#### CHAPTER 4

# Radon transform and propagation of singularities in $\mathbf{H}^n$

The purpose of this chapter is to extend Theorem 1.6.6 to the asymptotically hyperbolic metric on  $\mathbf{R}^n_+$  in the sense of singularity expansion.

#### 1. Geodesic coordinates near infinity

#### 1.1. Geodesic coordinates. We shall study the metric

(1.1) 
$$ds^{2} = y^{-2} \Big( (dx)^{2} + (dy)^{2} + A(x, y, dx, dy) \Big)$$

on  $\mathbb{R}^n_+$  defined in Chapter 2, Subsection 2.1, i.e. the metric satisfying the condition (C) in Chap. 2. Our aim is to transform (1.1) into the following canonical form

(1.2) 
$$ds^{2} = y^{-2} \Big( (dx)^{2} + (dy)^{2} + B(x, y, dx) \Big)$$

in the region  $0 < y < y_0$ ,  $y_0$  being a sufficiently small constant, where B(x, y, dx) is a symmetric covariant tensor of the form

$$B(x, y, dx) = \sum_{i,j=1}^{n-1} b_{ij}(x, y) dx^{i} dx^{j}.$$

Passing to the variable  $z = \log y$ , we rewrite the Laplace-Beltrami operator  $\Delta_g$  associated with (1.1) as

$$\Delta_g = \partial_z^2 + e^{2z} \partial_x^2 + \sum_{i,j=1}^{n-1} a^{ij}(x, e^z) e^{2z} \partial_{x_i} \partial_{x_j}$$
$$+ 2 \sum_{i=1}^{n-1} a^{in}(x, e^z) e^z \partial_{x_i} \partial_z + a^{nn}(x, e^z) \partial_z^2$$

up to 1st order terms. Then  $(g^{ij})$  in the variables x and z takes the form

(1.3) 
$$g^{ij} = \begin{cases} e^{2z} \left( \delta^{ij} + h^{ij}(x, z) \right), & 1 \le i, j \le n - 1, \\ e^{z} h^{in}(x, z), & 1 \le i \le n - 1, \\ 1 + h^{nn}(x, z), & i, j = n, \end{cases}$$

where  $h^{ij}(x,z)$  satisfies in the region z < 0

$$(1.4) |\partial_x^{\alpha} \partial_z^{\beta} h^{ij}(x,z)| \le C_{\alpha\beta} W(x,z)^{-\min(|\alpha|+\beta,1)-1-\epsilon_0},$$

and

$$W(x,z) = 1 + |z| + \log(|x| + 1).$$

We define the Hamiltonian  $H(x, z, \xi, \eta)$  by

$$H(x, z, \xi, \eta) = \frac{1}{2} \Big( e^{2z} |\xi|^2 + \eta^2 + h(x, z, \xi, \eta) \Big),$$
$$h(x, z, \xi, \eta) = \sum_{i,j=1}^{n-1} e^{2z} h^{ij}(x, z) \xi_i \xi_j + 2 \sum_{i=1}^{n-1} e^{z} h^{in}(x, z) \xi_i \eta + h^{nn}(x, z) \eta^2.$$

The equation of geodesic is as follows:

(1.5) 
$$\begin{cases} \frac{dx}{dt} = \frac{\partial H}{\partial \xi}, & \frac{dz}{dt} = \frac{\partial H}{\partial \eta}, \\ \frac{d\xi}{dt} = -\frac{\partial H}{\partial x}, & \frac{d\eta}{dt} = -\frac{\partial H}{\partial z}. \end{cases}$$

If  $h(x, z, \xi, \eta) = 0$ , it has the following solution

$$x(t) = x_0, \quad \xi(t) = 0, \quad z(t) = t, \quad \eta(t) = 1.$$

With this in mind, we seek the solution of the equation (1.5) which behaves like

$$\begin{cases} x(t) = x_0 + O(W(x_0, t)^{-1-\epsilon}), & \xi(t) = O(W(x_0, t)^{-1-\epsilon}), \\ z(t) = t + O(W(x_0, t)^{-\epsilon}), & \eta(t) = 1 + O(W(x_0, t)^{-1-\epsilon}), \end{cases}$$

as  $t \to -\infty$ , where  $x_0 \in \mathbf{R}^{n-1}$ ,  $0 < \epsilon < \epsilon_0$ . Therefore we put

$$\begin{cases} U_x(x_0, t) = x(t) - x_0, & U_z(x_0, t) = z(t) - t, \\ U_{\xi}(x_0, t) = \xi(t), & U_{\eta}(x_0, t) = \eta(t) - 1, \end{cases}$$

$$U(x_0,t) = (U_x(x_0,t), U_z(x_0,t), U_{\xi}(x_0,t), U_{\eta}(x_0,t)),$$

$$A(U,x_0,t) = \left(\frac{\partial H}{\partial \xi}, \frac{\partial H}{\partial \eta} - 1, -\frac{\partial H}{\partial x}, -\frac{\partial H}{\partial z}\right)\Big|_{x = U_x + x_0, \xi = U_\xi, z = U_z + t, \eta = U_\eta + 1},$$

and consider the following non-linear operator

(1.6) 
$$(B(U(x_0,\cdot);x_0))(t) = \int_{-\infty}^t A(U(x_0,\tau),x_0,\tau)d\tau.$$

We shall look for the fixed point of the map :  $U \to B(U)$ , i.e.

(1.7) 
$$U(x_0,t) = (B(U(x_0,\cdot);x_0))(t).$$

We fix  $t_0 < 0$ , and define the norm

$$||U||_{t_0} = \sup_{t < t_0, x_0 \in \mathbf{R}^{n-1}} \left[ |t| + \log(|x_0| + 1) \right]^{\epsilon/2} |U_z(t)|$$

$$+ \sup_{t < t_0, x_0 \in \mathbf{R}^{n-1}} \left[ |t| + \log(|x_0| + 1) \right]^{1+\epsilon} \left( |U_\xi(t)| + |U_\eta(t)| + |U_x(t)| \right),$$

and the space  $\mathcal{F}_{t_0}$  of functions by

$$\mathcal{F}_{t_0} \ni U(t) \Longleftrightarrow ||U||_{t_0} < 1.$$

By (1.4), a simple computation shows

$$\left| \frac{\partial H}{\partial z} \right| \le C \|U\|_{t_0} \left( W(x_0, t)^{-2 - \epsilon_0} + e^t W(x_0, t)^{-1 - \epsilon} \right).$$

Hence for any  $\delta > 0$ , there exists  $t_0$  such that for  $t < t_0$ 

$$|B(U(\cdot), x_0)_{\eta}(t)| \le \int_{-\infty}^{t} \left| \frac{\partial H}{\partial z} \right| d\tau \le \delta ||U||_{t_0} W(x_0, t)^{-1 - \epsilon}.$$

Using this estimate and (1.4), we obtain, taking bigger  $|t_0|$  if necessary,

$$||B(U)(t)||_{t_0} \le \delta ||U||_{t_0}, \quad \forall U \in \mathcal{F}_{t_0}.$$

Similar calculation implies

$$||B(U)(t) - B(V)(t)||_{t_0} \le \delta ||U - V||_{t_0},$$

for  $U, V \in \mathcal{F}_{t_0}$ . Then taking  $\delta < 1/2$ , B maps  $\mathcal{F}_{t_0}$  into  $\mathcal{F}_{t_0}$ , and is Lipschitz continuous with Lipschitz constant < 1/2. Hence, there exists a unique fixed point  $U(t) = U(x_0, t) \in \mathcal{F}_{t_0}$  of (1.7). By differentiating (1.6) with respect to t, we see that for some constant C

$$\frac{1}{C}W(x_0,t)\partial_t U(x_0,t) \in \mathcal{F}_{t_0}.$$

Differentiating (1.7) with respect to  $x_0$ , we get

$$(I - B_U(U(x_0, \cdot), x_0))\partial_{x_0}^{\alpha} U = \partial_{x_0}^{\alpha} B(U, x_0), \quad |\alpha| = 1.$$

For  $t < |t_0|$ ,  $(I - B_U(U(x_0, \cdot), x_0))$  is invertible, providing

$$\frac{1}{C}W(x_0,t)\partial_{x_0}^{\alpha}U(x_0,t)\in\mathcal{F}_{t_0},\quad |\alpha|=1.$$

Iterating this procedure, we have the following lemma.

**Lemma** 1.1. Choose  $|t_0|$  large enough. Then there exists a solution x(t), z(t),  $\xi(t)$ ,  $\eta(t)$  of the equation (1.5) for  $(x_0, t) \in \mathbf{R}^{n-1} \times (-\infty, t_0)$  satisfying

$$\begin{aligned} \left| \partial_{x_0}^{\alpha} \partial_t^{\beta} \left( x(t) - x_0 \right) \right| + \left| \partial_{x_0}^{\alpha} \partial_t^{\beta} \xi(t) \right| + \left| \partial_{x_0}^{\alpha} \partial_t^{\beta} \left( \eta(t) - 1 \right) \right| \\ & \leq C_{\alpha\beta} W(x_0, t)^{-1 - \epsilon/2 - \min(|\alpha| + \beta, 1)}, \\ \left| \partial_{x_0}^{\alpha} \partial_t^{\beta} \left( z(t) - t \right) \right| & \leq C_{\alpha\beta} W(x_0, t)^{-\epsilon/2 - \min(|\alpha| + \beta, 1)}. \end{aligned}$$

**Lemma** 1.2. As a 2-form on the region  $\mathbb{R}^{n-1} \times (-\infty, t_0)$ , we have

$$\sum_{i=1}^{n-1} d\xi_i(x_0, t) \wedge dx^i(x_0, t) + d\eta(x_0, t) \wedge dz(x_0, t) = 0.$$

Proof. We put  $x^n=z,\,\xi_n=\eta$  and  $x^n_0=t.$  Then we have

$$\sum_{i=1}^{n} d\xi_i \wedge dx^i = \sum_{j < k} [\xi, x]_{jk} dx_0^j \wedge dx_0^k,$$

$$[\xi, x]_{jk} = \frac{\partial \xi}{\partial x_0^j} \cdot \frac{\partial x}{\partial x_0^k} - \frac{\partial \xi}{\partial x_0^k} \cdot \frac{\partial x}{\partial x_0^j}.$$

Noting that

$$\frac{\partial}{\partial t} \left( \frac{\partial \xi}{\partial x_0^j} \cdot \frac{\partial x}{\partial x_0^k} \right) = -\frac{\partial^2 H}{\partial x^i \partial x^m} \frac{\partial x^m}{\partial x_0^j} \frac{\partial x^i}{\partial x_0^k} + \frac{\partial^2 H}{\partial \xi_i \partial \xi_m} \frac{\partial \xi_i}{\partial x_0^k} \frac{\partial \xi_m}{\partial x_0^j} \frac$$

is symmetric with respect to i and k, we have

$$\frac{\partial}{\partial t}[\xi, x]_{jk} = 0.$$

By Lemma 1.1,  $[\xi, x]_{jk} \to 0$  as  $t \to -\infty$ . Hence  $[\xi, x]_{jk} = 0$ , which proves the lemma.

