0x) = (& He)i.
This formula generalises the well-known elliptic function formula expressed by ¢w=7.
To explain the notation a particular case may be given; we have
$i(@1,ry @ops ooy @pp) =14y OF & (WTHD )= — L?.'”' a
and
G (@'h, 25 @'gy 1y oery @'p ) =040y OF G (W) = —ch'r’ .
Thus each of the 2p? quantities 5; ,, s, » can be expressed as (-functions of half-
periods.
Ex. vi. The formula of the text (p. 321) is equivalent to

2
—G (U B U ) = L O L0 O %kz_ :’:1,

where
=2 My + 4" O,
LY r

For example when p=2
0
=6 () +‘15872 (# +-7"2)=Lf" a‘+Lf'z’ o
— () =L M4 L

216. It is easy to prove, as remarked in Ex. iii. § 215, that if
u=unh 4 ... + u®p %,

and the matrix a (§ 188, Chap. VIL) be determined so that the integrals
L?* have the value found in § 188, Ex. i., then

a? dw
@ =t d [T
Therefore, if — B% ¢, (u) be denoted by @,, ; (), we have

@p, i (W) =— aggu(:b) =y 2

p.ﬂ'} a.’ll'k
Yk

r=1Yk a"z
21—2
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and thus, as follows from the definition of the arguments w,

B g Xp—i (T3 Try oeey Tp)

Op, i (u) = i7\2p+1 kitl F ( wk) »

where F (z) denotes (z — @) ... (® — o).

Whence, if # be any argument whatever,

»
» i
xp 2 & ¥ (X5 Tyy -ens Tp)
i=1

5 i—1 . =1 =
i§1x Op.i (W) = 2hapia k§1 F’ () ’
p
= 1‘7\21;1.1 § ka(x)

=1 (@ — ax) B (2)’
but we have
A L i1
ZATen (), El 2 @Pp, i (W)
F (-’IZ) - 7:‘%1 (.’L‘ —_ .’Ek) F/ ((L‘k) ’
Thus

Popnal = 2 a7y, ).
Thus, if we suppose Ay, =4, the values of =, ..., @, satisfying the
inversion problem expressed by the equations
u=utvh 4 L + u %
are the roots of the equation
F(z)=a?—a?7, ,(u)— 2P2Q, p_q (u)—...... - @p,1 () =0.

In other words, if the sum of the homogeneous products of r dimensions,
without repetitions, of the quantities «;, ..., z, be denoted by A,, we have

by = (=) @p, prta ().
Further, from the equation
0% _ YiXp—i (Te5 F1s -oes Tp)
aui ¥ (.’L‘k) ’
putting p for ¢, we infer that

, o F
:’/k = F (.’L'k) 8—17: , = — [a———-(w)]w_ ,
_xk

Ouy

because F (z;)=0. Thus, if we use the abbreviation

or
¥(@)=- 8155 - 2Py 5, p () + 2P0y, g pa (W) + e + @5, 5,1 (W)

we obtain

Y= ().
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These equations constitute a complete solution of the inversion problem.
In the p-functions the matrix a is as in § 138, Ex. i, and the integrals of the
first kind are as in § 214.

We have previously (§ 212) shewn that ,, ..., #, are determinable from
p such equations as

32(u{u“i’“)_+(ai—w‘) oo (a; — ) =(ai—wl)... (a:;— xp)

=t P, 2o, say.
¥ (w) V=P (a;) Q(a;) i
Thus we have p equations of the form
32 (u|ut @ -1 -2
i (Sl () ) @i —ai Py (W) - al @, pa (W) — ... = @p,1(w).
Ez.i. For p=1 we have
2 a1, & 02
1 % - #1,1(w), —“1‘*‘3 51og 3 ().

This is equivalent to the equation which is commonly written in the form
e —e

U=¢€s+ ——l—%.
Pu=cs sn? (u Ve, —ey)
Ex. ii. For p=2 we have

92 @, @
" %)=“12‘“192. 2 ()= 5,1 (w),

2 gy O
2 %—)=%2" 303, 2 (%) — @3, 1 (w).

We may denote the left-hand sides of these equations respectively by p,g,2, 9,2
Eg. iii. Prove that, with u,g>=a,2— a0, , (1) — @, , (%), etc., p= + A —f (ay), We have
“1_#; (99— P 1'®)
p
=045 (u) P15 (u") — P12 (%) P (&) + (a1 + @) [@12 (w) — P15 (W)]+ 0125 [ @35 (1) — P ()]

E=z. iv. Prove that

O, 0, p—10Z;
=30, gyt +5 e
Ez.v. If, with P(z) to denote (x - a,) ...... (% —ay), we put
V= f%P(x) dxz zp P (x) dz
...... + =,
T —ay 2y ap £y 2y
prove that
O D=2 ®
v, t e 5V, = 25u

Ez. vi. With the same notation, shew that if
z dz Zp dx
G=| P@x)7c+...... P(x)=—
fa'l <'Z‘) 2y * +~/’ap (x) 2.1/’

G (ai—ay)....n (a;— zp) )

then
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The arguments Vi, ..., V, are those used by Weierstrass (#ath. Werke, Bd. 1. Berlin,
1894, p. 297). The result of Ex. iv. is necessary to compare his results with those here
obtained. The equation y,=vy (#,) is given by Weierstrass. The relation of Ex. vi.
is given by Hancock (Eine Form des Additionstheorem w. s. w. Diss. Berlin, 1894,
Bernstein).

With these arguments we have

2l %, , ) , o /0 ?
w” (@’-](T) =al-}P Wa‘vﬁ" ()=a -} P (“i)a“l7i<a_vl+ ...... +B—V,,) log 9 (u).

Ez. vii. Prove from the formula

s » dz,
— G (U )+ G (T =L M+k2_1’7k. (@0 @)= (20, ] 5>

where
w=u" Mg L + 4™ %P,
that the function
1 R A a+u) 2 Z u”Lw, _YXp-i (F Byy ey Bp)
 Fla) F(x)
is independent of the place 2. Here ¢ is an arbitrary place and F (&) =(x — &y)...... (z—2p).

