CHAPTER 4

Radon transform and propagation of singularities
in H”

The purpose of this chapter is to extend Theorem 1.6.6 to the asymptotically
hyperbolic metric on R’} in the sense of singularity expansion.

1. Geodesic coordinates near infinity

1.1. Geodesic coordinates. We shall study the metric
(L1) ds? =y 2 ((de)? + (dy)? + A(a, .z, dy)

on R" defined in Chapter 2, Subsection 2.1, i.e. the metric satisfying the condition
(C) in Chap. 2. Our aim is to transform (1.1) into the following canonical form

(1.2) ds? =y ((dw)? + (dy)* + B(w,y, de) )

in the region 0 < y < yo, yo being a sufficiently small constant, where B(x,y, dz)
is a symmetric covariant tensor of the form

n—1

B(z,y,dx) = Z bij(z,y)dz'dz’.

i,j=1
Passing to the variable z = logy, we rewrite the Laplace-Beltrami operator A,
associated with (1.1) as

n—1
A, =02 +e*02 + Z a¥ (z,e”)e* 0y, 0y,
ij=1
n—1
+2 Z a’(z,e%)e*0y,0, + a""(z,e*)0?

i1

up to 1st order terms. Then (g*/) in the variables  and z takes the form

egz(5ij + hij(x,z)), 1<4,j<n-1,
(1.3) g7 =< ehi"(z,z), 1<i<n-—1,

1+ hr"(z,2), 4,j=n,
where h'/(z, z) satisfies in the region z < 0
(1.4) 102051 (2, 2)| < CopW (, z)"min(lal+0,1)-1-c0
and

Wz, z) =1+ |z] +log (|z] + 1).
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140 4. RADON TRANSFORM AND PROPAGATION OF SINGULARITIES IN H"
We define the Hamiltonian H(z, z,£,n) by

Hz,26m) = 5 (1P + 07 + bz, 2,6.)).

n—1 n—1
(w2, 6m) = Y e¥hV (2, 2)6& +2 ) e h™ (@, 2)&n + b (2, 2)n°.

ij=1 i=1

The equation of geodesic is as follows:

de  OH dz OH

dat — 9¢’ dt n’

ad  O0H dnp  OH

dt —  8x’ dt 9z

If h(z,z,£,m) = 0, it has the following solution

x(t) = w0, E()=0, 2()=t n(t)=1

With this in mind, we seek the solution of the equation (1.5) which behaves like
2(t) = 20+ O(W (0,1) 717, £(8) = O(W (o, 1)),
2(t) =+ O(W(wo,) ™), n(t) = 1+ O(W(zo,1) ™),

(1.5)

as t — —oo, where o € R !, 0 < € < ¢y. Therefore we put
Uz(zo,t) = x(t) — x0, U,(mo,t) = 2(t) —t,
Uﬁ(x()vt) - g(t>7 UU(‘rOat)) = n(t) - 17
U(x07t) - (Uaf:<$07t)a Uz(x07t>7U{(‘TOat)7Un<‘r0’t>)’
O O _, 0H Oy
0¢ 7 On " oox’ Oz

and consider the following non-linear operator

¢
(1.6) (B(U(z0,-); x0))(t) = / AU (xo,T),x0,T)dT.
We shall look for the fixed point of the map : U — B(U), i.e.
(1.7) U(zo,t) = (B(U(zo,); z0))(t).

We fix ty < 0, and define the norm

€/2
1Ulley = sup  [[t] +log(|zo| + 1)] " |U.(2)]
t<tog,zo€ER™1

1+€
+  osup [t +log(lzol + 1)) ([Ue(t)] + [Un(0)] + [Us(1)]).
t<tg,zo€R™1

AU, z0,1) = (

e=Uy, +0,6=U¢ z=Us +t,n=Uy +1’

and the space F, of functions by
Fio 2U(t) <= U], < 1.
By (1.4), a simple computation shows
OH —2—€ —1—e¢
‘82’ S CHU”to (W(l?o,t) 2o + etW(on,t) 1 ) .

Hence for any § > 0, there exists ¢y such that for ¢ < tg

! aH —1—e¢
BOCL (O] < [ |57 dr < 8101 W (ot
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Using this estimate and (1.4), we obtain, taking bigger |to| if necessary,
IBWU)(E)lleg < 0l|Ulley, VU € Fig.
Similar calculation implies
[BU)(t) = B(V)(#)]lt, < 0|U = Vs,

for U,V € F,. Then taking § < 1/2, B maps F;, into F,, and is Lipschitz
continuous with Lipschitz constant < 1/2. Hence, there exists a unique fixed point
U(t) = U(zo,t) € Fy, of (1.7). By differentiating (1.6) with respect to ¢, we see
that for some constant C'

1
6W($0,t)8tU(ZIIO,t) S fto.

Differentiating (1.7) with respect to zo, we get
(I = Bu(Ul(xo, -),70))0;,U = 95, B(U,x0), [af = 1.
For t < |to|, (I — By(U(xo,+),x0)) is invertible, providing
(il,'o, )8a (.’Eo,t) € ftoa |Oé| =1
Iterating this procedure, we have the following lemma.

