CHAPTER 2

Perturbation of the metric

We shall study in this chapter spectral properties of —A,, where A, is the
Laplace-Beltrami operator associated with a Riemannian metric, which is a per-
turbation of the hyperbolic metric on H". We shall prove the limiting absorption
principle, construct the generalized Fourier transform and introduce the scattering
matrix. To study H" in an invariant manner, it is better to employ the ball model
and geodesic polar coordinates centered at the origin. However, we use the upper-
half space model, since it is of independent interest, necessary in order to make
the arguments in Chapter 1 complete by the method adopted here, and also of a
preparatory character to deal with hyperbolic ends in Chapter 3.

1. Preliminaries from elliptic partial differential equations

1.1. Regularity theorem. In this section, for the notational convenience, we
denote points z € R™ by x = (21, ,2,). We consider the differential operator

A= " an(z)(—id,)

la|<2
defined on R™. The coefficients a,(z) are assumed to satisfy

ao(r) € C®(R"), ay(x) € L°R"), Vp,

Y aa(@)¢” > ClEP, Vo eR", VEER™,
|a]=2

2

C being a positive constant. A function u € L, .

of Au = f if it satisfies

(R™) is said to be a weak solution

| waATo@dn = [ faplads, v e CRER"),

R n

where AT is the formal adjoint of A.

Theorem 1.1. If u € L?*(R"™) is a weak solution of Au = f and f € H™(R")
for some m >0, then u € H™2(R"), and

||U/HH"m+2(Rn) S C(HUHLQ(Rn) + ”f”Hm,(Rn)).

For the proof see e.g. [101]. By using Theorem 1.1, one can prove the following
inequality. Let 2 be a bounded open set in R™ with smooth boundary, and €2 an
e-neighborhood of 2. Then

(1.1) [ull g2y < Celllullzz @ + 1l am@0)-
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48 2. PERTURBATION OF THE METRIC

1.2. A-priori estimates in H". We next consider R’f. We put
Di::vn@i, 1§i§n, DZ(Dl,-“,Dn),

and let (, ), || -] be the following inner product and the norm:
—— dz
o) = [ a@hol@ sl = ().

For operators A and B, [A, B] denotes the commutator AB — BA. Straightforward
computations show the following lemma.

Lemma 1.2. (1) For j#mn, 1<i<n,
[D;, Dj] = 0inDj.
(2) For u,ve Cg°(RY),
(Diu,v) = —(u, D;v) + din(n — 1)(u, v).
We use the following weight

(1.2) p(x) = log(1+ [z]*) + /1 + (log z,)>.
Comparing p with pg in Lemma 1.1.6, there exists a constant C' > 0 such that
(1.3) C™H(1+dp(2)) < p(x) < C(1+ dn()),

where dh( ) is the geodesic distance between z and (0,1) in the metric ds* =
dz?/x2, cf. (1.2) of Ch.1. We put

(1.4) D; = §(20)0s,, (i=1,---,n—1), D, =D,,

where y(x,) € C*(R), y(z,) =1 for z,, < 1, y(x,) = z, for x,, > 2. Then we
have for s € R and |a| > 1

(1.5) [D%p(x)°| + |Dp()°| < Copl)*".

We consider the differential operator A = Ag + Ay with

AOZ—Di+(n_1)Dn_ZD3;

A= aix DD+Zb )D; + ().

We rewrite A as
AZPQ(.T,D)+P1(ZL’,D), D:(Dl,"-,Dn),

where

Py(x,€) = |€]* + Z aij (2)&;,

7,7=1

Pl(x7€) n_1€n+zb Ez"‘c

We assume that the coefficients a;;(z), bi(a:), c(z) are in C*°(R%;R) and satisfy

(1.6) |D%a(z)| < Cy p(z)~¢, Va,
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for some € > 0, where a(x) represents any of a;;(z), b;(z), c(x). Moreover, a;;
is real and symmetric : a;; = aj;, and Py(z,§) is uniformly elliptic, namely, there
exists a constant Cy > 0 such that
(1.7) Py(z,€) > Colé?, VEeC", VxeRL.

Let B and B* be defined as in Chap. 1, §2, with h = L2(R"~!). For s € R, we
introduce the function space X'® as follows

, d
(1.8) X* > u <= p(x)u(z) € L*(H") = L? (R’J_; —x>,
Ty

equipped with the norm
(1.9) ullxs = llp°ull 2 Erm).-

Theorem 1.3. (1) If u € B* satisfies (A — z)u = f € B* with z € C, then

|Diullge < C(L+|2)"2(lulls + [ flls+), 1<i<n.

(2) Furthermore, if

R dz,
dim poee | (G gy + 15 o] 5 =
holds, then, for 1 <i <n, we have
R

(8) Assertion (2) also holds with lim replaced by liminf.
(4) If u, f € L?>(H"), then
(1.10) Dl < L+ )2 (Jlull + 1), 1<i<n,
(1.11) [1DiDjull < C(L+[z))(lull + IF), 1<i,7<n.
(5) If u, f € B,
(1.12) [DiDjullx- < Cs(L+ [2])(|ulls- + [|fll8-), 1<4d,j<mn,

for any s > 1/2.
(6) If u, f € X* for some s € R, then

(1.13) IDsu s < C(1+ [2)Y2(||ul

xo [ fllas), 1<i<n,

(1.14) [1DiDjullxs < O+ [2))(Jullxs + 1 fllas), 1 <45 <n.

In the above estimates in (1), (4), (5) and (6), the constants C and Cy are
independnet of z € C.

We note that assertion (4) is a particular case of assertion (6) with s = 0, while
assertion (5) follows from (6), if we take into the account that B* C X~%, s > 1/2.

Proof. We take x(t) € Cg°(R) such that x(¢) =1 (]t| < 1), x(¢£) =0 (|t| > 2),
and put

() = (B () ) = (B0,

log R log R
where ' = (x1,- -+ ,xp—_1). Since with g;; = d;; + aij,
(9ijDiDju, Xk, u) = —(gijDiu, X%, Diw)

—(Dju, (Di(gijXr.r)) w) + din(n — 1)(Dju, gijxh,w)-
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Thus, we have

n n
- Z(gijDiDj%X%%,ru) = Z(ginR,rDju7XR,rDiu)
ij=1 ‘,j*l
3 (D, (Duaia, )
i,5=1

We split the 2nd term of the right-hand side into
- Z(XR,TDju7 (Digij)XRr,ru) — 2 Z(XR,TDjuv 9ij(Dixr,r)u)
and use the uniform ellipticity (1.7) to see that
CollxrsDull* < Re (Au, X7 ,u) + € xr.r Dul*

+ Celllvrul® + [(Dxr.)ull?)-
Here 1R is defined by

log .,
wR(xn) - w( 10gR )7
where ¢ € C§°(R), ¥ = 1 on the support of x. For small ¢ > 0, the term

€||xr.»Dul|® is absorbed by the left-hand side. Therefore, by using the equation
(A —z)u= f, we have

IxrDul® < C(L+ [2)([Yrull? + | (Dxr)ul? + ¥R f]?)-

We fix R and let r — oo to see that x g, can be replaced by xr. Moreover

‘(DXR)(xn) 1/}R($n) < CQ/}R(xn)

< log
for R > e. Therefore, we have

(1.15) IxrDul® < C(A+ [2)([Yrull® + [YrFI*)-

Dividing this inequality by log R and taking the supremum with respect to R, we
obtain the assertion (1). Letting R — oo, we obtain (2) and (3).

Letting R — oo in (1.15), we prove (1.10). To prove (1.11), we first observe
that the previous considerations do not require (1.6) in full generality, just that
a € L*°(RY). This makes it possible to consider only the case when u is compactly
supported. In fact, in the general case putting xr ,u = v we have

(A - Z)U = XR,rf + [A7 XR,T]U"

Since [A, xg,r] = >, ci(x)D; + d(x) and ¢;(z),d(z) and ¢;,d € L™ independently
on R,r > e, we can apply (1.10) and (1.11) to see that the right-hand side is in
L*(R%) uniformly with respect to R, 7.

Now assuming that u is compactly supported, we split u as u = uy + us + us,
where u; = Xi(lﬁ)ggﬁg)u so that suppu; C {x, < 2/R}, suppus C {1/R < z,, <
2R}, suppus C {z,, > R}. Using

| D:Dyull” = (D?u. D?u) + (Dyu, [D;, Di]Dyu),
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we have
S IIDiDjul®> < C(| > Diull® + > | Diull?)
i.j i i
We have
(1.16) Agu; = —Ayu; + zu; + f;, i=1,3,
where

1£ill < CULFIN+ IDwull + [lull) < O+ DY2AAN + lul),
with the last inequality following from (1.10). Since ||Aqu;||* = ij(D]Q-ui, Diuy;),
taking the L2-norm of the both sides of (1.16), and using condition (1.6), we have,
fori=1,3,

> D Druill < €Y NP Dyuil| + Ce(1 + [21) (O 1 Djuill + [lull + I £1]),
g,k Jk J

where € = ¢(R) — 0 as R — oo. Therefore (1.11) holds for ¢ = 1,3 with sufficiently
large R. For i = 2, we have only to note that wuy satisfies the following 2nd order
elliptic equation with bounded coefficients:

Zaw 88u2+2a1 )Oius + ¢(x)ug = fo

and use Theorem 1.1.

