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CHAPTER IV. 

SPECIFICATION OF A GENERAL FORM OF RIEMANN'S INTEGRALS. 

38. IN the present chapter the problem of expressing the Riemann 
integrals is reduced to the determination of certain fundamental rational 
functions, called integral functions. The existence of these functions, and 
their principal properties, is obtained from the descriptive point of view 
natural to the Biemann theory. 

I t appears that these integral functions are intimately related to certain 
functions, the differential-coefficients of the integrals of the first kind, of 
which the ratios have been shewn (Chapter II . § 21) to be invariant for 
birational transformations of the surface. I t will appear, further, in the 
next chapter, that when these integral functions are given, or, more pre­
cisely, when the equations which express their products, of pairs of them, in 
terms of themselves, are given, we can deduce a form of equation to re­
present the Riemann surface ; thus these functions may be regarded as 
anterior to any special form of fundamental equation. 

Conversely, when the surface is given by a particular form of fundamental 
equation, the calculation of the algebraic forms of the integral functions may 
be a problem of some length. A method by which it can be carried out is 
given in Chapter V. (§§ 72 fT.). Compare § 50 of the present chapter. 

It is convenient to explain beforehand the nature of the difficulty from which the 
theory contained in §§ 38—44 of this chapter has arisen. Let the equation associated 
with a given Riemann surface be written 

» + ,41 " 1 + *.. + «=0, 

wherein A, AXi..., An are integral polynomials in x. An integral function is one whose 
poles all lie at the places # = x of the surface; in this chapter the integral functions 
considered are all rational functions. If be an integral function, the rational 
symmetric functions of the n values of corresponding to any value of x, whose 
values, given by the equation, are — AJA, A^/A, -A3/A, etc., will not become infinite 
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for any finite value of x, and will, therefore, be integral polynomials in x. Thus when 
y is an integral function, the polynomial A divides all the other polynomials Au 

A g, , An. Conversely, when A divides these other polynomials, the form of the 
equation shews that y cannot become infinite for any finite value of x, and is therefore 
an integral function. 

When is not an integral function, we can always find an integral polynomial in 
x, say /3, vanishing to such an order at each of the finite poles of y, tha t ßy is an 
integral function. Then also, of course, ß2y2, ß3y3, . . . a re integral functions: though it 
often happens that there is a polynomial ß2 of less order than ß\ such tha t ß2y

2 is 
an integral function, and similarly an integral polynomial ß3 of less order than ß3, 
such that ß3y

3 is an integral function ; and similarly for higher powers of y. 

In particular, if in the equation given we put Ay=rj, the equation becomes 

ri
n+Alrjn-1+A2Ar}n-2+... +AnAn-1=Oi 

and Tj is an integral function. 

Suppose that is an integral function. Then any rational integral polynomial in 
x and is, clearly, also an integral function. But it does not follow, conversely, 
though it is sometimes true, tha t every integral rational function can be written as an 
integral polynomial in x and y. For instance on the surface associated with the 
equation 

y3 + By2x+Cyx2+Dx3-E(y2-x2)=0, 

the three values of at the places x=0 may be expressed by series of positive integral 
powers of x of the respective forms 

y=x+\x2+...y y= - # - f / i # 2 + . . . , y=H!+vx+.... 

Thus, the rational function (y2 — Ey)/x is not infinite when x=0. Since is an 
integral function, the function cannot be infinite for any other finite value of x. 
Hence (y2 - Ey)jx is an integral function. And it is not possible, with the help of the 
equation of the surface, to write the function as an integral polynomial in x and y. 
For such a polynomial could, by the equation of the surface, be reduced to the form 
of an integral polynomial in ss and of the second order in ; and, in order tha t such 
a polynomial should be equal to (y2-Ey)fx, the original equation would need to be 
reducible. 

Ex. Find the rational relation connecting x with the function ij=(y2-Ey)/x ; and 
thus shew that rj is an integral function. 

39. We concern ourselves first of all with a method of expressing all 
rational functions whose poles are only at the places where x has the same 
finite value. For this value, say a, of x there may be several branch places : 
the most general case is when there are places specified by such equations as 

x - a = i!°^\ ... , x - a = tk
wk+1. 

The orders of infinity, in these places, of the functions considered, will be 
specified by integral negative powers of t1} . . . , fc respectively. Let F be 
such a function. Let a + 1 be the least positive integer such that (x — aY+1F 
is finite at every place x = a. We call a- + 1 the dimension of F. Let 
f(xt y) = 0 be the equation of the surface. In order that there may be any 
branch places at x = a, it is necessary that df/ should be zero for this value 
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of x. Since this is only true for a finite number of values of x, we shall suppose 
that the value of x considered is one for which there are no branch places. 

We prove that there are rational functions hj, . . . , hn^ infinite only at 
the n places x = a, such that every rational function whose infinities occur 
only at these n places can be expressed in the form 

f-̂ —, l) + ( - 1 , l) + ...+(^—, l) _, (A), 
\x - a A \x-a' Ai V# - a' An_! 

in such a way that no term occurs in this expression which is of higher 
dimension than the function to be expressed : namely, if a + 1 be the dimen­
sion of the function to be expressed and 04 + 1 the dimension of hi, the 
function can be expressed in such a way that no one of the integers 

X, Xi + O-! + 1, . . . , Xn_! + OVl-l + 1 

is greater than a + 1. We may refer to this characteristic as the condition 
of dimensions. I t is clear conversely that every expression of the form (A) 
will be a rational function infinite only for x = a. 

Let the sheets of the surface at x = a be considered in some definite 
order. A rational function which is infinite only at these n places may be 
denoted by a symbol ( , R2, . . . , Rn), where Rlf R2j . . . , Rn are the orders of 
infinity in the various sheets. We may call Rly R2> . . . , Rn the indices of the 
function. Since the surface is unbranched at x — a, it is possible to find a 

certain polynomial in , involving only positive integral powers of this 
X — OJ 

quantity, the highest power being ( j n, such that the function 
\X OJ' 

(R1,R2,...,Rn)-(^-, l) =(&,£,, ...,$_„ 0) say (i), 
\x — a /Rn 

is not infinite in the nth sheet at x = a. 

Consider then all rational functions, infinite only at x = a, of which the 
nth index is zero. I t is in general possible to construct a rational function 
having prescribed values for the (n — 1) other indices, provided their sum be 
p + 1. When this is not possible a function can be constructed* whose indices 
have a less sum than p+1, none of them being greater than the prescribed 
values. Starting with a set of indices (p + 1, 0, . . . , 0), consider how far the 
first index can be reduced by increasing the 2nd, 3rd, . . . , (n — l)th indices. 
In constructing the successive functions with smaller first index, it will be 
necessary, in the most general case, to increase some of the 2nd, 3rd, . . . , 
(n — l) th indices, and there will be a certain arbitrariness as to the way in 
which this shall be done. But if we consider only those functions of which 
the sum of the indices is less than p + 2, there will be only a finite number 

* The proof is given in the preceding Chapter, (§§ 24, 28). 

. 4 
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possible for which the first index has a given value. There will therefore 
only be a finite number of functions of the kind considered*, for which the 
further condition is satisfied that the first index is the least possible such that 
it is not less than any of the others. Let this least value be rlt and suppose 
there are functions satisfying this condition. Call them the reduced 
functions of the first class—and in general let any function whose nth index 
is zero be said to be of the first class when its first index is greater or not 
less than its other indices. In the same way reckon as functions of the 
second class all those (with nth index zero) whose second index is greater 
than the first index and greater than or equal to the following indices. Let 
the functions whose second index has the least value consistently with this 
condition be called the reduced functions of the second class; let their 
number be h2 and their second index be r2. In general, reckon to the ith 
class ( < n) all those functions, with nth index zero, whose ith index is 
greater than the preceding indices and not less than the succeeding indices. 
Let there be hi reduced functions of this class, with ith index equal to -. 
Clearly none of the integers ru . . . , rn_j are zero. 

Let now (sx ... ^_! n % i ... *»-i 0), 

where n > *lf . . . , n > 5 -_ n > si+1, . . . , r< > sn-lt 

be any definite one of the hi reduced functions of the ith class. Make a 
similar selection from the reduced functions of every class. And let 

($! ... Si- Ri 8i+1 ... $n_! 0) 

be any function of the ith class other than a reduced function, so that 

Ri> $ b . . . , Ri > SÌ-I, Ri > Si+i, . . . , Ri > Sn-!. 

Then by choice of a proper constant coefficient \ we can write 

(& ... Si-j Ri Si+1... _! 0) - X (x - a)~{Ri~ri) (sx... «i_! n8i+1... **_! 0) 

in the form 

(2\ ... Ti-xRi Ti+1... Tn__ly Ri — n) (ii), 

where R/ < Ri) may be as great as the greater of Sly Ri — {n- sx\ but is 
certainly less than Ri\ and similarly T2, . . . , 2^-i are certainly less than Ri ; 
while Ti+1 may be as great as the greater of Si+1, Ri — fa — Si+1), and is there­
fore not greater than Ri\ and similarly Ti+2>..., ì ^ are certainly not greater 
than Ri. 