;"% obtained in § 138, and
F7“denote D, R 7, prove that in the hyperelliptic case, with the matrix « determined as

in Ex. i. § 138, when the place « is at infinity,

P VMhgpeq [© arde
@ - 2 vy
Hence, when Ay, , =4, shew that the equation obtained in § 215 (p. 321) is deducible
from the equation (Chap. X. § 196)

e s . @, @ zc
Ex. viil. If R?? denote the integral Ir)’ - 233, ; 4]

Foomg.... +EF M= - s e () & (650 ML + P "),
r=1

Ex. ix. We can also express the function §, (z+v)— ¢, (¥) = ¢, (), which is clearly a
periodic function of the arguments u, », in an algebraical form, and in a way which
generalizes the formula of Jacobi’s elliptic functions given by

Z(w)+Z (v)—Z (u+v)=k snusnvsn (u+v).
For if we take places a7y, ..., ¢,, such that
u=ur hy L. + o™ @
v=ur ML + e O
—u—o=ube G U W,

these 3p places will be the zeros of a rational function which has @y, ..., @, as poles, each
to the third order. This function is expressible in the form (My+ NP)/P? where P
denotes ( —a;) ...... (# —a,), M is an integral polynomial in « of order p—1, and ¥ is an
integral polynomial in  of order p. Denoting this function by Z, we have

G @)+ ()= G (o), =L00 b+ L O L2 S 4 L0 W L0 g L0

o rdl 1
=—fw diZ—p i1 Gy =K say,
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by § 154, Chap. VIIL, where I= L& * =y, , [ z “3'3;’-? . Writing Z in the form

(AP= 14 ..., Yy +@P+...... )P
P ’
and taking Ay, ., =4, we find the value of the integral A to be —24.

But from the equation

N2P -4 MQ=(x — 2y)...... (—2p) (= 21) urrns (@—2zp) (@ =) oo (= &)y
where @=(z—c)(z—¢,)...... (# — ¢p), we have, putting a; for z,
Pigi@i =2 ¥ -Q (aij (Aaf-l+...), (=1, 2, ..., p),

where p;=+(a;—x,)...... (@i— %), =V (@i=2)) ... (wi—2zp)y =N (=) ernn (ai—Gn);
solving these equations for 4 we eventually have*

& @+ O~ (u+v>=§1‘z)<7¢5i:_%@'

Ez. x. Obtain, for p=2, the corresponding expression for ¢, (u)+¢; (v)— ¢ (u+v).

Ez, xi. Denoting — by C;, the equation

1
Pa)V-e(
() +8, (0) = (ut )= 3 Copugiams
gives
= r @+, )= 3 Gl 510 =12 ),

where pﬁ" denotes 2% N (@g—21) vue... (4;—&,). It has been shewn that p; is a single valued
r

function of # and it may be denoted by p; (x). Similarly @; is a single valued function
of u+wv, being equal to p;(—u—v). The equation here obtained enables us therefore to
express p;(u+v) in terms of p; (), p;(v), and the differential coefficients of these; for
we have obtained sufficient equations to express @), . (#), ), » (v) in terms of the functions
pi(u), p;(v). A developed result is obtained below in the case p=2, in a more elementary
way.

217. We have obtained in the last chapter (§ 197) the equation
22y (T T = — %> ") p; (%) i (2p) = Dy Doy Rigy .
)

Hence, adopting that determination of the matrix a, occurring in the
integrals L;'", and the function % (u) (§ 192, Chap. X.), which gives the
particular forms for L;"“ obtained in § 138, Ex. i,, we have in the hyperellip-
tic case

i i-1 S (@ @) — 29y,
%?pi,j(“x’“+u”““‘+ ...... + u> %) ot 1] l'—-?(wr_a,—r)z—r,
+1
where f(z, 2z)= pE @'zt [20gi + Agipa (# + 2)].  This equation is, however, in-
i=0

* This equation, with the integrals L:'“ on the left-hand side, is given by Forsyth, Phil.
Trans. 1883, Part 1.
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dependent of .the particular matrix o adopted. For suppose, instead of the
particular integral

@ o 2+1-1
Lf’“,=f TS e e+ 1= 1)
I
we take
Ly -~ s i, kur ",
k=1

where O; ;= Cj, ;; then (§ 138) this is equivalent to replacing the particular
matrix ¢ by ¢+ 4C, where C is an arbitrary symmetrical matrix, and we
have the following resulting changes (p. 315)

R;. (p. 194) becomes changed to Ry ; — 33C; yu; “uy °, so that,

S (@, 2) (p. 195) becomes changed to f(z, 2) — 4 (z — 2)* 22C; pai1z4 1,

S (w) (§189) becomes multiplied by €%,
and thus ; (u) is increased by C; ,u; +...... + (%, pup, and instead of @; ; (u)
we have @; ; () — C;, ;.

Since now u® @+ u®» % = y% * 4 y® %, we have 1p (p+ 1) equations of the
form
i-1 .7 1 f(-’vm ws) 2Jr3/s
22@1,] (u) = 4 (xr _ '”3)2 y

where u=u4 P4 ..., +u %, r=0,1, ..., p, and s=0, 1, ..., p.
Hence, if ¢, e, denote any quantities we obtain by calculation

. i-1 j-1 2%'3/3 f(wr) ‘1;8),
%%pz, Jj (w)ey &2 =R(e)R(e) 22 4G (2 (@) G () ’
here the matrix a is arbitrary, the polynomla,l S («,, «;) being correspond-
ingly chosen, and

GF(E)=(E-e)(t-e)(E-2)(E-m)...(E-2p), B(E)=(E-a)(E—m)...(E—a,).

Suppose now that f(#, 2)=f(x, 2) + 4 (z — 2) EEA% i, a2 al”", where
f(=, 2) is the form obtained in Ex. viii. § 211; then We obtain

i-1 j- -«21*3_- rs s
320050 = 4, )67 =R (e) R o) 53 2S00,
and by Ex. x. § 211 this is equal to
Yr : f(e)R(e)
PR (@) R(e) [ (e — "Jr) (e:— a ) v.4 (w,)] 4(e;—e) R (e,)

f@RE) | flne)
T 4(e — &) R (e (eg) 4 (e, — 92)2’
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and therefore

i-1 j-1 . 2, Yy 2
%?pi’ e @ = 1B (@) B(e) [% (e—z)(e—a) R (""'r)]

__Sfle)R(e) _ S (ex) R (&) + S, e)
4(e,—e) R(e) 4(a—e) R(e) 4(a—e) )

This is a very general formula*; in it the matrix @ is arbitrary.

