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iVv. THE INVERSE SYSTEM AND
MODULAR EQUATIONS

57. A considerable number of the properties proved in this
section are to be found in (M) ; but the introduction of the inverse
system is new.

Definitions. 'The array of the coefficients of a complete linearly
independent set of members of a module M of degree <¢ arranged
under the power products o, w,, ..., w, of degree <¢ is called the
dialytic array of the module M for degree ¢. ‘

The linear homogeneous equations of which this array is the array
of the coefficients are called the dialytic equations of M for degree ¢.

Thus the dialytic equations of M for degree ¢ are represented by
equating all members of M of degree <¢ to zero and regarding the
power products of 21, 22, ..., 2, as symbols for the unknowns.

The array inverse (§ 54) to the dialytic array of M for degree ¢ is
called the inverse array of M for degree ¢.

The linear homogeneous equations of which this array is the array
of the coefficients are cailed the modular equations of M for degree .

The modular equations for degree ¢ are the equations which are
identically satisfied by the coefficients of each and every member of M
of degree <¢. They may not be independent for members of degree < ¢
and they do not apply to members of degree> ¢ (see § 59).

The sum of the products of the elements in any row of the inverse
array for degree ¢ with the inverse power products o, w7, ..., w,™?
is called an inverse function of M for degree ¢.

Thus the modular equations of M for degree ¢ are represented by

equating all the inverse functions of M for degree ¢ to zero, taking

. 2, “
each negative power product (2, ... #,. ")~ as a symbol for “ the

coefficient of 2, 22 ... 2,7 in the general member of M of degree ¢.”

We shall also say that a polynomial /'=3a, . 2% ... 2,5 and
a finite or infinite negative power series £'=3¢, . ., (@% ... 2,2)>
are inverse to one another if the constant term of the product FE
vanishes, 1.e. if 2y, p,, ..., p0 o1 pyy o pn =0.  Thus any member of M of
degree <¢and any inverse function of A for degree ¢ are inverse to
one another.
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Any inverse function of M for degree ¢ can be continued so as to
become an inverse function of M for any higher degree (§59), and when
continued indefinitely becomes an inverse function of M without
limitation in respect to degree. 1f all coefficients after a certain stage
become zero the inverse function terminates and is a finite negative
power series. In the case of an H-moduale the inverse functions are
homogeneous (§ 59) and therefore finite.

In order that a function may be an inverse function of M it is
necessary and sufficient that it should be inverse to all members
of M; hence if M contains M’ any inverse function of A" is an inverse,
function of M. The whole system of inverse functions of M can there-
fore be resolved into primary systems corresponding to the primary
modules of M. The inverse functions of a Noetherian primary module
are all finite (§ 65) but not in general homogeneous. The inverse
functions of a non-Noetherian primary module are all infinite power
series (§ 65).

We shall regard inverse function and modular equation as con-
vertible terms, and use that term in each case which seems best suited
to the context.

A module is completely determined by its system of modular
equations no less than by its system of members. The two systems
are alternative representations of the module. Also the properties of
the modular equations are very remarkable, and it is necessary to
consider them in order to give a complete theory of modular systems.

As there is a one-one correspondence between the members of a
module M of degree < ¢ and the members of the equivalent H-module
of degree ¢, so there is a one-one correspondence between the modular
equations of M for degree ¢ and the modular equations of the members
of the equivalent H-module of degree #. These last are called the
modular equations of the H-module of (absolute) degree ¢.

58. Theorem. The number of independent modular equations
of degree ¢ of an H-module (I, Fs, ..., F,) of rank r is the coefficient
of & in

(1—a(1-2a"...a-a"(1-a)m
where 1, by, ..., I, are the degrees of Iy, ¥y, ..., .

Since the whole number of linearly independent polynomials of
degree ¢ is the number of power products of degree ¢, or the coefficient
of #' in (1—a) " the theorem will be proved if it is shown that the

M. 5
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number NV (r, £) of linearly independent members of (#, £, ..., F))
of degree ¢ is the coefficient of 2* in

{1—1-a")(1-2a2)...(1-2")} (1 —2)™
This is easily seen to be true when »=1.

Since any member of (#, F, ..., F,) is a linear combination of

elementary members, we have

N(r, t)=N(r—1, ¢)+p,
where p is the number of polynomials o, F,, w,F,, ..., w,F, of degree ¢
of which no linear combination is a member of (#}, F, ..., F,,), or the
number of power products o, o,, ..., w, of degree #—1/, of which no
linear combination is a member of (F}, £, ..., F,—), § 48. Hence

p+ N (r -1, ¢—1,)=number of power products of degree ¢— 1,

= coefficient of 2* in 2™ (1 - 2)~";
and .
N(r,t)=N(r—1,t)—N(r—1,¢ - 1) +coefficient of &' in 2" (1-2)".
Hence, assuming the theorem for N (r—1, #), it follows that N (», #)
is the coefficient of 2 in

1=(1-a") .. (1= &) (1 —2) " (1=a")+ 2" (1-2),

or in {1-(1- xll) e (L=af1) (1= 2P} (1-a)™,
which proves the theorem.

This result is independent of the coefficients of £y, Fy, ..., F,;
hence it follows that any member of (#, Fy, ..., F,) is expressible in
one way only in the form

XOF + XOR, + ...+ X007,
where X (asin §§ 6, 7) is a polynomial in which z,, @, ..., #; occur
only to powers as high as @47 ..., %7, the variables having been
subjected to a substitution beforehand.

The theorem can be applied to any module (#), £, ..., F,) of
rank ¢ if (£, Fy, ..., F,) is an H-basis, i.e. if the H-module deter-
mined by the terms of highest degree in £}, F), ..., I is of rank »
(§49). In this case the number of independent modular equations for
degree t is the coefficient of a* in (1—2h) ... (1—a¥)(1-2)""1 An
important particular case is the following :

The number of independent modular equations of a module
(I, By, ..., F,) of rank n such that the resultant of the terms of
kighest degree in By, I, ..., I, does not vanish is L1, ...1,—1 for
degree 1—1, and L1,... 1, for any degree >1, where

I=L+lL+...+1,—n.
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This is also true for any H-module (#), F,, ..., I7,) of rank »;
but the number of modular equations for degree # will be the sum of
the numbers of modular equations ¢f all degrees < ¢, so that there is
one modular equation of degree / and none of any degree > .

59. Any inverse function of M for any degree can be continued
s0 as to give an inverse function of M for any higher degree.
By carrying the continuation on indefinitely we obtain a power

series (finite or infinite) which is an inverse function of A/ for all
degrees without limit.

Let (£, Fy, ..., ) be an H-basis of M. Then any member Z
of M is a linear combination of elementary members w,F; no one of
which is of higher degree than F. Let [ be the lowest degree of any
member of M. Write down the dialytic array of M for degree /,
viz. the array of the coefficients of such members of the H-basis as are

5—2



68 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [1v

of degree /. Their terms of degree / (corresponding to the compart-
ment / of the diagram) are linearly independent, for if not there would
be a member of M of degree </, which is not the case. Next write
down the rows of the array representing such members of the basis as
are of degree [+ 1, and members obtained by multiplying members of
degree ! by @1, 3, ..., @, S0 as to obtain a complete set of members
of degree [+1 linearly independent as regards their terms of
degree /+1, these terms corresponding to the compartment /+1 of
the diagram. Proceeding in the same way we can obtain the whole
dialytic array for any degree.

To obtain the inverse array for the same degree first write down
square compartments 0, 1, 2, ..., /—1 with arbitrary elements corre-
sponding to degrees 0, 1, 2, ..., /— 1, and then a compartment / inverse
to the compartment / of the dialytic array. Each row of the com-
partments 0, 1, 2, ..., {—1 can be continued so as to be inverse to the
dialytic array for degree /, since the determinants of the compartment
{ do not all vanish. This completes the inverse array for degree 7. All
its rows can be continued so as to be inverse to the dialytic array for
degree [/ + 1, and a compartment [+ 1 of new rows can be added inverse
to the compartment /+1 of the dialytic array. This completes the
inverse array for degree /+ 1; and we can proceed in a similar way to
obtain the inverse array for any degree.

This diagram or scheme for the dialytic and inverse arrays of a
given module A will be often referred to. The ease with which it can
be conceived mentally is due to the fact that it is obtained by working
with an H-basis of M. FEach pair of corresponding compartments
{+¢ form inverse arrays, and in combination form a square array,
showing that the combined complete arrays for any degree have the
same number of rows as columns. In the case of a module of rank »
the compartments of the dialytic array eventually become square and
the total number of rows of the inverse array is finite. To a square
compartment in either array corresponds no compartment or rows of
the other array. In the case of an H-module the compartments are
the only parts of the arrays whose elements do not vanish, i.e. the
inverse functions are homogeneous.

Definition. The negative power series represented by the rows of
the inverse array continued indefinitely will be called the members of
the inverse system, and Ky, E,, E;, ... will be used to denote them, just
as Iy, Iy, Fy, ... denote members of the module.



IV] THE INVERSE SYSTEM AND MODULAR EQUATIONS 69

The system inverse to (1) has no member. The system inverse to
(21, @, ..., ,) has only one member /#=1; and the modular equation
1 =0 signifies that the module contains the origin.

60. Properties of the Inverse System. Before attempting
to show in what ways the inverse system may be simplified we consider
its general properties.

Definition.  If E=3c, . .. p (@@ ... 2,") is a negative
power series (no p; negative), and A any polynomial, the part of the
expanded product A which consists of a negative power seriés will
be denoted by A.E and called the A-derivate of K. 'Thus

2. ()t = (20)7, @t (@)t =0,

D
. . ) . .
A negative power series B= 3¢, ,, ., (@ @ % ... 2,/") 7 s or is
not an inverse function of a module M according as every member
F:an,lypz,,,.,pnwlplwzp%...x,,p” of M, or not every member of M,
is inverse to it, i.e. according as every 2ay, p,, .., p, Cop. pg. . vy =0 OF
not. Suppose £ an inverse function and # any member of M. Then

l 1; l D1+l Dptly o .
2 @t B =2y, p, . p, ¥ "1 @, * " is a member inverse to &;

hence every 2a, o,. ..., p, Coytty, s py 42, = 0, and

N Py, Po . Pny—1
chlﬂl, vy Pty (xl Ly ™ eee Xy ) ]

or 20y ... 2,". K, is a member of the inverse system. Hence if £
is a member of the inverse system of M so also is 2022 . E, and
if K, K, ..., B, are members so alsois A,. Ey+ Ay. By + ...+ Ay, B,
a member, where A,, A,, ..., 4, are arbitrary polynomials.