To prove (5), we put v = p(z) *u and g = (A — z)v. Then Lemma 1.2.7,
estimate (1.5) and assertion (1) imply that v,g € L?(H"). By assertion (4), we
then have D;v, D;Djv € L?*(H™), which, in turn, implies that D;D;u € X~* and
the inequality (1.12).

The proof of (1.13) is similar to the proof of (1.10) if w use p(x)*xr () instead
of XR,T(m)'

To prove (1.14), we again consider v = p(x)~*u, which, due to (1.13) satisfies
(A—2z)v=ge€ L?*(H"). Using (1.10) together with (1.13) and (1.5), we arrive at
(1.14). O

1.3. Essential self-adjointness. On the upper space R}, we introduce the
Riemannian metric

(1.17) Z gij(z)dx;dx;,

3,5=1

where g;; = 6;j + a;;. Assume that A is symmetric on C5° (R ).

Theorem 1.4. A’CW(RH) is essentially self-adjoint.
o (RY

Proof. We show that for v € L?(H")
(u,(A=1d)p) =0, YVoeC*H") = u=0

and the same assertion holds with ¢ replaced by —i. Applying (1.1), we see that
H? (R7%), and (A + i)u = 0 holds, moreover, by Theorem 1.3 (4),

Dju, D;Dju € L*(H").
Letting
Qr={l2'|<r, I/R<z, <R}, Qr={1/R<ux, <R}
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we then have
/ Avudp = 2/ lu|?dp, dp = dx/(z,)".
QT,R QT,R

Integrating by parts and taking the imaginary part,

lul?du < C / |ul|DiuldS,
/S;T,R ; 8QT,R

where dS is the surface measure associated with hyperbolic metric. Noting that

/ luD;uldp < oo,
1/R<z,<R

there is a sequence r,, — oo such that,

Z/ |u||DjuldS — 0 as n — oo,
i YZRn

where Xg,, = {(z/,2,) : |2'| = rn, R~ <z, < R}. Using these r},s, we see that

- dx’
(1.18) / lu|?dp < C / +/ ||| Dy — .
QR zz:; x"::l/R r,=R (xn)n 1

We next put

- , dx’
fe =3 [ loData el

Then, since u, D;u € L?(H™), we have

oo

0 Tn
Hence, liminf, . f(z,) = 0 and liminf, _ f(z,) = 0. Using this fact, letting
R, tend to infinity along a suitable sequence in (1.18), we have v = 0. O

1.4. Rellich’s theorem. It is well-known that, for a bounded open set 2 C
R”, the inclusion H'(Q2) C L?(2) is compact. This is often stated in the following
form and is called Rellich’s theorem.

Theorem 1.5. Let Q be a bounded open set in R"™, and m > 1. Then for any
bounded sequence { fi.} in H™(SY), there exists a subsequence {fi'} convergent in

H™ Q).
For the proof, see e.g. [101].

1.5. Unique continuation theorem. Let us assume that on a connected
open set 2 C R", we are given a differential operator

A=) aa(2)og,
o <2
where for |a| = 1,2, an(z) € C*, and for |a] = 0, an(x) € L, moreover for

|| = 2, an(x) is real-valued and satisfies

D aa(@)E™ = CEP, Ve eQ, VEeR"

Ja|=2
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for a constant C' > 0. Then, if u satisfies Au = 0 on (), and vanishes on an open
subset of €, then u vanishes identically on Q. For the proof, see e.g. [101] for a
C*>-coefficient case, and [6] for the general case.

2. Basic spectral properties for Laplace-Belrami operators on H"

2.1. Assumption on the metric. In the sequel, we denote points in H" =
R" as (z,y), where z € R"™!, y > 0, and put
(2-1) D, = yaﬂc» Bac = g(y)a:m 5y = Dy = yaya

where §(y) € C*((0,00)) is a positive function such that g(y) = 1 for y < 1,
9(y) =y for y > 2. Recall that we put

p(z,y) =log (1 + [z|* + y*) + /1 + |logy/?,

and have the following inequality
CTH1+ p(z,y)) < 1+du(z,y) < C(L+ p(z,y)),

|D%p(w,y)° + |D%p(x,y)°] < Cap(z,y)*™", Jal 21, s€R,
where dj, (x,y) is the distance between (x,y) and (0, 1) with respect to the standard

hyperbolic metric (Lemma 1.1.6).
To describe the space of metric, we introduce the following class of functions.

Definition 2.1. For s € R, let W? be the set of real-valued C*°-functions
f(z,y) defined on R"~! x (0,00) such that for any (multi) index v, 3, there exists
a constant Cog > 0 such that

(22) (D2)*(Dy)? f(w,9)] < Cag pla, y)* =m0+,
On the upper half-space R}, we consider the Riemannian metric
(2:3) ds? =y~ ((dn)? + (dy)? + A(,y, dz, dy)),
where A(z,y,dz,dy) is a symmetric covariant tensor of the form
n—1 n—1
Ay, de,dy) = ) aij(e,y)da'da? +27) 7 ain(e,y)da’dy + ann (@, y) (dy)*.
1,7=1 =1

Here each a;j(z,y) (1 <1,j < n) is assumed to satisfy the following condition:
(C) There exists a constant € > 0 such that a;; € W€ for y > 1.

Let us look at the Laplace-Beltrami operator associated with the above metric
ds®. Let P the set of differential operators P defined by

P3P« P=Y (cap+ aas)DID},
a,B
where cng are constants, a,s € W~'7¢ and the above sum is finite. Then by a
direct computation using Lemma 1.2 one can show that P is an algebra.

We rewrite (2.3) into ds? = ¢;;(X)dX'dX7, X = (X1, -+, X») = (z,y), where
gi;(X)=y2 (5¢j + aij(x,y)) and we assume that a;;&,&; > —[¢|?. Letting (gij) =
(gij)fl, we have

97 (z,y) = y* (87 + 9" (z,y)),
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where g (x,y) € W™!7¢. The associated Laplace-Beltrami operator A, is then
written as

~Ay=D?~(n—1)D, + D2 + Z (z,y) DD, +Zb z,y)D;,
i,7=1 =1
where (D1, -+, Dy) = (y9s,ydy) and a™ (z,y), b (z,y) € W'17¢. Hence A, € P.
The operator —A, is symmetric in L*(R;,/g dzdy), where g = det(g;;).
In order to compare it with the Laplace-Beltrami operator for the standard hy-
perbolic metric, it is convenient to use the unitary gauge transformation from
L*(R'}; \/gdzdy) onto L*(R'}; dady/y™):

— (y*"g)"u,

so that
(n—1)

N 7(y2ng)1/4Ag(y2ng)—1/47 T

in L*(RY; dxdy/y™).

2.2. Transformed Laplace-Beltrami operators. We are thus led to the
differential operators

2n \1/4 2n \—1/4 (n — 1)2
H=—(y"g) " Agy™g)" /" = =Ho+V,
2 2 (n—1)?
Hy=-D2+ (n—1)D, — D2 - T’ V=>" a(z,y)D
la|<2
in L*(R%;dzdy/y™), with the inner product denoted by (-,-). H‘Cm(Hn) is sym-
0

metric,
(2.4) (Hf,g)=(f Hg), Vf.geCy(H"),

and uniformly elliptic in the sense of §1. By our assumption a, satisfies the condi-

tion (C).

One should keep in mind that our operator —H is unitarily equivalent to the
Riemannian Laplacian A, associated with the metric ds? of (2.3) which is shifted by
(n—1)2/4. The arguments to be developed in Chapters 2 and 3 are also applicable
to the more general operators with perturbation of 1st order differential operators,
except for Theorem 2.10. Even in this case, however, Theorem 2.10 still holds except
for a discrete set of \’s, which can be proved by the same way as in Theorems 3.3.5
and 3.3.6.

By Theorem 1.4, H ! oo is essentially self-adjoint. Let
0

(H™)
Ro(2) = (Ho —2)™", R(z) = (H —2)7".
Lemma 2.2. For z ¢ C\ R, Ro(2)VR(2) is compact. Hence
0a(H) C (—00,0), a.(H) = [0,00).

Proof. By Theorem 1.3 (4), VR(z) € B(L? L?), and Ro(2)V = (VRy(2))* €
B(L?% L?). We take x(t) € C5°(R) satisfying x(t) =1 (|t| < 1), x(t) =0 (|t| > 2),

and put
Xr(Z,y) = X I v (28
A R logR)/ "
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Then yrR(z), and henceforth Ry(z)V xrR(z) are compact and, due to the decay
assumption of the coefficients, ||[Ro(2)V (1 — xr)R(2)|| — 0 (R — o0). Hence
Ry(2)VR(z) is also compact. Since o(Hy) = o.(Hp) = [0,00), the lemma follows
from Weyl’s theorem ([62], p. 26). O

The main purpose of this section is to prove the following theorem.
Theorem 2.3. (1) o,(H)N(0,00) = 0.
(2) For any A > 0, lim._,o R(A+ie) =: R(A\+10) ezists in the weak-+ sense, namely
3 lii%(R(/\ tie)f,g) =1 (R(Ax10)f,g9), Yf,g€B.
(3) For any compact interval I C (0,00) there exists a constant C > 0 such that

(2.5) [R(A £ i0) fl|- < C|lfllz, VAeL

(4) For any f,g € B, (0,00) 2 A — (R(A£10)f, g) is continuous.
(5) Let Eg(-) be the resolution of the identity for H. Then Ex((0,00))L?(H") is
equal to the absolutely continuous subspace for H.