It follows from Ex. xi. § 211 that if b,, b, be any branch places, we have

o i-1,j-1 _ f(by, b2) N2 (u)ub @ 4 ube 8)
2@,'??% iwb by = 4(b, — by +E S () )

where E is a certain constant (cf. §§ 213, 212). This equation is also inde-
pendent of the determination of the matrix a.

By solving $p(p+1) equations of this form, wherein b,, b, are in turn
taken to be every pair chosen from any p + 1 branch places, we can express

32 ;5 (u) ¢ 'e)”" as a linear function of §p (p +1) squared theta quotients,
g

e, e, being any quantities whatever.

By putting b, at a, that is at infinity (first dividing by by ™), and putting
x also at a, this becomes the formula already obtained (§ 216)

S (ulu ) »

IO al —al 0y p (W) = ... — @p, 1 (w).

Ez.i. When p=1, taking the fundamental equation to be

Pr=dad—gox—gs,
the expression

P+
flz2), = f”’z‘[%zi'*‘)‘ziﬂ(x"'z)]r = —2¢3—gs (v +2) + 4z (2 +2),
and

s —f (2 2) _ 2ys— (P +sH)+4 (22 -22) (x—z)_$+ L (y—8\2
4(x-22 4 (x—2)2 =rrima\pZ)
if $2=428—g,2—g;.
Therefore, by the formula at the middle of page 328, taking the matrix @ to have the
particular determination of § 138, Ex. i,,
wtay—} (3/—%)-

T—x,
(r—e) (z—e5) (#1—¢)) (%1~ &)

@1, 1 (% P+ U Y= — (o) — x) (6, — ) (g — @) (€3 — )

- 2
e (22)'

this is a well-known result.
Ezx. ii. When p=2, we easily find

R(e,) R(e;) - (x—e) (2-¢) 1
G (%) G () (2= &,) (20— @) (7, — 2,)"

* It is given by Bolza, Gottinger Nachrichten, 1894, p. 268.
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and thus the expression
01,1 (@) + (e +65) 1,2 () + €16, 95, 5 ()

is equal to
_(z—e) (w—e) 2519, —F (%1, 7)) (#1—€1) (21— ) 2yy—F (%, )
(#—z) (w—x5) 4 (x;—2p)? (@~ ) (B, —%y)  4(z— )

_(m—e) (m,—e) 2y =f (%, zy) .
(2= &) (@p— ) 4 (w—mp)?

Herein the matrix a is perfectly general. Adopting the particular determination of
§ 138, Ex. i., we have, since the term in f (z, z) of highest degree in z is Ay, 2P +127, =447,
_ say, by putting the place « at a, that is at infinity, the result

@1, 1 (W) + (e +ey) @y, o () + 6,05, o ()= — %1%2(—;{_(%32@ — 2,7y (61 + €5) + €185 (%, + 2),

where u=u"" " 4 4% %,

Ew. iii. Prove, for p=2, when the matrix  is as in § 138, Ex. i., that

P11 () + @12 (W) . (e, +65) + P, () . e1p= & _:1)_(31 = pogs?— (@ _;1)—(‘;2 =) mys’
1~ % 17

pipy o o S, a)
+ a,—a, Tty (@ — aq)?

+e165 (@ +ag) — (6, +6,) 0,0y,
where e, ¢, are any quantities, u=u" % 42" % and p,, p, are as in § 216 (cf. § 213).
Ex.iv. From the formula, for p=2 (§§ 217, 216, 213),
_ M 2, J(a@, ay)
P11 () + @12 (W) - (a1 ag) + P05 (2) . @10, a,— Tty (@, — a5’
where «;, «, are the branch places as before denoted, infer (§ 216, Ex. iii.) that

11 () — P11 (@) + 19 (%) Qg5 (W) = Py (W) P (w) = Euis (91— ¢12* — 1292 >+ 320 ?)

ay—

Prove also that, for any value of «, and any position of z,
P11 (™ - w) ~ @y () + P10 (w0 4 u) Py (%) — P (4™ *+ %) P15 () =0.
Ex.v. Ifb, ..., b,,, be any (p+1) branch places, and ¢, ¢, any quantities whatever,
and L (@)=(x~b;) ...... (@=bp41), M(x)=(@—e)) (x—€5) (#—by) eru... (£— by ), Prove that
g g Go=b [ fOrb) o Plufu “rule “)J
B2u; ()0 e ==L Q2 oy ey Lag,spt T v m ’

where the matrix o has a perfectly general value, 7, s consist of every pair of different
numbers from the numbers 1, 2, ..., (p+1), and E, , are constants.

218. We conclude this chapter with some further details in regard to
the case p =2, which will furnish a useful introduction to the problems of
future chapters of the present volume. We have in case p =1 such a formula
as that expressed by the equation

c(ut+u)o(u—u')

P (u) e (u/) =@ (ul) - (u) 5

we investigate now, in case p = 2, corresponding formulae for the functions

Su+u)Y(@u—u) Y (u4u|u> )Y (u—u')
¥ @) 3 (u) ¥ (w) ’
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by division of the results we obtain a formula expressing the theta quotient
Y (u+u'|ub %)+ Y (u+u') by theta quotients of the arguments u, «’; this formula
may be called the addition equation for the theta quotient & (u ub @) + (w).
Though we shall in a future chapter obtain the result in another way, it will
be found that a certain interest attaches to the mode of proof employed here.
Determine the places x,, @,, #,/, @’ so that
W = UP @ YFar O W= yF s 0y G ;
then, in order to find where the function & (w%>® 4 4% % + %) & 4 y#s &)
vanishes, regarded as a function of z;, we are to put
UTs O @y G B G | UTL» B2 = % @ — s O ey L)
or (@, %, @/, @), 21, 2) = (0, @) ;

thus the places z,, 2, are positions of #, for which the determinant

V=l Py Py !
Play Py ™!
Py Py
Py Py ]

wherein P (z) denotes (z — a,) ( — a,), vanishes. By considerations analogous
to those of § 209 we therefore find, V denoting the determinant derived
from V by changing the sign of ¥/, .,
Y(utu)y@w—v) _ VVP (2,) P () P (/) P ()

8 (w) ¥ (@) (@ —m) (& — a)) (2 — @) (& — o)) (0, — @) (2 — @)

where 4 1s an absolute constant.