* Functions which have the same indices are here regarded as identical. Of course the 
general function with given indices may involve a certain number of arbitrary constants. By the 
function of given indices is here meant any one such, chosen at pleasure, which really becomes 
infinite in the specified way. 
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Further, if ( , 1 ) be a suitable polynomial of order Ri — ri in 
\x — a /Ri - ri 

(x — a) -1, we can write 

\x — a /Ri-ri 

= ( 1 . . . <_1 " « ^ , . . . £'„_,<)) (iii), 

where R"i may be as great as the greater of Ri, Ri — rÌ3 but is certainly less 
than Ri ; S\ may be as great as the greater of 1\, Ri — -, but is certainly less 
than RÌ; and similarly$'2, . . . , #V-i are certainly less than Ri; while S'i+1 

may be as great as the greater of Ti+1, Ri — r^, and is certainly not greater 
than RÌ; and similarly S'i+2t . . . , S'n^ are certainly not greater than Ri. 

Hence there are two possibilities. 

(1) Either (S'1...S'i_1R"iS'i+1...S'n-10) is still of the ith class, 

namely, R'i > S1} . . . , R!\ > 8\_ R!\ > S'i+1, . . . , R'i > £'n_i, 

and in this case the greatest value occurring among its indices (R'i) is less 
than the greatest value occurring in the indices of ($ j . . . SÌ-I Ri Si+1... Sn-i 0). 

(2) Or it is a function of another class, for which the greatest value 
occurring among its indices may be smaller than or as great as Ri (though 
not greater) ; but when this greatest value is -, it is not reached by any of 
the first indices. 

If then, using a term already employed, the greatest value occurring 
among the indices of any function ( i ^ , . . . , Rn) be called the dimension of 
the function, we can group the possibilities differently and say, either 
(S\ ... #V.i R'i S'i+1 ... S'n-i 0) is of lower dimension than 

(#! ... Si_! Ri Si+1 . . . Än_! 0), 

or it is of the same dimension and then belongs to a more advanced class, 
that is, to an ( + k)ih class where > 0. 

In the same way if (^ ... ti_1 - ti+1 ... tn-x 0) be any reduced function of 
the ith class other than (sa ... Si^r^Si^ ... sn^ 0), we can, by choice of a 
suitable constant coefficient //,, write 

(ti . . . ti—i Ti ti+i . . . _! 0) — fl (Si . . . 5 _! Vi Si+i . . . 5n_2 0 ) 

= (^1.. , -_1
 , ^ + 1 . . . _10) (iv), 

where \< 1 t\ ... £' _1 may be respectively as great as the greater of the 
pairs (ti, Si) ... (ti-l9 Si-i) but are each certainly less than -, while similarly 
no one of t'i+i, ... , t'n-i is greater than -. 

The function (t\ ... ^_i ?%* ti+i... #'n-i 0) cannot be of the ith class, since 
no function of the ith class has its ith index less than - : and though the 
greatest value reached among its indices may be as great as n (and not 
greater), the number of indices reaching this value will be at least one less 

4—2 
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than for (*!... Si^ViSi+j... V i 0). Namely ( ^ . . J V i ^ ^ + i - d O ) is 
certainly of more advanced class than (s1... s ^ r̂  Si+1... sn_! 0), and not of 
higher dimension than this. 

Denote now by h1} ,.., ^ the selected reduced functions of the 1st, 
2nd, . . . , (n — l)th classes. Then, having regard to the equations given by 
(ii), (iii), (iv), we can make the statement, 

Any f unction ( ... $;_! Ri Si+1... Sn-! 0) can be expressed as a sum of(l) 
an integral polynomial in (x — a) -1, (2) one ofh1} . . . , An_j multiplied by such 
a polynomial^ (3) a function F which is either of lower dimension than the 
function to be expressed or is of more advanced class. 

In particular when the function to be expressed is of the (n — l)th class 
the new function F will necessarily be of lower dimension than the function 
to be expressed. 

Hence by continuing the process as far as may be needful, every function 

f=(S1... fi>i_! Ri Si+i... Sn_j 0) 

can be expressed in the form 

( — , l ) + ( — , l ) *! + ... + f - ^ - , l ) An-i+^i, (v) 
\x-a J\ \œ — a A1 \x-a J\r.1

 v 

where Fi is of lower dimension than ƒ 
Applying this statement and recalling that there are lower limits to the 

dimensions of existent functions of the various classes, namely, those of the 
&! + ... + &n_! reduced functions, and noticing that the reduction formula (v) 
can be applied to these reduced functions, we can, therefore, put every func­
tion f=(S1... SÌ-I Ri Si+i... #n_! 0) into a form 

( — , l ) + ( — , l ) Ai + ... + f-^- , l ) *„_,. \x-a J\ \x-a J\x \x-a J\nr_1 

Now it is to be noticed that in the equations (ii), (iii), (iv), upon which 
this result is based, no terms are introduced which are of higher dimension 
than the function which it is desired to express : and that the same remark 
is applicable to equation (i). 

Hence every function (Rlt . . . , Rn) can be written in the form (A) in such a 
way that the condition of dimensions is satisfied. 

40. In order to give an immediate example of the theory we may take 
the case of a surface of four sheets, and assume that the places x = a are such 
that no rational function exists, infinite only there, whose aggregate order of 
infinity is less than p + 1. In that case the specification of the reduced 
functions is an easy arithmetical problem. The reduced functions of the first 
class are (m1} m2, m3, 0), where is to be as small as possible without being 
smaller than m2 or m3 : by the hypothesis we may take 

+ 2 + 3 = + 1. 
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Those of the second class require m2 as small as possible subject to 

1 + m2 + = p + 1, w 2 > , 2> : 

those of the third class require ra3 greater than m1 and m2 but otherwise as 
small as possible subject to rax + m2 + ra3 = p + 1. We therefore immediately 
obtain the reduced functions given in the 2nd, 3rd and 4th columns of the 
following table. The dimension of any function of the iih class being denoted 
by " + 1, the values of <TÌ are given in the fifth column, and the sum 
°i + °"2 + o's in the sixth. The reason for the insertion of this value will 
appear in the next Article. 

I Reduced functions of Reduced functions of Reduced functions of j _ . 
p the first class the second class the third class *i » ** » *s Ki + * + °* 

= - 1 (il/, M, M, 0) ( I f - 2 , M+lt Jtf + 1, 0) ( J f - 1 , , 211+1, 0) M - l , , M 3 M - 1 
( M - l , i lf+1, , 0) 

J ( , + 1 , J t f - 1 , 0) 

= 3 t f - 2 (tf, N, N- 1,0) (2V-1, , tf,0) ( 2 t f - l , t f - l , t f + l , 0 ) tf-l,tf-l,2V 3 N - 2 

= 3P (P + 1,P, P, 0) ( P - l , P + l , P + l, 0) (P, P , P + l, 0) \P,P,P 3P 
(P + l, P + l, P - 1 , 0 ) (P, P + l, P, 0) 
( P + l , P - l , P + l, 0) 

Here the reduced functions of the various classes are written down in 
random order. Denoting those first written by hly h2, h3, we may exemplify 
the way in which the others are expressible by them in two cases. 

(a) When p = SM — 1, we have, /* being such a constant as in equa­
tion (iv) above (§ 39), 

(M,M + l,M-l90)-p(M-2,M + l,M+l,0) = {M,M,M+l,0}, 

the right hand denoting a function whose orders of infinity in the various 
sheets are not higher than the indices given. If the order in the third sheet 
be less than M +1, the right hand must be a function of the first class and 
therefore the order in the third sheet must be M. In that case, since a 
general function of aggregate order p + l contains two arbitrary constants, 
we have an expression of the form 

(if, M + 1, M - 1, 0) = /xA2 + Ah, +  

for suitable values of the constants A, B. 

If however there be no such reduction, we can choose a constant \ so 
that 

{M, M, M + 1, 0} - \{M- 1, M, M + 1, 0) = {M, M, M, 0} = A'h, + ', 
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and thus obtain on the whole 

(M, M + 1, M - 1, 0) = fih2 + XA, + A \ + ', 

for suitable values of the constants A\ B'. 

(b) When p = 3 P we obtain 

(P 4-1, P + 1, P - 1, 0) = XAx + 4 (P, P + 1, P , 0) +  
= \hl + A {fjih2 + Gh3 + D} + Ä 

i£r. 1. Shew for a surface of three sheets that we have the table 

I p I Aj, 2 I OÌ, 0"2 I CTj + O-2 1 

I — I (*?• i ° ) ( j * g . ° ) 1 f>f 1 I 
i&e. 2. Shew, for a surface of - sheets, tha t if the places ?= be such tha t it is 

impossible to construct a rational function, infinite only there, whose aggregate order of 
infinity is less than p+1, a set of reduced functions is given by 

h1...kr + 1 = (kì...k,k-l,...,k-lìO)ì(k-lìk,.t.k,k-l, . . . , £ - 1 , 0 ) ( £ - l , . . . , £ - l , £,„.£, 0) 
hr + 2...hn_1 = (k-ly ..., k-1, k + l, k, ... , 0) ( £ - 1 , ..., £ - 1 , k, + l, , ...£, 0) 

( £ - 1 , ..., jfc-1, £, ... , +1, 0) 

wherein p-f- l = (? i—l)&-r (r<n—\) and, in the first row, there are r numbers —I in 
each symbol, and, in the second row, there are r+l numbers —I in each symbol. In 
each case , ... denotes a set of numbers all equal to and £ — 1, ..., —I denotes a set of 
numbers all equal to — 1. 