Note that the proof of the estimate (2.5) implies the following inequality
(2.6) IR()flls < Cllf s, VReze .

2.3. Resolvent estimates. We shall prove Theorem 2.3 by first establishing
some a-priori estimates for solutions to the equation (H — z)u = f, and then
passing to limiting procedures. Although our method seems to be tricky, the basic

idea consists in the following observation. Let us note that by virtue of Lemma
1.4.7, u} = Ro(\ £i0) f behaves like

Q% (&, y) ~ Ca(E)y ™ D2FVA (4 5 0).

Therefore, we infer
n—1 . n—
(0, — 5 F VR ) = o™V ()

This suggests the importance of the term (yﬁy - (2 F z\f)\)) uY to derive the
estimates for u%.. We put
n—1
or = ——F iz
Here for z = re'?, r > 0, —m < # < 7, we take the branch of \/z as /re'?/2.

We begin by estimating u® = Ry(A +40)f. Let (, )n, | - |[n denote the inner
product and norm of L?(R™™1), respectively.

Lemma 2.4. Suppose u satisfies (Hy — z)u = f, and let wy = (Dy — o4)u.
Let o(y) € C*((0,00);R) and 0 < a < b < 0o. Then we have
y=b

b 2 2
&y, [l ~ [Daul})
[ D+ 20Dl 2 4 [l (el

Yy=a

b
dy
- :FQIm\/E/ <P(|‘wi“%1+”Dzu”%1)y7

b b
d d
+ / (D)l ¥ 2R / oz,
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Proof. We rewrite the equation (Hy — z)u = f as
(2.7) Dy(Dy — 01)u = 0+(D, — ox)u — D2u — f.
Taking the inner product of (2.7) and pwy, we have
b
d
/ @(Dywi»wi)h%
(2.8) a Y

b b b
dy dy dy
= U:F/ <P|wi|%yn—/ @(Diuawi)hyn—/ @(fawi)hyj-

Take the real part. By integration by parts, the left-hand side is equal to

b
d
Re/ @(Dywi,wi)hy—g
(2:9) gp|C|ijE||2 y=bop b dy n—1 [° dy
h 2 — 2
= (Al 2 p Y Y,
eels ] [l RS+ 5 [ elus

y=a

Let us note that using

(=DZu, Dyun = (v, Dyo)n — v, v = v/Diu=yv-Asu,

we have

b
Re/ go(Dgu,wi)hzi/

=b b b
<p||Dmu|121r 1/ 5 dy <n3 5 dy
= | =2 — = D,o)||Dau|ly,— + — Reoy o||Dyul|f— .
| -5 [ senpaiiyle (5 oDl 2

Apply this to the 2nd term of the right-hand side of (2.8). We then have
(2.10)

b
d
Re/ @(Dywi, wi)hy%
d

b b b
d d
(Reos) / Pl ]} - Re / PP Aty ws)n Y~ Re / olfwshn
-1 b d D,ul2 1"
(25 1) [olwslp 2+ [£0 ]

2 Qyn—l —u
1 [ dy b . dy b dy
-3 | DDl - i vE) [ elDali ~Re [ o(fwan .
Equating (2.9) and (2.10), we obtain the lemma. O

We shall derive estimates of the resolvent Ro(z) = (Ho —2)~!, when z € C\ R
approaches the real axis.

Lemma 2.5. Let u = Ro(2)f. Let wy = (Dy — o4 )u, and put for C* 3 ¢ >0
and constants 0 < a < b,

y=b

b 5 )
dy o(||lwx|lz — | Dzu
(2.11) Li—/ (Dy@+2¢)||Dmu||%yn _i_{ {l |Zn—1|| i) :
a v=a

b b
d d
(2.12) Ry = / (D)l 5 - 2Re / Pl wnt.
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Then we have the following inequality.
(2.13) L, <Ry, L_>R_, if Imyz>0,
(2.14) L,>R,, L_<R_, if Imyz<0,

Proof. Using Lemma 2.4, ¢ > 0, and the sign of Im /z, we obtain the lemma.
O

In the following, z varies over the region
(2.15) Jr={2€C;a<Rez<b 0<+lmz <1},
where 0 < a < b are arbitrarily chosen constants.
Lemma 2.6. Let w = Ry(z)f with f € B. Then, for any e > 0, there exists a
constant C. > 0 such that
| IDBY < clull + A, v g

Proof. Assume that z € J,. Letting ¢ = 1 and using (2.13), we have

b 2 qy=b b
dy ||Dmu|| |w g / dy
Dyul2 == < h + .
/a | quhyn < { oy 1 . ) (fywi)n o

By Theorem 1.3 (4), w,, D,u € L? for z ¢ R. Hence

o lwe R+ IDsullR - lwlIf + [[1Doulli
(2.16) hin_}glf = =0, hyrgoo = _

Therefore letting a — 0 and b — oo along suitable sequences, we have

JA RS V w2

Theorem 1.3 (1) yields ||w4 ||g+ < C(|lul|s+ || f||8+), which proves the lemma when
z € Jx. The case for z € J_ is proved similarly by using w_. O

< ellwi g + Cell fl3-

Lemma 2.7. Let u, f be as in the previous lemma, and wy = (Dy — o4)u.
Then for any € > 0, there exists a constant C. > 0 such that, for any y > 0,

[w[lf = [ Dzl
’ hyn 1 ‘h < ||U|%* +Ce||f”%g, VZ€J+,

lw_ |2 - [ Doul?
o=l e < 2. + i1z, vee .

yn 1
Proof. As in the previous lemma, assume that z € J;. Letting ¢ = 1 and using
(2.13), we have

lw 1§ — [ Daulli Jwillf — [[Daulli
< C .
yn_l y=b yn_l y=a + ||f||B||w+HB
Using (2.16) and [letting a — 0 along a suitable sequence, we obtain the lemma by
Theorem 1.3 (1). O

Lemma 2.8. Let u, f, wy be as in the previous lemma. Then, for any e > 0,
there exists a constant C. > 0 such that

lwills- < ellulls- + Cell flls, V2 € Jy,
g+ Ccllflls, Vze J-.

[w—|ls- < ellul
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Proof. We divide the inequality in Lemma 2.7 by y and integrate on (1/R, R).
We then use Lemma 2.6 to estimate the integral of || D, ul|3, and obtain the lemma.
U

Lemma 2.9. There exists a constant C > 0 such that
IRo(2) flls- < Cllflls, Vze€ Js.

Proof. We consider the case that z € Ji, and put /z = k + ie for z € J,.
Then € > 0 and k£ > C for some constant C' > 0. Letting wy = (D, — o4 )u, we
then have

(2.17) Im Dy(wy,u)n =Im (n — 1+ 2ik) (w4, w)n — Im (f, u)n.
This is a consequence of the formula
n—1 ,
Dy = (Dywscin + e+ ("5 + e k) (wy
and (2.7). We integrate (2.17). Since

yn 1
we then have

b
(2.18) Im [%;’_ul)h} —2kRe/b(w+, — —Im/ (f,u)

Using wy = Dyu — ou and integrating by parts, we have

b
d d
Re [ (i = 2 [”“”h} [

Therefore (2.18) is computed as

I [W;?hr:k {”:"ﬂ ok R [0,

which implies

Im yn—l yn—l

Note that for z € R, w; and u are in L?((0,00); L*(R"!);dy/y™). Hence, there
exists a sequence by < by < --- — oo such that
[(wes wn (bm)] + [[ulbm) IR
b !
For w,, we take a = y < b = b, to have

2 2
Ll < o, (Ll o Ot Bl 1 s ).

Letting m — oo, we see that

@l _ <|w+(y)||i

yn 1 ynfl

(wiwn]” _ [leld]”
< + Cllf sl
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Dividing by y and integrating from 1/R to R, we have

I e o dy C /R o dy
U < w — +C U
logR/ lu()ln n | +(y)llhyn £l sllul

/R y' " logR o
which implies
lull- < Cllwi |z + Cllfllslulls-.
This, together with Lemma 2.8, yields
lulls < Cllflls, Vz e Jy.
Similarly, we can prove the lemma for z € J_. O

Lemma 2.9 completes the proof of Theorem 1.4.2.

2.4. Radiation conditions and uniqueness theorem. The following the-
orem specifies the fastest decay order of non-trivial solutions to the Helmholtz
equation (H — \)u = 0.

Theorem 2.10. Let A > 0. If u € B* satisfies (H — ANu =0 for 0 <y < yo
with some yo > 0, and

1
dy
2
u(y ne1y——
RH W72 Dy

)

then u =10 for 0 <y < yo.

We should stress that we have only to assume the equation (H — X\)u = 0 to be
satisfied near y = 0. The proof is given in the next section.

Corollary 2.11.  ¢,(H) N (0,00) = 0.