**Lemma** 1.3. For large  $|t_0|$ , the map

$$\mathbf{R}^{n-1} \times (-\infty, t_0) \ni (x_0, t) \to (x(x_0, t), z(x_0, t))$$

is a diffeomorphism and its image includes  $\mathbf{R}^{n-1} \times (-\infty, 2t_0)$ .

Proof. We show that this map is locally diffeomorphic and globally injective. Using inverse function theorem, from Lemma 1.1, we have that making  $|t_0|$  sufficiently large, there are  $r_0, \tilde{r}_0 > 0$  with the following properties;

- For any  $x'_0 \in \mathbf{R}^{n-1}$ ,  $t'_0 < t_0$ , the map  $(x(x_0, t), z(x_0, t))$  is a diffeomorphism from  $B_r(x'_0, t'_0)$ , the ball of radius r with center at  $(x'_0, t'_0)$ , onto  $U \subset \mathbf{R}^{n-1} \times (-\infty, t_0)$ .
- $B_{\tilde{r}_0}(x(x'_0, t'_0), z(x'_0, t'_0)) \subset U$ .

Assume  $x(x'_0, t'_0) = x(x''_0, t''_0)$ ,  $z(x'_0, t'_0) = z(x''_0, t''_0)$  for some  $(x'_0, t'_0) \neq (x''_0, t''_0)$ . Then by Lemma 1.1, it follows from the 2nd equality that  $|t'_0 - t''_0| < r/4$  if  $|t_0|$  is sufficiently large. Therefore by local injectivity,  $|x'_0 - x''_0| > 3r/4$ . Using again Lemma 1.1, we see that for sufficiently large  $|t_0|$ ,  $|x(x'_0, t'_0) - x'_0| < r/4$ ,  $|x(x''_0, t''_0) - x''_0| < r/4$ . This leads to a contradiction.

Let  $x_0 = x_0(x, z)$ , t = t(x, z) be the inverse of the map :  $(x_0, t) \to (x, z)$ . We put  $\xi(x, z) = \xi(x_0(x, z), t(x, z))$ , etc. for the sake of simplicity. Since  $\sum_{i=1}^{n-1} \xi_i dx^i + \eta dz$  is a closed 1-form by Lemma 1.2, we have

$$\frac{\partial \xi_j}{\partial x^k} = \frac{\partial \xi_k}{\partial x^j}, \quad \frac{\partial \xi_j}{\partial z} = \frac{\partial \eta}{\partial x^j}, \quad 1 \le j, k \le n - 1.$$

Recall

$$U_{\eta}(x,z) = \eta(x,z) - 1$$

$$= -\int_{-\infty}^{t} \frac{\partial H}{\partial z} (x(x_{0},s), z(x_{0},s), \xi(x_{0},s), \eta(x_{0},s)) ds \Big|_{x_{0} = x_{0}(x,z), t = t(x,z)},$$

and define  $\Psi(x,z)$  by

$$\Psi(x,z) = z + \int_{-\infty}^{0} U_{\eta}(x,z+\tau)d\tau.$$

**Lemma** 1.4. For  $z \leq 2t_0$ , we have

- (1)  $\partial_x \Psi(x,z) = \xi(x,z),$
- (2)  $\partial_z \Psi(x,z) = \eta(x,z),$
- (3)  $H(x, z, \partial_x \Psi(x, z), \partial_z \Psi_z(x, z)) = 1/2$ ,
- $(4) \quad \left|\partial_x^{\alpha}\partial_z^{\beta}(\Psi(x,z)-z)\right| \leq C_{\alpha\beta}(|z|+\log(|x|+1))^{-\epsilon/2-\min(|\alpha|+\beta,1)}, \quad \forall \alpha,\beta.$
- (5)  $\Psi(x,z) = t(x,z)$ .

Proof. We have

$$\begin{split} \frac{\partial \Psi}{\partial x^j} &= \int_{-\infty}^0 \frac{\partial \eta}{\partial x^j}(x,z+\tau) d\tau \\ &= \int_{-\infty}^0 \frac{\partial \xi_j}{\partial \tau}(x,z+\tau) d\tau = \xi_j(x,z), \\ \frac{\partial \Psi}{\partial z} &= 1 + \int_{-\infty}^0 \frac{\partial \eta}{\partial \tau}(x,z+\tau) dt\tau = \eta(x,z), \end{split}$$

which prove (1) and (2).

Since x(t), z(t) and  $\xi(t)$ ,  $\eta(t)$  are solutions to the equation (1.5),  $H(x(t), p(t), \xi(t), \eta(t))$  is a constant, which turns out to be 1/2 by letting  $t \to -\infty$ . This proves (3). (4) follows again from Lemma 1.1 due to the fact that

$$\left| \partial_{x_0}^{\gamma} \partial_t^{\delta} \left( \frac{\partial(x,z)}{\partial(x_0,t)} - Id \right) \right| \le C_{\gamma\delta} W(x,z)^{-\epsilon/2 - \min(|\gamma| + \delta, 1)}.$$

Using (1), (2), we have

$$\begin{split} \frac{\partial \Psi}{\partial t} &= \frac{\partial \Psi}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial \Psi}{\partial z} \frac{\partial z}{\partial t} \\ &= \xi(x,z) \cdot \frac{\partial x}{\partial t} + \eta(x,z) \frac{\partial z}{\partial t} \\ &= \xi(x,z) \cdot \frac{\partial H}{\partial \xi} + \eta(x,z) \frac{\partial H}{\partial \eta} \\ &= g^{ij} \partial_i \Psi \partial_j \Psi = 1, \end{split}$$

where the last identity comes from Lemma 1.4 (3). Here  $\partial_i = \partial/\partial x^i$ ,  $1 \le i \le n-1$ ,  $\partial_n = \partial/\partial z$ . Therefore  $\Psi(x,z) - t$  is independent of t. On the other hand,  $\Psi - z \to 0$  and  $z - t \to 0$  as  $t \to -\infty$ . Therefore,  $\Psi(x,z) = t$ .

**Lemma** 1.5. In the coordinate system  $(x_0,t)$ , the Riemannian metric (1.1) is written as

$$ds^{2} = (dt)^{2} + e^{-2t} \Big( (dx_{0})^{2} + \sum_{i,j=1}^{n-1} \widehat{h}_{ij}(x_{0}, t) dx_{0}^{i} dx_{0}^{j} \Big),$$

where  $\hat{h}_{ij}(x_0,t)$  satisfies

$$(1.8) \left| \partial_{x_0}^{\alpha} \partial_t^{\beta} \widehat{h}_{ij}(x_0, t) \right| \le C_{\alpha\beta} W(x_0, t)^{-1 - \epsilon/2 - \min(|\alpha| + \beta, 1)}, \quad \forall \alpha, \beta.$$

Proof. We put  $y^i = x_0^i, 1 \le i \le n-1, y^n = t$ . Then the associated tensor  $\overline{g}^{ij}$  is written as

$$\overline{g}^{nn} = g^{ij} \frac{\partial y^n}{\partial x^i} \frac{\partial y^n}{\partial x^j} = g^{ij} (\partial_i \Psi) (\partial_j \Psi) = 1,$$

$$\overline{g}^{nk} = g^{ij} \frac{\partial y^n}{\partial x^i} \frac{\partial y^k}{\partial x^j} = g^{ij} (\partial_i \Psi) (\partial_j x_0^k) = 0,$$

for  $1 \le k \le n-1$ . Here in the 2nd line, we have used

$$0 = \frac{\partial x_0^k}{\partial t} = \frac{\partial x_0^k}{\partial x^i} \frac{\partial x^i}{\partial t} = \frac{\partial x_0^k}{\partial x^i} g^{ij} \partial_j \Psi.$$

Therefore the Riemmanian metric has the form

$$ds^{2} = (dt)^{2} + \sum_{i,j=1}^{n-1} \overline{g}_{ij} dx_{0}^{i} dx_{0}^{j}.$$

Recall

$$\overline{g}_{ij}(x_0,t) = g_{kl} \frac{\partial x^k}{\partial x_0^i} \frac{\partial x^l}{\partial x_0^j} + 2g_{kn} \frac{\partial x^k}{\partial x_0^i} \frac{\partial z}{\partial x_0^j} + g_{nn} \frac{\partial z}{\partial x_0^i} \frac{\partial z}{\partial x_0^j},$$

where  $1 \le k, l \le n-1$ , and the right-hand side is evaluated at  $(x, z) = (x(x_0, t), z(x_0, t))$ . By the formula (1.3), (1.4) and Lemma 1.1, the 1st term of the right-hand side is of the form  $e^{-2t} \left( \delta_{ij} + \hat{h}_{ij}^{(0)} \right)$ , where  $\hat{h}_{ij}^{(0)}$  satisfies the estimate (1.8). By the same

reasoning, the 2nd and 3rd terms give rise to  $\hat{h}_{ij}^{(1)}$  and  $\hat{h}_{ij}^{(2)}$ . This completes the proof of the lemma.

The coordinates  $(x_0, t)$  are actually semi-geodesic coordinates related to the boundary at infinity y = 0.

Letting  $x_0 = \overline{x}$ ,  $t = \log \overline{y}$  in Lemma 1.5 and recalling that  $D_{\overline{y}} = \overline{y} \partial_{\overline{y}} = \partial_t$ , and using Lemma 1.1, we obtain the following theorem.

**Theorem** 1.6. Choose  $y_0 > 0$  sufficiently small. Then there exists a diffeomorphism  $(x, y) \to (\overline{x}, \overline{y})$  in the region  $0 < y < y_0$  such that

$$\left| \partial_{\overline{x}}^{\alpha} D_{\overline{y}}^{\beta} (\overline{x} - x) \right| \leq C_{\alpha\beta} (1 + d_h(\overline{x}, \overline{y}))^{-\min(|\alpha| + \beta, 1) - 1 - \epsilon/2}, \quad \forall \alpha, \beta,$$
$$\left| \partial_{\overline{x}}^{\alpha} D_{\overline{y}}^{\beta} \left( \frac{\overline{y} - y}{\overline{y}} \right) \right| \leq C_{\alpha\beta} (1 + d_h(\overline{x}, \overline{y}))^{-\min(|\alpha| + \beta, 1) - 1 - \epsilon/2}, \quad \forall \alpha, \beta,$$

and in the  $(\overline{x}, \overline{y})$  coordinate system, the Riemannian metric takes the form

$$ds^{2} = (\overline{y})^{-2} \Big( (d\overline{y})^{2} + (d\overline{x})^{2} + \sum_{i,j=1}^{n-1} \overline{h}_{ij}(\overline{x}, \overline{y}) d\overline{x}^{i} d\overline{x}^{j} \Big),$$

where

$$\overline{h}_{ij}(\overline{x}, \overline{y}) = \widehat{h}_{ij}(x_0, t), \quad x_0 = \overline{x}, \quad t = \log \overline{y}, 
\left| \partial_{\overline{x}}^{\alpha} D_{\overline{y}}^{\beta} \overline{h}_{ij}(\overline{x}, \overline{y}) \right| \le C_{\alpha\beta} (1 + d_h(\overline{x}, \overline{y}))^{-\min(|\alpha| + \beta, 1) - 1 - \epsilon/2}, \quad \forall \alpha, \beta.$$

### 2. Asymptotic solutions to the wave equation

Theorem 1.6 leads us to consider the metric having the form

(2.1) 
$$ds^{2} = y^{-2} \Big( (dy)^{2} + (dx)^{2} + \sum_{i,j=1}^{n-1} h_{ij}(x,y) dx^{i} dx^{j} \Big),$$

in the region  $\mathbf{R}^{n-1} \times (0, y_0)$ , where  $y_0$  is a small constant and  $h_{ij}(x, y)$  satisfies  $h_{ij} \in \mathcal{W}^{-1-\epsilon/2}$ .