The values of o-j, ..., <rr + 1 are each k—1, those of >+2? •••» °"*-i a r e e a c h & Hence 

« 1 + . . . + + 1 + « + 2 + . . . + - 1 = ( + 1)( - 1 ) + ( - - 2 ) * = ( - 1 ) * - - 1 = ^ . 

i£r. 3. Shew that the resulting set of reduced functions is effectively independent of 
the order in which the sheets are supposed to be arranged at x—a. 

41. For the case where rational functions exist, infinite only at the places 
x = a, whose aggregate order of infinity is less than p + 1, the specification 
of their indices is a matter of greater complexity. 

But we can at once prove that the property already exemplified and 
expressed by the equation < + ... + o-n_j = py or by the statement that the sum 
of the dimensions of the reduced functions is p -f n — 1, is true in all cases. 

For consider a rational function which is infinite to the rth order in each 
sheet at x = a and not elsewhere : if r be taken great enough, such a function 
necessarily exists and is an aggregate of nr —p + 1 terms, one of these being 
an additive constant (Chapter III. § 37). By what has been proved, such a 
function can be expressed in the form 

( — . l) +(— > l ) * ! + . . . + ( — - , l ì - i , \x -a J\ \x-a' Ai W - a ' ^ n u 
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where the dimensions of the several terms, namely the numbers 

X, «! + -] + 1, . . . , \n_x + <7n_! + 1, 

are not greater than the dimension, r, of the function. 

Conversely*, the most general expression of this form in which \l3 X2> • ••> 
Xw_! attain the upper limits prescribed by these conditionst is a function of the 
desired kind. 

But such general expression contains 

(X + 1) + ( + 1) + ... + (X»-, + 1), 

that is (r + 1) + (r - aj + ... + (r - <rn-i), 

or nr - {< + ... + ovu) -f 1 

arbitrary constants. 

Since this must be equal to nr — p + 1 the result enunciated is proved. 

The result is of considerable interest—when the forms of the functions hv..hn-1 are 
determined algebraically, we obtain the deficiency of the surface by finding the sum of the 
dimensions of h1...hn_1. I t is clear that a proof of the value of this sum can be obtained by 
considerations already adopted to prove Weierstrass's gap theorem. That theorem and 
the present result are in fact, here, both deduced from the same fact, namely, that the 
number of periods of a normal integral of the second kind is p. 

42. Consider now the places x = GO : let the character of the surface be 
specified by equations 

x h "~>œ-h ' 

there being branch places. A rational function g which is infinite only 
at these places will be called an integral function. If its orders of infinity 
at these places be respectively rx, r2,..., rk and G [VÌ/(WÌ+ 1)] be the least 
positive integer greater than or equal to VÌ/(WÌ -b 1), and /> + l denote the 
greatest of the integers thus obtained, then it is clear that p + 1 is the 
least positive integer such that X~{P+1) g is finite at every place x = oo . We 
shall call p + 1 the dimension of g. 

Of such integral functions there are n — 1 which we consider particularly, 
namely, using the notation of the previous paragraph, the functions 

(x — a)°"i+1 Au , (x — ayn-i
+1 hn-l} 

which by the definitions of al9 , o-n_x are all finite at the places x = a, 
and are therefore infinite only for x = oo . Denote (x — a)0*4"1 hi by g^ If hi 
do not vanish at every place x = oo, it is clear that the dimension of g^ is 

* It is clear that this statement could not be made if any of the indices of the function to be 
expressed were less than the dimension of the function. For instance in the final equation of 
§ 40 (a), unless / , \ , A' be specially chosen, the right hand represents a function with its third 
index equal to M+l. 



56 PARTICULAR CASE OF INTEGRAL FUNCTIONS. [42 

(Ti+ 1. If however hi do so vanish, the dimension of gi may conceivably be 
less than < * + 1; denote it by pi + l, s o that pi < 04. Then _ ( +1) ^ , and 
therefore also (x — a)~ipi+1)git = (x — ayi~pihi, is finite at all places = : 
hence ( — ) ^ is a function which only becomes infinite at the places 
x = a. But, in the phraseology of § 39, it is clearly a function of the same 
class as hi, it does not become infinite in the nth sheet at x = a, and is of 
less dimension than hi if ai > pit That such a function should exist is 
contrary to the definition of h^ Hence, in fact, ô  = pi. The reader will 
see that the same result is proved independently in the course of the present 
paragraph. 

Let now F denote any integral function of dimension p -f 1. Then 
X-(P+I) fis finite at all places x = oo : and therefore so also is (x — a)~{p+1) F. 
This latter function is one of those which are infinite only at places x = a ; if 
F do not vanish at all places x = a, the dimension a + 1 of (x — a)~{p+1) F 
will be p + 1 : in general we shall have a < p. 

By § 39 we can write 

(x-a)-w F=(-i—9l) + ( - L - , l ) 1 + + {J^yi\ An_b 

\x-a Jk \x-a Jkl \x-a ) _  

where a -f 1 > \ - + -; + 1, 

and therefore, a fortiori, 

Hence we can also write 

F=(l,x- a)k (x - a)p~x + (1, x - a)kl (x - a)p~^-^ -f  
+ (1, x - ) *-1 { - ay- A n-r%-i # _!, 

or say 
F=(l,x)lx + (l,x)llig1+ + (l,x)fln_1gn-lt ( ) 

where + pi + 1 = p - <ii + pi + 1 = p + 1 - (< - {) < + 1, 

namely, there is no term on the right whose dimension is greater than that 
of F (and each of fi, fix, , /4n_j is a positive integer). 

Hence the equation (B) is entirely analogous to the equation (A) 
obtained previously for the expression of functions which are infinite only 
at places x = a. The set (1, glf , gn-i) will be called a fundamental set 
for the expression of rational integral functions *. 

It can be proved precisely as in the previous Article that -f p2 + 
+ pn-1=p. For this purpose it is only necessary to consider a function 

* The idea, derived from arithmetic, of making the integral functions the basis of the theory 
of all algebraic functions has been utilised by Dedekind and Weber, Theor. d. dig. Fund. e. 
Veränd. Creile, t. 92. Kronecker, U. die Discrim. alg. Fctnen. Creile, t. 91. Kronecker, Grundzüge 
e. arith. Theor. d. algebr. Grössen, Creile, t. 92 (1882). 
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which is infinite at the places x =00 respectively to orders r (w1 + l)} ..., 
r (wje -f 1). And the equations %p = %a = p, taken with <TÌ > / -, suffice to shew 
that ai = pi. It can also be shewn that from the set . . . - we can 
conversely deduce a fundamental set 1, (x — b)~{pi+1) gly..., (x — 6)~(pn-i~1) gn-x 

for the expression of functions infinite only at places x = b; these have the 
same dimensions as 1, gly ..., - *. 

43. Having thus established the existence of fundamental systems for 
integral rational functions, it is proper to refer to some characteristic pro­
perties of all such systems. 

( ) If Gi ... (?n_! be any set of rational integral functions such that 
every rational integral function can be expressed in the form 

(œ,l)k + (œ,l)klG1+ + (^,1) -1 _1 ( ), 

there can exist no relations of the form 

(x, 1)„ + (a?, 1)^ G1 + + (x, 1 ) ^ Gn^ = 0. 

For if such relations hold, independent of one another, of the functions 
(?!... (?n_i can be expressed linearly, with coefficients which are rational 
in x, in terms of the other n — 1 — k. Hence also ß1yi ß^y2,..., ßn-i-k yn~1~h

i 

ßn_fc ~ , which are integral functions when ßly ...,/3n_jt are proper poly­
nomials in xy can be expressed linearly in terms of the n — 1 — linearly 
independent functions occurring among G1...Gn-ii with coefficients which 
are rational in x. By elimination of these n — 1 — functions we therefore 
obtain an equation 

4 + + + An-kyn~k = 0, 

whose coefficients A, A1} ,-̂ -n-fc a r e rational in x. Such an equation is 
inconsistent with the hypothesis that the fundamental equation of the surface 
is irreducible. 

( ) Consider two places of the Riemann surface at which the inde­
pendent variable, x} has the same value : suppose, first of all, that there 
are no branch places for this value of x. Let X, , Xn-i be constants. 

Then the linear function 

\ + Xx Gi 4- 4- Xn_! Gn—i 

cannot have the same value at these two places for all values of X, 
^1 i > \ i - i ' 

For this would require that each of Gly , (?n-i has the same value 
at these two places. Denote these values by aly , an_x respectively. 
We can choose coefficients /j,lt , /in_i such that the function 

fh(Gi - «0 + + H>n-i(Grn-i - ttn-i), 
* The dimension of an integral function is employed by Hensel, Creile, t. 105, 109, 111 ; Acta 

Math. t. 18. The account here given is mainly suggested by Hensel's papers. For surfaces 
of three sheets see also Baur, Math. Annal, t. 43 and Math. Annal, t. 46. 
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which clearly vanishes at each of the two places in question, vanishes also 
at the other n — 2 places arising for the same value of x. Denoting the 
value of x by c, it follows, since there are no branch places for x = c, that 
the function 

[/*i (öi - «i) + + /*n-i(#n-i - o*-i)]/(a? - c) 

is not infinite at any of the places x = c. I t is therefore an integral 
rational function. 

