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CHAPTER II. 

THE FUNDAMENTAL FUNCTIONS ON A RIEMANN SURFACE. 

12. I N the present chapter the theory of the fundamental functions is 
based upon certain a priori existence theorems*, originally given by 
Riemann. At least two other methods might be followed : in Chapters IV. 
and VI. sufficient indications are given to enable the reader to establish 
the theory independently upon purely algebraical considerations: from 
Chapter VI. it will be seen that still another basis is found in a preliminary 
theory of plane curves. In both these cases the ideas primarily involved are 
of a very elementary character. Nevertheless it appears that Riemann's 
descriptive theory is of more than equal power with any other ; and that 
it offers a generality of conception to which no other theory can lay claim. 
It is therefore regarded as fundamental throughout the book. 

It is assumed that the Theory of Functions of Forsyth will be accessible 
to readers of the present book ; the aim in the present chapter has been to 
exclude all matter already contained there. References are given also to 
the treatise of Harkness and Morley*. 

13. Let t be the infinitesimal*f" at any place of a Riemann surface : if it is 
a finite place, namely, a place at which the independent variable x is finite, 
the values of x for all points in the immediate neighbourhood of the place 
are expressible in the form x — a + tw+1 : if an infinite place, x = t~(w+1K 
There exists a function which save for certain additive moduli is one-valued 
on the whole surface and everywhere finite and continuous, save at the 
place in question, in the neighbourhood of which it can be expressed in the 
form 

* See for instance : Forsyth, Theory of Functions of a Complex Variable, 1893 ; Harkness and 
Morley, Treatise on the Theory of Functions, 1893 ; Schwarz, Gesam. math. Abhandlungen, 1890. 
The best of the early systematic expositions of many of the ideas involved is found in  

Neumann, Vorlesungen über Riemanrfs Theorie, 1884, which the reader is recommended to 
study. See also Picard, Traité d'Analyse, Tom. . pp. 273, 42 and 77. 

t For the notation see Chapter I. §§ 2, 3. 
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Herein, as throughout, P (t) denotes a series of positive integral powers of t 
vanishing when t = 0, 0, A, . . . , Ar-ly are constants whose values can be 
arbitrarily assigned beforehand, and r is a positive integer whose value can be 
assigned beforehand. 

We shall speak of all such functions as integrals of the second kind : 
but the name will be generally restricted to that * particular function whose 
behaviour near the place is that of 

-l + G + P(t). 

This function is not entirely unique. We suppose the surface dissected 
by 2p cuts+, which we shall call period loops; they subserve the purpose of 
rendering the function one-valued over the whole of the dissected surface. 
We impose the further condition that the periods of the function for transit 
across the p loops of the first kind J shall be zero ; then the function is unique 
save for an additive constant. I t can therefore be made to vanish at an 
arbitrary place. The special function§ so obtained whose infinity is that 

o f - - is then denoted by / , , denoting the place where the function 
z 

vanishes and x the current place. When the infinity is an ordinary place, 

at which either x = a or x = oo, the function is infinite either like 
x — a 

or — x. The periods of Ta
x,c for transit of the period loops of the second 

kind will be denoted by £l1} ..., £lp. 

14. Let (#!3/i), (#22/2) be any two places of the surface : and let the 
infinitesimals be respectively denoted by t1} t2y so that in the neighbourhood 
of these places we have the equations x —x1 = t1

w*+1, x — x2 = t2
w*+1. Let a 

cut be made between the places (x^), (x2y2). There exists a function, here 
denoted by 11*'c , which (a) is one-valued over the whole dissected surface, 

(/3) has p periods arising for transit of the period loops of the second kind 
and has no periods at the period loop of the first kind, (7) is everywhere 
continuous and finite save near (x^) and (x2y2), where it is infinite re­
spectively like log tx and — log t2i and, (S), vanishes when the current place 
denoted by x is the place denoted by c. This function is unique. If the 
cut betweeu (x^), (x2y2) be not made, the function is only definite apart 
from an additive integral multiple of 27 , whose value depends on the 

* This particular function is also called an elementary integral of the second kind. 
t Those ordinarily called the , curves; see Forsyth, p. 354. Harkness and Morley, 

p. 242, etc. 
% Those called the a cuts. 
§ The fact that the function has no periods at the period loops of the first kind is gene­

rally denoted by calling the function a normal integral of the second kind. 
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path by which the variable is supposed to pass from c. I t will be called* the 
integral of the third kind whose infinity is like that of log (£i/£2). 