3

Now, if 5, =2,/P (,), etc., we find by expansion and multiplication,
VY = (nyma 'V (@1 — 2% (@) — )= [(nymy +1amy) (@1 — @,) (25 —23)
= (g +nam’) (71 — 2y) (2 — )%
and, if a=(2, —2y) (2 - 23), B=(y — 2,) (¥ — 2,), a— B= (1 — ) (¥ — ), this leads to
;V:fo (= n'®) (0 =% a— (i —m%) (n® = 02") B - % Cr=ma)?® (0 =) 5
but, putting 32=4P () @(z), =4(x— a,) (x— ;) (x—¢) (# —¢;) (¥ —¢,), we have
P P P(x)) P(xy o4 " ; ’ '
) ((f 2_) B) E:g) () [(ne®—n2'®) (92> —m"?) a— (ny® = my'%) (n,® — ;%) B]

16 I:Qxl Pz, — Quy Py, Qu,Px— Qu)Px,

— ) )

’ ’
Ty -, 2 — 1y

Qo Pr) — Quv/Px, Quy,Px, — sz’ng]
- . ,

’ 4
Ty~ Tg =Ty

(- ay) (&)
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and this expression is equal to

16 [Qal - Qa+ 1—?%22 (g = 2y) (=) (@ — 3y) (@) - 23)

+ %% (ay—2,) (ag=) (g — ) (2 —x;)],

as may be proved in various ways ; now we have proved (§§ 208, 212, 213) that

(@ =) (2 —2p) =+ V=P (@) @) ¢1% (A=) (a3~ W)= % V=P (ag) @ (a3) g5

and
1 (M= 2=+ 1 oo
* (“fr‘»"’z) Tay—ay gifgs’
where ¢, =29 (u]u® )39 (v), g =9 (u|u™ )=+ 9 (), ¢, s=9 (w|u™ *+u®> )+ 9 (u) ; thus

P (@) P (@) P (x)) P (2
as ¢,°¢,*q)'%¢y = (lil)(al)(f)% )(az)(‘z‘zl Q“(j .

1 9 (u+u)I(u-2u) VVP (@) P (25) P(z)) P (a"z)

A4 P¥E) aB(a—p)?

, we have

P’ (ay) P’ (a) QalQal )
-16 (al_a2)2 Q12 912 ’

where however we have assumed that the sign to be attached to the quotient
(@ —2,) (- 2) =N = P (a) @ (a) g1

is the same for the places /', #,’ as for the places #;, #,. The product &/ — P (a,) @ (a,)
v =P"(a,) @ (a,) is, of course, here equal to — P’ (a,) @ (a,). Now,

P (a)=(a,—ag)=— P’ (a) ;

- Pay o 0 Py 4 19
=16Qa,Qa,| 1 P’aqu 8 ~Pla, 22" q2

thus we obtain

S (u+uw)S (u—u)d ) , )
3% (u) 3(2 (w) ) =14+ ¢’¢"+ ¢’¢" + ¢’

the value of the constant multiplier, 92, =[%(0)], being determined by
putting «’= 0, in which case ¢/, ¢4, ¢, » all vanish.

1f in this formula we write v=w+u® %+« ® in place of u, we obtain, from the
formulae

¥ (v]u 7) Y™ @)
g2 (utu™ T4yt ), =g2 (v = 3
( h =gt h = $@) 7 e@u ttu ) Bt @)’
gz(u_l_ual.a_,_uaz.a)____% ?(w). @ (AU @ B O = — 1
: o (u)” 1 01s” ()’

which are easy to verify from the formulae of § 190, Chap. X. and the table of
characteristics given in this chapter, that

92,9 (utw|u Trut 99 (u—wut Cutt ) +92 4 _ ¢t ¢y’
92 (u]u @4y *) 92 (u') 91* i’ g’

and therefore
2.8 (utu) 3 (u—u') ) , ,
oYY T m (U St W R O T
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where 3 (u) denotes $ (| u® *+u% %). But we can use the result of Ex. iv. § 217, to give
the right-hand side a still further form, namely

Q=%

N [©011 () + P11 (%) + P12 () P35 () — P13 (W) P ()]

Further if 4% ®*+4" *=40,, ,,, where m, m’' consist of integers each either 0 or 1,
we find, by adding }Q,,, ,» to » and «’ and utilising the fact (§ 190) that
A (U4 2) =21, (%) + 201 (),
that
3 (utu)3 (u-u) Pll‘z
P@WPRw) @-

where v=u+4Q,, 1, V=% +%9,, ». Itshould be noticed that

= {6’11 ()= P11 () + 912 (0) Pz (V) — P12 (V) P2 (v),

@i, (@)=~ 1og 9 (u; m, $m’) ; hence

this formula can be expressed so as to involve only a single function in the
form

2'1—% - (’f,i’éi Ze( ?v; 2 = g1 (1) = 0 ) + 91 () P () = 912 (2) @ ()

where o (1) denotes S(ui%@h), and @; ;(u)=— S 8 log o (). In

Weierstrass’s corresponding formula for p=1, the functlon o (u) is de-
termined so that o (u)/u=1 when uw=0. To introduce the corresponding
conditions here would carry us further into detail. (See §§ 212, 213.)

Ex. Prove that if a; denote any one of the branch places ¢, ¢;, ¢, a=(a,-ay),
B=(a3—ay), y=(a, — ap), Py=(a,—2,) (a,— %), etc., Py’ =(a,~2) (ey - ), etc., and

4= [(xl_al)(xl_a?.) (wy— al) (x2 as):l zy— 2y’

_ K /| 1
B_[(-rl"‘”'z) (my—ag)  (wp—ay) (wy— “3):| 2y—y’

with similar notation for 4’, B, then the determinant A can be expressed in the form

%Y Nnye _X
TP(a) P(wy) tp (@) P(=)) 7
where
72X=AA’ (P1P3'+P3P1’)+BB' (P2P3'+P3P2’)—AB (Y“P3+‘YBP3’+P1P3'+P2'P3)
— A'B (yBPs+yaly + Py Py + Py Py).

In this form A can be immediately expressed in terms of theta quotients.