Now this is impossible. For then the function could be expressed in 
the form 

(x, 1) + (x, l)t.G1+ + (#, 1), £n_!, 

and it is contrary to what is proved under (a) that two expressions of 
these forms should be equal to one another. 

Hence the hypothesis that the function 

, + \ i (TJ -f- + A-JJ—! Crn_j 

can have the same value in each of two places at which x has the same 
value, is disproved. 

If there be a branch place at x = c, at which two sheets wind, and no 
other branch place for this value of x, it can be proved in a similar way, 
that a linear function of the form 

^a * + + ^n—i Cr»—i 

cannot vanish to the second order at the branch place, for all values of 
\lf , A,n_! namely, not all of Glf , Gn-L can vanish to the second 
order at the branch place. For then we could similarly find an integral 
function expressible in the form 

(jhGi+ + /*n-i # » - i ) / 0 - c). 

More generally, whatever be the order of the branch place considered, 
at x = c, and whatever other branch places may be present for x = c, it is 
always true that, if all of G1} , (?n-i vanish at the same place A of 
the Riemann surface, they cannot all vanish at another place for which x 
has the same value ; and if A be a branch place, they cannot all vanish 
at A to the second order. 

Ex. 1. Denoting the function 

X-fX1^1-f . . .+Xn_16 ?
n_1 

by E, and its values in the n sheets for the same value of x by EW, EV\..., EW, we 
have shewn that, for a particular value of xt we can always choose X, X1,..., \ n - v so 
that the equation EW = K(2) is not verified. Prove, similarly, tha t we can always 
choose X, Ai,..., An_x so that an equation of the form 

m^1)+m2EW + . . . + mkE<k)=0, 

where w l v . . , mk_lt mk are given constants whose sum is zero, is not verified. 
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Ex. 2. Let # = y 1 } . . . , * be distinct given values of x\ then it is possible to 
choose coefficients X, Xj , . . . , /x, / i t , . . . , finite in number, such that the values of the 
function 

at the places x=yu shall be all different, and also the values of the function, at the 
places x=y2i shall be all different, and, also, the values of the function, for each of 
the places # = y 3 , . . . , *, shall be all different. 

(c) If 1, Hl9 H2, ,-ffn-i be another fundamental set of integral 
functions, with the same property as 1, Glf , Gn-i, we shall have 
linear equations of the form 

1 = 1 

Hi = *i + *i,iGi+ + Oi,*-iG*-i (D), 
where j is an integral polynomial in x. 

Now in fact the determinant | ot̂ j | is a constant ( = 1, 2 , . . . , n — 1 ; 
j = 1, 2, ..., n — 1). For if Hi{r) denote the value of Hiy for a general value 
of x, in the rth sheet of the surface, we clearly have the identity 

j 1, 1, - . , 1 1 = 11, 0, , 0 M l , 1, , 1 I 
I f l i « , #i(2)> ,# i ( r i ) k , «1,1, ,«1, -1 Gi(1), G^, ,G^\ 

\ ^\ _^\ , J W > | \on-i,««r-iti, ,«n-i,n-i| lö^Ae^»,....,©^*»»! 
If we form the square of this equation, the general term of the square of 

the left hand determinant, being of the form #>>#ƒ> + + ™ 3&\ will 
be a rational function of x which is infinite only for infinite values of x ; it 
is therefore an integral polynomial in x. We shall therefore have a result 
which we write in the form 

A (i, #„ , #n_o=v*. (i, Gly G2, , en_o, 
where V is the determinant | ai}j |. A (1, Hu , Hn-Y) may be called the 
discriminant of 1, Hly , ifn-i-

If ß be such an integral polynomial in x that ßy> = rj, say, is an integral 
function, an equation of similar form exists when 1, rj, rfy , rf1*1 are 
written instead of 1, Hly , Hn^. Since then A (1,rjy rfy , if-1) does 
not vanish for all values of x it follows that A (1, Gly G2, , (?«-i) does 
not vanish for all values of x. (Cf. (a), of this Article.) 

But because 1, Hly H2) , # _1 are equally a set in terms of which all 
integral functions are similarly expressible, it follows that (1 1 , jffn_i) 
does not vanish for all values of x, and that 

(1, Ou , G»-x) = V/ (1, Hu , tfn_0, 

where Vj is an integral function rationally expressible by x only. 
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Hence V2 . Vi2 = 1 : thus each of V and Vx is an absolute constant. 

Hence also the discriminants A (1, Cri,.."...., Gn-j) of all sets in terms of 
which integral functions are thus integrally expressible, are identical, save 
for a constant factor. 

Let A denote their common value and rjif-yVn denote any n integral 
functions whatever ; then if A (rjly rj2,...,rfn) denote the determinant which is 
the square of the determinant whose (s, r)th element is rj{rJy we can prove, as 
here, that there exists an equation of the form 

wherein M is an integral polynomial in x. The function A (rjly rj2,..., Vn) is 
called the discriminant of the set 7]lt rj2,..., rjn. Since this is divisible by A, 
it follows, if, for shortness, we speak of 1, Hlt..., Hn_lt equally with rjl9 

V2>"-> Vn> a s a set of n integral functions, that A is the highest divisor common 
to the discriminants of all sets of n integral functions. 

(d) The sets (1, G1} , Grn-ì), (1, Sly , ifn_i) are not supposed 
subject to the condition that, in the expression of an integral function in 
terms of them, no term shall occur of higher dimension than the function to 
be expressed. If (1, g1} , gn-i) be a fundamental system for which this 
condition is satisfied, the equation which expresses Gi in terms of 1, glf 

g2i , - will not contain any of these latter which are of higher 
dimension than that of G{. Let the sets Gly , ( _ gl9 ,g n ^ be each 
arranged in the ascending order of their dimensions. Then the equations 
which express Gu G2, , Gjc in terms of g1} , - must contain at least 

of the latter functions ; for if they contained any less number it would be 
possible, by eliminating those of the latter functions which occur, to obtain 
an equation connecting Glt , Gjc of the form 

( , 1) + (*, l)Al ©> + + fe 1)A, Gk = 0; 

this is contrary to what is proved under (a). 

Hence the dimension of g^ is not greater than the dimension of (?* : 
hence the sum of the dimensions of Gly G2i , Gn-i is not less than the 
sum of the dimensions of gly g2, , gn-\- Hence, the least value which is 
possible for the sum of the dimensions of a fundamental set (1, Gl9 , (?n_i) 
is that which is the sum of the dimensions for the set (1, glf , gn-i\ namely, 
the least value is p + n — 1. 

We have given in the last Chapter a definition of p founded on 
Weierstrass's gap theorem : in the property that the sum of the dimensions 
of #i,..., ^rn_! is p + n — 1 we have, as already remarked, another definition, 
founded on the properties of integral rational functions. 

Ex. 1. Prove that if (1, g19 ..., _ \ (1, Als ..., hn_x) be two fundamental sets both 
having the property that, in the expression of integral functions in terms of them, no terms 
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occur of higher dimension than the function to be expressed, the dimensions of the 
individual functions of one set are the same as those of the individual functions of the 
other set, taken in proper order. 

Ex. 2. Prove, for the surface 
_ + aiCy _ a2a2 = 0 j 

that the function 

satisfies the equation 

773 — cr}2 + a2brj — a2
2at = 0 ; 

and that 

(1> V) = b^+lSa^bc - Tiafa* - 4a lC
3 - 4a263, 

A( l , y, tf) = a? A (1, y, , ) (1, f) = af A (1, y, v) ( , y\ rj^a^ A (1, y, , ) . 

In general 1, y, 77 are a fundamental set for integral functions, in this case. 

44. Let now (1, glt g2) , gn^) be any set of integral functions in 
terms of which any integral function can be expressed in the form 

, 1) + ( ?,1) 1 ! + + , 1U-! gn-i, 

and let the sum of the dimensions of glt , _ be p + n — 1. 

There will exist integral polynomials in x, ßlt ß2t ,ßn-i, such that 
ßitf" is an integral function: expressing this by g1} , gn_Y in the form 
above and solving for gly , gn-i

 w e obtain* expressions of which the 
most general form is 

n _ / 4 n - i yn~Y + + fij, iV + Pi 
9i ^ , 

where iHtn-\> , ^ ) ^ , are integral polynomials in x. Denote this 
expression by gt (y, x). 

Let the equation of the surface, arranged so as to be an integral 
polynomial in x and y, be written 

f(y>x)=Q<>yn+Qiyn-1 + + Qn-iy + Qn = 0, 

and let xi ( * ) denote the polynomial 

Qo f + Qif-1 + + ft-i + Qu 

so that xo (y, x) is Q0. 

Let 0', /, , ' - be quantities determined by equating powers of  
in the identity 

' + - flTi ( , ) + 2'. #2 ( , œ)+ + ' -i. gn-i ( > oc) 
= ^ ~1^ ~2 \^)+ + -2( ', ) + - ', ) : 

* Since glt ..., _ are linearly independent, 
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in other words, if the equations expressing l,y,y2, , ~ in terms of 

9i(y,x)> , 9n-i (y, x) be 

1 = 1, 
y = a1 + aljlflr1+ + ai,n-i^n-i, 

= ttn—l + an—l, i ffi + + Cln—i, n—i <7n—l » 

where the coefficient a^- is an integral polynomial in x divided by ßi, then 

0' = Xn-i {y'> ®) + «i Xn-2 ( ', )+ + an-x Xo 
</>/ = ai, i Xn-2 (y'> x)+ + an-h j Xo 

</>'n-i = »1, n-i %n-2 ( , « ) + + «n-i, n-i %o-

So that if we write 

(1,2 2/2> 71'1) = » (1> &••.,", ^n-i), 

being the matrix of the transformation, we have 

( , > > ̂ n - i ) = ß (%'n-i, %'n-2, Xi> Xo)> 

where %/ = Xi ( ', x), and represents a transformation whose rows are the 
columns of O, its columns being the rows of . 