In a slightly modified sense which will be explained later (§ $2)
the inverse system of any module M has a finite basis [Hy, B, ..., B;]
such that any member of the inverse system is of the form

X B+ X, B+ ...+ X, B,

where X1, X, ..., X are polynomials.

This theorem is evidently true in the important case in which the
total number of linearly independent members of the inverse system
is finite, viz. in the case of a module of rank % and in the case of
a module of rank » when treated as a module in 7 variables only, or,
in other words, in the case of a module which resolves into simple
modules.
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Regarding the inverse system as representing the modular equations
of M we shall write M=[FE,, K, ..., K] as well as M = (F, Fy, ..., F}).
Here M is the v.c.m. of [H\], [B:], ..., [Ei] and the @.c.m. of
(), (F), oy (F)

Definition. A module M will be called a principal system if its
inverse system has a basis consisting of a single member, i.e. if
M=[F]

A module of the principal class is a principal system (§ 72), but
a principal system is- not necessarily of the principal class. A
principal system is however the residual of a module (#) with respect
to any module of the principal class which contains, and is of the same
rank as, the principal system (cf. § 62).

61. The system inverse to M= (Fy, F,, ..., F}) is the system whose
Fi-derivates (i =1, 2, ..., k) vanish identically.

In other words, in order that £ may be a member of the inverse
system of M it is necessary and sufficient that #;. £ (i=1, 2, ..., k)

o]
- . . . q .
should vanish identically. For if B=3c, 4, .. 4, ("2, 2, is
any. member of the inverse system, and F;=Z2a, ,, ., pnxlp el el

_ 0, @ In\—1
then Fi. K= f“pl, Das e Py fcpﬂql,m. g (T e )

— a ,, 92 T\—1 X _

= ? (@ 2s®. . 20" f‘“pl,pg, oo P Coy gy oy ity = 05

. . q q, . .

since every Sa,, .. p, Cpjray . py+q, VANIshes (21 ... 2, " F; being inverse
P

to E). Conversely if F;. E=0, then faplw,pncpﬁql,m,pnwn:(),

. q . . . .

ie. »™ ... 2, F;is inverse to K, and every member of M is inverse

to K, i.e. £ is a member of the inverse system.

Similarly iof M=[E\, E,, ..., E,) the necessary and sufficient con-
dition that I may be @ member of M is that F. E; (j=1,2, ..., k)
vanishes identically.

62. The modular equations of M|(Fy, Fs, ..., Fy) are the F-deri-
vates of the modular equations of M, i.e.
[EI; E2) ey E’h]/(lnly 12) ey Fk) = [“'5 E . E"i, ]-

For the necessary and sufficient condition that #' may be a member
of the residual module is

FF,=0mod M (i=1,2, ..., k)
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or FF, E=0 (i=1,2, .., k; j=1,2, ..., k)
or F.(F;. Ej)=0.
Hence [..., F}. &}, ...] is the residual module (§ 61).

63. A system of wnegative power series with a finite basis
(B, By, ..., E] of such a nature that oll derivates of K., K, ..., £,
belong to the system is am inverse system of o module if E;
(i=1, 2, ..., k) has an Fi-derivate which vanishes identically.

For there are polynomials #' such that the F-derivate of each of
E,, E,, ..., E, vanishes identically, the product /) F}... F}, being one
such polynomial. Also the whole aggregate of such polynomials #
constitutes a module M ; for if /' belongs to the aggregate so does 4 F.
Consider the dialytic and inverse arrays of M obtained as in §59.
Since every member of M is inverse to every member of [ £, £, ..., K]
all members of the latter are represented in the inverse array. If any
other power series are represented, viz. if there is a row of the inverse
array which does not represent a member of [£), B, ..., B], let it
begin in the compartment /+¢. Then if we omit this row we can
add a row to the dialytic array representing a polynomial of degree
!+ inverse to all members of [ £y, £, ..., /£,] but not a member of M.
This is contrary to the fact that M is the whole aggregate of such
polynomials. Hence the system inverse to M is (X, B, ..., B3]

®

Thus in order that £=Sc,, p,. ...y, (@ @2 ...2,") may represent
a modular equation of a module it is necessary and sufficient that
Cpy. pg, b, ShOUld be a recurrent function of pi, ps, ..., pu, that is,
a function satisfying some recurrent relation

Ea/pl, Da» ...,pncplﬂl, oo Dy ¥l = 0
p

for all positive integral values of 4, &, ..., Z,, where the @, ,, ., are
a set of fixed quantities finite in number. It may be that ¢, ,, .,

satisfies several such recurrent relations not deducible from one another ;
but it is sufficient if it satisfies one.

64. Transformation of the inverse system corresponding to a
linear transformation of the modular system.

If the variables in the modular system M are subjected to a linear
non-homogeneous substitution with non-vanishing determinant by
which M is transformed to M’ it is required to find how the inverse
system [ K}, Es, ..., £,] is to be transformed so as to be inverse to /"
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In other words, if the negative power series X is inverse to the
polynomial F' it is required to find a power series £’ inverse to the
transformed polynomial /. It will be shown that an E' exists which
can be derived from £ in a way depending only on the substitution
and not on the polynomial 7.

b D, 4% 14
Let F=3a, . p&t..2," F'=3d, . 0" 2"
and let the coefficients ¢, ,,, ..., of £ be represented symbolically
P D, ), . _
by ¢”¢)”...¢,”” Then we have E=3¢™...c, " (2™ ...2,")"; and

Py, D2 P _
2y, pyy s py O €2 i Cy "= 0,

since &, F' are inverse to one another. Let the inverse substitution
be vl =ano+ ... +adpa,+a; (1=1,2, ..., n)
Then 3,4 (@na+ .. )" @ty + ... )" =3ay, . ,,na’lpl...xnp",
and we have
Selt.. el x

{coeff. of @"... 2, in 3dy,...q, (@na+ .. )0 (@ ey + ...)" =0,
ie. S0y, g, @ne+ ) (@ e+ ) =0,
ie. the power series £'=3 (a'we,+ ...)"% .. (@ e+ ...)" (2" ... &,")

an

is inverse to the polynomial #'=3d/,, . o 2" ... @,

-y

Hence the coefficient of (2, 2, ..

series /' 1s

. 2,")" in the transformed power

g gy =@+ )0 (@ g+ )2 (@6 + .0 )y
where, after expanding the right-hand side, ¢f1¢22 ... ¢,Pn is to be put
equal t0 ¢y, 5,, ..., »,, the coefficient of (a1 2,72 ... 2,7»)7 in B. Forsuch
a transformation of /' and Z, when not inverse to one another,
Sap,, p,, Cpy, py, - 1y, 15 AN absolute invariant.

s Dy
The most important transformation is that corresponding to a
change of origin only. In this case, if

F=3a, , @™ .2 and E=3c¢".. ¢ (& .27,
and the new origin is the point (—a;, — @, ..., —ay),
then F'= Eapl . (21— al)pl oo (@0 — an)pn
and E' =3 (c;+ a)™ ... (o +a,)™ (@t oo™,

It is to be noticed that if & is a finite power series it nevertheless
transforms into an infinite power series £’. In particular if F=1
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then £ =3a™...a,"" (& a... 2", the inverse function of
(01— @y, -y Ty — ay).

For homogeneous substitutions another way of considering corre-
sponding transformations of # and % can be given, which however
excludes a change of origin. Represent E by

i D V2 D,
Sc Uy Uy ey "
Dy Doy voes Py~ T -

Pl pe! e pat
instead of S, p,, ..y, @ @ "), and let the new & be defined

Py

. . 9 D,
as inverse (or conjugate) to F=3a, , ., a' ... 2, when the

same relation Za, .., 6, ..., =0 holds as before. Then for contra-

gredient substitutions of @y, @, ..., 4, and u,, %, ..., %, the poly-
nomial /" and power series £ will always remain inverse (or conjugate)
to one another if they are so originally. Also the members £ of the
inverse (or conjugate) system of a module M, when expressed in the
new form above, are the power series with respect to which the
members (of the basis) of the module A/ are apolar (§ 61).

65. The Noetherian Equations of a Module. The
modular equations 3¢, p, ... p, (272, 2,"")7'=0 of a module M
for degree ¢ are finite because they are only applicable to members
of degree <t#, and the coefficients (2,"'z,2...,")~' in the general
member of degree ¢ vanish when p, + ...+ p,>¢ A modular
equation may however be finite in itself, i.e. every ¢, ,, ..y, for
which p;, + py+ ... + p, exceeds a certain fixed number / may vanish.
If such an equation is applied to a polynomial of degree >/ it only
affects the coefficients of terms of degree </

Definition. The Noetherian equations of a module are the
modular equations which are finite in themselves.

There are no Noetherian equations if the module does not contain
the origin. For if £'=0 is a Noetherian equation of absolute degree /,
and o' a power product of absolute degree I which is present in £,
the derivate equation ./ =0 is 1=0, showing that the module
contains the origin. Every Noetherian equation has the equation
1=0 as a derivate.