Lemma 1.1. Choose |to| large enough. Then there exists a solution x(t), z(t),
&(t), n(t) of the equation (1.5) for (wg,t) € R"™! x (—o0,ty) satisfying

102 07 (x(t) — x0)| + |02, 0P (1)| + |02, (n(t) — 1))
< CopW (g, t) L1/ min(lal+8.1)
102 07 (2(t) — 1)| < CagW (wo, t)~/2-minllal+61),
Lemma 1.2. As a 2-form on the region R"~! x (—o0,to), we have
n—1
Z déi(z0,t) A dz'(wo,t) + dn(xo,t) A dz(xo,t) = 0.
i=1

Proof. We put 2™ = z, &, = n and 2 =t. Then we have

> d& Adx' =Y (¢, alrdad) A daf,
i=1 j<k
e, o 05 000 on
Pk 6370 8370 8170 axé
Noting that
9 (06 Oz \ 0*H 0x™ 0z° N 0’H  0¢&; 06,
ot axé 835’3 T 9xiox™ 8356 835’3 0& 0 ax’g axg

is symmetric with respect to j and k, we have
0
— 1, 2] =
at [5 ]Jk

By Lemma 1.1, [{,z];5 — 0 as t — —oo. Hence [{,z];; = 0, which proves the
[l

lemma.
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Lemma 1.3. For large [to|, the map
R"™! x (=00, t9) 3 (x0,t) — (x(z0,1), 2(x0, 1))
is a diffeomorphism and its image includes R"~! x (—o0, 2tg).

Proof. We show that this map is locally diffeomorphic and globally injective.
Using inverse function theorem, from Lemma 1.1, we have that making |to| suffi-
ciently large, there are rg, 7y > 0 with the following properties;

e Forany zf, € R"71 t < tg, the map (z(zo,1), 2(z0, t)) is a diffeomorphism
from B, (x{,t;), the ball of radius r with center at (x(,t;), onto U C
R" ! x (—OO,t()).
* By, (.’E(Q?é,tlo) (x,07 t )) cU.
Assume z(x(,ty) = x(x(,ty), z(xh,ty) = z(xp,ty) for some (xf,ty) # (xf,t0).
Then by Lemma 1.1, it follows from the 2nd equality that |t; — t5| < r/4 if |to]
is sufficiently large. Therefore by local injectivity, |z — (| > 3r / 4. Using again
Lemma 1.1, we see that for sufficiently large [to|, |z(x(, ty) — x| < r/4, |x(zq,ty) —
xy| < r/4. This leads to a contradiction. O

Let g = zo(x, 2), t = t(x, z) be the inverse of the map : (xz¢,t) — (x,z). We put
&(x, 2) = E(xo(x, 2),t(x, 2)), ete. for the sake of simplicity. Since Z;:ll &dx' +ndz
is a closed 1-form by Lemma 1.2, we have

8§j 8§k 8@ 877 .
oz  Oxi’ 0z Oz’ Shksn
Recall

Up(x,z) =n(x,z) —1

= _/_ %71,:(I(IOaS)’Z(xoﬂs)ﬂg(‘ro’8)’n(l‘0’s))ds

and define ¥(z, 2) by

)
ro=x0(z,2),t=t(x,2)

0
U(x,z) = z+/ Uy(x,z+ 1)dr.

— 00

Lemma 1.4. For z < 2ty, we have
(1) 0,9(x,2) = E(x,2),
(2) 9:¥(z,2) =n(z,z),
(3) H(z,z,0,9(x,z2),0,¥,(x,2)) =1/2, .
(4) !552‘3?(‘1’(%2) 2)| < Cap(l2| +log(|z| + 1))~ </2minllel+8D) 1 va, 6.
(5) ¥(z,z)=t(z,z2).

Proof. We have

ov o on
@ = 8 ](l’ Z+7—)d
0 85
:/OO —8; (x,z 4+ 1)dr =& (2, 2),
ov

—1+/0 @(ajz+ YdtT =n(z, 2)
0z e 0T TIT =T, 2,

which prove (1) and (2).
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Since z(t), z(t) and £(t), n(t) are solutions to the equation (1.5), H (x(t), p(t),£(t), n(t))
is a constant, which turns out to be 1/2 by letting ¢ — —oo. This proves (3). (4)
follows again from Lemma 1.1 due to the fact that

8(37,,2) /2 in(|
< € min 'y|+6,1)‘
amat ( (@0, 1) —Id)‘ CysW(x, 2)

Using (1), (2), we have
o _ov o 0vo:
ot Ox Ot 0z 0t
ox 0z
=€) S ) o
8H aH
= gijaillfajlll =1,

where the last identity comes from Lemma 1.4 (3). Here 9; = 8/02°,1 <i<n-—1,
= 0/0z. Therefore ¥(x, z) —t is independent of . On the other hand, ¥ —z — 0
and z —t — 0 as t — —oo. Therefore, ¥(x, z) = t. O

Lemma 1.5. In the coordinate system (xo,t), the Riemannian metric (1.1) is
written as

n—1
ds? = (dt)? + 2 ((dq:o)Z + 3" hij(ao, t)dmédx%),
ij=1
where ﬁij (zo,t) satisfies
(1.8) ‘ 6t ij (zo, )‘ < CagW(xo,t)_l_E/Z_min(laH'B’l), Va, 5.

Proof. We put y* = 2,1 <i <n—1, y® = t. Then the associated tensor g%
is written as

_ L Oy™ oy" -
nn i — S99, ) _
. - 8y” ayk .
nk _ ij — S9(H. kY —
g ot i g (al\:[])(ajx()) 07

for 1 < k <n — 1. Here in the 2nd line, we have used
% _ Oxf ot oxf
ot oxt ot  Ox 9

Therefore the Riemmanian metric has the form

0= 970;9.

n—1

ds® = (dt)* + > g, dwhdz.
ij=1
Recall
G, (20,1) = oxF ozt ozF 0z 4 0z 0z
ii (L n nn a 4 A 50
9ij\Zo, gklaoa] gkaoa] 9 0z} Ol

where 1 < k,I < n—1, and the right-hand side is evaluated at (z, 2) = (x(=zo,t), 2(x0, t)).
By the formula (1.3), (1.4) and Lemma 1.1, the 1st term of the right-hand side is

of the form e (515 —1—%2)) , where ﬁg?) satisfies the estimate (1.8). By the same
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reasoning, the 2nd and 3rd terms give rise to ES) and ﬁg) This completes the
proof of the lemma. O

The coordinates (zg,t) are actually semi-geodesic coordinates related to the
boundary at infinity y = 0.