As in Chap. 2, we consider

$$H = -(y^{2n}g)^{1/4} \Delta_g (y^{2n}g)^{-1/4} - \frac{(n-1)^2}{4} \quad \text{in} \quad L^2 \Big( \mathbf{R}^n_+; \frac{dxdy}{y^n} \Big).$$

Taking into account that H is self-adjoint, we see that explicitly, H has the form

(2.2) 
$$H = -D_y^2 + (n-1)D_y - D_x^2 - \frac{(n-1)^2}{4} - L,$$
$$L = y^2 \sum_{|\alpha| \le 2} L_\alpha(x, y) \partial_x^\alpha,$$

where  $D_y = y\partial_y$ ,  $D_x = y\partial_x$ . Moreover  $L_\alpha \in \mathcal{W}^{-1-\epsilon/2}$ .

It is convenient to rewrite H into the form

(2.3) 
$$H = -\left(D_y - \frac{n-1}{2}\right)^2 - K,$$

(2.4) 
$$K = y^2 (\partial_x)^2 + y^2 \sum_{|\alpha| \le 2} L_{\alpha}(x, y) \partial_x^{\alpha}.$$

Using

$$\left(D_{y} - \frac{n-1}{2}\right)^{m} \left(e^{ix\cdot\xi}y^{\frac{n-1}{2}-ik}a\right) = e^{ix\cdot\xi}y^{\frac{n-1}{2}-ik}(D_{y} - ik)^{m}a, 
\partial_{x}^{\alpha} \left(e^{ix\cdot\xi}y^{\frac{n-1}{2}-ik}a\right) = e^{ix\cdot\xi}y^{\frac{n-1}{2}-ik}(\partial_{x} + i\xi)^{\alpha}a,$$

we have the following identity

$$(H - k^{2}) \left( e^{ix \cdot \xi} y^{\frac{n-1}{2} - ik} a \right)$$
  
=  $e^{ix \cdot \xi} y^{\frac{n-1}{2} - ik} \left\{ 2ikD_{y}a - \left( D_{y}^{2} + K(\xi) \right) a \right\},$ 

where  $K(\xi)$  is a differential operator of the form

(2.5) 
$$K(\xi) = y^2 (\partial_x + i\xi)^2 + y^2 \sum_{|\alpha| \le 2} L_{\alpha}(x, y) (\partial_x + i\xi)^{\alpha}.$$

We put  $a = \sum_{j=0}^{N} k^{-j} a_j$ . Then the above formula becomes

(2.6) 
$$e^{-ix\cdot\xi}y^{-\frac{n-1}{2}+ik}\left(H-k^2\right)e^{ix\cdot\xi}y^{\frac{n-1}{2}-ik}a$$

$$=2ikD_ya_0+\sum_{j=0}^{N-1}k^{-j}\left\{2iD_ya_{j+1}-\left(D_y^2+K(\xi)\right)a_j\right\}$$

$$-k^{-N}\left(D_y^2+K(\xi)\right)a_N.$$

We put

$$(2.7) a_0(x,y) = 1,$$

and consruct  $a_j$  succesively by

(2.8) 
$$a_{j+1}(x,y,\xi) = -\frac{i}{2} \int_0^y (D_t^2 + K(\xi)) a_j(x,t,\xi) \frac{dt}{t}.$$

Then we have

(2.9) 
$$2iD_y a_{j+1} - (D_y^2 + K(\xi))a_j = 0.$$

We put for  $p \ge 0$ 

$$y^p \mathcal{W}^s = \{ y^p w(x, y) ; w(x, y) \in \mathcal{W}^s \}.$$

Here and what follows, we allow the elements of  $W^s$  to be complex-valued. Then one can show easily that

(2.10) 
$$\int_0^y t^q f(x,t) \frac{dt}{t} \in y^{p+q} \mathcal{W}^s, \quad \text{if} \quad f \in y^p \mathcal{W}^s, \quad p, q \ge 0, \quad s < 0.$$

In fact, letting  $f(x,y) = y^p w(x,y), w \in \mathcal{W}^s$ , we are led to estimate

$$y^{p+q} \int_0^1 \tau^{p+q} w(x, y\tau) \frac{d\tau}{\tau}.$$

Noting that for 0 < y < 1

$$\log\langle x\rangle + \langle \log(y\tau)\rangle \ge \log\langle x\rangle + \langle \log y\rangle,$$

we easily get (2.10).

**Lemma** 2.1. For  $j \geq 1$ , we have

$$a_j(x, y, \xi) = y^2 \xi^2 P_{j-1}(y^2 \xi^2) + \sum_{p=1}^j y^{2p} \sum_{|\alpha| \le 2p} A_{\alpha}^{(j,p)}(x, y) \xi^{\alpha},$$

where  $P_{j-1}$  is a polynomial of order j-1 with constant coefficients, and  $A_{\alpha}^{(j,p)}(x,y) \in \mathcal{W}^{-1-\epsilon/2}$ .

Proof. The proof is by induction using (2.10) and the formula

$$\int_0^y \left( D_t^2 t^\beta \right) \frac{dt}{t} = \beta y^\beta.$$

Summing up, we have proven the following theorem.

**Theorem** 2.2. For any N > 0, there exists an asymptotic solution to the equation  $(H - k^2)u = 0$  such that in  $\mathbf{R}^{n-1} \times (0, y_0)$ 

$$(H - k^2) \left( y^{\frac{n-1}{2} - ik} e^{ix \cdot \xi} \sum_{j=0}^{N} k^{-j} a_j(x, y, \xi) \right) = y^{\frac{n-1}{2} - ik} e^{ix \cdot \xi} k^{-N} g_N(x, y, \xi),$$

where  $a_i(x,y,\xi)$  has the form in Lemma 2.1. Furthermore  $g_N(x,y,\xi)$  has the form

(2.11) 
$$g_N(x,y,\xi) = y^2 \xi^2 Q_N(y^2 \xi^2) + \sum_{p=1}^{N+1} y^{2p} \sum_{|\alpha| \le 2p} B_{\alpha}^{(N,p)}(x,y) \xi^{\alpha},$$

where  $Q_N$  is a polynomial of order N with constant coefficients, and  $B_{\alpha}^{(N,p)}(x,y) \in \mathcal{W}^{-1-\epsilon/2}$ .

### 3. Mellin transform and pseudo-differential operators

**3.1.** Mellin transform. The Mellin transform  $U_M$  is defined by

(3.1) 
$$(U_M f)(k) = \frac{1}{\sqrt{2\pi}} \int_0^\infty y^{\frac{n-1}{2} + ik} f(y) \frac{dy}{y^n}, \quad k \in \mathbf{R}.$$

In the following, the Fourier transform and its adjoint are denoted by

(3.2) 
$$F_{k\to z}f(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-izk} f(k) dk,$$

(3.3) 
$$F_{z\to k}^*g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{izk} g(z) dz.$$

Note that

$$F_{z \to k}^* = (F_{k \to z})^*.$$

Using the fact that

$$T:L^2((0,\infty);dy/y^n)\ni f(y)\to (Tf)\,(z)=f(e^z)e^{-(n-1)z/2}\in L^2(\mathbf{R};dz)$$

is unitary, we have

(3.4) 
$$(U_M f)(k) = (F_{z \to k}^* T f)(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{izk} (T f)(z) dz.$$

Hence  $U_M: L^2((0,\infty); dy/y^n) \to L^2(\mathbf{R}^1)$  is unitary, and the inversion formula holds:

$$f(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} y^{\frac{n-1}{2} - ik} (U_M f) (k) dk = (U_M)^* U_M f.$$

We put

(3.5) 
$$K_0 = i \left( y \partial_y - \frac{n-1}{2} \right).$$

Then we have for  $f \in C_0^{\infty}((0,\infty))$ 

$$(3.6) (U_M K_0 f)(k) = k(U_M f)(k) = F_{z \to k}^* (i\partial_z (Tf))(k).$$

Therefore, for a function  $\varphi(k)$  on **R**, we define the operator  $\varphi(K_0)$  by

(3.7) 
$$\varphi(K_0) = (U_M)^* \varphi(k) U_M.$$

By (3.6), we have the following correspondence between the multiplication operator k and the differential operators  $\partial_z$ ,  $y\partial_y$  via the Fourier transform in the z-space and the Mellin transform in the y-space:

$$(3.8) i\left(y\partial_y - \frac{n-1}{2}\right) \longleftrightarrow k \longleftrightarrow i\partial_z.$$

We also put for  $h(x) \in L^2(\mathbf{R}^{n-1})$ 

$$(F_{x\to\xi}h)(\xi) = \hat{h}(\xi) = (2\pi)^{-(n-1)/2} \int_{\mathbf{R}^{n-1}} e^{-ix\cdot\xi}h(x)dx.$$

Thus we have the following correspondence for the operator  $H_0$  on  $L^2(\mathbf{H}^n)$  and its symbol:

(3.9) 
$$-D_y^2 + (n-1)D_y - \frac{(n-1)^2}{4} - y^2 \Delta_x \longleftrightarrow k^2 + y^2 |\xi|^2$$

$$= k^2 + e^{2z} |\xi|^2 \longleftrightarrow -\partial_z^2 - e^{2z} \Delta_x.$$

For  $p(x, y, \xi, k) \in C^{\infty}(\mathbf{R}_{+}^{n} \times \mathbf{R}^{n})$ , we define an operator  $p_{FM}$  by

$$(3.10) (p_{FM}f)(x,y) = (2\pi)^{-n/2} \int_{\mathbf{R}^n} e^{ix\cdot\xi} y^{\frac{n-1}{2} - ik} p(x,y,\xi,k) (U_M \widehat{f})(\xi,k) d\xi dk.$$

This is rewritten as

$$p_{FM} = T^* \circ p_T(x, z, -i\partial_x, i\partial_z) \circ T,$$

where  $P_T := p_T(x, z, -i\partial_x, i\partial_z)$  is a standard pseudo-differential operator ( $\Psi$ DO) on  $\mathbb{R}^n$ :

$$(P_T h)(x,z) = (2\pi)^{-n} \iint_{\mathbf{R}^n \times \mathbf{R}^n} e^{i((x-x')\cdot\xi - (z-z')k)} p_T(x,z,\xi,k) h(x',z') dx' dz' d\xi dk,$$

with

(3.11) 
$$p_T(x, z, \xi, k) = p(x, e^z, \xi, k).$$

If  $p_T(x, z, \xi, k)$  satisfies

$$(3.12) |\partial_x^{\alpha} \partial_z^m \partial_{\varepsilon}^{\beta} \partial_k^l p_T(x, z, \xi, k)| \le C_{\alpha\beta ml}, \quad \forall \alpha, \beta, m, l,$$

 $P_T$  is a bounded operator on  $L^2(\mathbf{R}^n)$  (see [23]). Therefore,  $p_{FM}$  is a bounded operator on  $L^2(\mathbf{H}^n)$ . Note that for the  $L^2$ -boundedness, it is sufficient to assume (3.12) up to some finite order  $|\alpha| + |\beta| + m + l \leq \mu(n)$ .