But if (Q) denote the substitution 

Vn—1 > —2, ) V i ) Vo 

Vn—2» V»l—3> > 4?0> " 

Qi, Qo, o, 
, , I 

we have 

(%«-i, Xn-2, , %i, %o) = (Q) (1, y, y\ , yn~Y\ 

Hence, changing y' to in ( and writing therefore * for /, we may write 

( , , , U = ß ( « ß ( l ) (E)-

Either this, or the original definition, which is equivalent to 

( \ ) + (y, x)g1(y,x) + -f ^ ( ', ) _ { , ) 

= f(y'>œ)-f(y,œ) 
'-

= '""1 + , ~2 >*)+ + ' -2 ( > ) + Xn-i ( . *) 
= ^ + ™ Xi ( > œ) + + > x)+Xn-i ( ', ) (F), 

may be used as the definition of the forms 0, 1 , -i-

The latter form will now be further changed for the purposes of an 
immediate application: let yl9 ,yn denote the values of corresponding 
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to any general value of x for which the values of y are distinct. Denote 
( , ), gì (yr> #), by faw, \ etc. 

Then putting in (F) in turn y = y' = y1 and y' = y1} y = ySi we obtain 

*,« + " #« + + ?_ , = ( | ) =/'(2/0 say, 

,» + > » + + ^ ^ - = 0, ( = 2 , 3, «). 

Hence if, with arbitrary constant coefficients c0, Ci, , c^-i, we write 

0
 (1) + Cifr® + + Cn-i ^\ = «, 

we have 
I C0 Ci Cn_! (1> 1 = 0, 

| l 0i ( 1 ) 0n-i(1) / ' 

! 1 9i(r) 9 - ( ) 0 

| i gi{n) - ( ) I 
< P 1 1 ^i ( 1 ) gn-i® | = | c 0 Cl cn_! I 

/ ' | 1 0i(2) 9n-^ 
(W; 

| i giin) gn-^ I 11 gSl) gn-,(n) \ 

and we shall find this form very convenient : it clearly takes an inde­
terminate form for some values of x. 

If we put all of c1} , -1 = 0 except cr, and put cr = 1, and multiply 
both sides of this equation by the determinant which occurs on the left hand, 
the right hand becomes 

Sr + Sr)1g^+ + Sr,fb-ig™v 

w h e r e , i f Si,j = 0i (1) 0j ( 1 ) + g%m /2} + +gi{n} / ), Sitj means the minor of sitj 

in the determinant 

(1,01,^2, ,gn-i)=\n s l s2 s n - i I 
^ l ^ 1 , 1 ^ 1 , 2 ^ 1 , —1 

I S«—î Sn—l, l $n—l, 2 Sn—i, n—i j 

Since this is true for every sheet, we therefore have 

__ $r + $r, l 01 + + Or> n-i 0n- i 

/ /)~~ A ( l ,0n >0"-i) 
1 1 , 1 /TT4 

3 s r | i 5 } _! * 
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and therefore, also 

ƒ ' (y)9r = sr<l>o + Sr}1 01+ + *r,n-i _ (H'). 

The equation (H) has the remarkable property that it determines the 

functions -, J from the functions gt with a knowledge of these latter only. 

But we can also express g1} , gn_Y so that they are determined from 

7 \ ' f'< \ ' ' 7^f\ ' w ^ a knowledge of these only. 

For let these latter be denoted by y0, yl9 , 7^-1: and, in analogy with 
n 

the definition of srji, let aTti = 2 7r
(s) ji(s). 

s=l 

Then from equation (H) 
n 1 "I 
2 yr

(s) gi{s) = \SrSi + Sr, ! sit + + Sr, „_! 8it n-i 

= 0 or 1 according as i =f= r or = . 

Therefore, also, by equation (H), 

< , i = 2 7 r w ji{s) =Ì\srÌ 7i{s) + S r J g^ y^ + + ^ « - #11 7^1 
*=1 ^ L s=l s=l *=1 J 

— ' "' 

so that equation (H) may be written 

yr = 0>, 0 + °V, 1 #1 + + °V, n-i #n-i ' 

If then 2 r , denote the minor of ar, % in the determinant of the quantities 
ÖV, i—which determinant we may call V (70, 7^ ,7*1-1)—we have, in 
analogy with (H), 

9r = y (S r 70 + 2 r , i 71+ + S r,n-i7n-i) (K)*-

Of course V = -r and 2 - = -r sr> -, and equation ( ) is the same as ( ). 

Ex. 1. Verify that if the integral functions g19 ..., gn-x have the forms 

wherein Dl9 ..., Bn_1 are integral polynomials in #, then 0, ..., <£„_! are given by 

(^ )= ~\ 4>ifa y) = Dxy
n~\ ..., - 1 ( , )=2> -1-

* The equations (H) and (K) are given by Hensel. In his papers they arise immediately from 
the method whereby the forms of ylt y%, are found. 

file:///SrSi
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Ex. 2. Prove from the expressions here obtained that 

2 [&// = 0, ( i= l ,2 , . . . , ^ - l ) , 

n 

and infer that 2 (dv/dx)8=0, 
5=1 

v being any integral of the first kind. 

45. We are now in a position to express the Kiemann integrals. 

Let P£ c be a general integral of the third kind, infinite only at the 
places , x2. Writing, in the neighbourhood of xx, x — xx — tf*x+1

9 dP/dx 
will (§§ 14, 16) be infinite like 

(Wl+\)t^A[logtl + A+Ältl + ÄA2+ ]' 
namely, like 

wx + 1 [x - #i t^i t^-1 J ' 

dP . 1 
thus (x — Xj) ^— is finite at the place x, and is there equal to . 

x J dx r i n + 1 
dP . 1 

Similarly (x — x2) -j- is finite at x2 and there equal to —-----
CLX MJ2 "• •*-

Assume now, first of all, for the sake of simplicity, that at neither x = x1 

nor x = x2 are there any branch places ; let the finite branch places be at 
X : = d\, X ^= Ct2 , . . . . . . . 

At any one of these where, say, x = a + tw+\ dPjdx is infinite like 

dP 
and therefore (x — a) - j - is zero to the first order at the place. 

Hence, if oL = (x — a1)(x — a2)... 

be the integral polynomial which vanishes at all the finite branch places of 
the surface, and g be any integral function whatever, the function 

K^a.g.ix-xJix-Xz) -^ 

is a rational function which is finite for all finite values of x and vanishes at 
every finite branch place. 

Therefore the sum of the values of in the n sheets, for any value of x, 
being a symmetrical function of the values of belonging to that value of x, 
is a rational function of x only, which is finite for finite values of x and is 
therefore an integral polynomial in x. Since it vanishes for all the values of 

. 5 



6 6 EXPRESSION OF INTEGRAL OF [45 

x which make the polynomial a zero, it is divisible by a, and may be written 
in the form aJ. 

Let the polynomial J be written in the form 

Xj (x — X2) — \2(x — Aïj) + (X — ) (X — X2) Hy 

wherein \ and X2 are constants and If is an integral polynomial in x. This 
is uniquely possible. Let H be of degree fi — 1 in x ; denote it by (x, iy~\ 

Then, on the whole, 

(g¥)+... + (g%) = - A — ^ + ̂ i ^ . 
\ (XiX /1 \ (XJX / X *—~ X\ X — X2 

Multiply this equation by — and consider the case when x = xlf there 
being by hypothesis no branch place at x — xl. Thus we obtain the value of 
Xj ; namely, it is the value of g at the place xx. This we denote by g(x1} ) . 
Similarly X*> is g (x2, y2). Further, at an infinite place where x = £-(™+1>, 

dP_ _ _ &>+*_ dP 
dx w + l dt ' 

so that x-dPjdx is finite at all places x = oo . Hence if p + 1 be the dimen­
sion of the integral function g, and we write 

xp~l (x — x^) x?~l (x — x2) xP~x 

we can infer, since p cannot be negative, that fi is at most equal to p. 

Hence, taking g in turn equal to 1, gl9 . . . , gn-i> the dimensions of these 
functions being denoted by 0, ^ + 1 , . . . , _! + 1, we have the equations 

*- (£).*•••+*- © . - ^ - « ^ + ^ 

*.(S),+-+*.©.=^^->-^^,+(-1)"""'"1' 
where \, . . . , ^ are positive integers not greater than rlt..., _! respectively. 

Let these equations be solved for (-=— ) : then in accordance with equa­

tions (G) on page 63 we have, after removal of the suffix, 
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JP 
ƒ ' ( ) £ = fa l ) ^ - 1 + fa Vf* 2 + . . . + fa iy'n- * *-

+ 01 fa, ) + . . . + -i9n-i fa, Vi) 

_ + ftiff! fa, ) + -•• + -ign-i fa, ) 

where ^ stands for ^ ( , ). 