On the other hand Noetherian equations always exist if the
module contains the origin, for the equation 1=0 exists, and so
does the equation »™'=0, where o is any power product of less
degree than any term which occurs in any member of the module.
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The whole system of Noetherian equations of a non-Noetherian
module M forms only a part of the whole system of modular equations,
and is exhibited by a scheme similar to but different from that of § 59,
with which it should be compared. In this new scheme the rows of the
dialytic array represent the members of the module arranged in order
according to their underdegree (or degree of their lowest terms)
instead of their degree (or degree of their highest terms). The first
set of rows represents a complete set of members of underdegree /
which are linearly independent as regards their terms of degree /i,

2 i

where /; is the lowest underdegree of any member of M. These are
obtained from any basis of M, which need not be an H-basis. The
next set of rows represents a complete set of members of under-
degree ., +1 which are linearly independent as regards their terms
of degree /, + 1, obtained partly from the basis of M and partly from
the set of members of underdegree /, by multiplying them by
&y, Xy, ..., Zy; and similarly for succeeding sets. The compartments
L, L+1, ... correspond to the terms of lowest degree in the suc-
cessive sets.
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To obtain the corresponding inverse (or Noetherian) array first
insert square compartments 0, 1, 2, ..., 4, — 1 with arbitrary elements
(or with elements 1 in the diagonal and the remaining elements zero)
corresponding to degrees 0, 1, 2, ..., ;- 1; and then a compartment /,
inverse to the compartment /; of the dialytic array. This completes
the array for degree /;; all its rows are inverse to all members of M
and represent Noetherian equations. Next insert a compartment /, + 1
inverse to the compartment /, + 1 of the dialytic array, and continue
its rows backwards so as to be inverse to the first set of rows of the
dialytic array. This completes the array for degree [, +1; and we
can proceed similarly to find in theory the whole of the Noetherian
array.

The object of the diagram is merely to exhibit the whole system of
Noetherian equations, which it evidently does. If #'is a polynomial
for which all the Noetherian equations for degree ¢ are satisfied, then,
up to and inclusive of its terms of degree ¢, F is a linear combination
of members of the module of underdegree <¢, ie. /' is expressible
as far as degree ¢ in the form X, F\+ X, F,+...+ X, F}, where
X, X, ..., X} are polynomials, and #=0mod (M, O**). Conse-
quently if F satisfies the whole system of Noetherian equations
it is of the form P, F, + P, Fy+ ... + P, I, where Py, P,, ..., P, are
power series, Hence F'F,=0mod M, where ¥}, has a non-vanishing
constant term (§56) ; and, if M is a Noetherian module, #'=0 mod 2.
Hence the whole system of modular equations of a Noetherian module
can be expressed as a system of Noetherian equations.

66. Modular Equations of Simple Modules. If in the
last article the rows of the compartment 4 +¢ of the dialytic array
should be equal in number to the power products of degree  ++¢
‘there will be no Noetherian equations of absolute degree >/ +7.
In this case the Noetherian equations are finite in number and
can be actually determined (at any rate in numerical examples).
This can only happen when the module contains the origin as an
isolated point, and the Noetherian equations are then the modular
equations of the simple Noetherian module contained in the given
module. The simple module itself is (M, O4*%) and [ +1¢ is its
characteristic number.

Thus the simple modules at isolated points of a given module M
can all be found by moving the origin to each point in succession and
JSinding its Noetherian equations and characteristic number.
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Let M have a simple module at the point (&, a,, ..., @,). Move
the origin to the point and find the Noetherian equations. They will
be represented by finite negative power series

E=E,=..=E,=0
and all derivates of the same. Also any such system represents
a simple module at the origin; the fact that the coefficients of
i, K, ..., E, are recurrent functions (§ 63) placing no restriction
on them when finite in number. Let B; =3¢, 5, ...y, (@ 2% . 2"™)
be of absolute degree y;—1. Moving the origin back to its original
position, that is, to the point (- a;, —a,, ..., — a,), the equation £; =0
becomes (§ 64)
Se+a) (eot+a)® ... (6o + @) (@2 .. 2,)") =0,
In

where, after expanding (¢, +a)" ... (¢, +@,)™, each ¢ ... ¢, is to
be put equal to the known constant ¢, ,, ..., Which it represents.

Also ¢q,q,, =0if +¢a+... +q,>7y;.. Thus

s Oy

Py Py
P Dy P C C, Py D, »,
(e +a) (e + a)’? ... (co+a,)" = (1 + a~1> (1 +i> alal2.. a,"
1

ay,
= kPl, Py

Py Ds D,
oy QA e Oy
where £, 5,, ..., 15 & whole function of p,, p,, ..., p, of degree y;— 1.
Hence the modular equations of any simple module at the

point (@, @, ..., @,) are represented by power series

o
Py, Dy Py (), P1,, P2 Pry-1 _
Sy oy vy M1 e S @y (2 0y, )T =0

and their derivates, where &, ,, ...5, is & Whole function of pu, Pay-evy Pu-
Conversely any system of equations (finite in number) of this type
with all their derivates is a system of modular equations of a simple
module at the point (¢, ds, ..., @).

The following is a consequence of the above. The general solution
for the recurrent function ¢,y ..., (§ 63) satisfying a set of re-

current equations  Zay . ... p, Coyrty,s o pyet, =0 for all - positive
»

integral values of 4, Z, ..., [,, when the corresponding polynomials
Sy, py, vy w .. 2" have only a finite number of points
(a1, @, .-, @) In common, is sdaar... a where 4 is a whole
function of py, ps, ..., p, dependent on the point (e, @, ..., @,) and
involving linear parameters. When the polynomials have an infinite
number of points in common there can scarcely be said to be a general
solution for ¢, p,, ..., p,-
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Properties of Simple Modules

67. Theorem. If the resultant of (I, Fy, ..., F,) does not
vanish identically the number of Noetherian equations of any simple
module of (Fy, Fsy ..., F,) is equal to the multiplicity of the corre-
sponding solution of Fy=Fy=...=F,=0 given by the resultant.

This theorem is proved for the case n=2 in (M, p. 388) and for
the general case in (L, p. 98). Both proofs are very complicated ;
and a simpler proof is given here.

By the resultant of (#Y, £, ..., F),) we shall understand the resultant
with respect to @y, @y, ..., @n-1, viz. a polynomial in x,, the variables
having been subjected to a homogeneous linear substitution beforehand.
Move the origin to any point of (F}, Fl, ..., F,). Then, if x: is the
highest power of #,, which divides the resultant, ¢ is the multiplicity
of the solution of F)=F,=...=F,=0 corresponding to the origin.
Let @ be the whole simple module of (#, £, ..., F,) at the origin,
and NV the number of its modular equations. We have to prove that
C=N.

Consider first the specially simple case in which the origin is not
a singular point of the curve (Fy, Fy, ..., F,). The terms of the first
degree in F,, Fy, ..., F, are then linearly independent. For simplicity
we may suppose them to be #,, @3, ..., #,. Then F} can be modified
by Iy, Fy,..., I, so that its terms of lowest degree reduce to the single
term 2. Hence the modular equations of €, or Noetherian equations
of (B, Fy,y ..., F,), are oy PP =g P2 = . =271=1=0 (§ 65), so that
N =p. Also the number of points of intersection of Fy=F,=...=F,=0
that coincide with the origin is p, so that C'=p. Hence C=N.

Consider now the general case. Let FY, Fy, ..., F,' be n poly-
nomials whose coefficients are arbitrary except that they satisfy the
N equations of . Then (F, Fy, ..., F},) and (I, Fy, ..., F}/) have
the same simple module € at the origin, and the same N. It can be
proved also that they have the same C. By the Lasker-Noether
theorem (§ 56), since (F, Fy, ..., F,) and (FY, Fy, ..., F,') have the
same Noetherian equations, there exist polynomials ¢, ., ..., ¢, and
by, b2, ..., ¢, none of which vanish at the origin, such that

¢ F;=0mod (FY, I, ..., F)) and &/ F{=0mod (I, F, ..., F,).

Hence the module (¢ £, ¢oFh, ..., ¢ F,) contains (FY, Fy, ..., F})),
and the resultant of the former is divisible by that of the latter (§ 11).
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But the resultant of (¢4, ¢ Fs, ..., ¢, F,) is the product of 2"
resultants of which one only, the resultant of (£}, Fy, ..., F,), has @,
as a factor. Hence the resultant of (#}, I, ..., F,) is divisible by as
high a power of «, as the resultant of (#Y, Fy, ..., F}), and vice versa;
i.e. the two resultants are divisible by the same power of .

Now the resultant of the terms of highest degree /4, L, ..., {, in
F/, Fy, ..., F,’ does not vanish, for the coefficients of these terms are
absolutely arbitrary if 7, 4, ..., [, are all chosen as high as the
characteristic number of . Hence the equations Fy'=Fy=...=F,/=0
have no solutions at infinity, and the number of their finite solutions
is bi,...l,, taking multiplicity into account. Also the sum of the
values of IV for all the points of (#V, /7y, ..., ) is 41,...1, (end of § 58),
ie. is equal to the sum of the values of C. Also each point of
(FY, FY, ..., F) except the origin comes under the simple case
considered above; for even if the curve (Fy, FYy, ..., F},') has any
singular points other than the origin, /' does not pass through them,
since the origin is the only fixed point of #). Hence the values of C
and N are equal at each point of (FY, #y, ..., F)') other than the-
origin, and are therefore also equal at the origin. This proves the
theorem.

68. Definitions. The multiplicity of a simple module is the
number of its independent Noetherian equations.

This number has a geometrical interpretation when the theory of
the resultant is applicable; but in general it has only an algebraical
interpretation.

The multiplicity of @ primary module of rank r is the multiplicity
of each of the simple modules into which it resolves when regarded as
a module in 7 variables only.

Thus there are four important numbers in connection with any
primary module, viz. the rank 7, the order d, the characteristic number
v, and the multiplicity w.

A primary module of rank 7 will be said to be of the principal
Noctherian class if there is a module (#, F,, ..., F,) of rank » which
contains it and does not contain any primary module of greater
multiplicity with the same spread. On moving the origin to any
general point of the spread any member of the primary module will be
of the form P, F\+ Py Fy+ ...+ P, F, where P\, P,, ..., P, are power
series.