We need the following class of symbols.

**Definition** 3.1. For  $s,t\in\mathbf{R}$  and  $N\geq 0$ , let  $\widetilde{S}_{s,t}^N$  be the set of  $C^{\infty}$ -functions on  $\mathbf{R}_+^n\times\mathbf{R}^n$  such that

$$|(\partial_x)^{\alpha}(\partial_\xi)^{\beta}(y\partial_y)^m(\partial_k)^l p(x,y,\xi,k)| \le C(1+|k|)^{s-l}(1+|\xi|)^{t-\beta}$$

holds for  $|\alpha| + |\beta| + m + l \leq N$ .

We say that a  $\Psi$ DO  $p_{FM}$  belongs to  $\widetilde{S}_{s,t}^N$  if its symbol belongs to  $\widetilde{S}_{s,t}^N$ . We always assume that N is chosen sufficiently large. Standard calculus for  $\Psi DO$  applies to  $p_{FM}$ . For example,

$$p \in \widetilde{S}_{s,t}^{N} \Longrightarrow (p_{FM})^{*} \in \widetilde{S}_{s,t}^{N'},$$

$$p \in \widetilde{S}_{s_{1},t_{1}}^{N_{1}}, \ q \in \widetilde{S}_{s_{2},t_{2}}^{N_{2}} \Longrightarrow p_{FM}q_{FM} \in \widetilde{S}_{s_{1}+s_{2},t_{1}+t_{2}}^{N'},$$

$$p \in \widetilde{S}_{s_{1},t_{1}}^{N_{1}}, \ q \in \widetilde{S}_{s_{2},t_{2}}^{N_{2}} \Longrightarrow [p_{FM},q_{FM}] \in \widetilde{S}_{s_{1}+s_{2}-1,t_{1}+t_{2}}^{N'} \cup \widetilde{S}_{s_{1}+s_{2},t_{1}+t_{2}-1}^{N'}$$

with suitable N' > 0. These can be proven in the same way as in [55], Vol 3, Sect. 18.1.

#### 3.2. Regularity of the resolvent.

**Lemma** 3.2. (1) Let 
$$D_x = y\partial_x$$
,  $D_y = y\partial_y$ . Then for  $N \ge 1$  
$$D_x^{\alpha}D_y^m(H+i)^{-N} \in \mathbf{B}(L^2(\mathbf{H}^n)) \quad \text{for} \quad |\alpha| + m \le 2N.$$

(2) Let  $f \in S$ . Then we have

$$D_x^{\alpha} D_y^m f(H) \in \mathbf{B}(L^2(\mathbf{H}^n)), \quad \forall \alpha, m.$$

Proof. For  $k \geq 0$ , let  $\mathcal{P}_k$  be the elements of  $\mathcal{P}$ , introduced in Chapter 2, Subsection 2.1, whose order is at most k.

We shall prove (1). The case N=1 is proved in Theorem 2.1.3 (4). Assume that the Lemma is true for N. Consider  $D_x^{\alpha}D_y^m(H+i)^{-N-1}$  where  $|\alpha|+m\leq 2(N+1)$ . Let first  $|\alpha|\geq 2$  so that  $\alpha=\alpha'+\alpha''$ , where  $|\alpha''|=2$ . Then

$$\begin{split} &D_x^{\alpha}D_y^m(H+i)^{-N-1}\\ &=D_x^{\alpha''}D_x^{\alpha'}D_y^m(H+i)^{-1}(H+i)^{-N}\\ &=D_x^{\alpha''}(H+i)^{-1}D_x^{\alpha'}D_y^m(H+i)^{-1}+D_x^{\alpha''}[D_x^{\alpha'}D_y^m,(H+i)^{-1}](H+i)^{-N}. \end{split}$$

The first term is bounded by induction hypothesis. As for the 2nd term, using Lemma 2.1.2 (1) and the definition of  $W^{-1-\epsilon/2}$ , we have

$$[D_x^{\alpha'}D_y^m, (H+i)^{-1}] = (H+i)^{-1} \Big\{ \sum_{i=1}^n D_i A^{(i)} + A^{(0)} \Big\} (H+i)^{-1},$$

where  $A^{(i)} \in \mathcal{P}_{2N}$ , and  $D_i = y \partial_{x_i}$ ,  $1 \le i \le n-1$ ,  $D_n = D_y$ . Thus

$$\begin{split} &D_x^{\alpha''}[D_x^{\alpha'}D_y^m,(H+i)^{-1}](H+i)^{-N}\\ &=D_x^{\alpha''}(H+i)^{-1}\sum_{i=1}^nD_i(H+i)^{-1}\{A^{(i)}(H+i)^{-N}+[A^{(i)},H](H+i)^{-N}\}\\ &+D_x^{\alpha''}(H+i)^{-1}A^{(0)}(H+i)^{-N-1}. \end{split}$$

By induction hypothesis, it is sufficient to show that  $D_i(H+i)^{-1}[A^{(i)}, H](H+i)^{-N}$  is bounded. Note

$$[A^{(i)}, H] = \sum_{j=1}^{n} D_j \widehat{A}^{(j)} + \widehat{A}^{(0)},$$

where  $\widehat{A}^{(j)} \in \mathcal{P}_{2N}$ . However,

$$D_i(H+i)^{-1}D_j = D_iD_j(H+i)^{-1} + D_i[(H+i)^{-1}, D_j]$$
  
=  $D_iD_j(H+i)^{-1} + D_i(H+i)^{-1}[H, D_j](H+i)^{-1} \in \mathbf{B}(L^2(\mathbf{H}^n)).$ 

Thus  $D_i(H+i)^{-1}[A^{(i)},H](H+i)^{-N}$  is bounded. The case  $|\alpha|<2$ , hence  $m\geq 2$ , is proved similarly.

Let us prove (2). Take N such that  $|\alpha| + m \le 2N$  and put  $g(t) = f(t)(i+t)^N$ . Let  $\widetilde{g}(z)$  be an almost analytic extension of g(z) defined in Section 3.3.1. Then we have by Lemma 3.3.1

$$D_x^{\alpha} D_y^m g(H) = D_x^{\alpha} D_y^m (i+H)^{-N} \frac{1}{2\pi i} \int_{\mathbf{C}} \overline{\partial_z} \widetilde{g}(z) (i+H)^N (z-H)^{-1} dz d\overline{z}.$$

Since  $(i+H)^N(z-H)^{-1} = \sum_{r=-1}^{N-1} c_r(z)(z-H)^r$ ,  $c_r(z)$  being a polynomial of z of degree N-r-1. Therefore, taking  $\sigma = -2N-2$  in Chap. 3 (3.1), We see that  $D_x^{\alpha} D_y^m g(H)$  is a bounded operator multiplied by a polynomial of H of order N-1. By multiplying  $(i+H)^{-N}$ , we obtain (2).

## 4. Parametrices and regularizers

**4.1. Wave operators and Mellin transform.** We now introduce wave operators based on the Mellin transform:

(4.1) 
$$W_M^{(\pm)} = s - \lim_{t \to \pm \infty} e^{it\sqrt{H_+}} e^{\mp itK_0} r_{\pm}(K_0),$$

where  $H_+ = E_H((0,\infty))H = P_{ac}(H)H$ ,  $E_H(\lambda)$  being the spectral resolution for H, and  $r_+(k)$  and  $r_-(k)$  are the characteristic function of the interval  $(0,\infty)$  and  $(-\infty,0)$ , respectively (see (3.7)). Recall  $\mathcal{F}_+$  given in Chap. 2 by formulae (7.1), (8.1) and (8.2).

**Lemma** 4.1. The strong limits (4.1) exist and

$$\mathcal{F}_{+} = \frac{1}{\sqrt{2}} \left\{ r_{+} U_{M}(W_{M}^{(+)})^{*} + r_{-} U_{M}(W_{M}^{(-)})^{*} \right\},\,$$

where  $r_{\pm}$  is the operator of multiplication by  $r_{\pm}(k)$ .

Proof. Due to formula (3.8) and Definition 5.3 of Chap. 1, we have

$$y^{(n-1)/2}\left(\mathcal{R}_{0}f\right)\left(-\log y\mp t,x\right)=(U_{M})^{*}\left(e^{\mp ikt}\mathcal{F}_{0}(k)f\right)(y,x).$$

Using again (3.8) and Theorem 1.5.5, we see that, as  $t \to \pm \infty$ 

(4.2) 
$$\left\| e^{-it\sqrt{H_0}} f - \sqrt{2} e^{\mp itK_0} r_{\pm}(K_0) (U_M)^* \mathcal{F}_0 f \right\|_{L^2(\mathbf{H}^n)} \to 0.$$

By Theorem 2.8.11, the wave operator  $s - \lim_{t \to \pm \infty} e^{it\sqrt{H_+}} e^{-it\sqrt{H_0}}$  exists and is equal to  $W_{\pm} = s - \lim_{t \to \pm \infty} e^{itH} e^{-itH_0}$ . This and (4.2) imply the existence of the limt  $W_M^{(\pm)}$  and

$$W_{\pm} = \sqrt{2} W_M^{(\pm)}(U_M)^* \mathcal{F}_0 = \sqrt{2} W_M^{(\pm)} r_{\pm}(K_0)(U_M)^* \mathcal{F}_0.$$

Letting  $r_{\pm}$  be the operator of multiplication by  $r_{\pm}(k)$  in  $L^{2}(\mathbf{R}; L^{2}(\mathbf{R}^{n-1}); dk)$ , we then have

$$r_{\pm}\mathcal{F}_0(W_{\pm})^* = \sqrt{2} \, r_{\pm}\mathcal{F}_0(\mathcal{F}_0)^* r_{\pm} U_M(W_M^{(\pm)})^*.$$

By Lemma 2.8.3, one can show

$$r_{\pm}\mathcal{F}_0(\mathcal{F}_0)^*r_{\pm} = \frac{1}{2}r_{\pm},$$

which together with the formula (8.8) in Lemma 2.8.4 proves the lemma.

Recall that, using the 1-dimensional Fourier transform (3.3), the modified Radon transform is defined by

$$\mathcal{R}_{\pm} = F_{k \to s}^* \mathcal{F}_{\pm},$$

(see Definition 8.5 in Chapter 2). Then Lemma 4.1 implies

Lemma 4.2.

$$\mathcal{R}_{+} = \frac{1}{\sqrt{2}} F_{k \to s}^{*} \left( r_{+} U_{M} (W_{M}^{(+)})^{*} + r_{-} U_{M} (W_{M}^{(-)})^{*} \right).$$

**4.2.** Parametrices for the wave equation. Let  $a_j(x, y, \xi)$  be as in Lemma 2.1. We take  $\chi_{\infty}(k) \in C^{\infty}(\mathbf{R})$  such that  $\chi_{\infty}(k) = 1$  (|k| > 2),  $\chi_{\infty}(k) = 0$  (|k| < 1), and  $\widetilde{\chi}(y) \in C^{\infty}(\mathbf{R})$  such that  $\widetilde{\chi}(y) = 1$  ( $y < y_0/2$ ),  $\widetilde{\chi}(y) = 0$  ( $y > y_0$ ),  $y_0$  being a constant in Theorem 2.2. We define  $a^{(\pm)}(x, y, \xi, k)$  by

(4.3) 
$$a^{(\pm)}(x,y,\xi,k) = \chi_{\infty}(k)r_{\pm}(k)\sum_{j=0}^{\infty} \rho\left(\frac{\langle \xi \rangle^{2}}{\epsilon_{j}\langle k \rangle}\right)k^{-j}a_{j}(x,y,\xi)\widetilde{\chi}(y).$$

Here,  $\rho(s) \in C_0^{\infty}(\mathbf{R})$  is such that  $\rho(s) = 1$  for |s| < 1/2,  $\rho(s) = 0$  for |s| > 1, and  $\{\epsilon_j\}_{j=0}^{\infty}$  is a sequence such that  $\epsilon_0 > \epsilon_1 > \cdots \to 0$ .