This, by the method of deduction, is the most general form which dP/dx 
can have ; the coefficients in the polynomials fa l)7'™1 are in number, at mostt 

Ti + T 2 + . . . + T n _ ! , 

or p ; and no other element of the expression is undetermined. Now the 
most general form of dP/dx is known to be 

X ^1 + . + \ ^ + (**£) 1 dx '" p dx \dxj ' 

fdP\ . dP 
wherein f -=- J is any special form of -̂— having the necessary character, and 
Xi, . . . , \p are arbitrary constants. Hence, by comparison of these forms, we 
can infer the two results— 

(i) The most general form of integral of the first kind is 

jrj^ [fa l) 'i-* {x, y) + ... + (x, ly'n-i-1 ^ fa )], 

wherein \ 5 - and the coefficients in (x, l)T't_1 are arbitrary : 

(ii) A special and actual form of integral of the third kind logarithmically 
infinite at the two finite, ordinary, places fa, ( 2, y2), namely like 
log [(x — x1)/(x — x2)], and elsewhere finite, is 

[* dx fa y) + fa y) gj fa, yQ 4- ... + -i fa, ) 9n-i fa, Vi) 

J f(y)[ *-
__ fa ) + 0i ( ?, ) ffi fa, ) + . . . 4- -i fa ) ffn-i fa, 2)"[ 

2 _] 
or 

_<fc_ [Xì
dtd_ fa ) + 1 fa ) gì (& ) + • - • + -i fa ) fftt-i (f, iy)1 

i f(y)h2
 Çd%l x-Ç y 

In the actual way in which we have arranged the algebraic proof of this 
result we have only considered values of the current variable x for which the 
in sheets of the surface are distinct: the reader may verify that the result 
is valid for all values of x, and can be deduced by means of the definitions 
of the forms 0, . . . , -1 which have been given, other than the equation 
(G). 

Ex. Apply the method to obtain the form of the general integral of the first kind only. 

5—2 
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We shall find it convenient sometimes to use a single symbol for the 
expression 

0 (x, y) + (œ, ) (g, ) + ... + -i ( , ) 9n-i (g, y) 
( * - * ) ƒ ' < ? ) 

and may denote it by (x, £). Then the result proved is that an elementary 
integral of the third kind is given by 

Px'e = dx [(œ, xj - {xy x2)]. 
«II #2 J c 

This integral can be rendered normal, that is, chosen so that its periods at 
the p period loops of the first kind are zero, by the addition of a suitable 
linear aggregate of the p integrals of the first kind. 

Now it can be shewn, as in Chapter II. § 19, that if E*c denote an elemen­
tary integral of the second kind, the function of (x, ) given by the differ­
ence 

wherein D% denotes a differentiation, is not infinite at (£, y). I t follows from 
the form of PT' °x , here, that this function does not depend upon (x2, y2). 
Hence it is nowhere infinite, as a function of (x, y). Therefore, if not inde­
pendent of (x, y), it is an aggregate of integrals of the first kind. Thus we 
infer that one form of an elementary integral of the second kind, which is 
once algebraically infinite at an ordinary place (f, y), like — (x — £)-1, is 
given by 

dx d^ Q, ) + ( , ) g, (g, y) + ... + -i (x, y) gn-^ (g, y  

The direct deduction of the integral of the second kind when the infinity 
is at a branch place, which is given below, § 47, will furnish another proof of 
this result. 

46. We proceed to obtain the form of an integral of the third kind when 
one or both of its infinities (œl9 )} (x2ì y2) are at finite branch places; and 
when there may be other branch places for x = x1 or x = x2. 

As before, let a be the integral polynomial vanishing at all the finite 
branch places. The function 

(x — Xj) (x — x2) dP/dx 

will vanish at all the places x = : and though it may vanish at some of 
these to more than the first order, it will vanish at (x1} y^) only to as high 
order as (x — Xj). Hence the sum of the values of this function in the several 
sheets for the same value of x is of the form aJ, where J" is a polynomial in x 
which does not vanish, in general, for x = or x = x2. 
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Hence as before (§ 45) we can write 

( ?) f djP\ - Xl _ x2 / i y- i 
X* dx )Y '" \ dx Jn x — œ1 x — x2 ' 

Multiply this equation by x — xx and consider the limiting form of the 
resulting equation as (x, y) approaches to (xly yi) : let w +1 be the number of 
sheets which wind at this place. Recalling that the limiting value of 
(x — xi)dP/dx is l/(w +1), we see that w+1 terms of the left hand, corre­
sponding to the w + 1 sheets at the discontinuity of the integral, will take a 
form 

^ - [1 + A,U + 2A2№ + ...]{g(xlf yi) + Ct + DP+...], 

where € is a (w + l)th root of unity. The limit of this when t = 0 is 
g(xly yi)l(w + l)i the corresponding terms of the left will therefore have 
9(œi>yi) as limit. The other terms of the left hand will vanish. 

Hence \1=g(x1, yi), X2 — g (®2> - The determination of the upper limit 
for fi and the rest of the deduction proceed exactly as before. Thus, 

The expression already given for an integral of the third kind holds whether 
(x\> yi)> (œ2, y2) be branch places or ordinary places. 

If we denote the form of integral of the third kind thus determined by 
•^ ° > ^ e z e r o being assigned arbitrarily, it follows, as in § 45, above, that 
an elementary integral of the second kind, which is infinite at a branch 
place x1} is given by 

Um-*'-. [K.U - p*„c J =lim- v ° [[dx {(x' - (x>Xi)]]  
= lim.Pas,

/
<! . 1 . 

Now if we write t for tXl and xi = ^ + tw+l, the coefficient of dx/f (y) in the 

integrand of the form here given for Px\c is 

0 + fti. (g1 + tgj+ ...) + ... + - . (gn-, + tgf
n-i+ •••) 

x - xx - tw+1 

— x1 

wherein 0, . . . , _ are functions of #, , and ^ , . . . , #n_i, gi, g2', ... are 
written for ,( 1 yi)y . . . , ^ ^ (xu yi), Dg^x^ yi), Dg2(xu yi), . . . , respectively, 
D denoting a differentiation in regard to t. Hence the ultimate form is 

. 0 ig / + ... + -ig'n-i 
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That is, introducing £, ?;, instead of xly yly an elementary integral of the 
second kind, infinite at a finite branch place (f, rj), is given by 

[x dx 1 fa y) g[ ( £ rj) + . . . + .1 fa y) g ' ^ (g, ) 

i / ) * - ? 
where #J (g, 77), . . . are the differential coefficients in regard to the infini­

tesimal at the place. I t has been shewn in (b) § 43 that these differential 

coefficients cannot be all zero. 

Sufficient indications for forming the integrals when the infinities are at 
infinite places of the surface are given in the examples below (1, 2, 3, ...) ; in 
fact, by a linear transformation of the independent variable of the surface we 
are able to treat places at infinity as finite places. 

Ex. 1. Shew that an integral of the third kind with infinities at fa, y J, fa, 2) c a n 

also be written in the form 

f dx rx t -
1
 0 fa )+SX^ fa ) fa, Vi) _ \ " * fa ) + sX2Tr fa ) gr fa » 2 

J/'(y)L #-#i - ?2 J ' 

wherein Xx = (# — a)/fa - a), X2 = ( ? - a)/fa - a)j *> + i is the dimension of grì and a is any 
arbitrary finite quantity. 

It can in fact be immediately verified that the difference between this form and that 
previously given is an integral of the first kind. Or the result may be obtained by con­
sidering the surface with an independent variable £ = (x — a) ~ and using the forms of § 39 
of this chapter for the fundamental set for functions infinite only at places x—a. The 
corresponding forms of the functions are then obtainable by equations (H) § 44. 

Ex. 2. Obtain, as in the previous and present Articles, corresponding forms for inte­
grals of the second kind. 

Ex. 3. Obtain the forms for integrals of the third and second kinds which have an 
infinity at a place x= 00. 

It is only necessary to find the limits of the results in Examples 1 and 2 as fa, yx) 
approaches the prescribed place at infinity. It is clearly convenient to take a=0. 

Ex. 4. For a surface of the form 

y2=x(x-a1) (ay-Ogp+O, 

wherein au .•., a2p + 1 are finite and different from zero and from each other, we may* take 
the fundamental set (1, ) to be (1, y), and so obtain ( 0, ) = { , 1)- Assuming this, 
obtain the forms of all the integrals, for infinite and for finite positions of the infinities. 

Ex. 5. In the case of Example 4 for which p = l, the integral of Example 1, when a 
is taken 0, is 

J \-x x — xx x x — x2 J ' 

Putting xx = 00 and yx — mx^+nxx + A + Bxx ~ -f..., this takes the form 

_x fdxfy + iiu;2 x2y xy2 "1 
^J L % (x-x2)x x2(x-x2)J 

-*/?[~+£?+?]-
J L x — x2 x2j 

* Chap. V. § 56. 
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Prove that this integral is infinite at one place x = cc like log ( - ) and is otherwise 

infinite only at (x2) y2)> namely like — log (x — x2\ if (x2y y2) be not a branch place. 