We say that u € B* satisfies the outgoing radiation condition (for o), or
incoming radiation condition (for o_), if the following two conditions (2.19) and
(2.20) are fulfilled:

1
dy
2.19 li Dy —as(A T2me-1) o =0,
@19 g [0 e e
n—1_ .
ox(N) = —5— F VA
. 1 f 2 dy

(2.20) Jim e [ ) S =0

Lemma 2.12. Assume that A > 0 and u € B* satisfies the equation (H — \)u =
0, and the outgoing or incoming radiation condition. Then u = 0.

Proof. We assume that w satisfies the outgoing radiation condition. We take
0 < p(t) € C§°(R) satisfying suppp C (—1,1), Ll1 p(t)dt = 1, and put

@R(y)=x(11§ggé), x(t)z/_ p(s)ds.
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Let (, )n and || - ||n denote the inner product and the norm of L?(R"1), re-
spectively. We multiply the equation (H — A)u = 0 by ¢r(y)u and integrate over
R"! x (0, R) to obtain

R
d
0= Im/ ((—D; +(n—1)Dy + V)u, (pRu)h y—z
0
(Dyu, u)n 1 /R logy dy
2.21 =1 yi" I D -
( ) m ynfl y:R+ mlOgR 0 p(IOgR)( yu7u)h yn

R
d
+Im/ (Vu, pru)y, —g
0 Y
Observe that (2.20) implies, due to Theorem 1.3 (2), that

) 1 " 2 dy
(2.22) Jim logR/1 IIDyU||L2<Rn—1)y7 =0

Indeed, let ¥(y) € C*(R4), v =1 for y > 1 and ¢ = 0 for y < 1/2. Then, with
v = Yu,

(H—-Xv=f:=[H,¢Y]ueB,

due to Theorem 1.3 (1) and the fact, that supp(f) C {1/2 < y < 1}. Thus, v
satisfies conditions of Theorem 1.3 (2), which implies (2.22).
Conditions (2.20), (2.22) yield that

(2.23) lim /R 1Dy — o)u@)l W _g
. 1m Py u n—1)—— — .
Rso0 logR /R Y O+ Yy L2(R )yn
Also (2.20), (2.22) imply that
lim inf M =0.
y—00 yn—l

We also see that
R (e
d d
Im/ (Vu, pru)y, el YN Im/ (Vu,u)h—y =0.
0 y" 0 y"

Indeed, [;°|(Vu, u)nd|y/y" < oo, since Vu € X*,1/2 < s < (1+¢)/2 due to (2.4)
and Theorem 1.3 (5). As V' is symmetric, this gives the result.
Hence, by (2.21), there is a subsequence Ry < Ry < -+ — 00 such that

1 *  logy dy
I D — — 0.
mlogRj /0 p(logRj)( yu’U)hy” -

Combining this equation with (2.23), we have

lim VA ¥ log y Ju, u) d_
i log Ry Jo g R, Ry T

This implies that
1 R; dy
lim/ wy)|i—= =0
j—o0 IOgR; I/R; ” ||hyn

along a suitable sequence R} < R) < --- — oo. The lemma then follows from
Theorem 2.10. 0
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2.5. Proof of Theorem 2.3. The assertion (1) has been proved in Corollary
2.11. Let € be as in the condition (C) in Subsection 2.1, and take s such that

<s<1EE
R

arbitrarily, and put

—~

- N

Take a compact interval I C (0,00
J={Atie; Ael, 0<e<1}.
Lemma 2.13. (1) There exists a constant C > 0 such that
(2.24) Sup [R(2)fllx-- < Cllflls,

(2.25) sup [R(2)flls < C| flls-

(2) For any A > 0 and f € B, the strong limit lim._o R(A=Lie) f =: R(A1i0)f exists
in X~%. Moreover, R(A+1i0)f € B*, and lim_o(R(X £ i€)f,g) = (R(A£1i0)f,g)
for any g € B.

(8) For any f,g € B, R(A£1i0)f is an X~ %-valued strongly continuous function of
A >0, and (R(A£140)f,g) is a continuous function of X\ > 0.

Proof. If (2.24) does not hold, there exist z,, € J and f,, € B satisfying
[fnlls = 0, lunllx-s =1, un = R(2n) fn.
These imply that
(2.26) (Ho — zn)up = fr — Vg,

and we can assume without loss of generality that z, — A € I. By Theorem 1.3

(6),

[D%up |- < C, |af < 2.
Therefore, by the condition (C), Vu,, € B and

Returning to (2.26), this implies, due to Lemma 2.9, that
(2.27) |un||p- < C.

Therefore, there exists a subsequence, which we continue to denote by wu,, such
that u,, — u weakly in X ~°.

On the other hand, applying Theorem 1.3 (4), we see that, with |o| < 2 and
1/2 < t,t' <s,

(2.28) D%l < C (lunllye + [1fullyo) < C;

(2:29) 1D (n = t)lly-r < € (Iltn = wnlly—sr + 1fus = Flly-oe + [z = 2m ).

These imply, using Rellich’s theorem, that there exists a subsequence such that
D®u,, — D%u in x~*, || < 2 and, in particular, ||u||,-- = 1. Then

u=—Ro(A+i0)Vu, VuceDbB,

and, by Corollary 1.4.8 (2) and Lemma 1.4.9, u satisfies the radiation condition.
Thus, by Lemma 2.12, u = 0, contradicting ||u||,-s = 1. This completes the proof
of (2.24).

To prove (2.25), we have only to use the resolvent equation R(z) = Ro(z) —
Ro(z)VR(2), (2.24) and Lemma 2.9.
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The assertion (2), (3) can be proved by the similar manner. O

The assertions (2), (3), (4) of Theorem 2.3 are now easily derived from Lemma
2.13 and the resolvent equation R(z) = Ry(z) — Ro(2)V R(z). To this end, we use
Theorem 1.3 (6) with s < (1 +¢€)/2, (C) in the decay assumption of the metric in
subsection 2.1 and Theorem 1.4.2 (3).

For the proof of (5), see [58] or [62], p. 49. O

The following lemma is a consequence of the above proof.

Lemma 2.14. For any f € B and A > 0, u = R(A+i0)f satisfies the equation
(H — MNu = f, and the radiation condition. Conversely, any solution u € B*
of the above equation satisfying the radiation condition is unique and is given by

= R(A£1i0)f.
3. Growth order of solutions to reduced wave equations

3.1. Abstract differential equations. Let X be a Hilbert space and con-
sider the following differential equation for an X-valued function u(t):

(3.1) —u"(t) + B(t)u(t) + V(t)u(t) — Eu(t) = P(t)u(t), t>0,
E > 0 being a constant. The following assumptions are imposed.
(A-1) B(t) is a non-negative self-adjoint operator valued function with domain

D(B(t)) = D C X independent of t > 0. For each x € D, the map (0,00) >
t — B(t)x € X is C1, and there exist constants to > 0 and § > 0 such that

dB
(3.2) di)+(1+5) B(t) <0, Vt>tg.
(A-2) For any fixed t, V (t) is bounded self-adjoint on X and satisfies
(33) V(1) € C1((0, 00 B(X)),
(3.4) ||V |+ || || <C+t)71e vt>1,

for some constants C,e > 0.
(A-8) For any fized t, P(t) is a closed (not necessarily self-adjoint) operator on X
with domain D(P(t)) D D satisfying

(3.5) P(t)*P(t) < C(1+t)*7*(B(t) + 1).
Moreover,
Re P(t) = % (P(t) + P(t)")
is a bounded operator on X and satsifies
(3.6) [Re P(t)|| < C(A1+t)~17¢, Vt>0.

Theorem 3.1. Under the above assumptions (A-1), (A-2), (A-3), if
lim inf({|u’(£) | x + lu(t)[x) =0

holds, there exists t1 > 0 such that u(t) =0, Vt > t;.
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The proof below is a modification of the method in [118] p. 29. In the following,
Il - || x is simply written as || - ||. We put
(Ku)(t) = W/ ()1 + Elu(®)]|* — (B(t)u(t), u(t)) — (V(t)u(t), u(t)).
Lemma 3.2. There exist constants C1,T7 > 0 such that
d

%(Ku)(t) > —C1(1+t)7 7 (Ku)(t), Vt>T.

Proof. By choosing € small enough, we can assume that, in addition to (A-2)
and (A-3),
(3.7) V'@l < C+)~' 72

By the equation (3.1)
LKWt = 2Re [(u W) + E(u,u') — (Bu,u') — (Vu, u')} — ((B' + V'), u)

dt
= —2Re(Pu,u’) — ((B"+ V')u,u).
By (3.5)
(3-8) 1Pull < C(1+6)717(V/ (Bu, u) + [Jul]).

By (3.7), there exists tg = to(e) > 0 such that for ¢ > ¢
(V' (B w)] < SO +H7 ]

By (3.2)

1456
—(B'u,u) > %(Bu,u).
Putting the above estimates together we have that there is C. > 0 such that for
t> 1

d ey 2 / €onay oy L
ZEW@) = O ([ ull o] + Fllul®) + 5 (Bu, u)
1
> —Ct |2 - Cet ™ u)® + ~(Bu,u).
We rewrite the right-hand side as
1
—Cet (W + Bllul®) + (CeB = Cept™ = [ull* + 5 (Bu, u)

= —Ct ' (Ku)(t)
—1—e¢ 2 —1—e¢ 1 Cﬁ
+(C.E —Ce)t |lul| = Cet (Vu,u) + (E - t1+€)(Bu, u).