Letting o =7, t = logy in Lemma 1.5 and recalling that Dy = 50y = 0, and
using Lemma 1.1, we obtain the following theorem.

Theorem 1.6. Choose yg > 0 sufficiently small. Then there exists a diffeo-
morphism (x,y) — (Z,y) in the region 0 < y < yo such that

|02D5(% — 2)| < Cap(1+dy (@) " m1HAD1=2 v, 5,

Iang(%)l < Cap(1 + dy(3,7)) " (HADTImL2 v, B,
and in the (T,Y) coordinate system, the Riemannian metric takes the form
n—1
ds? = ()72 ((dg)? + (d2)* + Y uj(@. p)dw'da’),
i,j=1

where

— -~

hij(fa y) = hij(x07t)v Ty =T, t= 10gy7
|02 DY Rij(7,7)| < Cap(l+ dy(z, 7)) mmleHAD=1=/2 g, 3,
2. Asymptotic solutions to the wave equation

Theorem 1.6 leads us to consider the metric having the form
n—1

(2.1) ds? =y~ ((dy)? + (d)? + 3 hoy(a,y)datda’ ),
i,j=1

in the region R"™! x (0,y0), where y is a small constant and h;;(z,y) satisfies

hij € W_l_e/z.

As in Chap. 2, we consider

—1)2
H— 7(y2ng)1/4Ag(y2ng)—l/4 _ (”7) 12 (Ri; d:rd?J)_
yn
Taking into account that H is self-adjoint, we see that explicitly, H has the form
H = —D2 o, —p2- =Dt
- y+(n_) y $_T_ )
(2:2) L=y La(z,y)02,
|| <2
where D, = y9,, D, = yd,. Moreover L, € W™1=¢/2,
It is convenient to rewrite H into the form
182
(2.3) H:—(Dy—n2 ) _K,
(2.4) K =y*0:)" +y* Y Lalw,y)05.

lor]<2
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Using

—1\m . n— B . n— .
(Dy - 2 ) (emgy%ﬂk‘o = e m&y" T =R (D, — ik)™a,

n

07 (67 Tha) = €Sy K0, i) a,

we have the following identity
(H = #2) (c=6y"" %)
= elmty "y ik {2ikDya — (Dg + K())a},
where K (£) is a differential operator of the form

(2.5) K(&) =9*(0: +i€)° +* Y Lalw,y)(0x + i)™

laf<2
We put a = Z;‘V:o k~Ja;. Then the above formula becomes

e—m-gy—"T_lHk (H - k) eix{y"T_l—ika
N-1 4
(2.6) = 2ikDyao + Y k9{2iDyaz41 — (D2 + K(€))a; |
j=0

— k= N(Dy + K(§)an.

We put

(2.7) ao(z,y) =1,

and consruct a; succesively by

(2.8 tralen§) = =5 [ (DF+ K@t

Then we have
(2.9) 2iDyaji1 — (Dy + K(£))a; = 0.
We put for p > 0

YW = {yPw(z,y); w(z,y) € W

Here and what follows, we allow the elements of WW* to be complex-valued. Then
one can show easily that

v dt
(2.10) / tqf(:c,t)? cyPtIWs, if feyP WS, p,g>0, s<0.
0

In fact, letting f(z,y) = yPw(z,y), w € W?, we are led to estimate

1 dr
yrr / P w(z, yr) —
0 T

Noting that for 0 < y < 1

log(z) + (log(y7)) > log(x) + (logy),
we easily get (2.10).
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Lemma 2.1. For j > 1, we have
J
a’j(xvyag) = y2£2ijl(y2£2) + ZyQP Z A(aLP) (x,y)ga’
p=1 la]<2p

where Pj_1 is a polynomial of order j—1 with constant coefficients, and AYP (x,y) €
W_1_6/2.

Proof. The proof is by induction using (2.10) and the formula

/O(D%ﬁ) = By". O

Summing up, we have proven the following theorem.

Theorem 2.2. For any N > 0, there exists an asymptotic solution to the
equation (H — k?)u = 0 such that in R~ x (0, o)

N
(H - k2) y%_ikeix‘ézk_jaj(xvyag) = ynT_l_ikeix{k_NgN(xvyvg))
=0

where aj(z,y,§) has the form in Lemma 2.1. Furthermore gn(x,y, &) has the form

N+1
(211)  gn(2,9,8) =y* AN + Yy > BN (2,9)¢%,
p=1 || <2p

where QN s a polynomial of order N with constant coefficients, and B&N’p) (z,y) €
W_1_6/2.
3. Mellin transform and pseudo-differential operators

3.1. Mellin transform. The Mellin transform Uy, is defined by

n 1 ik y
(3.1) (Un ) (k r/ ). kR

In the following, the Fourier transform and its adjoint are denoted by

(32) Fk—>zf _wkf )

=l

3.3 Fr gk / e g(2)dz.

Note that
Fp = (Fre2)”
Using the fact that
T: L*((0,00);dy/y™) 3 f(y) = (Tf) (2) = f(e*)e " "V*/% € L*(R; dz)

is unitary, we have

(34) Unm ) (k) = (FZ_,Tf) (k e (Tf) (2)dz

=l
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Hence Uy : L2((0,00);dy/y") — L?*(R!) is unitary, and the inversion formula
holds:

f(y) = \/12? / o; YT (Ung f) (R)dk = (Ung) Ut f.

We put

(3.5) K0:i<y8y—n21>.

Then we have for f € C§°((0,00))

(3.6) (Uni Ko f)(k) = k(Unr ) (k) = FZ_.(i0- (T 1)) (k).
Therefore, for a function (k) on R, we define the operator ¢(Ky) by
(37) o(Ko) = (Unr) oK)V

By (3.6), we have the following correspondence between the multiplication op-
erator k and the differential operators 0., yd, via the Fourier transform in the
z-space and the Mellin transform in the y-space:

(3.8) i<yayn;1) b,
We also put for h(z) € L2(R"1)
(Faeh) (6) =h(e) = (21) 072 | cmiv€h(a)aa.
Rn-1

Thus we have the following correspondence for the operator Hy on L?(H") and its
symbol:

(n—1)?