Ex. 6. Prove in Example 5 that the limit of 

1 1 + 2
 1~

2
 1 +  

* J l_x x-xx x J 

as (x\j yx) approaches tha t place (oo , oo ) where y = mx2 + nx+A + B/x +..., is 

- i j^iy + mxt + nx), 

and that the expansion of this integral in the neighbourhood of this place is 

_A_ 1 
X 2m x+ ' 

and that it is otherwise finite. I t is therefore an integral of the second kind with this 
place as its infinity. The process by which the integral is obtained is an example of the 
method followed in the present and the last Articles, for obtaining an elementary integral 
of the second kind from an elementary integral of the third kind. 

47. We give now a direct deduction of the integral of the second kind 
whose infinity is at a finite place (£, rj): we suppose that (w + 1) sheets of 
the surface wind at this place, and find the integral which is there infinite 
like an expression of the form 

Ai A% Aw Aw+1 

t "*" t* + tw - f 
t being the infinitesimal at the place. 

Firstly, let F be an integral which is infinite like the single term (x — £)-1, 
so that in the neighbourhood of the infinity its expansion has a form 

F= -l-fi + A + Bt + CP+... . 

Forming as before the sum of the values of the functions g. (x — £)2 dF/dx in 
the n sheets of the surface, g being any integral function, we obtain an 
expression 

I f [g (* - Ç? = \ + A* (*- f) + <* - £)2 • (*, I*-1. 

Putting x = £ we infer, since all terms on the left except those belonging to 
the place (£, rj) vanish, that 

X = - ( w + l)flr(f,iy). 

Differentiating, and then putting x = £, we obtain, from the terms on the left 
belonging to the infinity, 

HW+i=lim.2{^.(,-^f+,.gä[-l+(,-|)^(^ + ̂ + . . .)]} ) 

the summation extending to (w + 1) terms. 
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Now 

vanishes when t is zero : hence 

Hence we can prove as before that, save for additive terms which are 
integrals of the first kind, the integral which is infinite like (x — f ) - 1 is 
given by 

v in» A- i \ i dx « + 4>i9i (£ q) + — + -ign-i (£ g) 

^="(w+1)i/4F) ( ^ = 

\wjf(y) œ-S 

This result is true whether (f, 77) be a branch place or an ordinary place. 

Consider now the integral, say E, which is infinite at (£, 77) like ir™, m 
being a positive integer less than w + 1 . At this place, therefore, (# — £) dEjdx 

Tib 1 
is infinite like T . — . If, as before, we consider the sum of the n values 

w + 1 tm 

of the expression a . g . (x — f) dEjdx, wherein g is any integral function and 
a is the integral polynomial before used, which vanishes at all the finite 
branch points of the surface, we shall obtain 

[g •(x - ® £ 1 = x + { x - ®(x' iy~K 

To find X, let x approach to £ Then all the terms on the left, except 
those for the w+1 sheets which wind at the infinity of E} vanish : for such a 
non-vanishing term we have an expansion of the form 

[g + tDg + ̂ J>g + ...][-^ri± + A+M+ № + . . . ] , 

where D denotes, as usual, a differentiation in regard to the infinitesimal of 
the surface at (£, rj), and g is written for g (f, rj). The sum of these w+1 
expansions is 

+ (w+l)Ag+(Ag' + Bg)tt+.... 

Now in fact every summation %tr, being a sum of terms of the form 

tr + ertr + ... + €<w+1>rF, 

wherein e is a primitive (w + l)th root of unity, will be zero unless r be a 
multiple of w + 1. Thus the terms involving negative powers of t in the 
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sum will vanish : those involving positive powers of t will vanish ultimately 
when t = 0 ; and in fact A is zero, otherwise E would contain the logarithmic 
term A log (x — £) when (x, y) is near to (f, rj). Hence on the whole 

x — ^ ^ ' « ^ 

Then, proceeding as before, we obtain an expression of the integral in the 
form, 

1 fx dx 1 

Thus, denoting the expression 

, ) + 2 (œ, ) g (f, v) 
ï 

by , an integral which is infinite like an expression 

Ai Aw Aw+1 

is given by 

J f ( ) œ-ÇL li [2 [w-I Iw J 
Of course the differentiations at the place (£, 77) must be understood in 

the sense in which they arise in the work. If (f, rj) be any function of 
f, 77, (£, T?) means that we substitute in (x, y), for x, £ + £w+1, and for y, 
an expression of the form 97 + P(t), that we then differentiate this function of 
t in regard to t, and afterwards regard t as evanescent. 

Ex. 1. Obtain this result by repeated differentiation of the integral p ? ° . 

i£r. 2. Obtain by the formula the integral which is infinite like Ajt + Bjt2 in the 
neighbourhood of (0, 0), the surface being y^—xix^ 1)3. Verify tha t the integral obtained 
actually has the property required. 

48. The determinant (1, gl9 . . . , <7n_i), of which the general element is 
«.. _ n.\i) /7.(1) 4. 4. n.(n) ns.n) sij — 9 9j T- . •. -r 91 9J , 

can be written in the form 

I n , x-Ti~1s1 , , x-Tn-i-1sn^1 I 2 -2 +^. 

~ 1"1^1 , X-Ti~T2-2 S1>2 , , X-Ti-Tn-i-2 S^n- ! 

I X-Tn-r1Sn-1, X-Tn-i-Ti-2Sn-hl, , X-2Tn-i~2 Sn-^n-! I 

In this form the determinant factor is finite at every place x = 00 : hence 
also ar<4P-a+an) (1, gu . . . , 3 ^ ) is finite (including zero) at infinity. Thus 
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A (1, <fr, . . . , gn-i), which is an integral polynomial in x, is of not higher order 
than 2n — 2 + 2p in x. 

But when the sheets of the surface for x — oc are separate, it is not of less 
order ; it is in fact easy to shew that if for any value of x, x = a, there be 
several branch places, at which respectively wY + 1 , w2+ 1, ... sheets wind, then 
A (1, gl3 ..., gn_x) contains the factor (x— a)W7l+M'2+-. 

For, writing, in the neighbourhood of these places respectively, 

x-a = t^+1, x-a = t2
w*+1,..., 

the determinant (§ 43) 

j i, tf\ • • , tflii \> 
! i, g?, . . , » , ! 
! i 

! I 
\ l, &\ - • , flUU j 

of which A (1, gY,..., gn-i) is the square, can, for values of x very near to 
x — a, be written in a form in which one row divides by tlf another row by 
t^...., another row by tx

Wi, in which also another row divides by t2, another 
row by £2

2,..., and another row by t2
w*, and so on. 

Thus this determinant has the factor ^ i t o + D £2i«M«>2+i)..#> a n ( j hence 
the square of this determinant has the factor (x — a)Wl (x — a)w* 

Therefore, when there are no branch places at infinity, A (1, gl9 ...,^rn_1) 
has at least an order %w, = 2n + 2p — 2 (§ 6). 

In that case then A (1, glt ..., gn-i) is exactly of order 2n + 2p — 2 : and, 
when all the branch places occur for different values of x, its zeros are the 
branch places of the surface, each entering to its appropriate order. 

When the surface is branched at infinity, choose a value x = a where 
all the sheets are separate : and let g{ = (x — a)Ti+1 hi. Then by putting 
% = (x — a ) - 1 we can similarly prove that A (1, hu . . . , Än-i) is an integral 
polynomial in f of precisely the order 2n + 2p—2. But it is immediately 
obvious that 

A (1, gl9 . . . , gn-,) = - a)2»*2*-2 A (1, hl9 . . . , hn^). 

Hence if the lowest power of £ in A (1, hlf . . . , An-i) be £*, A (1, glf . . . , gn-i) 
is an integral polynomial of order 2?i + 2p — 2 — s. In this case the zeros of 
A (1, gl9 . . . , gn-\)> which arise for finite values of x, are the branch places, 
each occurring to its appropriate order, provided all the branch places occur 
for different values of x\ and A (1, hl3 . . . , A^_i) vanishes for x=oo to an 
order expressing the number of branch places there. 

Ex. 1. For the surface y*=x2(x- l)(x — a) there are two branch places at ; = 0 , and 
a branch place at each of the places x— 1, x=a, where all the sheets wind. Thus 

2n+2p-2 = w=2. 1+3 + 3 = 8. 

* Chap. II. § 21. 
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For this surface fundamental integral functions are given by </i=y> 9 = 21 -> 9 — 01 -
With these values, prove that (1, gl9 g2ì g.6) = —256 ;2 (x — l ) 3 {x — afì there being a factor 
x2 corresponding to the superimposed branch places at # = 0 , while the other factors are of 
the same orders as the branch places corresponding to them. 

Ex. 2. The surface yi=x2(x — 1) is similar to that in the last example, but there is a 
branch place at infinity at which the four sheets wind, so that, in the notation of this 
Article, s = 3 . As in the last example 2n + 2p — 2 = 8, and 1, y, y2/x,ys/x are a fundamental 
system of integral functions. Prove that, now, (1, gu g2i g3) is equal to — 2o6x2(x — l)3 , 
its order in x being 2n+2p — 2 — s = 8 — 3 = 5. 

49. In accordance with the previous Chapter* the most general rational 
function having poles at p + 1 independent places, is of the form AF+B, 
where F is a special function of this kind and , are arbitrary constants. 
The function will therefore become quite definite if we prescribe the 
coefficient of the infinite term at one of the p + 1 poles—the so-called residue 
there—and also prescribe a zero of the function. 