**Lemma** 4.3. For a suitable choice of  $\{\epsilon_j\}_{j=0}^{\infty}$ , the series (4.3) converges and defines a smooth function having the following properties:

- $(1) \operatorname{supp} a^{(\pm)}(x, y, \xi, k) \subset \mathbf{R}^{n-1} \times (0, y_0) \times \{(\xi, k); |k| \ge 1, \langle \xi \rangle^2 \le \epsilon_0 \langle k \rangle \}.$
- (2) If  $|\beta| + m + |\gamma| + \ell \leq N$ , we have,

$$(4.4) \left| \partial_{x}^{\beta} D_{y}^{m} \partial_{\xi}^{\gamma} \partial_{k}^{\ell} \left( a^{(\pm)}(x, y, \xi, k) - \chi_{\infty}(k) r_{\pm}(k) \sum_{j=0}^{N} \rho \left( \frac{\langle \xi \rangle^{2}}{\epsilon_{j} \langle k \rangle} \right) k^{-j} a_{j}(x, y, \xi) \widetilde{\chi}(y) \right) \right|$$

$$\leq C_{N\beta m \gamma \ell} y^{2} \left( \frac{\langle \xi \rangle^{2}}{\langle k \rangle} \right)^{N} \langle \xi \rangle^{-|\gamma|} \langle k \rangle^{-\ell}.$$

(3) Let  $g^{(\pm)}(x, y, \xi, k)$  be defined by

$$(4.5) (H - k^2)y^{\frac{n-1}{2} - ik}e^{ix\cdot\xi}a^{(\pm)}(x, y, \xi, k) = y^{\frac{n-1}{2} - ik}e^{ix\cdot\xi}q^{(\pm)}(x, y, \xi, k).$$

Then we have for any N > 0

$$\left| \partial_x^{\beta} D_y^m \partial_{\xi}^{\gamma} \partial_k^{\ell} g^{(\pm)}(x, y, \xi, k) \right| \le C_{N\beta m\gamma \ell} y^2 \left( \frac{\langle \xi \rangle^2}{\langle k \rangle} \right)^N \langle \xi \rangle^{2-|\gamma|} \langle k \rangle^{2-\ell}.$$

for  $y < y_0/2$  and  $\langle \xi \rangle^2 \le \epsilon_{N+1} \langle k \rangle /2$ .

Proof. First we derive the following estimate for  $j \geq 1$ 

(4.7) 
$$\left| \partial_{x}^{\beta} D_{y}^{m} \partial_{\xi}^{\gamma} \partial_{k}^{\ell} \left( \rho \left( \frac{\langle \xi \rangle^{2}}{\epsilon_{j} \langle k \rangle} \right) k^{-j} a_{j}(x, y, \xi) \widetilde{\chi}(y) \right) \right| \\ \leq C'_{j\beta m \gamma \ell} y^{2} \left( \frac{\langle \xi \rangle^{2}}{\langle k \rangle} \right)^{j} \langle \xi \rangle^{-|\gamma|} \langle k \rangle^{-\ell},$$

where the constant  $C'_{j\beta m\gamma\ell}$  is independent of  $\epsilon_j$ . In fact, by Lemma 2.1,

$$k^{-j}a_j(x,y,\xi)\widetilde{\chi}(y) = \sum_{|\alpha| \le 2j} a_{j,\alpha}(x,y) \frac{\xi^{\alpha}}{k^j},$$

where  $a_{i,\alpha}(x,y) = 0$  for  $y > y_0$ , and

$$|\partial_x^{\beta} D_y^m a_{j,\alpha}(x,y)| \le C'_{j\beta m} y^2, \quad \forall \beta, m.$$

We define a homegenous polynomial of  $(\sigma, \eta) \in \mathbf{R}^n$  by

$$b_j^{(\pm)}(x,y,\sigma,\eta) = (\pm 1)^j \sum_{|\alpha| \le 2j} a_{j,\alpha}(x,y) \sigma^{2j-|\alpha|} \eta^{\alpha}.$$

We then have

$$k^{-j}a_j(x,y,\xi)\widetilde{\chi}(y) = b_j^{(\pm)}\left(x,y,\frac{1}{\sqrt{|k|}},\frac{\xi}{\sqrt{|k|}}\right), \quad \text{for} \quad \pm k > 0.$$

Put  $\Xi = (1/\sqrt{|k|}, \xi/\sqrt{|k|})$ , and note that

$$|\partial_{\xi}^{\gamma} \partial_{k}^{\ell} \Xi| \leq C_{\beta \ell}' \langle \Xi \rangle \langle \xi \rangle^{-|\beta|} |k|^{-|\ell|} \leq C_{\beta \ell} \langle \xi \rangle^{1-|\gamma|} |k|^{-\ell-1/2}, \ |k| > 1.$$

Taking into account of the homogeneity of  $b_j^{(\pm)}(x,y,\sigma,\eta)$ , we then have

$$\left| \partial_x^\beta \partial_y^m \partial_\xi^\gamma \partial_k^\ell b_j^{(\pm)} \left( x, y, \frac{1}{\sqrt{|k|}}, \frac{\xi}{\sqrt{|k|}} \right) \right| \le C'_{j\beta m\gamma\ell} y^2 \left( \frac{\langle \xi \rangle^2}{\langle k \rangle} \right)^j \langle \xi \rangle^{-\gamma} \langle k \rangle^{-\ell}.$$

This, together with the inequality.

$$\left| \partial_x^{\beta} D_y^m \partial_{\xi}^{\gamma} \partial_k^{\ell} \, \rho \left( \frac{\langle \xi \rangle^2}{\epsilon_j \langle k \rangle} \right) \right| \le C'_{\beta m \gamma \ell} \langle \xi \rangle^{-|\gamma|} \langle k \rangle^{-\ell},$$

where the constant  $C'_{\beta m\gamma\ell}$  is independent of  $\epsilon_j$ , gives (4.7). Noting that  $\langle \xi \rangle^2/\langle k \rangle \leq \epsilon_j$ , we then have

$$\left| \partial_{x}^{\beta} D_{y}^{m} \partial_{\xi}^{\gamma} \partial_{k}^{\ell} \left( \rho \left( \frac{\langle \xi \rangle^{2}}{\epsilon_{j} \langle k \rangle} \right) k^{-j} a_{j}(x, y, \xi) \widetilde{\chi}(y) \right) \right|$$

$$\leq C'_{j\beta m\gamma \ell} y^{2} \epsilon_{j} \left( \frac{\langle \xi \rangle^{2}}{\langle k \rangle} \right)^{j-1} \langle \xi \rangle^{-|\gamma|} \langle k \rangle^{-\ell},$$

Take  $\epsilon_i$  such that

$$(1 + C'_{i\beta m\gamma\ell})\epsilon_i < 2^{-j}, \quad |\beta| + m + |\gamma| + \ell \le j.$$

Then, by (4.8), the series (4.3) converges uniformly with all of its derivatives. The inequality (4.4) also follows from (4.8). We put

$$g_{N+1}^{(\pm)} = y^{-\frac{n-1}{2}} e^{-ix\cdot\xi} (H - k^2) y^{\frac{n-1}{2}} e^{ix\cdot\xi} \chi_{\infty}(k) r_{\pm}(k) \sum_{i=0}^{N} \rho\left(\frac{\langle\xi\rangle^2}{\epsilon_j\langle k\rangle}\right) k^{-j} a_j(x,y,\xi) \widetilde{\chi}(y),$$

and  $\widetilde{g}_{N+1}^{(\pm)} = g^{(\pm)} - g_{N+1}^{(\pm)}$ . Then by (2.6),  $g_{N+1}^{(\pm)} = 0$  for  $\langle \xi \rangle^2 \leq \epsilon_{N+1} \langle k \rangle / 2$  and  $y < y_0/2$ . The inequality (4.8) shows that  $\widetilde{g}_{N+1}^{(\pm)}$  has the estimate in (3).

We define an operator  $U_{\pm}(t)$  by

(4.9) 
$$U_{\pm}(t) = a_{FM}^{(\pm)} e^{\mp itK_0} \chi(y).$$

where  $\chi(y) \in C^{\infty}(\mathbf{R})$  is such that  $\chi(y) = 1$   $(y < y_0/4)$ ,  $\chi(y) = 0$   $(y > y_0/3)$ . As in the analysis for the operators  $p_{FM}$  (see (3.10) and thereafter),  $a_{FM}^{(\pm)}$  are bounded on  $L^2(\mathbf{H}^n)$ , and therefore  $U_{\pm}(t)$ . The explicit form of  $U_{\pm}(t)$  is as follows:

(4.10) 
$$(U_{\pm}(t)f)(x,y) = (2\pi)^{-\frac{n}{2}} \int_{\mathbf{R}^n} e^{ix\cdot\xi} y^{\frac{n-1}{2}-ik} a^{(\pm)}(x,y,\xi,k) e^{\mp itk} (U_M \chi(y)\widehat{f})(\xi,k) d\xi dk.$$

We put

(4.11) 
$$G_{\pm}(t) = \frac{d}{dt} \left( e^{it\sqrt{H_+}} U_{\pm}(t) \right),$$

and also

(4.12) 
$$\Lambda_y = (1 + K_0^2)^{1/2} = (U_M)^* (1 + k^2)^{1/2} U_M,$$

(4.13) 
$$\Lambda_x = (1 - \Delta_x)^{1/2} = (F_{x \to \xi})^* (1 + |\xi|^2)^{1/2} F_{x \to \xi}.$$

**Lemma** 4.4. There exists  $N_0 > 0$  such that for any  $N > N_0$ , there exists a constant  $C_N > 0$  for which

(4.14) 
$$||G_{\pm}(t)\Lambda_x^{-2N}\Lambda_y^{N/2}|| \le C_N(1+|t|)^{-2}, \quad \text{for} \quad \pm t > 0,$$

holds, where  $\|\cdot\|$  denotes the operator norm of  $L^2(\mathbf{H}^n)$ .

Proof. We consider  $G_+(t)$ , which is rewritten as

$$G_{+}(t) = e^{it\sqrt{H_{+}}} \left( i\sqrt{H_{+}}U_{+}(t) + \frac{d}{dt}U_{+}(t) \right).$$

Letting  $H = \int_{-\infty}^{\infty} \lambda dE_H(\lambda)$ , we deal with the high energy part and low energy part separately, i.e. on the subspace  $E_H([1,\infty))L^2(\mathbf{H}^n)$ , and  $E_H((-\infty,1))L^2(\mathbf{H}^n)$ .