In other words, the primary modules into which a module of the
principal class resolves are said to be of the principal Noetherian class.
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Any prime module is of the principal Noetherian class ; but in general
a primary module is such that any module of the principal class which
contains it determines a primary module of greater multiplicity. For
example, O? is of multiplicity =+ 1, but any module of the principal
class of rank » containing O® contains a simple module at the origin of
multiplicity 2" at least.

If M is a module of rank n the number of its modular equations is
finite and equal to the sum 3p of the multiplicities of its simple
modules. In order that we may have /' =0 mod M the coefficients of
F must satisfy the Su equations (which will not be independent unless
F is of sufficiently high degree). Any set of Zu linearly independent
polynomials such that no linear combination of them is a member of 2
is called a complete set of remainders for M ; and has the property that
any polynomial /' which is not a member of M is congruent mod M to
a unique linear combination of the set of remainders. The simplest
way of choosing a complete set of remainders is to take the polynomial
1 of degree 0, then as many power products of degree 1 as possible,
then as many power products of degree 2 as possible, and so on, till
a set of Su power products has been obtained of which no linear
combination is a member of /. We shall call any such set a simple
complete set of remainders for M.

It M=K\, E, ..., E,] is a simple Noetherian module no member
E of the system [F£,, K., ..., £;] can have the same coefficients
(assumed real) as a member /' of M ; for if £ and ¥ had the same
coefficients the sum of their squares would be zero. Hence if the
members of the system [%,, K, ..., £;] have their power products
changed from negative to positive they will form a complete set of
remainders for M.

69. A Noetherian principal system [ E,] is uniquely expressible as
a system [ ] such that the polynomial F with the sume coefficients as E
is a member of the module [ K]/ 0.

Let E,, B, ..., E, be a complete set of linearly independent
derivates of £, all of less absolute degree than /%), and let /7, 7\, ..., FF,
be the polynomials having the same coefficients as X, £, ..., K,.
Then £,, E, ..., E,. are the members of the system

[E]/0=[2:. B\, 2. B,, ..., 2. E];

and F,, Fs,..., F, is a complete set of remainders for the module
[Z£.]/0. Hence there is a unique /' such that

F=F+MNF+ ...+ MF,=0mod [ £,]/0.
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The member £ of [ £,] with the same coefficients as F is unique, and
the system [£7] is the same as the system [E;]. A homogeneous
Noetherian equation is already in its unique form.

70. If E is homogeneous and of absolute degree l the numbers of
linearly independent derivates of K of degrees ' and 1 -1 are equal.

Let E,, E,, ..., Ex be the members of the system [#] of degree /',
and £, F,, ..., Fz, the members of the module [£] of degree /', and
G4, G, ..., Gy the polynomials which have the same coefficients as
B\, B, ..., Ex; so that F, ..., Fr, G, ..., Gy form a completc set of
linearly independent homogeneous polynomials of degree 4. Then the
Fi-, Fi, ..., Fr-derivates of £ vanish identically, and the Gy-, Gy, ..,
G'y-derivates are the derivates of degree /-/', and are linearly inde-
pendent ; otherwise some linear combination of G, Gs,..., G would be
a member of the module [#£]. Hence the numbers of derivates of
E of degrees I' and -1’ are equal.

71. The modular equations of « simple module Q of the principal
Noetherian class consist of a single equation K=0 and its derivates ;
that is, a simple module of the principal Noetherian class is a principal
system (M, p. 109).
~ Take the origin at the point of @. Then the modular equations of
@ are Noetherian, and the characteristic number y of @ is 1 more than
the absolute degree of the highest modular equation. Also since @ is
of the principal Noetherian class it is the whole Noetherian module
contained in a certain module M= (F,, Fy, ..., F,) of rank n. By
choosing the degrees 4, &, ..., &, of Iy, Fy, ..., F, to be >y we may
assume (B, Fy, ..., F,) to be an H-basis of M (§49).

Now if F is any polynomial of degree f,+7,+ ... +l,—n—1 such
that 2, F, 2, F,..., z, F are all members of A/ then " itself is a member.
We prove this for 2 variables referring for the general proof to (M, p. 110).
When #=2, we have

.Z'LF= AlFl"l‘AgFg, ngZBlFl-i-BgFg,

where 4,, B, are of degrees <l,— 2 and 4., B, of degrees </, - 2.

Hence o (A Fy+ Ao ) = 2, (B Fy + By F),
or ('Z'QAI_Llel)-F’J:('ZlBQ_x?AZ) I"‘n
or A1 — ey Bi=0=a0,By— 2, A,,

since @, d, —ay By 1s of degree </, and cannot be divisible by #%.
Hence 4,, 4, are both divisible by #;, and =0 mod (£}, F).
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Suppose @=[H, £, ..., E,], where each ] is relevant, that is,
not a member of the system [£), ..., £y, £i, ..., £y]. Then the
conditions that a4, F, @, F, ..., z, F' are to be members of M require
only that the coefficients of F should satisfy all the derivates of
K =FE,=...= E,=0 (but not these equations themselves) and all the
modular equations of the other simple modules of M ; i.e. 4l,...l,— A
equations in all. But these conditions require F'=0 mod M, or that
the coefficients of /" should satisfy all the 44...7, modular equations of
M, which are equivalent to ,4,...4, — 1 independent equations as applied
to F' (§58). Hence the 4l...l, — £ equations as applied to /' are
equivalent to no less than /,/,...0, — 1 independent equations. Hence
k=1, and @=[L].

The converse of this theorem, viz. that a simple principal system is
of the principal Noetherian class, is true in the case of 2 variables (M,),
but not true in the case of more than 2 variables. Thus

 —2 -2 =27 _. 2 2 2 2 Y » Y
[+ a2+ @72 = (2 — @, &% — &P, s, 2320, 2,200)

is a principal system which is not of the principal Noetherian class.

72. A module of the principal class of rank n is « principal
system. Let [ K], [£.], ..., [E.] be the simple modules into which the
given module resolves, and i, 7s, ..., Y« the characteristic numbers,
and a, @, ..., a, the 2;-coordinates of the points of [ £], [£],..., [Za].
The given module [ £, £, ..., E,] will be proved to be identical with
(£ + B+ ... + B,

Since @y — @; contains the spread of [X], (@, — ;)" is a member of
the module [#£], § 382, and (2, —a,)i. E; vanishes identically (§ 61).
Hence from the equation K, + E,+ ... + E, =0 we have

(= a)" (21— a)"... (21— @a)'™. By = 0.
The operator on the left hand is a polynomial in #, —«, in which the
constant term does not vanish ; hence if we apply the inverse operator
(2, —as) "...(2;—@.) "7 expanded in powers of (z,—a;) as far as
(2 — 0//1)“"_1 we shall obtain K, =0; since (2, — ). F, vanishes
identically when 7 > y,.

Hence %, and similarly £, K, ..., K., are all derivates of
E+Ey+...+ E, and the given module [ £y, /2, ..., B, |=[ £+ Es+...+ E,].

If M is a module of the principal class of rank » then M® and
all its simple modules are principal systems. Hence any module of the
principal class, and its primary modules, are principal systems (§ 82).

M. 6
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73. If a simple module M, of multiplicity p. is a principal system
[£], and M, is a simple module of multiplicity ' contained in M,, and
MM \w=M"yw, then My M =My, and p' + p" =pn (M, p. 111).

The modular equations of A,/M’, are the F-derivates of K'=0,
where /' is any member of M’y (§ 62). Let Fy, Fy, ..., Flu be a
complete set of remainders for A/',,. To these can be added Fs1,..., F
so that #y, F,, ..., F, is a complete set of remainders for M,. Also
each of Fl.y, ..., F,. can be modified by a linear combination of
Fy, F,, ..., F. so as to become a member of M, ; and we will
suppose this to have been done. Then the Fl.y-, ..., F.-derivates of
E=0 are modular equations of M",,, and are linearly independent,
since no linear combination of Fl.,, ..., #, is a member of M,. Also
any other F'derivate of £=0, where # is a member of M'., is
dependent on the p — u' equations already found, since

F=\F +MFot+ o+ M F, mod M,
which requires, since # =0 mod M.,
M+ MF+ o+ N By =0 mod My,
or A=A=..=2,=0.
Hence the F-derivate of £'=0 is the (Ayyy Flopy + ... + N, F,)-derivate,
and the number of modular equations of M " is p—p', Le. p=p +p",

Also since M’ M" . contains M, , M, contains M,/ M ", which is
of multiplicity p—w'=w. Hence M'.=M,/M",..

It is true in general for unmixed modules of the same rank that if
M is a principal system containing M, and M/M'= M", then M’, M"
are mutually residual with respect to M (cf. § 24, Ex. ii).

In (M, p. 112) the opinion is expressed that if M, is any simple
module of multiplicity p, and ', any module contained in M, then

the multiplicity of A,/M ., cannot exceed w—pu'. This is not correct,
as the following example shows.

Ezample. Let
Mu=[EB\, By =[(2ay)™ + (2a20)7, (2125)7 + (3205) 7],

and M= (@), @0y OF)=[2y7", @7, 257, 257Y],
so that p=2+6+1=9, pw=4+1:==5.

Then MM =By B2y, 2) =2y By, 0. By, 2y, By, 2. B))

=2 2 @7 ag ] =M

Hence (since M./M'w=2M"y) M’y and M', are mutually residual
with respect to A, ; and the multiplicity of M./M ', is w'>p—u'.
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It can be proved that if A7, is simple and contains M', the
multiplicity of AM,/M', cannot exceed 1+%(n—p')? or $+%(n—p')?
according as p— ' is even or odd.

74. If a simple H-module M, of multiplicity n is a principal
system [H] with characteristic number vy, and if M'w, M". are
mutually residual with respect to M., and py, p'y, u'"y are the numbers of
linearly independent modular equations of M, M., M" . of degree l,
then p'y+ =y = pge, where I + 1" =y -1 (M, p. 112).