Choose C, large enough so that C.E—Ce > %CEE. Using (3.4), choose ty = to(e, C)
such that, for ¢ > to, Z{u||* — (Vu,u) > 0, and 1 — Ct=¢ > 0. Thus, the 3rd line is
non-negative for ¢t > to. Hence the lemma is proved. O
Let m > 0 be an integer and put
m? —logt
(Nu)(t) =t | K (e u) + Tl\ed(t)UIIZ ;

m _
tloc

1 1
§<a<—, d(t) =

2 1—«
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Lemma 3.3. If suppu(t) is unbounded, there exist constants my > 1, To > T
such that

(Nu)(t) >0, Vt>T,, Vm>mg.

Proof. Letting w(t) = e?u(t), we have

d d m? — logt
%(Nu) = Kw + t%(Kw) +(1— QO‘)THU’W
— 72 w|* + 2(m? — log t)t' ~?*Re (v, w)
2 —logt
(3.9) = [[w|? + (B + (1 = 20) T2 — 720 [

— (Bw,w) — (Vw,w) + t%(Kw)

+2t1729(m? —logt)Re (w', w).
By direct computation,

w' = e + mt™%w,

1

w' = edu//

+ mt %% + mt~%w' — amt™* tw
= Bw + Vw — Ew + 2mt~*w’
— [P+ (amt™* " + m*t %) w.

Hence,

%(Kw) =2Re (w" + Fw — Vw — Bw,w') — ((B"+ V')w,w)

(3.10) = dmt=||w’||? — 2(amt=*"" + m2~2)Re (w, w')
— ((B"+ V')w,w) — 2Re (Pw,w").
By (3.9) and (3.10) we have
%(Nu)
(Amt' = + V) ||w'||? + {E + (1 — 2a)t2*(m? —logt) — t~2*}||w]|?
—2(amt™® +t' 72> logt) Re (w,w’) — (V 4+ tV")w,w)
— ((tB' + B)w,w) — 2tRe (Pw, w")
=0+ 1+ I

For large t > 0, I; is estimated from below as

E
I > (Amt' > + 1)’ + (5 + (1= 2a)t™2*m?) ||lw|?.

By (3.4), I3 is estimated from below as
I, > —2(amt™ 4+t logt)|lwl|||w’|] — Ct~¢|jw]|?
> —em®t7*|w|)* = Ccf|w'||?
—2t' 7> log t||wl||w’|| — Ct~*[w]]*.
By (3.2), I3 is stimated from below as
I3 > 6(Bw,w) — 2t||Pw|| - [Jw']].
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Using (3.8), we estimate the 2nd term as
1 _
2t Pl - [w']| < Sllw'|I* + Ct(Bw, w) + [[w]]?).
Therefore for large t, we have
1
Iy > =5 [w']* = Ct<wl]|*.

Putting the above estimates together, we then have

d 7T 4 E _
27 (V) = omt =l + - w]]* — 267 log t ||
Finally, we use the inequality

17 log t|lwl[[w']| < et'~*||w’[|* + Cet' > (log t)*|Jw]*

and 1 — 3a < 0. Then there is ty > 0 independent of m such that

d E
(3.11) 7 Vu)(t) 2 3mt! = [w'||* + [lw]* > 0

for t > tg.
On the other hand, Nu(t) can be rewritten as

(Nu)(t) = te®[|mt~u + ' ||* + B|u?
— (Bu,u) — (Vu,u) +172%(m? — logt)] ||ul|?
= te® [2t72||u||*m® + 2t “Re (u,u’)m

+ (Ku —t2*||ul|* log t)].

(3.12)

By the assumption of the lemma, suppu(t) is unbounded. Therefore, there is
Ty > to such that ||u(T3)|| > 0. By choosing m, large enough, we then have

(3.13) (Nu)(Tz) >0, VYm > m;.
The inequalities (3.11) and (3.13) prove the lemma. O

Proof of Theorem 3.1. We show that if supp u(t) is unbounded,
(3.14) tim inf ([lo’ (£)]* + [|u(t)]|*) > 0
holds. We first consider the case in which there exists a sequence t,, — oo such that

(Ku)(t,) >0 (n=1,2,---). Let T} be as in Lemma 3.2. Then for some 7" > T},
(Ku)(T) > 0. We show that (Ku)(t) > 0, V¢t > T. In fact Lemma 3.2 implies

% {exp (01 /t(l + 3)_1_Ed5) (Ku)(t)} >0, Vt>T.

T
Hence,

t

(Ku)(t) > exp <—C1/ (1+ 8)16d8> (Ku)(T), Vt>T.
T

This then implies that, for ¢t > ¢(E),

lu ()7 + Ellu(®)]|* = Ku(t) + (B(t)u(t), u(t)) + (V (tu(t), u(t))

> exp (—Cl /T 1+ s)leds> (Ku)(T)
— CEt™||u(t)|.
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Therefore, we arrive at

i (o' )17 + Ju(®1) > exp (€1 [~ 478 () (1) >0

T

We next consider the case in which (Ku)(t) < 0 for all ¢ large enough. Lemma
3.3 and (3.12) show that, for large ¢,

2t_2°‘\|u(t)||2m2 + 2t “Re (u(t), v (t))m — 15_2"‘Hu(15)||2 logt > 0,
which together with

yields, for large t > 0, that
d 1
(3.15) %Hu(t)HQ > ¢« (mlogt - 2m> |u(®)|* > 0.

Since the support of u(t) is unbounded, by choosing T large enough so that ||u(T)| >
0. In view of (3.15), we then have

[u@I = [lu(T)| >0, vt>T,
which proves (3.14). O

3.2. Canonical form. In order to apply Theorem 3.1 to the operator H in
the previous section, we transform the metric ds? into the following canonical form.

Theorem 3.4. Let ds? be the Riemannian metric satisfying the condition (C).
Choose a sufficiently small yo > 0. Then there exists a diffeomorphism (z,y) —
(Z,7) in the region 0 < y < yo such that

102 DI(F — x)| < Cop(1 + dp(x,y)) AV v, g,

92 05(LoL) < Cap(1 -+ da )00 =102, v,

and in the (T,7) coordinate system, the Riemannian metric takes the form
n—1
ds* = ()72 | (dz)* + (dy)* + > bi;(T,7)dz'dz’
i,j=1
Here b;j(z°,77) satisfies the condition (C) with € replaced by /2.

The point is that there is no cross term dz'dy. The proof is a slight modification
of the one given in Chap. 4, §2. This theorem also holds for the asymptotically
hyperbolic ends with regular infinity to be discussed in Chap. 3, §2.

Let us prove Theorem 2.10. In the coordinate system of Theorem 3.4, (denoting

Z,7) by (z,y)), the equation (—A, (n— 1) — A)u = 0 becomes
(@,9) by (z,y

1 nn = ij (n_1)2 _
(= 5o (vaomy) - Uzlf 02, (v/39"0s,) = = = N)u=0.

This is rewritten as

n—1 (n 1)2
2 ij —
(= D2+hDy— Y DuhiiD,, —

4,j=1
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where Q = 3277 b;(x,y) D; + ¢z, y). Here h — (n— 1), h" — §% and Q satisfy the
condition (C), since for y close to 0, dp(z,y) and p(z,y) are equivalent. Putting
t=—logy and u = vexp(—1 f; h(zx,e®)ds), we have

(=07 4+ B(t) — \)v = P(t)v,
where

n—1
B(t) =—e "> 0:,(8ij + aij(t, 7)),

4,j=1

n—1
P(t) = _e_t Z bl(t7 x)aL + C(t7 ZU),
=1
and, for large t > 0, a;j, b;, c satisfy
0207 m(t,x)] < Cap(1+1)°717¢, Va,B.
We have, therefore, for large t > 0
tB/(t) + QB(t) = — Zl,j = 1n_18mie_2t{(—2t + 2)((5” + aij) + ataij)}ﬁxj < 0,

Hence, with X = L2(R"~!), the assumption (3.2) is satisfied. Rewriting P(t)* P(t)
as
P)*P(t)= > aa(t,)(Da)*, Dy =e"'0y,

la|<2

we have, for any ¢ € C°(R"™1),
(P POp,g) < C(1L+0)7272 (e 0,0l + Il

< CU+H7((BMp. o)+ (9,9),

which proves (3.5). Note that as t — oo, y — 0 and

(3.16) exp(—;/ . e*)ds) = 5"/ (1+ O(|logy| ).

to
Our next goal is to show that the condition in Theorem 3.1 is satisfied. To
this end, we return to the proof of Theorem 1.3 (2). Take x(¢) € C5°(R) such
that x(t) = 1 for —1 <t < —1/2, and x(t) = 0 for t < —2 or t > —1/4. Take
¥ € C§°(R) such that 1» = 1 on supp x, and ¥(t) = 0 for t > 0 or t < —3. Then the
estimate (1.15) is valid for this choice of x and . Following the arguments after

this inequality, we obtain
—1/2
1 [ d
lim inf / IDu(y) P22 =0
R—oo log R Jp—1 y"
if the condition of Theorem 2.10 is satisfied. This implies that

D 2 2
g 120 + ()
y—0 ynf

=0.

Since t = —logy, it follows from this formula together with (3.16) that
lim inf (o' (#)[| + lo(£)[]) = 0.