—D? + (n—1)D, — 1

—2A, k2 1 21E12
(3.9) Y Ay —k + y7[¢]
=K% + 62Z|f|2 — —ag — BQzAm.
For p(x,y,&, k) € C (R x R™), we define an operator pras by

310 (racf) () = )7 [y Ty, € RO E R e

This is rewritten as
PrM = T OPT(J% Z, _Zama Zaz) o Ta

where Pr := pr(z,z, —i0,,i0,) is a standard pseudo-differential operator (¥DO)
on R™:

(Prh) (z,2) =(2m)~" // ei((wfw,)f*(z*z,)k)pfp(x, 2, &, k) (2!, 2" )d2' d2' dedk,
R”L XRn

with

(3'11) pT(:L‘7Z’§7k) :p(x7ez7€’k)'
If pr(z, z,&, k) satisfies
(3.12) 102070 0}, pr (2, 2,€, k)| < Capmi, Vo, B,m, L,

Pr is a bounded operator on L?(R™) (see [23]). Therefore, prys is a bounded
operator on L?(H"). Note that for the L?-boundedness, it is sufficient to assume
(3.12) up to some finite order |a| + || + m + 1 < p(n).

We need the following class of symbols.
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Definition 3.1. For s,t € R and N > 0, let gévt be the set of C'*°-functions
on R’ x R" such that

[(02)* ()7 (y3y)™ (81)' p(w,y, &, k)| < C(L+ [K)* (L + (€))7
holds for |a| + [B| + m+1 < N.

We say that a DO prjs belongs to §£Vt if its symbol belongs to §évt We always
assume that N is chosen sufficiently large. Standard calculus for W DO applies to
pry- For example,

oN oN’
peSst i(pFM)*GSsh
N/
pe SSl t1o 4 € 82 t2 PFPMAFM € Ssl—i-sz,tl-i-tga
aN. oN’ oN’
p e Ssl t19 q 6 5822t2 [-pFM7qFM] E Ssl+5271,t1+t2 U Ssl+52,t1+t271

with suitable N’ > 0. These can be proven in the same way as in [55], Vol 3, Sect.
18.1.

2. Regularity of the resolvent.
Lemma 3.2. (1) Let D, = y0,, Dy = y0,. Then for N > 1
DDy (H +i)~Y € B(L*(H")) for |a] +m < 2N.
(2) Let f € S. Then we have
DDy f(H) € B(L*(H")), Vo, m.

Proof. For k > 0, let Py be the elements of P, introduced in Chapter 2,
Subsection 2.1, whose order is at most k.

We shall prove (1). The case N = 11is proved in Theorem 2.1.3 (4). Assume that
the Lemma is true for N. Consider DgD;”(H+i)_N_1 where ||+ m < 2(N +1).
Let first || > 2 so that @ = o’ + o/, where |a”| = 2. Then

amym N\ —N—1
DEDI(H + i)
_ o' o' ym N\ —1 N —N
=Dy D3 DJ'(H +1i)" " (H +1)
= Dy (H +i)7' Dy Dy (H +i)~* + DD Dy (H + i)' (H + i)™
The first term is bounded by induction hypothesis. As for the 2nd term, using
Lemma 2.1.2 (1) and the definition of W™17¢/2 we have
(D' DI, (H +14) "] = (H + i) {ZD AD 4 A<°>}(H i)l

where A € Py, and D; = Y0y, 1 <i<n-—1, D, =D,. Thus
DD D, (H +4)~(H +14)~N

= DY (H+4)"" > " Di(H +i) A (H +i) ™ + [AD, H](H + i)}
=1
+ DY (H + i)"Y AO (H +4)~N-1L,
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By induction hypothesis, it is sufficient to show that D;(H +i)~[A®), H](H +i)~V
is bounded. Note .
[AD) H] = ijj(j) 1+ A0
j=1

where AU) € Paon. However,

Di(H +i)"'Dj = D;D;(H + i)~ + Dy[(H +1)~", Dj]
= DD, (H + )" + Dy(H + i) [H, Dy (H + i)~ € B(LA(H")).
Thus D;(H + i)' [A®, H](H + i)~ is bounded. The case |a| < 2, hence m > 2,
is proved similarly.
Let us prove (2). Take N such that |a| +m < 2N and put g(t) = f(t)(i +t)V.

Let g(z) be an almost analytic extension of g(z) defined in Section 3.3.1. Then we
have by Lemma 3.3.1

1 —
DSDY'g(H) = DDy (i + H)‘NT / 0.9(2)(i + H)N (2 — H) 'dzdz.
™ Jc

Since (i+ H)N(z — H)"! = Zi\f:__ll cr(2)(z — H)", ¢;(2) being a polynomial of z of
degree N —r — 1. Therefore, taking ¢ = —2N — 2 in Chap. 3 (3.1), We see that
D3 Dyt g(H) is a bounded operator multiplied by a polynomial of H of order N — 1.
By multiplying (i + H)~", we obtain (2). O

4. Parametrices and regularizers

4.1. Wave operators and Mellin transform. We now introduce wave op-
erators based on the Mellin transform:

(4.1) WISE) =5 — lim "'V H+FitEor  (K),

t—+oo

where Hy = Ep((0,00))H = Po.(H)H, Ex(\) being the spectral resolution for
H, and r; (k) and r_(k) are the characteristic function of the interval (0,00) and
(—00,0), respectively (see (3.7)). Recall Fy given in Chap. 2 by formulae (7.1),
(8.1) and (8.2).