15. Beside these functions there exist also certain integrals of the first 
kind—in number p. They are everywhere continuous and finite and one-
valued on the dissected surface. For transit of the period loops of the 
first kind, one of them, say Vi, has no periods except for transit of the loop, 
ai. This period is here taken to be 1. The periods of Vi for transit of the 
period loops of the second kind are here denoted by , ..., rip. We may 
therefore form the scheme of periods 

\ &1 2
 ap bx bp 

vi ! ° ° rn \TIP 

V2 ° M ° r21 T2P 

vp 0 ' 0 1 1 Tpp 

Each of these functions Vi is unique when a zero is given. They will there­
fore be denoted by v^c, ..., vp

%c, the zero denoted by being at our disposal. 
The periods have certain properties which will be referred to in their 

proper place : in particular = ^, so that they are certainly not equivalent 
to more than \p (p + 1) algebraically independent constants. As a fact, in 
accordance with the previous chapter, when p > 1 they are subject to 
2 P (jp + 1) — (3j9 - 3) = } (p - 2) (p - 3) relations. 

16. In regard to these enunciations, the reader will notice that the word 
period here used for that additive constant arising for transit of a period loop 
—namely, in consequence of a path leading from one edge of the period loop 

r> i to the opposite edge—would be more properly^caüed the period for circuit of 
this path than the period for transit of the loop. 

The integrals here specified are more precisely called the normal eie-
mentary integrals of their kinds. The general integral of the first kind is a 
linear function of t^, ..., vp with constant coefficients ; its periods at the first 
p loops will not have the same simple forms as have those of v1 ... vp. The 
general integral of the third kind, infinite like G log (^/^), G being a constant, 

is obtained by adding a general integral of the first kind to GU^ x ; similarly 

for the general integral of the second kind. 

The function ^ has")" the property expressed by the equation 

TT«. T\Xu   

«li #2 X, ' 

* More precisely, the normal elementary integral of the third kind. 
t Forsyth, p. 453. Harkness and Morley, p. 445. 
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A more general integral of the third kind having the same property is 
i...p 

wherein the arbitrary coefficients satisfy the equations — #. The pro­
perty is usually referred to as the theorem of the interchange of argument 
(x) and parameter ( 

The property allows the consideration of 

nV 
as a function of ?/ for fixed positions of In this regard a remark 
should be made : 

For an ordinary position of x, the function 

is a finite continuous function of / when / is in the neighbourhood of x. 
But if be a branch place where w + 1 sheets wind, and ?/, be two 
positions in its neighbourhood, the functions of x 

I T ' / - l o g ( / - ), Uxe L fog te- ) 

are respectively finite as ; approaches / and ? so that 

I T ; ' ; * * - l o g « - * ) 

is not a finite and continuous function of x/ for positions of / up to and 
including the branch place . 

In this case, let the neighbourhood of the branch place be conformally 
represented upon a simple plane closed area and let £ , £/, £ be the represent­
atives thereon of the places xlt ?/, . Then the correct statement is that 

ni:T-iog &'-£) 
is a continuous function of ?/ or £/ up to and including the branch place xx. 

This is in fact the form in which the function ^ * 2 arises in the proof 

of its existence upon which our account is based*. 

In a similar way the function 

V' 
regarded as a function of #,', is such that 

is a finite continuous function of f/ in the immediate neighbourhood of ?. 