Therefore, by Theorem 3.1, v(t) = 0 for large ¢, i.e. u(y) = 0 for small y. By the
unique continuation theorem, this in turn imples that u(y) = 0 for y < yo. ]
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3.3. Asymptotically Euclidean metric. Let us remark that Theorem 3.1
also applies to asymptotically Euclidean metrics on R™. In fact, given a metric
gij(z) satisfying

102 (9i(x) = 6i3)| < Cal1+ [a) 7127170, Va,
one can construct a diffeomorphism near infinity such that this metric is trans-
formed into
(clr)2 + 7"2h(r,w,dw), r>ry, wesvl

where h(r,w,dw) is a positive definite metric on S"~!, and behaves like hq(w, dw)
at infinity, where ho(w, dw) is the standard metric on S"~! (see Appendix A, §2).

4. Abstract theory for spectral representations

4.1. Basicideas. Let H = ffooo AdE () be a self-adjoint operator on a Hilbert
space H, and I an open interval contained in o,.(H). Let h be an auxiliary Hilbert
space and H = L?(I;h; p(M\)d)) the Hilbert space of all h-valued L2?-functions on
I with respect to the measure p(\)d\. By a spectral representation of H on I, we
mean a unitary operator U : E(I)H — H such that

(UHF)N) = MNUF)(\), Yfe DH), VYrel.

We mainly consider the following situation. There exist Banach spaces Hy,H_
such that Hy C H C ‘H_ and for A € I, lim|o(H — X F ie) ! exists as a bounded
operator in B(H,;H_). For the limits (H — (A £ i0))~! one can associate the
operators Uy (\) € B(H4;h) and the spectral representations Uy satisfying

(U£f)N) =U(N)f, VAel, VfeH,.
Then there is a unitary operator S (M) on h such that
Ur(\) =SNU_(\), VAel

This S (A) is called the scattering matrix or S-matrix. The two limits lim¢jo(H —AF
ie)~! appear naturally in computing the limit lim;_, 4., e~ . Hence, the S-marix
is closely related with the asymptotic behavior of solutions to the time-dependent
Schrodinger equation i0;u = Hu. However, the scattering matrix depends on the
spectral representations U4 so that there exist apparently different S-matrices for
the same operator H. In this and the next sections, we shall introduce three kinds
of S-matrices and study their relationships in the case of R™ and H™. We begin
with an abstract framework.

4.2. Stationary wave operators. Assume that we are given a Hilbert space
‘H and Banach spaces H4 with norms || - ||, and || - ||+ satisfying

Hi CHCH-, fll- <A< flls VfeHy

We also assume that the above inclusions are dense, and that the inner product
(, ) of H is naturally identified with the coupling of Hy and H_. This means that
there exists an isometry T : H_ — (Hy)* such that

<f7Tu> :(fvu)7 Vf€H+7 VUGH>

where (f,v) denotes the value v(f) of v € (Hy )" for f € H. In this case we simply
write H_ = (H4)".
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Let H;,j = 1,2, be self-adjoint operators on ‘H such that D(H;) = D(H3). For
j=1,2, we put R;j(z) = (H; — 2)~'. Since D(H;) = D(Hz), we have
(4.1) (Hy — H)Ry(z) € BO:H), =¢R.

Now for j = 1,2, we assume the following:
(A-1) For any p(\) € C5°(R), @(H;)Hy C Hy.
(A-2) There exists an open set I C R such that op,(H;) N1 =0, and the following
strong limit exists

lin%Rj(/\i i€) = Rj(A+10) e B(H{;H-), VAel.

Moreover for any f € Hy, I 5 X — R;(A£1i0)f € H_ is strongly continuous.

(A-3) We put Gj(z) = (Hj — 2)Ri(2) for z ¢ R, and assume that for A € I, € >0
there exists a strong limit

hII(l) G]k()\ + ie) = G]k(/\ + ZO) S B(H+; H+)
Furthermore for any f € Hy, I 2 X — G (A £ i0)f € Hy is strongly continuous.

We first introduce an operator which shows the similarity of H; and Hs. Let
E;(X) be the spectral measure for H;, and for A € I, put

B(\) = % (Ry(\+i0) — R, (A — i0)).

By the assumption (A-2), E%(\) € B(H4;H-). Now for any compact interval e C I
and f € H,, we define

Qe f = / EL(N)G k(A £140) fdA.

This is called the stationary wave operator. By the above assumptions, ngkt)(e) €
B(H4;H_). However, we have the following stronger results. Let us recall one
terminology. For two Hilbert spaces H; and Hs, closed subspaces S; C H; and
Sy C Ho and U € B(Hq; Ha), we say that U is a partial isometry from H; to Ho
with initial set S7 and final set Sy if U : S7 — S5 is unitary and U : Sf‘ — 0. Uis
a partial isometry if and only if U*U and UU™* are orthogonal projections onto its
initial set S7 and final set Sy, respectively.

Theorem 4.1. Let e be any compact interval in I.
(1) Qﬁ;)(e) is uniquely extended to a bounded operator on H, and is a partial
isometry with initial set Ey(e)H and final set E;(e)H.
(2) (Qﬁ:)(e))* = Q%)(e), where * means the adjoint in H.
(3) Qﬁ[)(e) intertwines H; and Hy. That is, for any bounded Borel function o(X),

+ +
P (H)Q (0) = Q) () (Hy).
Theorem 4.1 is proved through a series of Lemmas.

Lemma 4.2. Let f()),g(\) be Hi-valued bounded measurable functions on I,
and e, e’ compact intervals in I. We put

o= [BNIND, o= [ EMg0ir
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Then p,v € H and
(o) = [ (OO g)ax

Proof. If f(A),g(\) are constant functions f and g, by Stone’s formula, ¢ =
E;(e)f,v = Ej(€e')g. Hence,

(o) = (Bj(en ') f.g) = / (BN, g)dA.

eNe’

If f(A), g(A) are step functions, i.e. f(A) =3, xn(A)fn, 9(A) = 22, Xn(A)gn, Xn(A)
being a characteristic function of the interval e,,, ¢ and i are written as

©= ZEj(eﬂen)fn, ) = ZEj(e’ Nen)gn-

Therefore,

() = D (Ej(ene NemNen)fm,gn)

m,n

-/ (BY(A) frnr )N
eNe’NemNeny

= [ @Bsm.sei

Hence, the lemma holds for step functions.
Let f()A), g(A) be bounded measurable functions, i.e. we can approximate them
by step functions f,,(\), g,(\) such that

(4.2) Tim [f() ~ N+ =0 ae.

and similarly for g. We put
en= [ BN b0 = [ BN
Then we have
e = ot = [ (SO = Fot () FnlN) = e (WA=,

when m, m’ — co. Indeed, assumption (A-2) and boundedness of f imply that the
integrand is uniformly bounded with respect to m, m’. Also (4.2) implies that this
integrand tends to 0 a.e. By Lebesgue’s theorem, the result follows.

Thus, the sequence {p,,} converges to ¢ in H and similaly, {t,,} converges to
1. Moreover, letting m,n — oo in the formula

(mon) = [ (BN, gu ()N

we complete the proof of the lemma. O
Lemma 4.3. If f,g € Hy and e, e’ are compact intervals in I, we have
+ +
Q7 (e)f, 95 (g e R,

Q5 ()1, 25 (€)g) = (Br(ene)f.g).
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Proof. By Lemma 4.2

Q5 ()£, 24 (¢")g) = / (B! (\)Gji( £ i0) f, Gyu(A % i0)g)dA.

eNe’

Using the resolvent equation, we have
1
(A E ie)T[Rj()\ +ie) — Rj(\ — i€)|Gr (N £ i€)
(4.3) T
1
)

= ﬁ[Rk(A +i€) — Rp(A — ie)].

Hence,

2mi

( LRy (\ +ie) = Ry (A — i0)|Gyn(A £ i) f, (A & ie)g)

1
— (5l i0) - R~ i0lfg).
Letting € — 0, we finally obtain
(4.4) (B (NGj(A£140) f, Gji(A £i0)g) = (EL(N) . 9),

which proves the lemma. O
By Lemma 4.3, Qgt)(e) is a partial isometry on H with initial set Ej(e)H.

Lemma 4.4. For any compact interval e C I, we have (ng)(e))* = Q,(;)(e).

Proof. Since G};(2)Gj;(2) = 1, by multiplying (4.3) by G, (A % i€), we have
1 . , .
TM[R](A + 7,6) - R]()\ — ZG)]ij()\ + ’LE)

= Gy £ i) [Ru(A +ie) — Ri(A — i)

1
uy!
Letting € — 0, we have for f,g € H4
(4.5) (fs E5(N)Gik(A £i0)g) = (E; (M) Grj(A £i0)f,9),
which proves the lemma. O
This lemma implies that the final set of Qg? (e) is the initial set of QS;)(@), ie.
Qﬁc)(e) is a partial isometry with initial set Ej(e)H and final set E;(e)H.
Lemma 4.5. For any compact intervals e,e’ C I, we have Ej(e/)ngkt)(e) =
+
Q% () Br(e).
Proof. Lemma 4.2 yields for f,g € H
+ +
(B;()955 ()f.9) = (4 ()] E5()g)
~ [ EBNG (A0, g)ax
eNe’

By (4.5) the right-hand side is equal to
| ENGL0 00 = (B2 (@)
eNe’

Q4 () Er(e) [, 9),
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which proves the lemma. O

The assertion (3) of Theorem 4.1 is a direct consequence of the above lemma.
Approximating I by compact intervals, we define ngkt) (I).