Lemma 4.1. The strong limits (4.1) exist and

1 , s
Fi= {re oWy + o i)},

where Ty is the operator of multiplication by ry (k).
Proof. Due to formula (3.8) and Definition 5.3 of Chap. 1, we have
y IR (Rof) (<logy F t,2) = (Une)* (T Fo(k) ) (y, 2)-

Using again (3.8) and Theorem 1.5.5, we see that, as t — 400
(4.2) e VI f - 2T (Ko)(Unt)" Fo f |

— 0.

L2(H")

By Theorem 2.8.11, the wave operator s — lim;_, 4 o "V Hte=itVHo oyists and is
equal to Wi = s — limy_, 4+, /e~ "*Ho, This and (4.2) imply the existence of the
limt W and

Wi = VAW (Un) Fo = VWL s (Ko)(Unt)" Fo.
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Letting 7+ be the operator of multiplication by r4 (k) in L2(R; L*(R"1); dk), we
then have

reFo(We)* = V2re Fo(Fo) ralUn (WD),

By Lemma 2.8.3, one can show

1
r+Fo(Fo)'r+ = P

which together with the formula (8.8) in Lemma 2.8.4 proves the lemma. O

Recall that, using the 1-dimensional Fourier transform (3.3), the modified
Radon transform is defined by

Rﬂ: - F]:;—>s‘7::|:?
(see Definition 8.5 in Chapter 2). Then Lemma 4.1 implies

Lemma 4.2.

1

V2
4.2. Parametrices for the wave equation. Let a;(z,y,&) be as in Lemma

2.1. We take xoo(k) € C*°(R) such that xoo (k) =1 (Jk| > 2), xo(k) =0 (|k| < 1),

and x(y) € C**(R) such that X(y) =1 (y <w0/2), X(y) =0 (y > yo), yo being a
constant in Theorem 2.2. We define a*) (z,y, &, k) by

R = —=Fi (reUn WD)+ Un (W) )

(43)  a®(@,y.6k) = X (B)re (k) Zp(ﬁ%)kjaj<x,y,s>>z<y>.
j=0

Here, p(s) € C§°(R) is such that p(s) = 1 for |s| < 1/2, p(s) = 0 for |s| > 1, and
{€j}320 is a sequence such that €9 > €1 > -+ — 0.

Lemma 4.3. For a suitable choice of {€;}52, the series (4.3) converges and
defines a smooth function having the following properties:

(1) suppa™® (z,y,&, k) C R x (0,50) x {(&,k); [k > 1, (€)* < eo(k)}.
(2) If Bl + m + [7] + £ < N, we have,

NG
07Dy 0O () (., €)= xoo W) (1) Y- (i ) s K1) )|

(4.4) =0

< Cnpmre Y’ (@2>N (©)~iE) .

- (k)
(8) Let g™ (x,y, &, k) be defined by
(4.5) (H — k2)y" = ke 8a® (2, y, 6, k) = y*= ~Fei®g® (2,4, k).
Then we have for any N > 0

e 2 (2" vl 2t

46)  [oDy oLy e e | < Cvanr? (E1) €2

fory < yo/2 and ()2 < e (k) /2.
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Proof. First we derive the following estimate for j > 1

ozpyoof (o0 oyt )|
()’

J
C//Bmvﬁy < <k’> > <£>—|’Y\<k>—£,
¢ is independent of €;. In fact, by Lemma 2.1,

(a0 O%0) = X e,

|| <25

(4.7)

where the constant C%g,

where a; o(z,y) = 0 for y > yo, and

|85D aj, Oé(x y)l < ﬂmy ) Vﬁ,m
We define a homegenous polynomial of (o,7) € R™ by

* j j— ||, o
b§ )(xvy70777):(:|:1)] Z @j,a(x,y)a2] | |77 )

|a <25
We then have
k™ aj(x,y,§)x(y) = b(i)(as,y, —_, —), for +k>0.
’ ’ VIE /1K

Put E = (1/+/|k|,&/+/|k|), and note that
|070LE| < Cp(E)(€) kI < Cpaf€) Ik, k| > 1.

Taking into account of the homogeneity of bg»i) (z,y,0,m), we then have

’ 2 ((©)?
Wﬁ)‘ Cipme Y (<k>

This, together with the inequality,

(0 (. ) 0w

020770k o )| < oty 00

where the constant C;,,, , is independent of ¢;, gives (4.7). Noting that (£)*/(k) <
€;, we then have

aﬁpmma,@< (fg)k Jag(z,y, )Xy )>’

< Clora (@) Pl

(4.8)

Take €; such that
(1+ Clgmye)e; <277, |Bl+m+|y]+ €<

Then, by (4.8), the series (4.3) converges uniformly with all of its derivatives. The
inequality (4.4) also follows from (4.8). We put

()

N 2
I =T Ry ) Do () e 9T
3=0 !
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and ﬁj(\,ill =g — g](\izl. Then by (2.6), 91(\:21 = 0 for (£)? < ent1(k)/2 and
y < yo/2. The inequality (4.8) shows that gj(vll has the estimate in (3). O

We define an operator Uy (t) by
(4.9) Us(t) = a%&eg“{ox(y).

where x(y) € C*°(R) is such that x(y) =1 (y < yo/4), x(¥) =0 (y > yo/3). As in
the analysis for the operators ppas (see (3.10) and thereafter), a%\i[ are bounded
on L?(H"), and therefore UL (t). The explicit form of UL (t) is as follows:

Ux(t)f) (2,y)
(4.10) :(%)g/nem.gy

“haE) (2, y, &, k)T (Unx(y) £) (€, k)dedE.

We put
_ g it H+
(4.11) Ge(t) = o (e v Ui@))’
and also
(4.12) Ay = (1+ K2)Y2 = (Un)* (1 + E)Y2Uy,,
(4.13) Ay = (1 =AYV = (Fue) (1 + [€) V2.

Lemma 4.4. There exists Ng > 0 such that for any N > Ny, there exists a
constant Cn > 0 for which

(4.14) [GLANAN2 | < On(1+[t) 72, for £t>0,
holds, where || - || denotes the operator norm of L*(H™).