* The reader may consult Neumann, p. 220. 

. ' 2 
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17. I t may be desirable to give some simple examples of these integrals, 

(a) For the surface represented by 
2 = ^ ( ^ - 1). . .( 7- 2 +1), 

wherein Oj, ..., a2p+1 are all finite and different from zero and each other, consider the 
integral 

i [dx/y+v y + Vi\ 

(£, ), (gly rjj) being places of the surface other than the branch places, which are 

(0, O ) , ^ , 0), ..., (a2p + 1, 0). 

It is clearly infinite at these places respectively like log (a? - £), - l°g ( ? - $j). 

It is not infinite at (£, - ^ ) , (£ , - 7 l ) ; for (y+?)/(#-£), ( + fc)/(# - ft) a r e finite a t 

these places respectively. 

At a place # = oo, where x=tr\ y^rf-p-1 (l-\-Pl(t))y e being ± 1 , and 2( ) a series of 
positive integral powers of t vanishing for £=0, we have 

and the integral has the form 

being a constant. It is therefore finite. 

At a place = 0, for instance where 

x=ai + t\ y=Bt\l+Ps(t)\  

being a constant, the integral has the form 

CJÄ[I+P4(01 
(7 being a constant, and is finite. 

Thus it is an elementary integral of the third kind with infinities at (f, TJ\ (ft, 17 

It may be similarly shewn that the integral 
[doc (y y+iyA 

is infinite at (ft, ^ ) like - log ( ? — fj) and is not elsewhere infinite except at (0, 0). 

Near (0, 0), we have x=t2,y=IH [1+P 5 (*
2)] and this integral is infinite like 

ƒ ? - * . . 
It is therefore an elementary integral of the third kind with one infinity at the 

branch place (0, 0) and the other at (ft, ). 

Consider next the integral 

, Cdx d_ ( + _. [dxy+n+(x-£)i( 
*] ydt\*-S)~*}9 (*~£)2 * 

where 4' = -£» I t can easily be seen that it is not infinite save at (ft rj). Writing for the 

neighbourhood of this place, which is supposed not to be a branch place, 
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the integral becomes 
f dx ? + (*-£)*7' + i ( . E - g ) W 4 . . . 

which is equal to 

/5Ép[-*£-»+"]-
Thus the integral is there infinite like ^, and is thus an elementary integral of 

the second kind. 

The elementary integral of the second kind for a branch place, say (0,0), is a multiple of 

if-. 
In fact near #=0, writing x—t\ y = Dt[l + P(£2)], this integral becomes 

or 

which is equal to 

as desired. 

The integral is clearly not infinite elsewhere. 

Example 1. Verify that the integral last considered is the limit of 

1 (dxry + rj f\ 
2D J y \jc-t x] 

as the place (£, rj) approaches indefinitely near to (0, 0). 

Example 2. Shew that the general integral of the first kind for the surface is 

j^(Al + A*v+...+A^1x»-i). 

(ß) We have in the first chapter §§ 2, 3 spoken of a circumstance that can arise, that 
two sheets of the surface just touch at a point and have no further connexion, and we 
have said that we regard the points of the sheets as distinct places. Accordingly we may 
have an integral of the third kind which has its infinities at these two places, or an integral 
of the third kind having one of its infinities at one of these places. For example, on the 
surface 

f ( , ) = ( - ) ( - mjc) + ( , )3 + (x, y\=0 

where (#, y)Zì (x, y\ are integral homogeneous polynomials of the degrees indicated by the 
suffixes, with quite general coefficients, and mu m2 are finite constants, there are at x=0 
two such places, at both of which y=0. 