High energy part. We take  $\chi_0(s) \in C_0^{\infty}(\mathbf{R})$  such that  $\chi_0(s) = 1$  for  $-\infty < s < 1/4$ ,  $\chi_0(s) = 0$  for s > 1/2. We consider  $i\sqrt{H}(1 - \chi_0(H))U_+(t) + \frac{d}{dt}U_+(t)$ . We put  $f(s) = s^{-1/2}(1 - \chi_0(s))$ .

**Proposition** 4.5. If  $f(s) \in C^{\infty}(\mathbf{R})$  satisfies for some  $\epsilon > 0$ ,  $|f^{(m)}(s)| \leq C_m(1+|s|)^{-\epsilon-m}, \forall m \geq 0$ , the following formula holds:

$$f(H) a_{FM}^{(\pm)} = a_{FM}^{(\pm)} f(K_0^2) + B^{(\pm)},$$

(4.15) 
$$B^{(\pm)} = \frac{1}{2\pi i} \int_{\mathbf{C}} \overline{\partial_z} F(\zeta) (\zeta - H)^{-1} g_{FM}^{(\pm)} (\zeta - K_0^2)^{-1} d\zeta d\overline{\zeta},$$

where  $F(\zeta)$  is an almost analytic extension of f, and  $g^{(\pm)}(x,y,\xi,k)$  is defined by (4.5).

Proof. Rewriting (4.5) into the operator form, we have

$$H a_{FM}^{(\pm)} = a_{FM}^{(\pm)} K_0^2 + g_{FM}^{(\pm)},$$

hence

$$(\zeta - H)^{-1} a_{FM}^{(\pm)} = a_{FM}^{(\pm)} (\zeta - K_0)^{-1} + (\zeta - H)^{-1} g_{FM}^{(\pm)} (\zeta - K_0^2)^{-1}.$$

The proposition then follows from Lemma 3.3.1.

Let us continue the proof for the high energy part. We consider the case  $t \ge 0$ . The case  $t \le 0$  is treated similarly. Using Proposition 4.4, we have

$$\sqrt{H}(1 - \chi_0(H))a_{FM}^{(+)} = f(H)Ha_{FM}^{(+)}$$

$$= f(H)a_{FM}^{(+)}K_0^2 + f(H)g_{FM}^{(+)}$$

$$= a_{FM}^{(+)}f(K_0^2)K_0^2 + B^{(+)}K_0^2 + f(H)g_{FM}^{(+)}.$$

Since  $\frac{d}{dt}U_+(t) = -ia_{FM}^{(+)}K_0e^{-itK_0}\chi(y)$ , we arrive at

$$i\sqrt{H}(1-\chi_{0}(H))U_{+}(t) + \frac{d}{dt}U_{+}(t)$$

$$= iB^{(+)}K_{0}^{2}e^{-itK_{0}}\chi(y) + if(H)g_{FM}^{(+)}e^{-itK_{0}}\chi(y)$$

$$- ia_{FM}^{(+)}K_{0}\chi_{0}(K_{0}^{2})e^{-itK_{0}}\chi(y).$$
(4.16)

Let us note here that

(4.17) 
$$a_{FM}^{(+)}K_0\chi_0(K_0^2) = 0,$$

since  $|k| \ge 1$  on the support of the symbol of  $a_{FM}^{(+)}$ , and  $\chi_0(k^2) = 0$  if  $|k| \ge 1$ .

Formulae (4.15) and (4.16) contain the operators of the form  $g_{FM}^{(+)}e^{-itK_0}\chi(y)$ . We start with the following result.

**Proposition** 4.6. Assume that  $b(x, y, \xi, k) \in C^{\infty}(\mathbf{R}^n_+ \times \mathbf{R}^n)$  have the following properties:  $b(x, y, \xi, k) = 0$  for  $y > y_0$ , and there exist  $\sigma_0, \tau_0 \in \mathbf{R}$  such that for any  $M, \alpha, m, \beta, \ell$ ,

$$(4.18) |\partial_x^{\alpha} D_y^{m} \partial_{\varepsilon}^{\beta} \partial_k^{l} b(x, y, \xi, k)| \leq C_{M\alpha\beta m\ell} \langle \log y \rangle^{-M} \langle \xi \rangle^{\sigma_0 - |\beta|} \langle k \rangle^{\tau_0 - \ell}$$

for  $0 < y < y_0$ . Let  $\chi(y) \in C^{\infty}(\mathbf{R})$  be such that  $\chi(y) = 1$  for  $0 < y < y_0/4$  and  $\chi(y) = 0$  for  $y > y_0/3$ . Then we have for any N > 0, and  $\sigma > \sigma_0 + n/2$ ,

$$(4.19) ||b_{FM}e^{-itK_0}\chi(y)\Lambda_x^{-\sigma}\Lambda_y^N|| \le C_{\sigma,N}(1+t)^{-N}, \quad t > 0.$$

Proof. Take  $\psi_0(s) \in C^{\infty}(\mathbf{R})$  such that  $\psi_0(s) = 1$  for |s| < 1, and  $\psi(s) = 0$  for |s| > 2, and let for  $\epsilon > 0$ 

$$b^{(\epsilon)}(x, y, \xi, k) = b(x, y, \xi, k)\psi_0(\epsilon|\xi|)\psi_0(\epsilon k).$$

Then  $b^{(\epsilon)}(x, y, \xi, k)$  satisfies (4.18) with constant  $C_{M\alpha\beta m\ell}$  independent of  $\epsilon > 0$ .

We have, by (4.13), (3.1) and (3.8),

$$(4.20) b_{FM}^{(\epsilon)} e^{-itK_0} \chi(y) \Lambda_x^{-\sigma} \Lambda_y^N f$$

$$= (2\pi)^{-\frac{n}{2}} \int_{\mathbf{R}^n \times \mathbf{R}_+} e^{ix \cdot \xi} e^{-ik(t + \log(y/y'))} b^{(\epsilon)}(x, y, \xi, k)$$

$$\times \chi(y') \langle \xi \rangle^{-\sigma} (yy')^{\frac{n-1}{2}} \Lambda_{y'}^N \widehat{f}(\xi, y') \frac{d\xi dy' dk}{(y')^n}$$

$$= \sqrt{2\pi} \left( T^* \circ b_T^{(\epsilon)}(x, z, -i\partial_x, i\partial_z) e^{t\partial_z} \Lambda_x^{-\sigma} \chi(e^z) (1 - \partial_z^2)^{N/2} \circ T \right) f.$$

Therefore, the estimate of this operator comes down to the calculus of classical, i.e. Euclidean,  $\Psi DO$ 's. For the sake of completeness, we provide a proof.

Without loss of generality, we assume that N/2 is an integer. Since  $(1 - \partial_z^2)^{N/2}$  is a differential operator, commuting  $\chi(e^z)$  and  $(1 - \partial_z^2)^{N/2}$ , we see that

$$b_{FM}^{(\epsilon)}e^{-itK_0}\chi(y)\Lambda_x^{-\sigma}\Lambda_y^{N/2}=T^*\circ b_T^{\mathcal{O},\epsilon}(t,x,z,z',-i\partial_x,i\partial_z)\circ T,$$

where

$$(4.21) b_T^{\mathcal{O},\epsilon} u = \left( b_T^{\mathcal{O},\epsilon}(t, x, z, z', -i\partial_x, i\partial_z) u \right) (x, z)$$

$$= \int_{\mathbf{R}^{n+1}} e^{-ik(t+z-z')} e^{ix\cdot\xi} b_T^{\mathcal{O},\epsilon}(x, z, z', \xi, k) \hat{u}(\xi, z') dz' dk d\xi,$$

Due to (4.18),  $b_T^{\mathcal{O},\epsilon}(x,z,z',\xi,k) \in C^{\infty}(\mathbf{R}^{n+1} \times \mathbf{R}^n)$  satisfies

$$|\partial_x^\alpha \partial_z^m \partial_{z'}^{m'} \partial_{\varepsilon}^{\beta} \partial_{\varepsilon}^{\ell} b_T^{\mathcal{O}, \epsilon}(x, z, z', \xi, k)| \leq C_{M\alpha\beta mm'\ell} \langle z \rangle^{-M} \langle \xi \rangle^{\sigma_0 - \sigma - |\beta|} \langle k \rangle^{N + \tau_0 - \ell},$$

with constant  $C_{M\alpha\beta mm'\ell}$  independent of  $\epsilon > 0$ , and  $b_T^{\mathcal{O},\epsilon}(x,z,z',\xi,k) = 0$  when  $z' > \log(y_0/3)$ . Since  $y_0$  is small enough, z' < 0 on the support of the integrand of  $b_T^{\mathcal{O},\epsilon}u$ . Hence we have

$$t - z' \ge C_0 \langle t \rangle, \quad t - z' \ge C_0 \langle z' \rangle, \quad \forall t > 0$$

for some constant  $C_0 > 0$ . Using

$$e^{-ik(t-z')} = (-i(t-z'))^{-1}\partial_k e^{-ik(t-z')}, \quad e^{ix\cdot\xi} = (1+|x|^2)^{-1}(1-\Delta_{\xi})e^{ix\cdot\xi},$$

we integrate  $2N + [\tau_0] + 2$  times with respect to k and n times with respect to  $\xi$  to have

$$\left| \left( b_T^{\mathcal{O}, \epsilon} u \right) (x, z) \right| \le \int_{\mathbf{R}^{n+1}} A(t, z, z', x, \xi, k) |\widehat{u}(\xi, z')| dz' d\xi dk,$$

$$0 \le A \le C \langle t \rangle^{-N} \langle z \rangle^{-1} \langle z' \rangle^{-1} \langle x \rangle^{-2n} \langle \xi \rangle^{\sigma_0 - \sigma} \langle k \rangle^{-1}.$$

Then the above estimate together with Cauchy-Schwarz inequality shows that

uniformly in  $\epsilon > 0$ . Letting  $\epsilon \to 0$ , we have (4.19).