Here £ is homogeneous and of absolute degree y —1; and we have
already shown that wy=ps (§70). The u”;» modular equations of
M", of degree I" are F'-derivates of £'=0, where /' is a member
of M’ of degree /. Hence u";» is the number of members F’ of
M, of degree [’ of which no linear combination is a member # of M, ;
for F.FE vanishes identically. There are p; polynomials in all of
degree I’ of which no linear combination is a member of A, and u' of
these are such that no linear combination of them is a member of M.,
while the remainder p; —p'; can be modified by the p';. so as to be
members of M7',,. Hence

W= = oy OF py = =

Thus the values of u”; are known for all values of / in terms of the
values of y; and u; for all values of /.

75. If M is any module of rank n in ., s, ..., @y, and M, the
equivalent H-module in 2., ..., &, @,, and w,, the number of modular
equations of (M,)u,—o of degree m, then the number of modular equations
of M jfor degree m is

Hy=14p+pot e+ .

This is immediately seen by considering the scheme of § 59
carried as far as degree m. The number of rows in the compartments
0,1,2,...,7-1 of the inverse array is the number of power
products of degree < /-1, and each such power product inverted
represents a modular equation of (M), . This number is therefore
1+p+ps+ ... + . The numbers of rows in the succeeding com-
partments are puy, pygy, --., wm; and H,, is the total number of rows,
Viz, 1+ py+ ot oo + .

Also the total number of modular equations of M, or the sum of the
multiplicities of its simple modules, is equal to the multiplicity of
(M) -o.

6—2
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76. If M’ is any module of rank » and p' the sum of the multi-
plicities of its simple modules, we can choose » members /'y, F, ..., F,
of M’ such that the resultant of their terms of highest degree does
not vanish. If then the sum of the multiplicities of the simple
modules of M= (#,, Fy, ..., F,) is p the sum of the multiplicities of
the simple modules of M/M"is p—u' (§§ 71, 78), and if M/M' =M"
then M/M” =M. 'The important point is that A’ is unrestricted
except that it is composed of simple modules. The simple modules of
M are principal systems, but not those of 3/'. These remarks are
intended to point out the generality of the following theorem.

If (B, B, ..., F,) is an H-basis of a module M of rank n, and
M' any module contained in M, and M" the residual module MM,
then M'y, M are mutually residual with respect to M, and

HY~H"=Hyr— Hy=Hy— H" 1,
where I +1" +n+ 1 is the sum of the degrees of Ky, F,, ..., F,, and H,,
H',, H", are the numbers of modular equations of M, M'y, M" jor
degree 1.

This gives the values of H"; for all values of /in terms of the
values of H'; for all values of [; for H, is known by § 58.

The theorem is a generalization of the Brill-Noether reciprocity
theorem (BN, p. 280, § 5, “Der Riemann-Roch’sche Satz”). It ex-
presses the reciprocal relations between the numbers of the conditions
which must be satisfied by members of 4’ and 2" in order that the
product M’'M"" may contain M.

A somewhat more general theorem is the following :

If (B, B, ..., Fy) is an H-basis of a module M of rank n such
that the H-module determined by the terms of highest degree in
I, By, ..., Ky is a principal system with characteristic number y, and
if M' is any module contained in M, and M" the residual module
MM, then M', M" are mutually residual with respect to M, and

Hy-H"=Hyvyr—Hyp=Hy— H" iy, where I +1" =y — 2.
We shall prove this more general theorem which includes the other.
We must prove first that the simple modules of 2/ are all principal

systems*. Let 2M,, M,, M," be the H-modules in @y, @, ..., @, @,
equivalent to M, M’, M”. Then (M), -, is a principal system ; and

* The converse that if 1/ is a module of rank n whose simple modules are all
principal systems (M), o is a prineipal system is not true. For example, if M
is the module in 2 variables determined by 3 points in a plane, then (Mo)xo=0 has
the modular equations ;7' =2,"1=1=0, and is not a principal system.
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the multiplicities p, ', u” of (M)5)—o05 (M )ey—oy (M")s, .o are the sums
of the multiplicities of the simple modules of M, M’, M" (§75). Let
' be the module determined by the a points forming the spread of A,
and @ the residual module M/Q. Also let Q,, @,” be the H-modules
equivalent to @', @". 'Then, since @'Q” contains M, @Q,'Q," contains
M,, and (Q)@Qy").,—o contains (M), _,, which is a principal system.
Hence also (@0 )ay=0 contains (My)y—o/(Q)u,~0 whose multiplicity is
p—a; ie. the sum of the multiplicities of the simple modules of
"> p—a. This is only possible when the simple modules of 3 are
all principal systems ; for if [£,, ..., £;] is the simple module of M at
the point P (say), the corresponding simple modules of @', Q" are P and
L&\, E,, ..., B,]/P, and the multiplicity of the latter is 4 less than that
of [E, B, ...,E]; so that u—Sh>p—a, Sh<a=qa, and k=1. It
follows that /" and M" are mutually residual with respect to /.
It also follows that w=p' + 1", and that (M)5y—0 and (My")y, -, are
mutually residual with respect to (M,)s, . Hence w'ypi+p"1r = prrys =p-
(§74). Also H'p=1+p +ps + ...+ (§75). Hence

(I H)+ H'
= (Wi Wrsat oo F W) (L + '+ o+ 1)
=1+ (Wrar + ") + W+ m) + oo+ (Wt 1)
=1ty +pot oo+ ppe=Hyoj
e Hy—H"=Hyo— Hyp = Hy = H 0.

Modular Equations of Unmixed Modules

77. We have hitherto specially considered modules of rank =,
that is, modules which resolve into simple modules. The A-module
of rank » is of a special type, since it is itself a simple module, and its
equations are homogeneous. The general case of a module of rank 7
is therefore that of a module which is not an H-module. When
however we consider a module of rank < 7 it is of some advantage to
replace it by its equivalent H-module, which is of the same rank but
of greater dimensions by 1. We shall not avoid by this means the
consideration of modules which are not H-modules, but the results
obtained will be expressed more conveniently. We shall therefore
assume that the given module M whose modular equations and pro-
perties are to be discussed is an H-module in » variables z;, 2, ..., @,.
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By treating any H-module M of rank » (whether mixed or unmixed)
as a module M® in » variables #;, s, ..., @, it will resolve into simple
modules and have only a finite number of modular equations, viz. a
number p equal to the sum of the multiplicities of its simple modules.
The unknowns in the modular equations will be represented by negative
power products of @, @, ..., # while the coefficients will be whole
functions of the parameters @,.., ..., @,. The module determined by
these modular equations will be unmixed, viz. the r.c.M. of all the
primary modules of M of rank # (§43); and will be the module M
itself if M is unmixed. We proceed to discuss these equations and
shall call them the r-dimensional modular equations of M (or the modular
equations of M) since they are obtained by regarding the module 2/
as a module M in space of » dimensions. M is not an H-module.

The dialytic array of M. We choose any basis (#,, F, ..., F})
of M as the basis of M, This is not in general an H-basis of 27",
The module My, \=..=z,=0 determined by the highest terms of the mem-
bers of the basis of M@ is of rank r (assuming that @, s, ..., @, have
been subjected to a linear homogeneous substitution beforehand) and
is therefore a simple H-module whose characteristic number will be
denoted by 7.

Construct a dialytic array for M® whose elements are whole
functions of @1y, ..., @, in which each row represents an elementary
member o, /) of M), where v; is a power product of @, @, ..., @,
(cf. § 59). The first set of rows will represent the members of the
basis which are of lowest degree /, the next set a complete set of
elementary members of degree [+ 1 which are linearly independent of
one another and of the complete rows in the first set, the next set a
complete set of elementary members of degree 7+ 2 linearly independent
of one another and of the complete rows in the first two sets, and
S0 on.

In comparing this with the scheme of § 59 there is the obvious
difference that the elements of the array are whole functions of
Zyo1y ++-, &y instead of pure constants ; and there is the more important
difference that the compartments I, [ + 1, ... do not necessarily consist of
independent rows, because the array is not constructed from an H-
basis of M®, It is only the complete rows of the array that are inde-
pendent. The elements in the compartments are all pure constants
independent of xy,1, ..., @,. The diagram of § 59 serves perfectly
well to illustrate the dialytic array although its properties are now
different. '
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In each compartment we choose a set of independent rows such that
all the remaining rows of the compartment are dependent on them, and
we name them regular rows and extra rows respectively, and apply the
same terms to the complete rows of which they form part. In the
compartment y the regular rows will form a square array, and the same
will be true of the compartments y+1, y+2, .... Eventually a com-
partment 8>y will be reached such that the number of rows in the
whole array for degree & is exactly u less than the whole number of
columns, where p is the number of modular equations of M as men-
tioned above. After this all succeeding compartinents 8+1, 8+2, ...
will consist of square arrays only without any extra rows.

We can now modify any extra row of the array by regular rows so
as to make all its elements which project beyond the columns of degree
v—1 vanish, and this leaves its elements in the columns up to degree
v—1 whole functions of @, 4, ..., @, of the same degrees as they were
before. If this is done with all the extra rows projecting beyond the
columns of degree y-—1 the array may be said to be brought to its
regular form in which the whole number of rows of the array for degree
y—11s u less than the whole number of columns, and all the compart-
ments vy, y+ 1, ... are made square. The extra rows, modified so as to
end at the columns of degree y - 1, represent members of M of degree
y -1 which are not elementary members w; F}.

We may further modify the regular form of the complete array for
degree y — 1 so as to reduce the number of rows in each compartment

y—1, y—2, ... successively to independent rows. The elements of
some of the rows of the array for degree y—1 may thus become frac-
tional in @, 4, ..., @,, and the whole number of compartments will in

general be increased, so that the last (or first) compartment will be
numbered /'<{. Supposing this to be done we can choose a simple
complete set of remainders for M consisting of all power products of
&y, &gy ..vy 2 Of degree <!’ and as many power products of each
degree I" > 1" as the number of columns of the compartment I exceeds
the number of rows of the same. We denote these power products in
ascending degree by o, wy, ..., w, (so that w;=1) and all remaining
power products to infinity in ascending degree by wu 41, @uys, .... The
two series o, wy, ..., w, and wu 4y, W 4o, ... Overlap in respect to the
degrees of their terms.