219. Consider, nextly, the function

S (u+u|ub )Y (u—u')
32 (1) B (w')
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This is not a periodic function of u, %. Thus we take in the first place
the function
S (w4 |ut )Y (u—u')
N (u) ¥ (ulut )Y (W)Y (u|um @)’

Put
U= U N A YF G W =yt 0 + u%re a2 H

then, as functions of x,, the zeros of % (u), ¥ (u|u® ) respectively are a, 7,
and a,, @,, the zeros of ¥ (u + «’|u®> ®) are found in the usual way to be zeros
of a rational function of the fifth order having @ «.® as poles, and =, ', .’
as zeros; such a function of #, is A,/P (), where P (2,) = (2, — @,) (¢, — a,) and

A=l (wl —0'1)> o, @, 1 ;’
l 72 ("172 —), ®?, 73,1 ‘
(@ —a), &% @1
! "72I (w2l - a’l)’ 2% @, 1
wherein 7, = y,/P (z,), etc.; the zeros of & (u — ), as a function of #,, are
similarly zeros of a function of the sixth order having @ a,® as poles and
a, x,, 7y, T, for its other zeros; such a function of z, is _A-/P («,), where
2&:" T &1, m, &, 1]|;
Ne L2, N2y %y, 1
1 —mw, —n', @/, 1
-z, —n, @, 1
hence we find

Yt )Y —-v)
S (w) Y (ujub %) Y (w) Y (w|ur )
DA (2, — @) (@ — a) (2) — ay) () — @)
(@ — @) (@ — @) (00 — @) (2 — @) (22 — @) (@) — )’
wherein C is an absolute constant; for it is immediately seen that the two
sides of this equation have the same poles and zeros.

"y

We proceed to put the right-hand side into a particular form; for this purpose we
introduce certain notations; denote the quantities ¢, ¢;, ¢;, which refer to the branch
places other than a;, @y by a,, a4, @; in any order; denote (a;-,) (a;—x;) by p;,
(a;— ) (@;—xy) by p; ; denote by m;, ; the expression

H{amal e e e
and write p;, ; for p; p;m; ;, with a similar notation #’; ;, p';, ;; alsolet P (z)=(x- a,) (- a,),
m=%/P (z,), ete.
Then, by regarding the expression
(a3—a,) (a5 —a5)
ay— 7y) (g —2) (g — ;)

() — 2 (25— ag) (
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as a function of a,, and putting it into partial fractions in the ordinary way, we find that
it is equal to

(g — ay) (2 — a5) 1 ' (x’—a).(.z"—a)
=) (=) gy T ) G )

(75— ay) (5 — ;) |
(w0 —29) (g — 1)’

2 — ) )2 (23— a
P S U Aot A e

+

P (%) — x ) (wy—~ @5)

using then the identities
— (@ — ag) (& — ) = (=) — ) (%) — ag) — (2 — p) (2 — ),
(g — ag) (w1 — 3)) = (24 — p) (%) — a3) — (% — ) (%) ~ @t3),

we are able to give the same expression the form

’ neg ’ ’
2 —a (-271 _‘Z.Z) —1p 2t xz_'”z_ "2 (! — Ty — %y
i’72 ($2 1) (xll _ x2) (x2l _ -’32) imn ( 1 al) xll — 1, i”72 ("‘2 al) xl’ —
x2l_a3 r_ " xll_as ’_ V.
+ 7/ —a, () — ag) (2 — @) + Zy —a, (@ — @) (@) — a5),

where }n,%=(2,— a;) (v, - a,) (#,— a;), ete.; thus

02 (@) — @) (%) — 29)2 - F'2 (' — @) (2 — 29)* — fma? (2 — @) (& — )2

= —(ay—ay) (g — ) (2 = 25)? (%) — &) (w5’ — %3) (%, — 3) (%, — @3)

1 .
p’pe”
1 ’ ’ ’ ’ ’ ’
+ 27t (2 — 209) (w5 — my) {25 — @) (%5 — @3) (21 — ) (21 — @5)

+ () — ag) (@) — a) (25 — a) (25— a3)} -
Now we have, by expansion,

A= (mmatm'ne) (@ —2p) @ =)+ (mm)’ +mang) (@ — @) (0 — @3)
—(mmg +namy’) (2 —23) ()] — ),
Ay= oy (@ ay) (@) — ) (@ — @) () — 2y) =y (% — ay) (1 — ) (0 — ) () — )
(@ — ) (@ = 23) (@5 = 23) (@, = ) = g (= ) @ — ) (= ) (= )
and in the product AA there will be two kinds of terms
® —n'ny (m—1g) ¥ (2 — ) (% + 25 - 2a,),

where y denotes (2, —x,) (%, — %) (xy — #,) (xy — 2,), there being four terms of this kind
obtainable from this by the interchange of the suffixes 1 and 2, and the interchange of
dashed and undashed letters,

() my (2 — =) (21 = 21) (21— @) {2 (%) — @) (%) — @)+ 1'% (25 — @) (#) — 2p)?
—n9? (B~ @) (%) —2y)%,

there being three other terms similarly derivable from this one.
Consider now the expression

(@3~ ay) (g~ a;) (P1aP3 Py + P 1305 P1) + ProPol s s5+ P 1205 PoalPass

and, of this, consider only the terms

(@s—ay) (ap— a5) Pr3P3P) +P12PoP 25V a5 5
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by substitution of the values for p, etc., and arrangement, we immediately find that these
terms are equal to

mn ('] 2) ’ ’
= 3py PPy mz—)(—;l—%;)_g (@) +24' — 2a,)

» 7 (%1 — @) (%3 — a3) — 05 (B, — ) (7, — )

=3 (ay—ay) (ay—a;) py py 7y —
+ip12) s’ ﬁi‘?@ {(@ = ay) (1 — @3) () — ay) (%' — a)

+ (@) —ay) (&) — ) (2 — a5) (% — ag)} 5

this expression, as we see by utilising an identity which was developed at the commence-
ment of the investigation, is equal to

112 (11— 79) ’ ' 1 PPy i )
—iP PSPy (21— 25) (%) — y)? (o +y — 2ay) + (1= &) () — =y (%) — By) () — 2,)

where A denotes
01 [0 % () — @) (w0 — )24y 2 (' — @) () — 29) — % (2 — ) (@) — 25)?]
=g [19% (%' — ay) (2 =22 40,2 (%) — @) (@) — @) = 1.? (2, — @) (&) — )]

Comparing this form with the terms occurring in the expansion for A4, we obtain the
result _
1 PPy PIRy PN,
H @y — ) () — @) ) () — y) () — 9) (29 — @) (0 — )