4.3. Time-dependent wave operators. We consider the relation between
stationary and time-dependent wave operators. We impose a new assumption.

(A-4) For any open set e C I, there is a set D, C Hy N E1(e)H, which is assumed
to be dense in Eq(e)H, such that for any f € D,

/ (Ha — Hy)e= i fl|dt < oo,

— 00

Theorem 4.6. Under the assumptions (A-1) ~ (A-4), for any open sete C I,
the strong limit

s Jim et B (e) = Wi (e)

in H exists and ngf)(e) = Wéfﬁ)(e).
Proof. The assumption (A-4) implies that, for f € D,,
© g ,
/ ”7 (ethQG—thlf) Hdt < 00
Lo At
holds. Hence there exist the limits s — limy_, 1 o €2 Ei(e)f and, therefore,
by the density of D, the existence of Wz(f ) (e).
To prove ng)(e) = Wz(li)(e) for any open set e C I, it suffices, due to Lemma
4.3, to consider relatively compact sets e.
Let Vo1 = Hy — Hy. For f € D, we have
Wi (e)f = F+i / etz et £y
0
Hence, for f € D.,g € H,
(46) (W3 (e)f,9) = (fr9)+ limi / (™2 Va1e ™M £, e=20 g .
€E— 0

Using the following relations

o0 0
R(A+ie) = 2/ ez‘t(/\ﬂe—H)dt7 R(\ —ie) = —z’/ pit(\—ie—H) 1y

0 —00

and Plancherel’s formula for the Fourier transform, we have for f € D, and g € H

oo
7; / (eitHz ‘/éle—itHl f, e—26tg)dt
0

1 o0
= —% (‘/21R1 ()\ + ie)f, RQ()\ + 'LE)g)d/\
Here we should note that ||Vao1 R(- + i€)fl|2, | Ra(- + i€)g|lxx € L*(R), hence the
integral of the right-hand side is absolutely convergent. To see this, we have only

to note that

(4.7)

IR0+ 80 = [ i By h. b,

VorRi(\ +i€) f = Vo1 (Hy 44) ' Ry(\ +ie) (Hy + 1) f,
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and (Hy +1i)f € E1(e)H, also Vo1 (Hy +i)~! € B(H; H) by (4.1).
We now let

Sa(N,€) = ﬁ(RQO\ + i€) — Ro(\ — ie)),

and prove that, if f € D, and g is such that d,,(E2(u)g, g) is compactly supported,

o) N
(4.8) i / (et =t f =26t g\ gt — Jim (62(X, €)Var Ry (X + i€) f, g)dA
0 —J_N

Indeed, by using the identity Rs(z) — Ri(z) = —Ra(2)V21R1(%), we have
1 N

-5 (VQlRl()\ + iE)f, RQ(/\ + Zﬁ)g)d)\
271 -N

- /N (B2 (A, ) Var Ry (A + ie) f, g)dA

-N
1 N
+ — ((RQ()\ + ie) — Ry (/\ + iE))f, g)d/\
2 J_n
I , 1
However, — (Rj(A+1€)f,g9)d\ — =(f,9) when N — oco. In fact,
2 J_ N 2

(B f0) = [ (B 01, Ey ),

oo

where the domain of integration is bounded by our assumptions on f and g. There-
fore

1 N N — p+ie
Lm0 - du (B (1) f, B;(1)g)-
5 [ (woriofgan= g [ w(FEEES) a0 B0
. —N — i+ e . , .
Since In N utic — i for any p, the result follows by Lebesgue’s dominated
— p+ie

convergence theorem.
Let us take bounded open intervals J, J; such that

(4.9) ececJcJcJicJCl,

and g = @(Hz)h for some ¢(\) € C§°(J) and h € Hy. Such g’s are dense in
Ey(I)H. Then we have

(4.10) (52(,)VerRu(- +i€) f, ) € L'(R), € >0,
(4.11) lim jo B2\, )Var Ra (A +i€) . 9)dA = (%7 () £.9) = (£..9).

In fact, since Voy Ry (X + i€) = Ga1 (A + i€) — 1, we have

(62(A, €)Var Ri(A +i€) f, g) = (02(A, €)Gar (A +i€) f, g) — (f, 2(A, €)g)-
Then the 2nd term of the right-hand side is written as

(4.19) (Faan) =& [,

If A\ € J, the right-hand side is dominated from above by Ce(1 + [A|?)~!. On the
other hand, assumptions (A-1), (A-2) imply that the left-hand side is bounded for

(f, E2(p)g)-
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A € Jp uniformly with respect to e. Therefore (f,d2(-,€)g) € L'(R), and by Stone’s

theorem
oo

(413) im [ (£.0:(\ ) = (£,9).
By the resolvent equation, Ri(z) = R1(i)(1 4+ (¢ —i)R1(z)). Then we have

)
Ggl( ) (HQ—Hl)R1( )(1+(Z—i)R1(Z))+1.

Since f € E1(e)H, we have ||(A + ie — i) Ri (X + i€) f|| < Cy uniformly for A\ ¢ J;
and € > 0. Hence so is [|G21 (A +i€) f||. Then formula (4.12) implies that if A & Jp,

[(Gar (X +i€) f,62(X, €)g)| < Ce(1+ |A])~!

which implies
(4.14) / ~ (62(N, ©)Gar (A +ie) f,g)dA — 0, €— 0.
R\J;
Since f € E1(e)H,
E4(N)Gar (A +ie) fdA — Q5 (e) f.

J1
Together with (4.14), this implies that
(415) [ G20, 9Gu (91,93~ (957(0)1.9)
R

Equations (4.13) and (4.15) prove (4.11). By (4.6), (4.8) and (4.11) we get WQ(T)(e) =
Qg;r) when e is a relatively compact interval in I.

For an open subset e C I, we have only to appriximate e by a finite number of
relatively compact intervals. The proof for W2(1_ )(e) = Qg?(e) is similar. O

4.4. Spectral representation. Let us recall that for a self-adjoint operator

H = [*_XdE()), we take an open interval I in o4.(H). We take an auxiliary
Hilbert space h and a measure p(A)d\ on I, p(\) € L*(I;d)), and put

H(I) = L*(I;h; p(A)dA).
A unitary operator U from E(I)H onto H(I) satisfying
(UHN) =AU, rel, feD(H)

is called a spectral representaion of H on I. By the functional calculus,

(4.16) (Up(H)f)(A) = o) (Uf)(X)
holds for any bounded Borel function ¢ and f € E(I)H. In fact, (4.16) is first
proven for the resolvent p(H) = (H — 2z)~!, next for the spectral measure E(u) by
using Stone’s formula, and then for any bounded Borel function.

Let Hy, H_ be Banach spaces satisfying the assumptions in subsection 4.2. We
assume that, for A € I, there exists a bounded operator U(\) € B(H.4;h), which
is stronlgy continuous in A, such that

UHN)=UWNS, rel, feH,.
Then U(X)* € B(h; H_). Let us show that for ® € H(I)

(4.17) U*d = / U *®(\)p(\)dA € E(IVH.
I



4. ABSTRACT THEORY FOR SPECTRAL REPRESENTATIONS 75

Indeed, let us first assume that supp ® C J, where J is a compact set in I. Then,
for f € Hy, we have

([rerememars) = [@).000 NN = @05 = 0. 1),

As U™ is partial isometry, the right-hand side can be extended to f € H, which
together with Riesz’ theorem implies (4.17) for ® with supp® C J. Since J is
arbitrary, and I C o,.(H), (4.17) is exteded onto 7'7([)

As a consequence, we have the inversion formula for f € E(I)H

(4.18) = / U (U )N p(\)d.

In fact, for g € Hy,

(f.0)n = (U, Ug)5, = / (UF)N), UV g)p(A)dA.
Hence we have
(f. ) = / U)WV, 9)p(N)dA,

which proves (4.18) by virtue of (4.17).
We need a new assumption:

(A-5) There exists a subspace D C D(H)NH4 such that D as well as HD are dense
in Hy and D(H).

Then, for ¢p € h, f € D,
(U9, (H=X)f)=0

holds, since U(AN)H f = AU(A)f. Therefore, U(X)* € B(h;H_) satisfies the equa-
tion

(H — U =0,

and is called the eigenoperator of H. Here the self-adjoint operator H in H is
extended to H_ via the relation

(4.19) (Hu, f) = (u, Hf), weH_, feD.