By (2.11), we then see that the 2nd term of the right-hand side of (4.16) has the estimate

$$(4.23) ||f(H)g_{FM}^{(+)}e^{-itK_0}\chi(y)\Lambda_x^{-2N}\Lambda_y^{N/2}|| \le C_N(1+t)^{-2}, \quad t \ge 0.$$

To deal with the 1st term, we use the representation (4.15). To apply Proposition 4.6, we consider

$$g_{FM}^{(+)}(\zeta - K_0^2)^{-1} K_0^2 e^{-itK_0} \chi(y) \Lambda_x^{-2N} \Lambda_y^{N/2}$$

$$= g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} (\zeta - K_0^2)^{-1} \chi(y)$$

$$= g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} \chi_1(y) (\zeta - K_0^2)^{-1} \chi(y)$$

$$+ g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} \chi_2(y) (\zeta - K_0^2)^{-1} \chi(y),$$

where  $\chi_1, \chi_2 \in C^{\infty}(\mathbf{R})$ ,  $\chi_1(y) + \chi_2(y) = 1$ ,  $\chi_1(y) = 0$  for  $y > y_0$ ,  $\chi_2(y) = 0$  for  $y < y_0/2$ . Then, Proposition 4.6 is applicable to the term  $g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} \chi_1(y)$ , and we see that the 1st term of the right-hand side of (4.24) is estimated as

$$(4.25) ||g_{FM}^{(+)}K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} \chi_1(y) (\zeta - K_0^2)^{-1}|| \le C |\operatorname{Im} \zeta|^{-1} (1+t)^{-2}.$$

The 2nd term of the right-hand side of (4.24) is rewritten as

$$g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N} \Lambda_y^{N/2} \langle \log y \rangle^{-2} \cdot \langle \log y \rangle^2 \chi_2(y) (\zeta - K_0^2)^{-1} \chi(y).$$

As in the proof of Proposition 4.6, we represent  $g_{FM}^{(+)}K_0^2e^{-itK_0}\Lambda_x^{-2N}\Lambda_y^{N/2}\langle\log y\rangle^{-2}$  into the integral form like (4.20), and integrate by parts 2 times by using  $e^{-ikt}=(-it)^{-1}\partial_k e^{-ikt}$  and also (4.6). Then we have

$$||g_{FM}^{(+)}K_0^2e^{-itK_0}\Lambda_x^{-2N}\Lambda_y^{N/2}\langle\log y\rangle^{-2}|| \le C(1+t)^{-2}.$$

Passing to the variable  $z=\log y$ , the operator  $\langle \log y \rangle^2 \chi_2(y) (\zeta-K_0^2)^{-1} \chi(y)$  has an integral kernel

$$K(z, z'; \zeta) = -\langle z \rangle^2 \chi_2(e^z) \frac{\pi i}{2\sqrt{\zeta}} e^{i\sqrt{\zeta}(z-z')} \chi(e^{z'}).$$

Observing the supports of  $\chi_2(e^z)$  and  $\chi(e^{z'})$ , we see that  $z > \log(y_0/2)$ ,  $z' < \log(y_0/3)$ . Hence

$$(4.26) z - z' \ge C(\langle z \rangle + \langle z' \rangle),$$

for a constant C > 0. Letting  $\sqrt{\zeta} = \sigma + i\tau$ , we then have

$$|K(z,z';\zeta)| \leq \frac{C}{|\sigma|+|\tau|} \langle z \rangle^2 \chi_2(e^z) \chi(e^{z'}) e^{-\tau(z-z')}.$$

Using the inequality

$$e^{-t} \le C_{\ell} t^{-\ell}, \quad \forall t > 0, \quad \forall \ell \ge 0,$$

and taking  $\ell = 2m + 2$ , we have

$$|K(z, z'; \zeta)| \le \frac{C_m}{\tau^{2m+3}} \langle z \rangle^{-m} \langle z' \rangle^{-m}.$$

Taking m > 1, we then have

$$\sup_{z} \int_{\mathbf{R}} |K(z, z'; \zeta)| dz' \le \frac{C_m}{\tau^{2m+3}}, \quad \sup_{z'} \int_{\mathbf{R}} |K(z, z'; \zeta)| dz \le \frac{C_m}{\tau^{2m+3}}.$$

Noting that

$$\frac{1}{|\tau|} = \frac{2|\sigma|}{|\operatorname{Im}\zeta|} \le \frac{2|\zeta|^{1/2}}{|\operatorname{Im}\zeta|},$$

we have obtained the estimate of the operator norm

$$\|\langle \log y \rangle^2 \chi_2(y) (\zeta - K_0^2)^{-1} \chi(y) \| \le C_p \left( \frac{|\zeta|^{1/2}}{|\text{Im } \zeta|} \right)^p, \quad \forall p > 5.$$

Therefore, for p > 5,

(4.27) 
$$\|g_{FM}^{(+)} K_0^2 e^{-itK_0} \Lambda_x^{-2N-n} \Lambda_y^{N/2} \chi_2(y) (\zeta - K_0^2)^{-1} \chi(y) \|$$

$$\leq C_p |\operatorname{Im} \zeta|^{-p} |\zeta|^{p/2} (1+t)^{-2}, \quad \forall N > 0.$$

Since

$$\frac{1}{|\operatorname{Im}\zeta|} \le \frac{\langle\zeta\rangle^{p-1}}{|\operatorname{Im}\zeta|^p}, \quad \frac{|\zeta|^{p/2}}{|\operatorname{Im}\zeta|^p} \le \frac{\langle\zeta\rangle^{p-1}}{|\operatorname{Im}\zeta|^p},$$

In view of (4.25) and (4.27), we have, for p > 5,

$$||g_{FM}^{(+)}(\zeta - K_0^2)^{-1} K_0^2 e^{-itK_0} \chi(y) \Lambda_x^{-2N} \Lambda_y^{N/2}|| \le C |\operatorname{Im} \zeta|^{-p} \langle \zeta \rangle^{p-1} (1+t)^{-2}.$$

We use Lemma 2.3.1, and take into account that  $\sigma$  in Chap. 2 (3.2) is now equal to -1/2 to see that the 1st term of the righ-hand side of (4.16) has the property

$$(4.28) ||B^{(+)}K_0^2 e^{-itK_0}\chi(y)\Lambda_x^{-2N}\Lambda_y^{N/2}|| \le C_N(1+t)^{-2}, t \ge 0.$$

Low energy part. We show

(4.29) 
$$\|\chi_0(H)U_+(t)\Lambda_x^{-2N}\Lambda_y^{N/2}\| \le C(1+t)^{-2}, \quad \forall t \ge 0.$$

However, noting that

$$\chi_0(H)a_{FM}^{(+)} = a_{FM}^{(+)}\chi_0(K_0^2) + B^{(+)} = B^{(+)},$$

with  $B^{(+)}$  given in Proposition 4.4, one can prove (4.29) in the same way as above.

By 
$$(4.23)$$
,  $(4.28)$  and  $(4.29)$ , we have proven Lemma 4.4.

Lemma 4.7.

$$s - \lim_{t \to \pm \infty} e^{it\sqrt{H_{>0}}} U_{\pm}(t) = \chi_{\infty}(K_0) W_M^{(\pm)} \chi(y).$$

Proof. Since  $U_{\pm}(t)$  is uniformly bounded in t, we have only to prove the lemma on a dense set of  $L^2(\mathbf{H}^n)$ . Writing

$$a^{(\pm)}(x, y, \xi, k) = \chi_{\infty}(k)r_{\pm}(k) + \tilde{a}^{(\pm)}(x, y, \xi, k),$$

the same analysis as in Proposition 4.4 shows that  $\|\widetilde{a}_{FM}^{(\pm)}e^{-itK_0}\chi(y)f\| \to 0$  for  $f \in C_0^{\infty}(\mathbf{R}^n)$ . Therefore, we have

$$||U_{\pm}(t)f - (U_M)^* e^{\mp itk} \chi_{\infty} r_{\pm} U_M \chi(y) f|| \to 0,$$

as  $t \to \pm \infty$  for any  $f \in C_0^{\infty}(\mathbf{H}^n)$ . This together with (4.1) proves the lemma.  $\square$ 

Recall that for any interval  $I \subset (0, \infty)$ ,  $\sigma \in \mathbf{R}$  and an integer  $m \geq 0$ ,

$$\begin{split} H^{\sigma,m}(\mathbf{R}^{n-1}\times I)\ni f\\ \iff \|f\|_{H^{\sigma,m}(\mathbf{R}^{n-1}\times I)}^2 = \sum_{0\leqslant l\leqslant m} \int_{\mathbf{R}^{n-1}\times I} |\langle \xi\rangle^{\sigma} \partial_y^l \widehat{f}(\xi,y)|^2 d\xi dy < \infty. \end{split}$$

Using the standard Sobolev space  $H^{\sigma,\tau}(\mathbf{R}^n)$ , where  $\sigma,\tau\in\mathbf{R}$ , we define  $H^{\sigma,\tau}(\mathbf{H}^n)=T^*H^{\sigma,\tau}(\mathbf{R}^n)$ . Then

$$H^{\sigma,\tau}(\mathbf{H}^n) \ni f \iff ||f||_{H^{\sigma,\tau}}(\mathbf{H}^n) = ||Tf||_{H^{\sigma,\tau}}(\mathbf{R}^n)$$
$$= ||\langle \xi \rangle^{\sigma} \langle k \rangle^{\tau} (U_M \hat{f})(\xi, k)||_{L^2(\mathbf{R}^n)} < \infty.$$

Take  $f \in H^{2N,0}$  for large N. By Lemma 4.4,  $\chi_{\infty}(K_0) \int_0^{\pm \infty} G_{\pm}(t) \chi(y) f dt$  converges strongly in  $L^2$ . Moreover, by (4.11) and Lemma 4.7,

$$(4.30) \chi_{\infty}(K_0)W_M^{(\pm)}\chi(y)f = \chi_{\infty}(K_0)a_{FM}^{(\pm)}\chi(y)f + \chi_{\infty}(K_0)\int_0^{\pm\infty} G_{\pm}(t)f\,dt.$$

Therefore, the integral of the right-hand side can be extended by continuity as an operator in  $\mathbf{B}(L^2; L^2)$ .

In view of Lemma 4.2 and (4.30), we have

(4.31) 
$$\mathcal{R}_{+} = \frac{1}{\sqrt{2}} F_{k \to s}^{*} \left( r_{+} U_{M} \chi (a_{FM}^{(+)})^{*} + r_{-} U_{M} \chi (a_{FM}^{(-)})^{*} + r_{+} U_{M} (1 - \chi) (W_{M}^{(+)})^{*} + r_{-} U_{M} (1 - \chi) (W_{M}^{(-)})^{*} \right) + R,$$

where R is written as

$$R = \frac{1}{\sqrt{2}} F_{k \to s}^* \Big( r_+ U_M \int_0^\infty G_+(t)^* \chi_\infty(K_0) dt + r_- U_M \int_0^{-\infty} G_-(t)^* \chi_\infty(K_0) dt \Big).$$

Observe that since  $\int_0^{\pm\infty} G_{\pm}(t)^* dt$  enjoys the property

$$\int_0^{\pm \infty} G_{\pm}(t)^* dt \, \chi_{\infty}(K_0) \in \mathbf{B}(L^2; H^{-2N, N/2}) \cap \mathbf{B}(L^2; L^2),$$

by interpolation,

(4.32) 
$$R \in \mathbf{B}(L^2; H^{-\sigma, \sigma/4}), \quad \forall \sigma \ge 0.$$

**Lemma** 4.8. Let  $s_0 > -\log(y_0/4)$ . Then, for any  $\tau > 0$ ,  $F_{k \to s}^* r_{\pm} U_M(1-\chi)$  is a bounded operator from  $L^2(\mathbf{H}^n)$  to  $H^{0,\tau}(\mathbf{R}^{n-1} \times I)$ , where  $I = (s_0, \infty)$ .

Proof. Note  $U_M(1-\chi)$  is a bounded operator from  $L^2(\mathbf{H}^n)$  to  $L^2(\mathbf{R}^n)$ . On the support of  $1-\chi(y)$ ,  $\log y > \log y_0/4$ . Therefore if  $s > s_0 > -\log y_0/4$ ,

$$\begin{split} F_{k\to s}^* r_\pm U_M(1-\chi) f \\ &= F_{k\to s}^* r_\pm(k) F_{z\to k} (1-\chi(e^z)) T f \\ &= (2\pi)^{-1} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{ik(s+z)} r_\pm(k) (1-\chi(e^z)) T f(x,z) dk dz \\ &= \pm \int_{\mathbf{R}} \frac{1}{i(s+z)} (1-\chi(e^z)) T f(x,z) dz. \end{split}$$

Clearly, the right-hand side is smooth with respect to s with all of its derivatives in  $L^2(\mathbf{R}^{n-1} \times I_{\pm})$ .