The basis of M used for constructing the dialytic array of M must
be one in which each member is of the same degree in @, @, ..., @, as in
&1y Zoy ooy . We shall say that M is a perfect module if the array
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of M™ as originally constructed has no extra rows, i.e. if the basis
(I, Fy, ..., F))is an H-basis of M®.

78. Solution of the dialytic equations of /. We return
to what has been called above the regular form of the dialytic array
of M®. Fach row represents a member of M and supplies a
congruence equation mod A7 ®. Solving these equations, regarding
Out1, Ouysy --- a8 the unknowns, we have
Do, + Dy, + Doy + ...+ Dyo,=0mod M (p=p+1, p+2,...).
There are two slightly different cases according as the degree of
o,<yor>y. If w,is of degree <y we use the regular form of the
array for degree y — 1 for solving for w,. D is then the determinant
of this array formed from the columns corresponding t0 wui1, ©uya, -+
and D,; the determinant formed from the columns corresponding to
Ougry ooy Op1, Oy Opiyy ... 1f o, is of degree >y we must use the
array up to the degree of w, in order to solve for w,. D is the same
as in the former case except for a factor independent of @4, ..., @,
(since the compartments y, y + 1, ... are square and all their elements
are pure constants) by which the equation can be divided. Also D,;
is a sum of products of determinants of the regular form of the array for
degree y — 1 with determinants from the remaining rows of the larger
array, so that the H.c.F. of the determinants of the array for degree
v -1 can be divided out, and we obtain in both cases

(A) Ro,+ Rpyoi+...+ Ryo,=0mod M (p=p+1, p+2,..).

This equation is homogeneous in @y, @5, ..., @y, and each R, is
homogeneous in @41, ..., #,. Also, owing to the fact that the re-
mainders o, ws, ..., o, are a simple set, each v, is congruent mod /™
to a linear combination of those power products ,, w,, ..., @, which
are of equal or less degree than w,. Hence R,; vanishes if the degree
of w; exceeds the degree of v,. Also R=1 1f M is penfect (cf. § 81).

79. The modular equations of /). If the coefficient of
wp=a"2,...2,"”" in the general member of M of any degree is
represented by w_, = (2 2."%...2,"")" we have

00, + 0y + ... +0_po,+ ... =0 mod M),
and, by (A),

@
B(oyo+..+o_yo)= 3 o, (Bpo+ RBpoy+...+ By, 0,) mod M,
=pt1
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Here coefficients of w;, ws, ..., w, on both sides are equal, i.e.

w0
(B) LRo_j= 3 Ruo_, (=12 .., n.
p=p+1
This is the complete system of modular equations of MW, or r-dimen-
sional modular equations of M, and the system includes all its own
derivates. R and all-the R,; are definite whole functions of @y.1, -y @y.
If any other complete system were given and solved for w_;, w_y, ..., 0_,
in terms of w_p,_y, w_,_y, ... the result would be the unique system (B).

Since in (A) Rw, and R, are of the same degree in @y, @,, ..., ¥a,
0 in (B), Rw_;and R,;w_, are of the same degree, i.e. all terms in one
equation (B) are of the same degree in @, @s, ..., ,. Also since (§78)
Ly; vanishes if the degree of o; exceeds the degree of w, there is no w_,
on the right-hand side of (B) of less absolute degree than w_;; but every
w_, of the same degree as w_; and not among w_;, w_y, ..., w_, will
appear on the right-hand side of (B).

(B) is the complete system of 7-dimensional equations of the L.c.M.
of all the primary modules of A7 of rank »; and will decompose into
separate distinct systems corresponding to the separate primary
modules of rank » if M has more than one irreducible spread of rank 7.

The n-dimensional equations. We can obtain the whole system of
n-dimensional equations of 27 corresponding to the system (B) as follows:
w_y, or (2, ... ;") represents the whole coefficient of 2" 2.,"... 2,""
in the general member of M), i.e. it stands for

P, Pu\—1 ,,Pr+1 P
ST el

the summation extending to all values of p,.1, ..., p, only. If this be
substituted for each (2,"'...2,”")" in each of the equations (B) the
whole coefficients of the power products of 2.4, ..., @, Wwill represent
the n-dimensional equations. This will be the whole system of
n-dimensional equations of M if M is unmized, as we shall assume
hereafter is the case.

The whole system of modular equations of a mixed module may be
regarded as consisting of the separate systems corresponding to the
primary modules into which it resolves.

80. The system of homogeneous equations
(C) Rw_i = EI{W(D_], (l = 1, 2, ceny ,U,)

obtained from the system (B) by retaining only those terms on the right
hand in which R, and o_, are of the sume degrees as R and o_;
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respectively is the complete system of equations of the simple H-module
determined by the highest terms in 21, @, ..., & of the members of an
H-basis of M,

This can be seen by considering the diagram of §59 assuming that
it had been constructed from an H-basis of M ®. The compartments
6,1+ 1,01+2, ... in the two arrays in §59 are the dialytic and inverse
arrays of the simple H-module determined by the highest terms of the
members of the H-basis; and the modular equations of this simple
H-module are represented by the compartments 0, 1, ..., 4, I+1, ...
of the inverse array. The system (C) is that which is represented by
the compartments of the inverse array.

8l. If R=1 the module M (assumed unmizxed) is perfect. Since
A is unmixed every whole member of M is a member of M (§43).
Also, since R=1, there is an inverse array of M ® each of whose
compartments consists of independent rows in which all the elements
are pure constants. Hence there is a corresponding dialytic array
having the same property. From this it follows that M is perfect (§ 77).

82. The r-dimensional and r-dimensional equations
of .

If the system (B) is a principal system, i.e. if all its equations are
derivates of a single one of them, each simple module of M is a
principal system ; for if /' is a polynomial containing all the simple
modules of M except one, then M®/(F) is the last one, and is
a principal system (§62). The converse is also true (see § 72). Also
the unmixed module A in 7 variables is a principal system, as we
proceed to prove.

Let the 7~dimensional equation of which all the equations of the
system (B) are derivates be

@
. D; Pp\—

ERpl,p2, oy Dpr (xl L, Z'--‘Z'r ’) t= O,
where R, ,. .., is a homogeneous polynomial in @, ..., @, of
degree p, + po+ ... +p, +98. The integer & may be negative, but the
more unfavourable case for the proof is that in which it is positive.

3 Pr+1 Pn 3

Let ¢y, p,, ... n, e the coefficient of &77... 2, In By, ,, ... p,, so that

Prir+ et Pu=p1+ ... +p.+8. To convert the equation into an n-
dimensional equation we put

PO

P, PpN-1_ 5 e (o, Dr o, Ve, GrHl any—

(@@, oy =Sl ta” el ™)
q


file:///ii-l
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as in §79, and we have

Pr+1 Dn Ar+1 In ™ Pr dr+1 In\ -1 __
fcp,,...,pn‘”rﬂ T fxr_'_l Bl (A ., )1=0, ...(1)
. .. : 7
or, equating the whole coefficient of mi} ;; .. &, ™ to zero,
D1 Pr ) lr+1— D41 n=pny-1 _
Ecpnpa,mmn (e 2] ey TPTI= 0, (2)

which is homogeneous and of absolute degree 4., ,+...+17,—3.

Similarly the general n-dimensional equation obtained from the

. . 2 b . .
coefficient of ”'+1...2," in the 2,"...2,"-derivate of (1) is

1=t

Pp—ty mipal— P s
Ecphp‘z:-u,ﬁn(xl T ’wm”‘l p”“...xnmn p") 1.—:.0,
»

- P41

where #, ..., t., M1, ..., My are any n fixed positive integers (in-
cluding zeros) such that # + ... +¢,< a fixed limit = (since there are
only a finite number of linearly independent derivates of the original

p—t Pyp—t, m - Mp=Dn\ — .
171 Pr—ir o r+1 291'+1””Z.n N n) 1 g

741
zero if any one of the indices p,—t1, «.vy Pr—bry Mpss— Prs1s -oos Mn— Pa
is negative.

Consider all the n-dimensional modular equations of degree /, that
is, all the equations of the system (8) of absolute degree /. The

absolute degree of (3) is

r-dimensional equation) and (2, .,

Mgy + oo + My —8— by — oo — b =1,

Hence each of m,y, ..., m, is equal to or less than /+8+7; and
every equation (8) of absolute degree 7 is a derivate of the single
equation (2) if /.4, ..., l, are all chosen as high as /+8+ r. Hence
there is a single equation of which all the modular equations of M of
degree [ are derivates, and any equation (2) in which /.44, ..., [, are
not numerically specified will serve for the single equation.

It follows that ¢he inverse system of any module M has « finite basis
[y, B, ..., B]; for M resolves into a finite number of primary
modules of the same or of different ranks, and each primary module
of rank 7 has a finite number of r-dimensional equations, and a smaller
number of 7-dimensional equations of which all the others are derivates,
and an equal or still smaller number of n-dimensional equations of
which all the others are derivates.

83. If (B) is a principal system it does not follow that (C) is a
principal system (footnote §76). If however (C) is & principal system



92 THE ALGEBRAIC THEORY OF MODULAR SYSTEMS [IV

(B) is @ principal system. For the basis equation of the system (C)
must be the homogeneous equation
Ro_,=3R, 0,

and all the other equations of (C) must be of less absolute degree.
Now the system (B) is unique and any equation obtained from it

Rio_+ Ryo_, A Ryo_p+...=0
must be the result of multiplying the equations of (B) by Ry, Ry, -y Bu
and adding and dividing out 2. Hence the equation

Ro_;=3R,0_,

is exactly the same derivate of Rw_, =3 R,,0_, as the corresponding
homogeneous equation Ro_; =3 Ry0_, is of Ro_, =3 Ry, 0_,.