In this case 
f dx 

J/ 
where /'(y) = --, is a constant multiple of an integral of the third kind with infinities at 
these two places (0, 0) ; and 

f y - mxx+Ax2+Bxy -f Cy2 dx 
J ~Lx~+My ~ fïy) 

2—2 

file:///jc-t
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is a constant multiple of an integral of the third kind, provided , , be so chosen that 
— 1 + ?+Bxy + Cy2 vanishes at one of the two places other than (0, 0) at which 

Lx+My is zero. Its infinities are at (i) the uncompensated zero of Lx + My which is not 
at (0, 0), (ii) the place (0, 0) at which the expression of in terms of x is of the form 

y=m2x-{- Px2 + Qx3 -f... 

In fact, at a branch place of the surface where œ=a + t2, f{y) is zero of the first order,  
dx 

and dx=2t dt; thus \- \ *s finite at the branch places. At each of the places (0, 0), 

f{y) is zero of the first order, Lx + My is zero of the first order and y- mxx+Aa?+Bxy + Cy2 

is zero at these places to the first and second order respectively. These statements are 
easy to verify ; they lead immediately to the proof that the integrals have the character 
enunciated. 

The condition given for the choice of A, By will not determine them uniquely—the 
integral will be determined save for an additive term of the form 

where P, Q are undetermined constants. The reader may prove that this is a general 
integral of the first kind. The constants P, Q may be determined so that the integral of 
the third kind has no periods at the period loops of the first kind, whose number in this 
case is two. The reasons that suggest the general form written down will appear in the 
explanation of the geometrical theory. 

(y) The reader may verify that for the respective cases 

y^z={x- a) (x - b)2 (x - c)3, 
y* = (x — a)(x—b) (x-c)2, 
yß—(x-a)(x-b) (x-c)\  

= (x — a) (x —b) (x — c)5, 

the general integrals of the first kind are 

ƒ f { - ){*- )\ 

^{x-cY[Atf + By{x-c) + C{x-cn 

where , , are arbitrary constants. 

See an interesting dissertation "de Transformatione aequationis #n=Ä(#)..." Eugen. 
Netto (Berlin, Gust. Schade, 1870). 

(Ò) Ex, Prove that if F denote any function everywhere one valued on the Riemann 
surface and expressible in the neighbourhood of every place in the form 

the sum of the coefficients of the logarithmic terms log t of the integral I Fdx, for all 

places where such a term occurs, is zero. 
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It is supposed that the number of places where negative powers of t occur in the 
expansion of F is finite, but it is not necessary that the number of negative powers be 

finite. The theorem may be obtained by contour integration of IFda;, and clearly 

generalizes a property of the integral of the third kind. 

18. The value of the integral* \YX'C dv%iC taken round the p closed curves 

formed by the two sides of the pairs of period loops (a1} 6 . . . , (ap, bp), in such 
a direction tha t the interior of the surface is always on the left hand, is equal 
to the value taken round the sole infinity, namely the place a, in a counter­
clockwise direction. Round the pair ar> br the value obtained is 

n rJ dv?c , 

taken once positively in the direction of the arrow head round what in the 
figure is the outer side of br. This value is (— û)t>), where a>ir denotes the 
period of Vi for transit of ar, namely, from what in the figure is the inside of 
the oval ar to the outside. 

Qr 

The relations indicated by the figure for the signs adopted for œirt rir and 

the periods of *' ° will be preserved throughout the book. 

Since coir is zero except when r = i, t he sum of these p contour integrals 

is —ö^iß j - . Taken in a counter-clockwise direction, round the pole of ' , 

where 

a t 

the integral gives 

j 

where D denotes -=- . Hence, as i = 1, 
at 

* Cf. Forsyth, pp. 448, 451. Harkness and Morley, p. 439. 
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This is true whether a be a branch place or a place at infinity (for which, 
if not a branch place, x = £-1) or an ordinary finite place. In the latter case 

Similarly the reader may prove that the periods of TIJ x are 

0, 0,2wivx"x\ 2** *"*. 
% P 

In this case it is necessary to enclose xx and œ2 in a curve winding w1 -f 1 
times at xX) w2 + 1 times at x2, in order that this curve may be closed. 