=(ay--ay) (g — ;) (P13 P3 1 +P'1305P1) + P12 P2 P23 Pas + P12 P2 Po3 Pas -

Now we have (§§ 216, 213, 212) the formulae p2=p;q? qq'_qj +(a;— ;) P2;12 ; we

shall therefore put p;=M;q;, p;, ;=N jq; ;; hence by the formula (p. 334) the quotient
3 (u+'|u™ ") 3 (u—u')
9 (u) 9 (w)
is a certain constant multiple of the function
(ay—ay) (ay— ;) My My Nyg (9139591 +9'1395 90 + V1o Nos Vs M5 (91592923915 + 01292 903 945)-

Also we have M2=p;, N?% ;= +pu;u/(a;~a;), where p;=++/ —f' (@;) when i=1 or 2,
and p;=++7"(a;) when =3, 4, 5. Hence it is easy to prove that the fourth powers
of the quantities (ay— ay) (ay— a;) My My N1y, Ny Noy Nyg M, are equal.

Hence we have

S (u 4+ w'|ut )Y (u— o’ P ;s roy
A ( 8 () Sg’ (ulg ) =€ (913%91 + 9 3959) + 01:9:9'n¢ 5+ G129 9%,

where A is a certain constant, and e a certain fourth root of unity. The
value of e is determined by a subsequent formula.

220. The equation just obtained (§ 219) taken with a previous formula
gives the result

o Y (w4 | ut ") € (e + 919 0) + 11909 %G w + 9129, %3(145
Y (u+u) 1+ ¢:°," + ¢°¢:" + ¢1’que"™
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and limiting ourselves to one case, we may now take the places a,, a,, as to
be, respectively, ¢;, ¢,, ¢, and introduce Weierstrass’s theta functions;
defiming* the ten even functions N;(u), ¥y (u), ..., V() to be respectively
identical with the functions Y (u), Vqe (), ..., Veq, (w), and the siz odd functions
Nz (w), ..., ¥ (u) to be respectively the negatives of the functions Naq, (%), ..., Vee, (),
the right-hand side of the equation is equivalent to
E (3'53023 01 S-’12 + S’.’t’ ,02%01 S].2) + S'0413'2’4%' 14%3 + S"MS’M 143-3
S0+ 0tV + 2V 4+ 0202

here & denotes ©(u), ¥ denotes ¥ (w’), and C is an absolute constant.
This equation may be called the addition formula for the function ¢,, and is
one of a set which are the generalisation to the case p=2 of such forinulae
as that arising for p =1 in the form
snucnw dn %' + snu’ en udnu

1 — k?sn?usn®u’

sn (u+u')=

By interchanging the suffixes 1 and 2 we obtain an analogous expression
for & (u+w'|u @)+ (u +u'); if in this expression we add the half-period
u%:® to u we obtain an expression for the function N (u +u'|u® @+ u%:%)
+ Y (u+u|un:®); and if this be multiplied by the expression just developed
for the function & (u+w|u®:?)+Y(u+u) we obtain an expression for
Y (u+ o' |ut ¢+ u% %)+ Y (u+ '), and it can be shewn that the form obtained
can be reduced to have the same denominator as in the expression here
developed at length. The formulae are however particular cases of results
obtained in subsequent chapters, and will not be further developed here.
For that development such results as those contained in the following
examples are necessary; these results are generalisations of such formulae
as sn (u + K)=cn u/dn u which occur in the case p=1.

Ex. Prove, if ¢;(w)=29 (u|u® %)= 9 (w), ¢ ;@)=3 (u|u® *+u% %) +9(u), etc., that
(see the table § 204, and the formulae Chap. X. § 190)

_9,2(¥)

g (uru™ Y= — " /g, (u), gy (utu V)= O
u+ o an +uuzy @ %7'1 71 (u) ,
% )= )

and obtain the complete set of formulae.

221. In case p =2 there are five quotients of the form ¥ (u|u®®) + % (u),
and ten of the form & (u|u®> *+ u®» )+ ¥ (u), wherein b, b,, b, denote any
finite branch places. Since the arguments w may be written in the form
uP» @4 y% % the fifteen quotients are connected by thirteen algebraic
relations. In virtue of the algebraic expression of these fifteen quotients,
they may be studied independently of the theta functions. We therefore
give below some examples of the equations connecting them.,

* Konigsberger, Crelle, Lxiv. (1865), p. 22. In the letter notation (§ 204) the reduced charac-
teristic symbols are such (§ 203) that each of k,, ¥/, is positive, or zero, and less than 2. In
Weierstrass’s notation the reduced symbols have the elements k', positive, or zero, and the elements
k, negative, or zero.

B. 22
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Ez. i. There is one relation, known as Gopel's biquadratic relation, which is of
importance in itself, in view of developments that have arisen from it, and is of some
historical interest.

9 (u|u® ) 9 (w)u® ot %) 9 (u]u Cu™ )

Let qe= S(u) y qa“ a,= K (u) ~ s 9,,-“ 6= 3 (u) T

be three functions whose suffixes, together, involve all the five finite branch places. Then
these three functions satisfy a biquadratic relation, which, if the functions be regarded as
Cartesian coordinates in a space of three dimensions, represents a quartic surface with
sixteen nodal points.

In fact, if p, denote #/(a - 2,) (a—z,), and p,, ,, denote the function

K21 _
épb‘ P, [(‘”1 =by) (w=by) (2— (x2 - bz)] 2y — 2,
we have

2
Ps,, b,

=4("'72 —by) (wp— by) (%1 — €1) () — €5) (% — €3) + 4(#y — by) (w1 — by) (%3 — 1) (T3 — €5) (B —€3) — 24175
4 (2 — p)? ’

where by, by, €, €,, e, are the finite branch places in any order; and if this be denoted by
¥ (7, ) 2?1?2
4 (- z,)?
e . . 0 of (x)
it is immediately obvious that y (z, )=2y2, =2f (x), say, and % Y (z, 2) =55 thus
there is (§ 211, Ex. vii.) an equation of the form

2 _ f@ %) =201,

b b 4 (7 — ) + Az, + B (2, +25)+C,

where f (2, ,) is a certain symmetrical expression of frequent occurrence (cf. § 217), the
same whatever branch places b,, b, may be, and 4, B, C are such that { (z;, ;) vanishes
when for #,, #, are put any one of the four pairs of values (b;, b,), (&, €3), (€3, €;), (€15 ) ;

therefore the difference between any two expressions such as 1’2, s,» formed for different

pairs of finite branch places, is expressible in the form Lz, z,+ M (z,+2,)+ N ; thus there
must be an equation of the form