If (C) is a principal system the formulae of § 76 apply to any two
modules M’, M " mutually residual with respect to M when regarded
as modules in 7 variables. If (B) is a principal system, but not (C),
the formula pw=p'+ 1" applies, where p, p', u” are the numbers of
equations in the systems (B), (B"), (B") for M, M', M. 'This follows
from §73 by summing for all the simple modules of 3 ®,

84. Modular equations of an H-module of the principal
class.

In the case of an H-module (#,, F, ..., F.) of rank » (C) is a
principal system (§71); and R =1, since (I, F, ..., F,) is an H-
basis of M@ (§49). Also, if I, F., ..., F, are of degrees 1, bs, ..., .,
a complete set of remainders for M @ consists of the Z,/,...7. factors
of ahta2 .. 4k, since this is a complete set of remainders for
(wlll, xglz, ey m,.l"), cf. §58. Hence the system (B) for M consists of
the single equation

[}
(@ =S Ry gy o (@2 )T (4)

and its derivates, where p, + ... + p, >4 + ... + 1, —r, and consequently
pi > 1; for one value at least of 4. The corresponding n-dimensional
equation is (§82)

dr+1 Y (), -1 lp=1 20+ G\ —1
2""’11+1 @y (@ T )

Pr+1 Py, ll:+1 (. P1 Ar+1 In\—1
Ec],p.,,,pnxrﬂ . Ex e ORI '%+1 ™M

1,—1 .
or, by equating coefficients of xl’“ “L... 2, on both sides,

=1 lp—1 l —1 P Pp lpp1—1-p 1 by —~1=Pp
1 2 n —1__ 1 r ey 7+ n n 1
([(,'1 X “ee ) 26111 Dy s Dpy (.Z’l Oy xr 1 Ty ) .
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When F, F, ..., F,. are general with letters for coefficients, the
Cpy py» -, Y€ Tational functions of the coefficients and on multiplying

up by their common denominator A we can write the equation

PR TS Iy=1y_ Py, P P\ —
Ko o, ) =3K gy, (@ % ey )T (5)
P

where py+po+ ...+ py =0 +L+...+l,—n, and at least one p;>1;
(i=1,2, ...,7) and every pj<l (j=r+1, .., n). This is the »-
dimensional modular equation of (F}, /., ..., F}) of which all others
are derivates, [.i, ..., {, being unspecified numerically. More ex-
plicitly it is the unique modular equation of the simple module
(Fy, Fyy ..., F,, mfffl, ey @™); for it is a relation satisfied by the
coefficients of the general member of (F}, F,, ..., F,) of degree
L+b+...+0,~nin whichp; <, (j=7+1, ..., n), ie. it is the unique
relation (§ 58) satisfied by the coefficients of the general member of

l l
(—Zrl) "')E') 'Z‘“—l ty 'Z'nn)

9-_'_1,
of degree L +...+[,—n. The coefficients K, ,,, .., are whole
functions of the coefficients of F,, F, ..., F,. of a similar kind to the

resultant of (#, ..., £, miﬁ'fl, ey x,f") and of degree 1 less than this
resultant in the coefficients of each of F}, F, ..., F,, viz. of degree
L;—1 in the coefficients of #; where L;l; = 4/,...l,= L. The vanishing
of Ky, p,, ... n, is the condition that
@l )= 0mod (B, By, ...y By, 2l o 2™

($ 61, since the z™a,™...2,"*derivate of (5) then vanishes), whereas
. the non-vanishing of the resultant is the condition that every power
product of degree 4, + ... +,—n+1 is a member of the module. It is
probable that some of the quantities K, ,, .., factorise but that

they have not all a common factor. The resultant of

Upg1 12
(B, By ooy By 27 oy 20™)

r+1?

15 Pos

is Rt (38).

85. Whole basis of the system inverse to M. The
simplest whole basis [ By, s, ..., B, of the r-dimensional system inverse
to an unmixed H-module M of rank r, or the simplest expression for the
system of equations (B), satisfies the following conditions: (i) each
E; (i=1, 2, ..., k) is a whole member of the inverse system, i.e. its
coefficients are whole functions of the parameters @i, ..., & ;
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(i) all the members £y, K, ..., B, are relevant; (iii) any whole
member of the system [#), £, ..., £,] is of the form

X B+ X, B+ ...+ X, By,
where X, X, ..., X are whole functions of @4, ..., 2, as well as
of @, @y, ..., @r; (Av) Ky, Es, ..., E), have as high absolute under-
degrees in @, @, ..., @ as possible. A whole basis, as distinguished
from a simplest whole basis, is defined by (1) and (iii).

A basis (F, F., ..., Fy) of M furnishes a whole basis of M ©, and
any whole basis of M) satisfying the condition corresponding to
(iii) above is a basis of M. A simplest whole basis* of M) is one in
which the degrees of F\, Fy, ..., Fyinay, @, ..., . are as low as
possible.

It (", F., ..., F,) is any module of rank » containing M such
that (£, Foy ooy F)oy i ey =0 15 of rank », and M = (£, F, ..., Fy),
and the degrees of £y, ..., i in @y, @, ..., @, are as low as possible,
the basis (F), Fy, ..., Fy) will be called a whole basis of M© in
reference to (#y, Iy, ..., F,). All of F,,,, ..., F} are to be relevant,
but some or all of F, F,, ..., F, may be irrelevant for a basis of M.

86. Properties of H-modules mutually residual with
respect to an A-module of the principal class.

Let Fy, F.,..., F,, of degrees I, 1, ..., ., be any » members of the
unmixed A-module M of rank 7 such that

i

is of rank 7 ; and let /" be the residual module (#, F, ..., F,)/ M.
Also let (B, ..., Fry F'opqy ...y F'ria) be a whole basis of M0 in
reference to (#, Fy, ..., F,)=[E]. Since F',.; is of as low degree
in @y, @, ..., @, as possible the terms of F"”,,; of highest degree in
21, &3, .-+, & do not form a member of the module

v
(Fla_ 2y E‘)w1.+1=...=xn=o,

and are therefore of degree 0, i<h+b+. ... +L—7 in @y, @, ..., @,.
Also, since & begins with terms which represent the modular equation

* A simplest whole basis of J () is a whole basis which approaches most nearly
to an H-basis; but is not necessarily an H-basis. TFor example,
(w1, xd@y, 2129%, wot, vl + widwdny, w3 we? + 12w wy)
is the basis of a module M of rank 2, and a simplest whole basis of M @), but not an
H-basis of M 2); since 213233 — x93x,3 is needed for an H-basis of M (@), but is irrelevant
for a basis of M or whole basis of M (2.
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of (Fy, By, oy Bl =m0 of degree lh+ b+ ... +l—r, F'opi B/
will begin with terms of absolute degree 4+ ...+l —-r—1", in
&y, Xsy -, & which do not vanish identically.

Now M, M’ are mutually residual with respect to (#, ..., F,) or
[£] Hence

M=[E]|M'=[E])|(F, ... Fpy F'rpiy ooy F'r1)
:[Flr+1' Ea FIN-Z' E cety F/’l‘+h'E]'

This basis of the r-dimensional system inverse to M is a simplest
whole basis [ £, &, ..., E;] as defined in §85. All its members are
relevant, for if (say)

F’T+h . E= (AX]F,T_'J + ...+ A’]L—]FI7‘+]L_1) . E,
then

F/m.h_ leF,r-(-l T T X}L—IF/1'+7L—‘1 =0 ll'IOd (Fly FY?; Tty 1177):
which is not the case. Also any r-dimensional modular equation of
M is a derivate of £ =0, and if a whole equation, is #". £'=0, where
F'is a whole function of @, @,, ..., @, since [#] is a whole basis ;
and if /' is any member of M, FF'. K/ vanishes identically, i.e.
FF'=0mod (#, F, ..., F,)

and
F'=0mod M'= X F'r+ ...+ X F',ymod (B, Fy, ..., F,),
and F E=X, . B\+ X,. B+ ... + X,,. I,.

Finally the absolute underdegrees of X, K., ..., & are as high as
possible since the degrees of F',., ..., F'ypy In 2y, @, ..., @, are as
low as possible. The coefficients of the terms in &; and F",.; which
involve the parameters @4, ..., @, to the least degree involve them
to the same degree, so that £y, £, ..., By and F'opq, F'rps, .., F'lop
are of the same degree of complexity in this respect.

It follows from the above that if M’ is the residual of a given
unmived H-module M of rank r with respect to any H-module
(Hy, Fsy ..., F.) of rank r containing M, and if

M,:<E’ F?: cecy E'; F’r+1; eeey F’7‘+7L);

where F'yiyy ..., B are all relevant, then h is a fized number
independent of the choice of Fy, Fy, ..., F,, viz. the number of members
in a simplest whole basis | By, B, ..., E] of the system inverse to M .
Also if the degrees of F'yyay ..y F'rps in respect to 21, @, ..., @, are
made as low as possible the degree of F'..; in respect to xy, s, ..., 2,
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is l—o; and in respect t0 @y, Xsy ..., X, 18 [ —a;+ By, where 1 is the
sum of the degrees of Fy, Iy, ..., F, diminished by r, o; is the absolute
degree of the terms with which E; begins, and B; is the degree of the
coefficients of these terms in Xyiy, ..., &y.