19. From these results we can shew that the integral of the second kind 
is derivable by differentiation from the integral of the third kind. Apart 
from the simplicity thus obtained, the fact is interesting because, as will 
appear, the analytical expression of an integral of the third kind is of the 
same general form whether its infinities be branch places or not ; this is not 
the case for integrals of the second kind. 

We can in fact prove the equation 

namely, if, to take the most general case, xx be a winding place and xx' a place 

in its neighbourhood such that xx = x1 +t™ , the equation, 

lim. ,-1~1 ' ; - *' 1 = *' . 
= L Xi'x*j 

For, let the neighbourhood of the branch place xx be conformally represented 
upon a simple closed area without branch place, by means of the infinitesimal 
of x, as explained in the previous chapter. Let |V, ?i be the representatives 
of the places xXt xlt and f the representative of a place x which is very near 
to xlf but is so situate that we may regard xx as ultimately infinitely closer 
to xx than x is. 

Then x - xx = (£ - ^)w+\ 

where does not vanish for xx = x, 

and n j ' ^ = log (x - V ) + ' = log (£ - £ ' ) + ', 

where ' is finite for the specified positions of the places and remains finite 
when £i is taken infinitely near to fx (§ 16). 

Also * . = ^ i los (* - *%) + « bg (f - ft)+ , 
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where is also finite. Therefore 

=-«. ' -4TV 4 !^I- + - ] + *' -* 
and thus 

] i m . - *'•* *••* \ = - * + +, 

where -̂ r is finite. 

Now as fj' moves up to £ , for a fixed position of f, we have 

and r^=r f ; c = - * + *, 

where & is finite. 

Hence D, ïf'° - *'" 
lXi Xu X2 Xx 

is finite when x is near to xx. 

Moreover it does not depend on x2. For from the equation 

Xu X2 X, f 

we may regard ^' as a function of xX) which is determinate save for an 
additive constant by the specification of x and only. This additive constant, 
which is determined by the condition that the function vanishes when Xi — ?2> 
is the only part of the function which depends on x2. I t disappears in the 
differentiation. 

Finally, by the determination of the periods previously given, it follows 
that 

n \ c - V 'e 

has no periods at the 2p period loops. Hence it is a constant, and therefore 
zero since it vanishes when x =  

Corollary i. 

Hence Dt *' = Dt Ux,c = Dt Dt n * " * = A *1, , 
lX Xi lX lXx Xu #2 lXx ^lX X, lXx X * 

of which neither depends on the constant position c. 

Corollary ii. 

The functions 
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are respectively infinite like 

_ ! _ ! _ ! 
rç&i ^au! « , 

We shall generally write ^, D^, ... instead of Dtxi D2^, . . . . When xx 

is an ordinary place DXl will therefore mean j — , etc. 

Corollary iii. 

By means of the example (8) of § 17 it can now be shewn that the infinite 
parts of the integral 

JFdœ, 

in which F is any uniform function of position on the undissected surface 
having only infinities of finite order, are those of a sum of terms consisting of 
proper constant multiples of integrals of the third kind and differential 
coefficients of these in regard to the parametric place. 

20. One particular case of Cor. iii. of the last Article should be stated. 
A function which is everywhere one-valued on the undissected surface must 
be somewhere infinite. As in the case of uniform functions on a single 
infinite plane (which is the particular case of a Biemann surface for which 
the deficiency is zero), such functions can be divided into rational and 
transcendental, according as all their infinities are of finite order and of finite 
number or not. Transcendental functions which are uniform on the surface 
will be more particularly considered later. A rational uniform function can 
be expressed rationally in terms of x and y*. But since the function can be 
expressed in the neighbourhood of any of its poles in the form 

we can, by subtracting from the function a series of terms of the form 

- [ /«c + *.*+...+ |^f_ D»-i Y* t 

obtain a function nowhere infinite on the surface and having no periods at the 
first p period loops. Such a function is a constant f. Hence .Fcan also be 
expressed by means of normal integrals of the second kind only. Since F 
has no periods at the period loops of the second kind there are for all rational 
functions certain necessary relations among the coefficients Ax> ...,Am. 
These are considered in the next Chapter. 