Proof. We consider G, (¢), which is rewritten as

C4(1) = VI (i/HLU (1) + S U (1),

Letting H = [ fooo AdE(N), we deal with the high energy part and low energy part
separately, i.e. on the subspace Ey([1,00))L?(H"), and Ey((—o0,1))L?(H").
High energy part. We take xo(s) € Cg°(R) such that yo(s) =1 for —oo < s < 1/4,
xo(s) = 0 for s > 1/2. We consider ivVH (1 — xo(H))Uy(t) + %UJr(t). We put
f(s) = s712(1 = xo(s)).

Proposition 4.5. If f(s) € C®(R) satisfies for some ¢ > 0, |f0™(s)| <
Co(1+ |s])=¢"™,¥m > 0, the following formula holds:

J(H) alpyy = iy F(G) + B,
@) B = o [ TR (- 1) - K

where F(C) is an almost analytic extension of f, and ¢ (x,y, &, k) is defined by
(4.3).
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Proof. Rewriting (4.5) into the operator form, we have

+ + +
H a8y = 583 + o5
hence
1 (% + - 1 (% _
(¢ = H) ™ afpyy =ajiy (¢ — Ko) ™ + (¢ — H) gl (¢ — K§) 7.
The proposition then follows from Lemma 3.3.1. |

Let us continue the proof for the high energy part. We consider the case t > 0.
The case t < 0 is treated similarly. Using Proposition 4.4, we have

VH(L — xo(H))ah, = f(H)Hal),
= f(H)a K2 + f(H)gi
= ) F(EHEE + BYKS + f(H)g).

Since %UJr (t) = —iag]\)/[Koe_”Kox(y), we arrive at

. d
iVH(1 = xo(H))Uy () + £U+(t)
(4.16) = iBWKge M ox(y) + i f(H)gire " x(y)
— dayy Koxo(K§)e " x(v).
Let us note here that
(4.17) S Koxo(K3) =0,
since |k| > 1 on the support of the symbol of agjﬂ)/[, and xo(k?) = 0 if |k| > 1.

Formulae (4.15) and (4.16) contain the operators of the form g%&e’”Kox(y).

We start with the following result.

Proposition 4.6. Assume that b(z,y,§, k) € C*°(RY xR™) have the following
properties: b(x,y,&, k) =0 for y > yo, and there exist og, 70 € R such that for any
M7 a? m7 57 )€7

(4.18) 102D 0L 0}, b, y, &, k)| < Chrapme (logy) = (€)70~ 1P (kyo~¢,

for 0 <y < yo. Let x(y) € C®(R) be such that x(y) =1 for 0 < y < yo/4 and
x(y) =0 fory > yo/3. Then we have for any N >0, and o > o9 +n/2,

(4.19) [brare ™ FOx ()AL A) | < Con(1+1)™N, t>0.

Proof. Take 9y(s) € C*°(R) such that ¢g(s) =1 for |s| < 1, and ¢(s) = 0 for
|s| > 2, and let for € > 0

b(E) (.’L’, Y, 57 k) = b(ﬂ’,‘, Y, 57 k)¢0(€|5|)¢0(€k’)

Then b(9) (x,y, &, k) satisfies (4.18) with constant Chsapme independent of € > 0.
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We have, by (4.13), (3.1) and (3.8),
bieare Xy ATTA)
— (27)-% / i€ RO/ (35 4y € F)
R"’XR+

(4.20) dedy d

WO ) T ATFE) T

=V2r (T* o b(TE) (, 2, —i0y,10,)et?* A7 x(e*) (1 — 92)N/2 o T) .

Therefore, the estimate of this operator comes down to the calculus of classical, i.e.
Euclidean, WDO’s. For the sake of completeness, we provide a proof.

Without loss of generality, we assume that N/2 is an integer. Since (1 —92)N/?
is a differential operator, commuting x(e*) and (1 — 92)N/2, we see that

bire X (Y)ALTAY? = T 0 b0 (t, 2, 2, 2/, —i0,,10.) o T,
where

bz(?’eu = (b?’e(t, x, 2,2, —i0,, iaz)u) (z,z)

(4.21) . o

= / e Rz =) iwCp O (2, 2 € k)a(E, 2')d2' dkdE,
R'n.+1

Due to (4.18), b?’e(x,z,z’,é“,k) € C®(R"! x R") satisfies

102070 DL LT (2, 2,2, €,K)| < Chrtapmmre ()™M (€)7o Bl (kyN+mo—C,

with constant Caragmm¢ independent of € > 0, and bg’é(x,z,z’,ﬁ,k) = 0 when
2" > log(yo/3). Since yo is small enough, 2z’ < 0 on the support of the integrand of
b? “u. Hence we have

t—2'>Colt), t—2'>Co(z'), Vt>0
for some constant Cy > 0. Using
e*ik(tfz’) _ (—’L(t o Z/))flakefik:(tfz’)’ eiw{ —_ (1 + ‘x‘2>71(1 o Ag)e’w:g,

we integrate 2N + [19] + 2 times with respect to k and n times with respect to £ to
have

| (620) (@,2)| < /R Az w6 B, )| d dedk,

0<ASCH) N(2) 1) Ha) 2 ()7 (k)
Then the above estimate together with Cauchy-Schwarz inequality shows that
Oe _
(4.22) Il < C(L+ )N Jull,
uniformly in € > 0. Letting ¢ — 0, we have (4.19). O

By (2.11), we then see that the 2nd term of the right-hand side of (4.16) has
the estimate

(4.23) 1F(H)ghre  Fox () AN AN < Cn(1+14)72, ¢ >0.
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To deal with the 1st term, we use the representation (4.15). To apply Propo-
sition 4.6, we consider

(¢ = K3) T RGe () A2V A 2
= g K2e RN PN AN/ (¢ — K2y (y)
= gy E3e ON PN AN\ (5)(C — K23) " x(y)
+ g Ke TN 2N AN 20 () (¢ - K3) (),

(4.24)

where x1,x2 € C*(R), x1(y) + x2(y) = 1, xa(y) = 0 for y > yo, x2(y) = 0 for y <
Yo/2. Then, Proposition 4.6 is applicable to the term gl(;r]\z[KOQe_“K“ A;ZNAéV/Qxl (y),
and we see that the 1st term of the right-hand side of (4.24) is estimated as

(4.25)  [lgshpE3e KON ANy (y)(¢ — K2)7Y| < Oftm (|7 (1 +6) 72,
The 2nd term of the right-hand side of (4.24) is rewritten as
g K2 oA 2N AN (109 1) =2 - (log 1) 2x2(y) (¢ — K3) ™ 'x ().