Lemma 4.8 and (4.31), (4.32) imply the following lemma.

**Lemma** 4.9. Let  $s_0 > -\log y_0/4$ ,  $\sigma \ge 0$ . Then we have

$$\mathcal{R}_{+} - \frac{1}{\sqrt{2}} F_{k \to s}^{*} \left( r_{+} U_{M} (a_{FM}^{(+)})^{*} + r_{-} U_{M} (a_{FM}^{(-)})^{*} \right)$$
$$\in \mathbf{B}(L^{2}(\mathbf{H}^{n}); H^{-\sigma, \sigma/4}(\mathbf{R}^{n-1} \times (s_{0}, \infty))).$$

## 5. Singularity expansion of the Radon transform

Let us recall the following homogeneous distribution. We define for Re  $\alpha > -1$ 

$$h_{\pm}^{\alpha}(s) = \begin{cases} |s|^{\alpha}/\Gamma(\alpha+1), & \pm s > 0, \\ 0, & \pm s < 0, \end{cases}$$

and, for  $n = 1, 2, 3, \cdots$  and  $\operatorname{Re} \alpha > -1$ ,

$$h_{\pm}^{\alpha-n}(s) = \left(\pm \frac{d}{ds}\right)^n h_{\pm}^{\alpha}(s).$$

Thus,  $h_{\pm}^{\alpha}(s)$  is analytic with respect to  $\alpha$ . Let  $\langle , \rangle$  be the coupling of distributions and test functions. Then for any  $\alpha, \beta \in \mathbf{C}$ 

$$(5.1) \qquad \int_{-\infty}^{\infty} h_{\pm}^{\alpha}(s) h_{\pm}^{\beta}(1-s) ds = \langle h_{\pm}^{\alpha}(s) h_{\pm}^{\beta}(1-s), 1 \rangle = \frac{1}{\Gamma(\alpha+\beta+2)}.$$

In fact, this is true for  $\operatorname{Re} \alpha, \operatorname{Re} \beta > -1$ . Let  $\chi_0(s), \chi(s) \in C^{\infty}(\mathbf{R})$  be such that  $\chi_0(s) + \chi_1(s) = 1, \ \chi_0(s) = 1 \ (s < 1/3), \ \chi_0(s) = 0 \ (s > 2/3)$ . Then we have

$$\langle h_+^{\alpha}(s)h_+^{\beta}(1-s), 1\rangle = \langle h_+^{\alpha}(s), \frac{(1-s)^{\beta}}{\Gamma(\beta+1)}\chi_0(s)\rangle + \langle h_+^{\beta}(1-s), \frac{s^{\alpha}}{\Gamma(\alpha+1)}\chi_1(s)\rangle.$$

Since 1-s>0 on supp  $\chi_0$  and s>0 on supp  $\chi_1$ , the left-hand side is analytic with respect to  $\alpha, \beta$ . Hence (5.1) holds by analytic continuation.

The following lemma is well-known ([38] p.174, [55], Vol 1, p.167).

Lemma 5.1. For  $\alpha \in \mathbf{R}$ 

$$\int_{-\infty}^{\infty} (\pm ik + 0)^{\alpha} e^{iks} dk = 2\pi h_{\pm}^{-\alpha - 1}(s).$$

Let  $\chi_{\infty}(k)$  be as in (4.3). Since  $1 - \chi_{\infty}(k) \in C_0^{\infty}(\mathbf{R})$ , from Lemma 5.1,

(5.2) 
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iks} k^{-j} \chi_{\infty}(k) dk - (-i)^{j} h_{-}^{j-1}(s) \in C^{\infty}(\mathbf{R}), \quad j = 0, 1, 2, \cdots.$$

Let  $H_{loc}^{-\sigma,\tau}(\mathbf{R}^{n-1}\times(s_0,\infty))$  be the set of functions u such that, for any compact interval  $I\subset(s_0,\infty)$ 

$$u|_{\mathbf{R}^{n-1}\times I} \in H^{-\sigma,\tau}(\mathbf{R}^{n-1}\times I).$$

**Theorem** 5.2. Let  $s_0 > -\log y_0/4$ . Then for any  $\sigma > 0$ , there is  $N = N(\sigma)$  such that

$$\mathcal{R}_{+} - \sum_{j=0}^{N} \mathcal{R}_{j}^{(+)} \in \mathbf{B}(L^{2}(\mathbf{H}^{n}); H_{loc}^{-\sigma,\sigma/4}(\mathbf{R}^{n-1} \times (s_{0}, \infty)),$$

where

$$\begin{split} \left(\mathcal{R}_{+}^{(j)} f\right)(s,x) &= \int_{0}^{\infty} (s + \log y)_{-}^{j-1} y^{-\frac{n-1}{2}} P_{j}(y) f(x,y) \chi(y) \frac{dy}{y}, \\ P_{j}(y) &= \frac{(-i)^{j}}{\sqrt{2}} a_{j}(x,y,-i\partial_{x})^{*}. \end{split}$$

Proof. Recall from Lemma 4.9,  $\mathcal{R}_+f$  is given, up to a smoothening operator, by

(5.3) 
$$\frac{1}{\sqrt{2}} F_{k \to s}^* \left( F_{z \to k}^* \left\{ (a_T^{(+)})^* + (a_T^{(-)})^* \right\} \right) T f.$$

Let  $M \geq \sigma/4$ , and put

$$a^{(M,\pm)}(x,y,\xi,k) = a^{(\pm)}(x,y,\xi,k) - \chi_{\infty}(k)r_{\pm}(k)\sum_{j=0}^{M} \rho\left(\frac{\langle \xi \rangle^{2}}{\epsilon_{j}\langle k \rangle}\right)k^{-j}a_{j}^{(\pm)}(x,z,\xi,k).$$

Denote by  $\mathcal{R}_M$  the operator given by (5.3) with  $a_T^{(\pm)}$  replaced by  $a_T^{(M,\pm)}$ . Letting  $a^{(M)} = a^{(M,+)} + a^{(M,-)}$ , consider

$$\partial_{s}^{p}(I - \Delta_{x})^{-\ell} \mathcal{R}_{M} f$$

$$= \frac{1}{\sqrt{2}(2\pi)^{n/2}} \int e^{i(x-x')\cdot\xi} e^{-ik(s+z')} \frac{(-ik)^{p}}{\langle \xi \rangle^{2\ell}} \overline{a^{(M)}(x',z',\xi,k)} Tf(x',z') dx' dz' d\xi dk.$$

By construction of  $a_T(x, z, \xi, k)$ ,  $\langle k \rangle \geq \langle \xi \rangle^2 / \epsilon_{M+1}$  on supp  $\overline{a^{(M)}}$ , and

$$\left|\partial_{x'}^{\alpha}\partial_{z'}^{m}\partial_{\xi}^{\beta}\partial_{k}^{\gamma}\left\{(-ik)^{p}\langle\xi\rangle^{-2\ell}\overline{a^{(M)}(x',z',\xi,k)}\right\}\right|\leq C_{\alpha\beta\gamma\delta}\langle\xi\rangle^{2(M-\ell-|\beta|)}\langle k\rangle^{p-M-\gamma}.$$

The right-hand side is bounded if  $p \leq M \leq \ell$ , which implies by the  $L^2$ -boundedness theorem for  $\Psi DO$  that

$$\mathcal{R}_M \in \mathbf{B}(L^2(\mathbf{H}^n); H^{-s,\tau}(\mathbf{R}^n)), \quad for \quad s \ge 2\tau, \quad \tau \le M.$$

In particular,  $\mathcal{R}_M \in \mathbf{B}(L^2(\mathbf{H}^n); H^{-\sigma,\sigma/4}(\mathbf{R}^n)).$ 

By integation by parts using  $e^{ix\cdot\xi} = \langle \xi \rangle^2 (1 - \Delta_{x'}) e^{ix'\cdot\xi}$ , we see that the operator

$$\int e^{i(x-x)\cdot\xi} e^{-ik(s+z')} \left(1 - \rho\left(\frac{\langle\xi\rangle^2}{\epsilon_i k}\right)\right) \overline{a_{jT}(x',z',\xi,k)} Tf(x',z') dx' dz' d\xi dk$$

is in  $\mathbf{B}(L^2(\mathbf{H}^n); H^{-\ell,p}(\mathbf{R}^n))$  with  $\ell \geq 2p$ , hence in  $\mathbf{B}(L^2(\mathbf{H}^n); H^{-\sigma,\sigma/4}(\mathbf{R}^n))$ .

Therefore, in view of (4.3), we see that  $\mathcal{R}_+f$  is equal to, up to a smoothening operator in  $\mathbf{B}(L^2(\mathbf{H}^n); H^{-\sigma,\sigma/4}(\mathbf{R}^{n-1}\times(s_0,\infty)),$ 

$$\begin{split} &\frac{1}{\sqrt{2}(2\pi)^n} \int_{\mathbf{R}^n \times \mathbf{R}_+^n} e^{i(x-x') \cdot \xi} e^{-ik(s+\log y)} y^{\frac{n-1}{2}} \sum_{j=0}^{M-1} k^{-j} \overline{a_j(x',y,\xi,k)} f(x',y) \frac{d\xi dk dx' dy}{y^n} \\ &= \frac{1}{\sqrt{2}} \sum_{j=0}^{M-1} \int_0^\infty g_j(x,y) y^{-\frac{n-1}{2}} \chi(y) \left( \frac{1}{2\pi} \int_{-\infty}^\infty e^{-ik(s+\log y)} k^{-j} \chi_\infty(k) dk \right) \frac{dy}{y}, \\ &g_j(x,y) = \frac{1}{(2\pi)^{(n-1)}} \int_{\mathbf{R}^{2(n-1)}} e^{i(x-x') \cdot \xi} \overline{a_j(x',y,\xi)} f(x',y) d\xi dx' \\ &= a_j(x,y,-i\partial_x)^* f(x,y). \end{split}$$

This together with (5.2) proves the theorem.

Recall that  $a_j(x, y, \xi)$  is defined by (2.8), and is a polynomial in  $\xi$  of order 2j. Hence  $a_j(x, y, -i\partial_x)$  is a differential operator of order 2j. The above theorem in particular yields the following expression

(5.4) 
$$\left( \mathcal{R}_{+}^{(j)} f \right) (s, x)$$

$$= \begin{cases} \frac{e^{(n-1)s/2}}{\sqrt{2}} \chi(e^{-s}) f(x, e^{-s}), & (j = 0), \\ \int_{0}^{e^{-s}} \frac{(s + \log y)^{j-1}}{(j-1)!} y^{-\frac{n-1}{2}} P_{j}(y) f(x, y) \chi(y) \frac{dy}{y}, & (j \ge 1), \end{cases}$$

where  $\chi(y) \in C^{\infty}(\mathbf{R})$  such that  $\chi(y) = 1$   $(y < y_0/4)$ ,  $\chi(y) = 0$   $(y > y_0/3)$ . This is a generalization of Theorem 1.6.6 in the sense of singularity expansion.