* Forsyth, p. 369. Harkness and Morley, p. 262. 
+ Forsyth, p. 439. 
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21. Of all rational functions there are p whose importance justifies a 
special mention here; namely, the functions 

dvx dv2 dvp 

dx' dx ' '" dx ' 

In the first place, these cannot be all zero for any ordinary finite place a of 
the surface. For they are, save for a factor 27 , the periods of the normal 
integral ^c . If the periods of this integral were zero, it would be a rational 
uniform function of the first order ; in that case the surface would be repre-
sentable conformally upon another surface of one sheet*, f = Ta

XtC being the 
new independent variable ; and the transformation would be reversible 
(Chap. I. § 6). Hence the original surface would be of deficiency zero; 
in which case the only integral of the first kind is a constant. The functions 
are all infinite at a branch place a. But it can be shewn as here that the 
quantities to which they are there proportional, namely Davly..., Davp, cannot 
be all zero. The functions are all zero at infinity, but similarly it can be 
shewn that the quantities, Dvl} . . . , Dvp, cannot be all zero there. 

Thus p linearly independent linear aggregates of these quantities cannot all vanish at 
the same place. We remark, in connexion with this property, that surfaces exist of all 
deficiencies such that p-1 linearly independent linear aggregates of these quantities 
vanish in an infinite number of sets of two places. Such surfaces are however special, and 
their equation can be put f into the form 

= (#, l)2p + 2* 

We have seen that the statement of the property requires modification 
at the branch places, and at infinity ; this particularity is however due to the 
behaviour of the independent variable x. We shall therefore state the pro­
perty by saying: there is no place at which all the differentials dv1} ..., dvp 

vanish. A similar phraseology will be adopted in similar cases. For instance, 
we shall say that each of dvly dv2> . . . , dvp hasj 2p — 2 zeros, some of which 
may occur at infinity. 

In the next place, since any general integral of the first kind 

X^-h... +\pvp
x 

must necessarily be finite all over any other surface upon which the original 
surface is conformally and re versi bly represented and therefore must be an 
integral of the first kind thereon, it follows that the rational function 

X>dx~+~'+X*d£ 

* I owe this argument to Prof. Klein. t See below, Chap. V. 
X See Forsyth, p. 461. Harkness and Morley, p. 450. 
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is necessarily transformed with the surface into 

where Vi = V{ is an integral of the first kind, not necessarily normal, on the 
d£ 

new surface, f being the new independent variable, and M = -^. 

Thus, the ratios of the integrands of the first kind are transformed 
into ratios of integrands of the first kind ; they may be said to be invariant 
for birational transformation. 

This point may be made clearer by an example. The general integral 
of the first kind for the surface 

f = , 1)8 

can be shewn to be 

ƒ— (A+Bx + Caf), 

, , being arbitrary constants. 

If then : 2: 3 denote the ratios of any three linearly independent 
integrands of the first kind for this surface, we have 

1 : x : x2 = -f 2 + 3 : 2 f 2 2 + 2 3 : 3 + 3 2 4- 3 5 

for proper values of the constants cti, 6j, . . . , c3, 

and hence 

(«!</>! + b$2 4- 3) ( 3 + 3 2 + 3 3) = ( 2 + 2 2 + 2 3)
2. 

Such a relation will therefore hold for all the surfaces into which the given 
one can be birationally transformed. 

22. I t must be remarked that the determination of the normal integrals 
here described depends upon the way in which the fundamental period loops 
are drawn. An integral of the first kind which is normal for one set of 
period loops will be a linear function of the integrals of the first kind which 
are normal for another set ; and an integral of the second or third kind, which 
is normal for one set of period loops, will for another set differ from a normal 
integral by an additive linear function of integrals of the first kind. 