As in the proof of Proposition 4.6, we represent g%&,K@e’”KOA;QNAZ],Vﬂ(Iog y) 2

into the integral form like (4.20), and integrate by parts 2 times by using e~ =

(—it)"1Ore~** and also (4.6). Then we have
g Kge AN A log y) | < C(1+1) 72,

Passing to the variable z = log y, the operator (logy)?x2(y)(¢ — K3) *x(y) has
an integral kernel

K(Z,Z/; C) _ —<Z>2X2(ez) 27:/1.261‘\/5(22/) X(ez’)_

Observing the supports of ya(e?) and x(e*), we see that z > log(yo/2), 2/ <
log(yo/3). Hence

(4.26) z—=2' > C((2) + (),
for a constant C' > 0. Letting /¢ = o + i, we then have

’

|K(272/;C) <Z>2X2(62)X(€Z )e*T(Zfz’)'

| <
o] + 7]
Using the inequality
et <t vt>0, V>0,
and taking ¢ = 2m + 2, we have

Cm —m \N—m
K (2,25 Q)] < m(@ ().

Taking m > 1, we then have

C C
K(z,2;0)|d? < /K 0z < g
sgp/Rl (2,255 Q)]dz" < Tamrse SUP R| (2,25 Q)]dz < —am+3

Noting that

1 2| _ 2
7~ fmd] = Tm]”
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we have obtained the estimate of the operator norm

¢|'?
[T |

[ (log )2 x2 (1) (¢ — K2) " x ()| gcp( )p, Vp > 5.

Therefore, for p > 5,
(L2 loiir ige AN AN o () (€~ KE) T X
<C,|tm¢|7P|¢IP2(14+1)72, VN > 0.

Since
Lo_ ot gep _ o
[Im¢| = [Im ([P’ [Im¢fP — [Im ([P”
In view of (4.25) and (4.27), we have, for p > 5,

g (¢ — K3) " K2e Koy (i) A2V AN < Ol ¢ 7P (¢)P =1 (1 + 1) 2.

We use Lemma 2.3.1, and take into account that ¢ in Chap. 2 (3.2) is now equal
to —1/2 to see that the 1st term of the righ-hand side of (4.16) has the property

(4.28) 1B KGe " Fox(y) AN A2 < On(1+ )72, £ >0,

Low energy part. We show
(4.29) Ixo(H) U (AN AN < C(L+ )72, W > 0.
However, noting that
xo(H)aylly = aiirxo(K5) + B = B,
with B(H) given in Proposition 4.4, one can prove (4.29) in the same way as above.
By (4.23), (4.28) and (4.29), we have proven Lemma 4.4. O
Lemma 4.7.

s — lim eithi(t) = Xoo(Ko)Wﬁ)X(y)'

t—+oo

Proof. Since U4 (t) is uniformly bounded in ¢, we have only to prove the lemma
on a dense set of L?(H"). Writing

0l (2,9, €, k) = xoo (k)7 (k) + @) (2,5, €, K),
the same analysis as in Proposition 4.4 shows that \|a’;iﬂ>4€*i”<ox(y)f\| — 0 for
[ € C§°(R™). Therefore, we have

UL (&) f = (Unt)* e Xoor£Unix () ]| — 0,
as t — oo for any f € C§°(H"). This together with (4.1) proves the lemma. [

Recall that for any interval I C (0,00), 0 € R and an integer m > 0,
HO™R"'x1)>f

= | em@mnn = D /R 1(€)78! F (€. y)|dedy < oo

0<i<m YR"IxI



4. PARAMETRICES AND REGULARIZERS 157

Using the standard Sobolev space H”™(R"™), where o, 7 € R, we define H7 (H") =
T*H?™(R"™). Then

H7"(H") > f <= ||fllge-(H") = | T f[l 5o (R")
= (&) (k)T (U )&, F)l| 2 (mm) < 00

Take f € H?N'0 for large N. By Lemma 4.4, X0 (Kp) foioo G+ (t)x(y)fdt con-
verges strongly in L2. Moreover, by (4.11) and Lemma 4.7,
+oo

(430)  Xoo(KO)WEE X (1) f = Xoo(Ko)aiy x (1) f + Xoo (Ko) Gt

Therefore, the integral of the right-hand side can be extended by continuity as an
operator in B(L?; L?).
In view of Lemma 4.2 and (4.30), we have

1 _
Ry = \ﬁFkHs (T+UMX(G§T+J\)4) + T—UMX(CLEW&)

*

(4.31)
+r Un (L= )WDY 4+ Un (1= )W) ) + B,

where R is written as

1 * > * - *
R= EF,H(uUM /0 G (1) Xoo (Ko)dt + r_ Uy /0 G_(t) Xoo(Ko)dt>.

Observe that since foioo G+ (t)*dt enjoys the property

+oo
G (t)"dt xoo(Ko) € B(L? H N2 0 B(L?; L),
0

by interpolation,
(4.32) ReB(L*H %), Yo >0.