87. The Theorem of Residuation. As in the last article
let M be any unmixed A-module of rank », and (#y, F, ..., F,) any
module of rank # containing M, and M’ the residual module
(Fy, Fs, ..., F,)|M, so that M, M’ are mutually residual with respect
to (Fy, Fs, ..., F,). In geometrical terminology M, M’ are residuals
on (Fs, Fy, ..., F,) determined by the section #,. Replace F, by
another member /' of M, which we will suppose to be of the same
degree as /7, giving another section of (£, Fy, ..., F}) through 2,
and let M) =(FY, F,, ..., F,)]M be the residual section or module.
Also let /' be a section through M, ,

F' being of the same degree as F,, M______F. ______ M,

and M, =(F', F,, ..., F,)|M' the

residual section or module. Then A/, , '

M are covesidual on (K%, Ky, ..., F,) i (5,5 F7) F’
having a common residual 4/; and

M, is any other residual of M". The 47 Y M

theorem of residuation says that every ’

residual My of M’ on (I, F, ..., F)) is also « residual of My, i.e. to
every section I through M’ there corresponds a section I through M,
having the same residual section on (Fy, Fs, ..., F,). This theorem is
a generalization of Sylvester’s theory of residuation (Salmon’s Higher
Plane Curves, Chap. v) and the Restsatz of Brill and Noether*
(BN, p. 271). Besides this relation of /" to M, there are properties
connecting them both with A7 which are proved in the last article, viz.
the number of members over and above #y, F,, ..., F, (or FY, F,,..., F})
required for a basis of M (or M) is equal to the number of members
required for a whole basis of the system inverse to M ; and the
number of members required for a whole basis of the system inverse to
M'™ (or My™) is equal to the number of members over and above
F, F,, .. F. (or FY, F,, ..., F,) required for a basis of M.

* It would be more correct to say that the Restsatz can be deduced from
the theorem proved here; but not such extensions of it as have been made to
surfaces etc., because these bring in mixed modules. The module M may be
composed of any primary modules of rank »; and corresponding to each one which
is not of the principal Noetherian class 1/’ must contain a residual primary module
with the same spread.
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The polynomials #, #), F' and the modules A, M', M, M/
having been defined as above it is required to prove that there exists
a polynomial # such that 44;, M, are mutually residual with respect

to (F, Fyy ..., ). Let u, ', i, m' be the numbers of 7-dimensional
modular equations of M, M', M,, M, ; then

ptp =ptpm =prm=bl...0
and therefore each equals u, +p). Let ¢, ¢/, b1, ¢, be general mem-
bers of M, M’, M,, My with coefficients involving linear parameters.
Then

F'F=0mod MM’ =0 wod (B, F,, ..., F\) = FF,mod (F,, ..., )

where F'is a polynomial of the same degree as #y, FY, F'. Also
i)’ =0 mod MM, = X F) mod (Fy, ..., F}), ...... (2)
and ¢y =0mod MM, = XFy mod (F,, ..., F});
hence by cross multiplying and dividing out ¢, /Y,
Xi¢=XFimod (F,, ..., F.)=0mod (F}, F,, ..., F}),

S XY =0mod (B, Fyy ..., )] M=0mod M.
Similarly  Fi¢, =0mod M'M,= X'F' mod (F, ..., F,),
where X'=0mod M;

S XX =0mod MM' = X, Fymod (F, ..., F,). ... (4)
Multiplying (1), (2), (8), (4), and dividing out F"'F/F2X' X/,
¢ =X F'mod (F, ..., F,)=0mod (¥, F,, ..., F,).
Hence MM, contains (), F,, ..., F,); and since M;, M, have only
M1, m' r-dimensional modular equations, while (#, F,, ..., F,) has
w+p’ and is a principal system, it follows that M@, M,'®, and con-
sequently M, M/, are mutually residual with respect to (#, Fy,..., F}).
The theorem has been proved on the supposition that the modules
are H-modules and the degrees of /), F\, F'' are equal; but it is
true without any of these restrictions. In the case of modules which
are not /-modules the region at infinity must be regarded as non-
existent and the usual conception of residual and coresidual must be
slightly extended. Thus if through a point 2 on a plane cubic curve
two lines are drawn parallel to two asymptotes cutting the curve again
in @, R, then P is residual to @ and R, and @, R are coresidual. If
through @ a line is drawn cutting the curve again in two points these
two are residual to £, i.e. a curve (viz. a conic) can be drawn through
them and £ which does not meet the curve again except at infinity.
M. 7
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As an illustration of the general theorem we may suppose 3 to be any
unmixed module of rank 2 in space of three dimensions. Then F7,
F, are any two surfaces containing M whose whole intersection con-
sists of a finite number of irreducible spreads (excluding infinity);
and to each spread or curve corresponds a primary principal system of
(F,, F,). M contains a certain part of some of these principal
systems and no part of others; M’ has to contain the whole of the
latter and the residual part of each of the former. These conditions
determine M’, and similarly for M, and M.

88. Perfect Modules. Definition. If a module M of rank
7 in n variables and the corresponding module M in 7 variables have
a common H-basis of which each member is of the same degree in
the r variables as in the n variables then M is called a perfect module.

Any module of rank n is perfect, by definition.

An unmized H-module of rank n—1 is perfect ; for its basis is an
H-basis of M®Y,

An H-module of the principal class is perfect (§49).

A module of the principal class whick is not an H-module is not
necessarily perfect. For example, the module (2%, #,+ ay2;) whose
H-basis is (2,2, 2y, %, @ + 2125), § 88, is not perfect since @, + &2 1s
of less degree in ;, @, than in @y, @, @;.

A prime module is not necessarily perfect. For example, the prime
module of rank 2 whose spread is given by w=Aw, = Nu; = Mu,, where
u, Uy, Uz, U, are linear, has an H-basis

(uu4 — Uy, U — Uy, WUy — YU, WU — u33> = (.f ) J15 o .f:%)
and no other member than ww, — w,u, of degree 2. But it has a second
member A, f; + Ao Sy + N fs + (My@y + As2s) f which can be made of degree 2
in @, @, ; hence it is not perfect.

89. An H-module M of rank r is perfect or not according as the
multiplicity of the simple module My, =...=z,=0 s equal to or greater
than the number of modulur equations of M or of M©y = . —zp=0.
The difference between the two numbers when M is unmixed is the total
number of extra rows of the dialytic array of M when carried as far
as degree 8 (§ 77), and when A is mixed is still greater. The property
affords the simplest test for deciding whether a given module is perfect
or not; for the two numbers can generally be found. For example,
the prime module A7 in § 88 is of rank 2 and order 4, while the
multiplicity of My~ —an=0 is 5, so that M is not perfect. The
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property may also be stated in the form that an H-module M of rank »
is perfect or not according as MOy, — . —g,=0 is perfect (i.e. unmized)
or not.

90. A perfect module is unmized. If M is perfect the module
M has an H-basis of which each member has its highest terms
independent of the parameters @,.,, ..., #,. Hence the dialytic array
of M® constructed from an H-basis has pure constants for the
elements in all its compartments; and a non-vanishing determinant D
can be selected from the array for any degree ¢ which is a pure con-
stant. Let ¢/ be a member of M, where ¢ is a whole function of the
parameters only. Then £ is a member of M ™ and if we insert a row
in the array representing /' it will be dependent on the rest, i.e.

F=MFi+MFot+ ...+ F,,

where /), F,, ..., F, are the members of M ) represented by the rows
of the array, and Ay, A,, ..., A, are rational functions of @1, --., @,.
Equating coefficients on the two sides of power products of @y, #s, ..., @,
corresponding to the columns of the determinant 2 mentioned above,
and solving for A\, Ay, ..., A,, we see that A\, D and consequently A; is
a whole function of #,,, ..., ,. Hence F'is a member of M, since
Fy, F,, ..., F, are all members of M ; and ¢F=0mod M requires
F=0mod M. Hence M is unmixed.

If M is a perfect module of rank r and M' « module in &y, ..., 2,
(independent of @, @y, ..., @) the L.c.M. of M, M’ is the same as their
product MM'. For if the /' above is a member of the L.c.m. of M,
M’ the elements in the row representing #' are all members of M, and
the A; are linear functions of them and therefore also members of M.
Hence

F=3NF;=0mod MM ', ie. [M, M']=MM",
since A;=0mod M’ and Fj;=0mod M.

91. The number H, of modular equations of degree | of a perfect

H-module M of rank r is the coefficient of @ in
(1 + @ + po® + oo + py—12” D) (L= ),

where vy is the characteristic number, and p,, the number of modular
equations of degree m, of the simple module My, =.. -zy=0-

For the general member of M of degree 7 is (§90)

MNE 4+ Mo+ o + N,
where A, Ay, ..., A, are whole functions of .y, ..., ,, and cannot
vanish identically unless A;, Ay, ..., A, all vanish identically. Hence
7—2
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the number of linearly independent members of M of degree / is the
total number of terms in A, A, ..., A,. Now the number of the
polynomials F,, F,, ..., F, which are of degree m is p,, less than the
number of power products of @1, @, ..., 4. of degree m, and the
number of terms in each corresponding A (of degree /—m) is the
coefficient of ' in 2™ (1—a)~" Hence the number of linearly
independent members of M of degree / is less than the number of
power products of @1, 2, ..., @, of degree / by the coefficient of 2* in
(L+p@+pa®+ ..+ mat) (L—a) ",
and this coefficient is the value of H,. § 75 is a particular case.

92, If M is a perfect H-module of rank r such that the simple
module My, =..=z,=0 is @ principal system, and M' a perfect H-
module of rank r contained in M, the module M|M ' is perfect.

The p and g’ r-dimensional modular equations of M and M’
begin with the p and x' modular equations of A, =ap=0 and
M'y, = .=z,=0. Also the p—p' r-dimensional modular equations of
M|M' are the F'-derivates of the modular equations of M, where /"
is any member of 2/', and begin with the F's,  =..-a,=0-derivates of
the modular equations of My, =..=z,=0, that is, with the modular.
equations of My, =..=4,=0/M ', =..=an=0. These are pu—p' in

number, since M, =..=z,=0 1 a principal system containing
ﬂf’a:,.+1=...=x,,=o- Hence M/M' is perfect (§81).

1=

93. We may sum up some of the relations between different
kinds of modules.

A module of the principal class is unmixed and a principal system,
and in the case of an H-module is perfect.

Any power of a module of the principal class is unmixed, and in
the case of an H-module is perfect (§89, end), but is not a principal
system ; e.g. (@, »)? is not a principal system.

A module of rank %£—# + 1 whose basis is a matrix with » rows and
k columns is unmixed, and in the case of an H-module is perfect
($89, end), but is not a principal system ; e.g. the module <0 1 m2>

. . . &1 & O
1s not a principal system.

A primary module of the principal Noetherian class is a principal
system, but not perfect.