Pa,,c, Z’a,,a2+FPc“cg+wc+p,
where A, p, », p are independent of the places 2, 5.
Similarly
Pay, 6= LY ) N e
But also it can be verified that

Py, a,Pc,, ;" Pa,, ¢, Pay, ¢,= (ag—e¢y) (@1—¢) Pe, =kpe, SaY ;
thus we have

2 2 2 ., 2 0,2 ;) 2 G
[7\}7““ ai+l"p¢n 03+1p¢+p][xpa|, a,.z+l"'pc,, cg+vpc+p]=[pa|, a,pcl,cg—Kpc]z’

and when the expressions Pq,, o, €te., are replaced by the functions a,, ap et (§ 210), this

is the biquadratic relation in question. This proof is practically that given by Gopel
(Crelle, xxXVv. 1847, p. 291). '
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Ex.ii. Prove that

2 2
.pu _p
1y Qg a5 & 2 _
ay—0; +P,,=(4—ay) (a,—¢cy),
2 2
Pe,e,”Pa
15 C2 1) € 2 __ (o _
co—a, +pc|_(cl o) (e —ay),
2 2 2
Pa, P, P,

@—a)@m—o) T a0 T ema) e

and hence develop the method of . i. in detail.

Exz.iii. For any value of p prove

(a) that the squares of any p of the theta quotients ¢, =9 (u|u>?)+9(u), are
connected by a linear relation,

(B) that the squares of any p of the theta quotients
90> 96,60 Ib,5,> Tb,b,> *==++-

are connected by a linear relation. (Weierstrass, Math. Werke, vol. 1. p. 332.) These
equations generalise the relations of . ii.

Ez. iv. Another method of obtaining the biquadratic relations is as follows ; if
—9‘1 (v) — 2821riv (n+q)+inr (n+q')2+2mig (n+¢)
0, (V)= 5V -+ @) Himm (n-+q 2+ 2mig (n+4)
V=43, and, in Wei(;rstrass’s notation,
w=39;(v), y=30, (v), 2=94(v), t=35(v),

sothatz : y : 2z 1 t=1 : ¢, e 9, ¢ ¢ 9o and if @, b, ¢, d denote the values of 2,3, z, ¢
when »=0, and the linear function cz+dy—az—0b¢ be denoted by (¢, d, —a, —b), etc,,
then it can be proved, by actual multiplication of the series, that

02(V)=(¢d, —a, =b), 6,2 (V)=(d, —¢, =b,a), ©x*(V)=(b, —a,d,—c)
952(17)=(a’ b, ¢, d) ’ e12 (V)=(, —a, —d, o), 9M2(V)=(a, b, —¢, —d).
Relations of this character are actually obtained by Gopel, in this way. It will be
sufficient, for the purpose of introducing the subject of a subsequent chapter, if the

method of obtaining one of these relations be explained here. The general term of the
series Oy, (V) is (cf. the table § 204 and § 220)

_ gmiv(nt @)t dinT (ntq' P+ 2mig (7I+q'),
where ¢'=%(1, 0), ¢g=% (1, 0), namely is

- e’"i [0, (0, +8) + vy 1] +3mi [11, (0 +3P+ 215 (0, +3) (15) H792 B2 +-imr (1, +3) ;

thus the exponent of the general term in the product 6y,2 (V) is niL, where L is equal to

oy (my+my+1) + vy (ng+ mg) + 7y [(5, 432 + (g + 1)+ 712 [0y +8) g+ (2 +4) m,]
$rop (02 +my?) +my +my +1;
22—2
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there are therefore four kinds of terms in the product according to the evenness or
oddness of the two integers m,+m,, n,+m, Consider only one kind, namely when
1y +my, ny-+m, are both even, respectively equal to 2¥,, 2V, say; then L is equal to

20y (V) +3) + 20, Ny 47y (N 4+3)2 4+ 2rpy (N +3) Nyt ron V2

n, —m,\2 ny—m;\ (10— m. Tig — Mg\ 2
po (A7) s (157) (57) va (*5™)

+2N,+1;

—my

i n Ny — M,
if now we put _1,,27_ =, 22"

=M,, we have

=N+ My, my=N~M,, ny=Ny+ Mz, my=Ny—My;

thus, to any assigned values of the integers N,, N,, M;, M, there correspond integers
7y, My, My, My such that n, +m,, 2.+ m, are both even ; therefore, as

27y (N +3) +2miv, Ny timr, (N1+3)24-2imr, (N, +3) Ny Himry, N2

is a term of the series 9 (z i % (ég)) , that is, of 9, (v), and

e’t'mnﬂllz“'%ﬂl"mﬂl My+7 M52

is a term of the series 3(0 i % (%)) , that is, of 9, (v), and ™M+ = _1 it follows that

the terms of ©,,% (V') which are of the kind under consideration consist of all the terms of
the product —39;.9), (v), or —ay. It can similarly be seen that the three other sorts of
terms, when n,+m, is even and n,+m, odd, when #n;+m,; is odd and n,+m, odd or even,
are, in their aggregate the terms of the sum bz +dz— ct.

We can also, in a similar way, prove the equations
00305303 (V) 014 (V) +68;0; (V) 05 (V) =6,,040, (V) 034 (V),
632 =2 (ac— bd), ©,52=2 (ad+bc), ©,2=2 (ab— cd), ©y>=2 (ab+cd),
Oy =a?—b2—c?+d? O,2=a2- b2+ c?-d?
6,3 denoting 6, (0), ete.

Hence the equation of the quartic surface is obtainable in the form

N2 (ac—bd) (ad+bc) (¢, d, —a, —b)(d, —¢, —b, a)
+'\/(a2“b2_62+d2) (ab"Cd)(b, —a d) _c) (a'r b: ) d)
=4 (a?-b:+c2—d?) (ab+cd) (b, —a, —d, c) (a, b, —c, —d).