Limiting ourselves to the case where the p + 1 poles are finite ordinary 
places of the surface, we proceed, now, to shew that the unique function thus 
determined can be completely expressed in terms of the functions introduced 
in this chapter. I t will then be seen that we are in a position to express 
any rational function whatever. 

If the general integral of the third kind here obtained with unassigned 

zero be denoted by P* , the current variables being now {z, s), instead of 

(x, y), the infinities of the function being at x and a, the function 

/.// d^x,a = </>o (z, s) + , (z, s) g, Q, ) + + -i (z, s) gn_1 Q, y) 
J ' dz z- x 

0 Q, s) + 4>1(z,s)g1+ + -i {z, s) ffn_! 
z — a 

+ (Z, S) (Z, 1 ) ^ - X + - - (Z, S) (Z, 1) - \ 

wherein gly ,.. ^ are written for the values of the functions gx (z,s), ..., 
<7n_! (z, s) at the place denoted by a, contains p disposeable coefficients, 
namely, those in the polynomials (z, l)Tl_1, , (z, l)Tn-i_1. 

Let now Cj, , Cp denote p finite, ordinary places of the surface, the 
values of z at these places being actually cu ..., cpy which are so situated that 
the determinant 

*•* — <Pi » T*I C l > .) r i bi > »Sr n—i ) Y n—1 4 > » Y 11-1 n - i 

1 > V>i bpt , <px Op , , <p n—iÌ Y n—i bp> , Y n—i bp n - i l 

wherein £ ) is the value of ^ (z, s) at the place cr, does not vanish. That it 
is always possible to choose such p places is clear: for if v1} , vp denote a 

* Chap. III. § 37. 
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set of independent integrals of the first kind, the vanishing of expresses 
the condition that a rational function of the form 

™№+ •».£]• 
involving only p — 1 disposeable ratios \ : }^ : : \p, vanishes at each of 
the places c1} , cp. 

Choose the p coefficients in the function ƒ ' (s) dPjdz, so that this function 
vanishes at cl3 , cp : and denote the function dPjdz, with these coeffi­
cients, by yfr (x,a\ ZyCjy ,cp), so that / ' ( s ) yfr(x,a', zJc1 cp) is equal 
to the determinant 

I [z, x] - [z, ], 0 , s), 1 0 , s), ..., z^~l
 1 , s\ ..., - r 1 -i (z, s) I, 

[c1} x] - [cly a], Cl ^ , ..., c^-1 ..., ^ - 1 ^ 

! [cp, ] - [Cp, a], </>!(p), cp ^>, .. . , cp^-i ^ c / n _ r i ^( f i i I 

where [z, x\ denotes the expression 

0 (z, s) + <fc (z, s) gi (a?, y) + ... + -i Qg, g) ffi Q, ) 
Z — X 

Suppose now that {z, s) is a finite place, not a branch place, such that 
none of the minors of the elements of the first row of this determinant 
vanish. Consider yfr (x, a ; z, cly , cp) as a function of (x, y). I t is 
clearly a rational function ; and is in fact rationally expressed in terms of all 
the quantities involved. I t is infinite at each of the places zy cu c2, , cp— 
and in fact as x approaches z, the limit of (z — x) yfr (x} a ; z, clf , cp) is 
the same as that of 

0 Q, g) + S(/>r Q, 6') gr (x, y) 
f'(s) 

namely, unity (§ 44, F) : so that at x = zy yfr is infinite like — (x — z)~\ And 
at Ci, ..., cp it is similarly seen to be infinite to the first order. 

To obtain its behaviour when x is at infinity, we notice that, by the 
definition of the dimension of gi (x, y)} the expression 

which is of the form 

is finite for infinite values of x. If then we add to the first column of the 
determinant which expresses the value of Af'(s) yfr (x, a; z, cl9..., cp), the 
following multiples of the succeeding p columns 

— . ^ - , - ^ ^ , . . . ( ^ - 1 , 2 , . . . , ^ , ^ - 1 , 2 , . . . , ^ , . . . ) , 
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the determinant will contain only quantities which remain finite for infinite 
values of x. 

On the whole then, as the reader can now immediately see, we can 
summarise the result as follows. 

| (x, a ; z, cl9 , cp) is a rational function of x, having only p + 1 poles, 
each of the first order, namely z, clt , cp. It is infinite at z like — {x — z)~l 

and it vanishes at x = a. 

It is immediately seen that if a function of x of the form 

dvx dvp 
Xldœ+ + X*dtf' 

which is so chosen that it is zero at all of cu ..., cp except Ci and is unity at 

Ci, be denoted by (x), then ty(x, a; z, ... cp) is infinite at d like . 
X Ci 

Let now R (x, y) be a rational function of (x, y) with poles at the finite 
ordinary places zlt z2, ..., zQ: let its manner of infinity at zi be the same as 
that of — \i (x — Zi)-1. Then the function 

(#, y) - ^ ^r (#, a'-. Z^ ci> .'., ) — - - - - \ (®> ; ZQ> °i> -••> CP) 

is a rational function of (x, y) which is only infinite at clf ..., cp. Since 
however these latter places are independent*, no such function exists—nor 
does there exist a rational function infinite only in places falling among 
d, ..., cp. Hence the function just formed is a constant; thus 

•#<>> 2/) = x i ^ O > a; z\y ..., ) + . . . + \ | (>, a; zQ, c1} ...9cp) + \. 
Conversely an expression such as that on the right hand here will represent 
a rational function having zly..., zq for poles, for all values of the coefficients 

.-. , which satisfy the conditions necessary that this expression be 
finite at each of , . . . , cp ; these conditions are expressed by the p equations 

Xi Cui Ox) + \ s (Z2) +...+ \QCOi (ZQ) = 0. 

where = 1, 2,...,p. 

When these conditions are independent the function contains therefore 

Q-P + 1 
arbitrary constants—in accordance with the result previously enunciated 
(Chapter III . § 37). The excess arising when these conditions are not inde­
pendent is immediately seen to be also expressible in the same way as before. 

We thus obtain the Riemann-Roch Theorem for the case under con­
sideration. 

The function yfr (x, a; z, cl} ..., cp) will sometimes be called Weierstrass's 
function. The modification in the expression of it which is necessary when 

* In the sense employed Chapter III. § 23. 
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some of its poles are branch points, will appear in a subsequent utilization 
of the function (Chapter VII.*). The modification necessary when some of 
these poles are at infinity is to be obtained, conformably with § 39 of the 
present chapter by means of the transformation # = (f —ra)"1, whereby the 
place x = oo becomes a finite place £ = m. 

50. The theory contained in this Chapter can be developed in a different 
order, on an algebraical basis. 

Let the equation of the surface be put into such a form as 

yn + -i ai+...+ yan^ + an = 0, 
wherein alt ..., an are integral polynomials in x: so that is an integral 
function of x. 

By algebraical methods only it can be shewn that a set of integral 
functions gl9 ..., </n_j exists having the property that every integral function 
can be expressed by them in a form 

(x, l)A + (tf, l)Al 01+...+ , 1) -1 9n-i> 
in such a way that no term occurs in the expression which is of higher 
dimension than the function to be expressed; and that the sum of the 
dimensions of gly ..., gn^ is not less than n— 1 but is less than that of any 
other set (1, hlt ..., A^-i), in terms of which all integral functions can be 
expressed in such a form as 

[ , l)K + (x, 1)A, A,+...+ (#, 1)AH-I An-J/0, l)m. 

If the sum of the dimensions of gly..., gn_Y be then written in the form 
p + n — 1, p is called the deficiency of the fundamental algebraic equation. 

The expressions of the functions glt g2, ..., gn_1 being once obtained, 
and the forms 0, 1 ..., _1 thence deduced as in this Chapter, the integrals 
of the first kind can be shewn, as in this Chapter or otherwisef, to have the 
form 

f dx 
J JTJ^ [O, IK1"1 + + ( ?, I)' '*-!-1 -,1 

wherein \< etc., -+ 1 being the dimension of git Thus the number 
of terms which enter is at most + + -1 or p. But it can in fact be 
shewn algebraically that every one of these terms is an integral of the first 
kind, namely, that an integral of the form 

/
dx 

frjfîfb (» = 1,2, , n - l ) 

is everywhere finite^: provided 0 :f> ^ * — 1. 

* The reader may, with advantage, consult the early parts (e.g. §§ 122, 130) of that chapter at 
the present stage. 

t Hensel, Creile, 109. 
X For this we may use the definition (G) or the definition (H) (§ 44). The reader may 

refer to Hensel, Creile, 105, p. 336. 
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Then the forms of the integrals of the second and third kind will follow 
as in this Chapter: and an algebraic theory of the expression of rational 
functioDS of given poles can be built up on the lines indicated in the 
previous article (§ 49) of this Chapter. In this respect Chapter VII. may be 
regarded as a continuation of the present Chapter. 

A method for realising the expressions of gly ..., gn_Y for a given form of 
fundamental equation is explained in Chapter V. (§ 73). 

For Kronecker's determination of a fundamental set of integral functions, 
for which however the sum of the dimensions is not necessarily so small as 
p + n — 1, the reader may refer to the account given in Harkness and 
Morley, Theory of Functions, p. 262. It is one of the points of interest of the 
system here adopted that the method of obtaining them furnishes an algebraic 
determination of the deficiency of the surface. 