Lemma 4.8. Let so > —log(yo/4). Then, for any 7 >0, F}'_ r+Un(1—x) is
a bounded operator from L?*(H™) to H™(R"~! x I), where I = (s¢,00).

Proof. Note Ups(1 — x) is a bounded operator from L?(H") to L?(R"). On
the support of 1 — x(y), logy > logyo/4. Therefore if s > 59 > —logyo /4,

Fl;kesriUM(l - )f
= Fy_ra (k) Fom (1 — x(e*)T'f

(2m)~ / / R (k) (1 — x(e*)Tf (x, 2)dkdz

:i/Rz(s—f—z)(l_ x(e*)T'f(z,2)dz

Clearly, the right-hand side is smooth with respect to s with all of its derivatives
in L2(R"1 x I). O

Lemma 4.8 and (4.31), (4.32) imply the following lemma.
Lemma 4.9. Let sg > —logyo/4, 0 > 0. Then we have

1, ) v
EFk_)s(HUM(a%\)H +T—UM(CLE’7]\)4) )

e B(L2(H"); H-7°/4(R"! x (s9,00))).

R, —
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5. Singularity expansion of the Radon transform
Let us recall the following homogeneous distribution. We define for Reav > —1

N [s|/T(ax+1), +£s>0,
hi(s):{O +s5 <0

and, forn=1,2,3,--- and Rea > —1,
a—n d " «

Thus, h9 (s) is analytic with respect to a.. Let ( , ) be the coupling of distributions
and test functions. Then for any o, 3 € C

*° 1
1 a B 1— — a B 1— Y= —-+— —
G0 [ B = s = 3R - 9.1 = F
In fact, this is true for Rea,Re 8 > —1. Let xo(s), x(s) € C*°(R) be such that
Xo(s) +x1(s) =1, xo(s) =1 (s < 1/3), xo(s) =0 (s > 2/3). Then we have

_ g8 sa
; Igl(ﬂjL)l)Xo(S» + (R (1 - s), TatD)

Since 1 — s > 0 on supp xo and s > 0 on supp x1, the left-hand side is analytic with
respect to a, . Hence (5.1) holds by analytic continuation.

(WS ()M (L = 8),1) = (A% (s) x1(s))-

The following lemma is well-known ([38] p.174, [55], Vol 1, p.167).

Lemma 5.1. fFora e R

/ (ik + 0)%e**dk = 2rh T ! (s).

— o0

Let xoo (k) be as in (4.3). Since 1 — xoo (k) € C§°(R), from Lemma 5.1,
1 [ . . o
(5.2) 2/ kI x o (k)dk — (=) hP 1 (s) € C®(R), j=0,1,2,--- .
T J -

Let H, ;7" (R" ! x (s0,00)) be the set of functions u such that, for any compact

interval I C (sg,00)

—0o,T n—1
U g, € HOT(RYX).

Theorem 5.2. Let sg > —logyo/4. Then for any o > 0, there is N = N(o)
such that

» +loc

N
Ry — Y R e B(LAM"); H,27 " (R"™! x (s0,00)),

§=0
where
(R@f) (s,x)—/o (S+logy)j1yij(y)f(:vvy)x(y)?
Pi(y) = (?}Q)J aj(w,y, —i0;)"
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Proof. Recall from Lemma 4.9, R, f is given, up to a smoothening operator,
by

(5.3) S5h (P @)+ e ) 7

Let M > o/4, and put

M 2
D (€ 8) = ) (2,4, 6, 8) — xoo e (B) S p<€<§<>k>)kja§i>(x, 2,6,k).
j=o0

Denote by Ry the operator given by (5.3) with agp replaced by a;

aM) = (M) 4 (M=) " consider

(M) Letting

(I = Ag) "R f
= # i(z—a’)-€ ,—ik(s+z )( Zk) D T £ L\
B \/5(271’)”/2 /e € " <£> a(M)(x 2, €, k)Tf(x z )dac dz d&dk.

By construction of ar(z, z,&, k), (k) > (€)% /erry1 on supp a(M), and

2020207 { (=K} (€) a0 (@, 21 € ) | < Capra €)M =170 iy =20,

The right-hand side is bounded if p < M < ¢, which implies by the L?-boundedness
theorem for ¥DO that
Ry € B(L*(H™); H*"(R")), for s>27r, 17<M.
In particular, Ry, € B(L?(H"); H=%/4(R")).
By integation by parts using € = (£)2(1— A,/ )e™ ¢, we see that the operator

2
/ei(zz)'geik(sﬂ )<1 - p(%))aﬂ(m’, 2 E k)T f(2!, 2" da' d2' dedk
€j

is in B(L?(H"); H=%?(R™)) with £ > 2p, hence in B(L?(H"); H=7/4(R")).
Therefore, in view of (4.3), we see that R, f is equal to, up to a smoothening
operator in B(L?(H"); H-7/4(R"! x (s9,00)),

M—1

1 / z(z z')-€ 7'Lk(s+logy) 71 Z L ]mf< ’ y)dﬁdkdx’dy
V2(2m)" Jre xRy = y"
M-1
! - 5 L [7 —ik(stiomy) - > Y
= (z, : = [ emikstosn =iy (k)dk
7 j:O/O 9i(z,y)y ><(y)<27T /_Oo Xoo (k) -
5@0) = ey [ G g O )
J (271’)("71) R2(n—1)
= a;(z,y, —i0:)" f(z,y).
This together with (5.2) proves the theorem. O

Recall that a;(z,y, &) is defined by (2.8), and is a polynomial in & of order 2j.
Hence a;(x,y, —i0;) is a differential operator of order 2j. The above theorem in
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particular yields the following expression

(ROf) (s.2)

e(n—l)s/Q
(5.4) TX(eis)f('% e ®), (j=0),
[ B G2

where x(y) € C*°(R) such that x(y) =1 (y < yo/4), x(y) =0 (y > yo/3). This is
a generalization of Theorem 1.6.6 in the sense of singularity expansion.