A relation of this form is rationalised by Cayley in Crelle's Journal, Lxxx11. (1877),
p. 215. The form obtained is shewn by Borchardt, Crelle, Lxxx111. (1877), p. 239, to be the
same as that obtained by Gopel. See also Kummer, Berlin. Monats. 1864, p. 246, and
Berlin. Abhand. 1866, p. 64; Cayley, Crelle, LXxX1v., xCIV. ; and Humbert, Liouville, 4™ Sér.,

t. 1x. (1893); Schottky, Crelle, cv. pp. 233, 269; Wirtinger, Untersuchungen wber Theta-
Sfunctionen (Leipzig, 1895).

The rationalised form of the equation, from which the presence of the sixteen nodes is
obvious, is obtained in chapter XV. of the present volume.
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Ex.v. Obtain the following relations, connecting the ratios of the values of the even
theta functions for zero values of the arguments when p=2. They may be obtained from
the relations (§ 212)

(b—y) b - = £V PP F () 32 (ufud %)+ 92 ()
by substituting special values for x, and z,.

U R R AR R A R AR A
=(ey—¢y) (Gg—€) (¢—¢cy) . (ay—ag) : (ay—ay) (@z—c)(c—ay). (c;—¢y)
Pa—ag) (@g—e)) (G —a) - (=€) & (@ —ay) (a2 —¢5) (e3—ay) . (¢ —¢)
c3—0) (—ay) (@ —cg). (6 —ap) : (c—cp)(e,—ay) (@, —c). (c;— ay)
(=) (cg— ) (@y—c). (er—ay) : (c—¢) (61— ay) (@y—c).(cy—ay)
(e1— ) (z—ag) (ag—¢y) . (@ — ) : (e1—¢) (3= a)) (@ —¢y) . (@ —¢).
Infer that
.9;29:2% : 9:, cﬂial : sis; =(ay—c)? : (—ay)? : (ay—ay)
We have proved (§§ 210, 213) that
W a1 94, (4) Jaye, (0) + Ve, — @ 9a, (1) Ia,6, () + ¥ a1 = a3 %5, () Sa,a, (u)=0
and we have in fact, as follows from formulae developed subsequently, the equation
ca,90,0,3a, (0) Ya,¢, (¥) +3a,6,9ca,Ya, (4) Ya, ¢, () =9c9c, I¢, (%) I4,a, (%)

Ex. vi. Obtain formulae to express the ratios of the differential coefficients of the odd
theta functions for zero values of the arguments.

L. vii. Prove that
sw)% 9 (ulu® S+’ 4= 9 (uju” Cul ) o 9 () =en/By =0, 3 w|u’ %) 9 (u|uPr @),
2
wherein b,, b, are any two finite branch places, and € is a certain fourth root of unity.

This result can be obtained in various ways; one way is as follows: Writing
w=u" B % utul “=p, and v=u® " 4+u? ¥, we find, by the formula 9 (u+9;)
=g (u; P), that

0 9 () ubrr @ gopuber @
a—uzlog(—l—m——)=Lgnbz+<-2(v_ubz, V=& (v — ub,, ),
and, by the formula expressing g, (u® ™— % ™ ...~ ™) ¢, (™ uF ™

— u> ™p) by integrals and rational functions, the right~hand side is equal to

by —b, 1
b, 5—2 [(21 —=by) (- b)) (22 1) (22 z):l

where s;, z; are the values of y, & respectively at the place z;, and s,, z, at the place z,.
This rational function of z;, z, is however (§ 210) a certain constant multiple of

9 (v]u? *+uP ®)/9 (v), and hence the result can immediately be deduced.

One case of the relation, when b,, b, are the places a,, a,, is expressible by Weierstrass’s
notation in the form

950 g 0 () = oy () - 94 (1) =¥ =5 g () B 0



342 FORMULA FOR DIFFERENTIAL COEFFICIENTS. (221

and it is interesting, using results which belong to the later part of this volume, to
compare this with other methods of proof. We have*

94900y () 95 (1= 0) =95 () I0q () 3, (v) 36 (2) + 95 () I15 () Ios (2) Iy (0)
+35 (2) Soq () 9 () 9 () + 35 (v) 313 () Sog (1) Iy ()
where 9, 9, denote 9,(0), 9,(0), and the bar denotes an odd function; if, herein, the
arguments »;, v, be taken very small, we may write 3 (v +v) =9 (u)+ (1;1 8%1 + v, 2%2) 9 (u).

Thus we obtain, eventually, remembering that the odd functions, and the first differential
coefficients of the even functions, vanish for zero values of the arguments,

) , 3.9 9,9
I () ¥oq (w) = Jg4 () I3 () = 96 904 3y (w) 9o (w)+ :92‘913 oz () Iy (w),
4vo 30

where 9 (u) =5% 9 (u), $=29(0), 9=9(0).
2
Thus, by the formula of this example, putting ¥ =0, we infer that

0 a,a oy @ —
[a—uZS(qu +u ):L=0—0

or 9'4,=0, and the result of the general formula agrees with the formula of this example.

In the cases p>2 we have even theta functions vanishing for zero values of the
argument ; here we have one of the differential coefficients of an odd function vanishing
for zero values of the argument.

Note. Beside the references given in this chapter there is a paper by Bolza,
American Journal, xvir. 11 (1895), “On the first and second derivatives of hyper-
elliptic o-functions” (see dcta Math. xx. (Feb. 1896), p. 1: “Zur Lehre von den hyper-
elliptischen Integralen, von Paul Epstein”), which was overlooked till the chapter was
completed. The fundamental formula of Klein, utilised by Bolza, is developed, in
what appeared to be its proper place, in chapter XIV. of the present volume. See also
Wiltheiss, Crelle, xc1x. p. 247, Math. Annel. XXXI. p. 417; Brioschi, Rend. d. Acc. det
Lincei, (Rome), 1886, p. 199; and further, Konigsberger, Crelle, Lxv. (1866), p. 342;
Frobenius, Crelle, Lxxx1x. (1880), p. 206.

To the note on p. 301 should be added the references; Prym, Zur Theorie der
Functnen. in einer zweibliitt. Flicke (Ziirich, 1866), p. 12; Konigsberger, Crelle, Lx1v. p. 20.
To the note on p. 296 should be added; Harkness and Morley, Theory of Functions,
chapter viir, on double theta functions. In connection with § 205, notations for theta
functions of three variables are given by Cayley and Borchardt, Crelle, LXXXVIL (1878).

* Krause, Hyperelliptische Functionen, p. 44; Konigsberger, Crelle, Lx1v. p. 28.