We now discuss the perturbation theory for spectral representations. For H;
we assume that

(A-6) For any A € I there exists Uy (\) € B(Hy:;h) such that for f,g € Hy
(E1(N)f,9) = p(N)(UL(A) £, UL (M) g)n-
Moreover, Uy defined byA(Ulf)()\) = Ui (N)f is uniquely extended to a unitary op-
erator from Ey(I)H to H(I).
By this assumption, we have for f € D(H;)
(4.20) (UL H1 f)(N) = AMULf)(N)ae..
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In fact, let f € D. Since Ri(z)H; = 1 + zR1(z), we have Ej(A\)Hyf = AE{(\)f.
The assumption (A-6) then implies

(E\(I)H. f,g) = / AL, (Urg) (W) p(A)dA
- / (ULHLF)N), (U1g)(A))np(N) dA,

I

which proves (4.20) for f € D. Since D is dense in D(H;) we obtain (4.20).
Therefore, Uy (A)* € B(h;H_) is an eigenoperator of Hy:

(Hy — NU; (M) =0.
We construct the spectral representation of Hy by using that of H;. Start-

ing from U1, we will construct two operators U2(+),U2(_) corresponding to wave
operators W21 ), W( ) For \ € I, we define

U (A) = U1 (V) Gaa (A £ 90).
For f € Hy, we put (U. jE)f)( A) = (i)( A)f. Then we have the following theorem.
Theorem 4.7. Under the assumptions (A-1) ~ (A-6), we have
(B5Nf.9) = s 03 VLU Nghn, - fog € M
Moreover Uz(i) =U; (Wéfc)(l)) , and U;i) s a spectral representation for Hs.

Proof. The first half of the theorem follows from (4.4) and (A-6). By virtue of (4.5)
and (A-6) we have

(E5(NGar(A£i0)f,9) = (f, E1(N)Gr2(A£i0)g)
= PN T V9.
Integration with respect to A then yields, in view of Theorem 4.6, that
W3 (Df.9) = UL U379) g
hence WQ(fE)(I) = (UQ(i))*Ul. We have, therefore, UQ(i) =U; (WQ(;_L)(I))* Since

Ran W (I) = Eo(I)H and Wi o(Hy) = @(Hy)WSE) for any bounded Borel
function ¢(\), UQ(i) is a partial isometry with initial set Ey(I)H and final set H(I).

Moreover Uz(i)cp(Hg) = g@(/\)Uéi) for any bounded Borel function. Therefore, UQ(i)
is a spectral representation for Ho. O

By the relation Ug(i)()\)* = (1= Ray(AFi0)V)U1(N)*, V = Hy — Hy, we have
(Hy — MU (V) =0.

Hence U. (i)(/\)* is an eigenoperator of Hy. Let us summarize the results obtained
so far. Let F5(\) be the resolution of identity for Hs.

Theorem 4.8. (1) Let Vo1 = Hy — Hy and put
U (N) = UL (A (1 = Vo R(A £0)) = Uy (A\)Gia (A + i0).
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Then USS(A) € B(H4:h) for A€ I
(2) Uéi)()\)* € B(h;H_) is an eigenoperator of H with eigenvalue A\ € I in the
following sense
((Hy = 0 f.057 (0)"9) = 0
for any f € Hy such that Hof € Hy and ¢ € h. Moreover,

(U Ho )N = MUV F)(N), [ € D(H), Ael.
(8) The operator UQ(i) defined by (Ug(i)f)()\) = UQ(i)()\)f for f € Hy is uniquely
extended to a partial isometry with the initial set Eo(I)H and the final set H(I).
(4) For any ® € H(I) and any compact interval e C I,
/ U (A *®(M\)p(\)dA € H.

€

(5) For any f € Eo(I)H, the following inversion formula holds:
f=s—lim [ UFF )05 H(Np(N)dA,

n—oo In
where I, = [ap,by],a < a, < b, <b, a, — a,b, — b and I = (a,d).
Proof. We have only to show the assertions (4) and (5). Let I.(®) be the
integral in (4). We first assume that supp ®(\) is a compact set e in I. We take

f € Ey(I)H such that UQ(i)f = &. Then for any g € H, , we have
(f.9) = (U105 )
= [(@2 H0). U 9 )eir = [ (30, EE9)0) pn)ar

e e

- / (USD () BN, g)p(\)dA = (1.(P), 9).

e

We have, therefore, I.(®) = f € H. This implies also that, for any f € Ey(I)H
and a compact interval e C I,

Es(e)f = / U (0 (U ) (N p(A)d,

since (Uz(i)Eg(e)f)()\) = XE(A)(Uz(i)f)(/\), where x.(A) is the characteristic func-
tion of e. Therefore

[ U000 e - o

if the measure of e tends to 0. This proves (5). O

4.5. S-matrix. The scattering operator for Hy, Hy (on I) is defined by
S = (W3 () Wy (D).
This is unitary on E;(I)H. Let us rewrite it by using the spectral representation.
We define R
S =U,5U7.
Letting Vo1 = Hs — Hy, we also put
S(A) =1 —2mip*(NA(N),
A(/\) = U1()\)V21U1()\)* — U1()\)V21R2(/\ + 'LO)‘/QlUl()\)*
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Then S(\) € B(h;h) and is called the S-matrix or the scattering matrix.
Theorem 4.9. §()\) is unitary on h, and for any f € H
(SHN) = SN FN

holds. Here the right-hand side means that we fix A arbitrarily, regard f()\) as an
element of h and apply S(N).

Proof. Noting that
+oo
W) = BEy(I) + i / e 2V, e~isH1 By () ds,
0

we have

Wi - w1 =i / eitH2 Yy, eIt B (T)dt.

By the definition of S, we have
(S = DELD) = (W3 Wy (1) = Wy, (1)
Letting f = E1(I)f,g = E1(I)g, we then have

— / (e H2Vyy e~ Hr ¢ Wi (1) g)dt

—00

4.21 o0 ) )
( ) — —’L/ (V21e—th1 f7 e—thlg)dt

— 00

_ / ds/ <V21€—’itH1 f) eiSH2V21€_i(S+t)ng)dt7
0 —00

where we have used e~ *H2 WP (1) = WP (I)e=*H1 . Letting f(A) = Uy (A)f, §(A)
U1 (M\)g, we obtain

- / dt/(Ul(/\)‘éle_iSHQVéle_“Hl £re7 A0 np(A)dA.
—0o0 I
Inserting e/t and letting € — 0, this converges to

o / (UL (M) Vare = H2=N V) B (A £, §(A))np(A)dA

= 2 / (UL () Vare TNV T () F(N), (0 Jnp(A)2dA,

where we have used Ef(\) = p(A)U1(A)*Uy(A). Therefore, the last term of the most
right-hand side of (4.21) is equal to

—27T/OO ds/(U1(A)Véle_is(HT)‘)V21U1(/\)*f(>\)aQ(A))hP(A)Qd/\-
0 I

—E€S

Inserting e¢® and letting ¢ — 0, this converges to

o /I(Ul()\)VmRQ(/\ +10)VarUt(A)* F(A), 3(A)np(A)*dA.
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Similarly the first term of the most right-hand side of (4.21) is rewritten as
~2mi [ UVl A TN 50 mpl(A) 0
I

This proves the representation of S. Since S is unitary on ﬁ, sois S (Monh. O
Lemma 4.10. For any A € I, we have
U3 () = SN0y (V).
Proof. By Theorem 4.7, we have
(W)

Therefore by the definition of S, we have

*

@y s, wy = (vl .

Suy” =g,

which proves the lemma. [l

5. Examples of spectral representations

5.1. Spectral representation on R". Let us apply the results in the previ-
ous section to Schrodinger operators Hy = —A and
n n
H=- Z a;;(x)0;0; + Zai(m)ai + ao(z)
i,j=1 i=1
on R", where 9; = 9/0x;. Let H = L?(R"™;dx) and assume that H is formally
self-adjoint and uniformly elliptic on R"™, i.e. there exists a constant Cy > 0 such
that

CTYEP < 3 ay(@)eg < ClEf’, Vo & € R
ij=1
The coefficients a;;(x) — d;; and a;(x) of H are assumed to be smooth and satisfy

10%(z)| < Co(1 4 |z))~1771 ) Va, vz eR"

for a constant € > 0. For s € R we define the space L?* by

n

25 f e ||f|2 = / (1+ || () Pde < o

Let s > 1/2 be arbitraily fixed. Then, by choosing Hs = L?*#, the assumptions
(A-1) ~ (A-3) are satisfied for H; = Hy, Hy = H and I = (0,00). We should
remark that by this choice of H4, the boundary value of the resolvent R;(A =+ 0)f
is strongly continuous in L*~% as a function of A > 0. These facts are well-known
and are proved in e.g. [62], where they are proved for the potential perturbation of
—A, however, the proof also works for the case of the 2nd order variable coefficients.
Let us also note that Theorem 3.1 can also be applied in this case.

As a spectral representation for Hy, we employ the usual Fourier transforma-
tion:

n

(TN /) (w) = (2m) 172 / VA f (1),
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and h = L2(S"7!) and p(A) = 1A("=2/2. Then the assumption (A-4) is also
satisfied. Let R(z) = (H — 2)~! and V = H — Hy. Then
Ur(\) = Uy(N) (1 — VR(A + i0))

gives the spectral representation for H.

5.2. Spectral representations on H". Let H = L?*(R'}; dzdy/y™) and con-
sider the operators Hy and H introduced in §2. Let L?*® be defined by Definition
2.6 of Chap. 1. Let Hy = L*** with 1/2 < s < (1+¢)/2 and H; = Hy, Hy = H
and I = (0,00). First we check (A-1). Let (logy)® = (1 4 |logy|?)*/%. We show
that there exists a constant Cy independent of z ¢ R such that

(5.1) [(log y)* (H; — )~ (log y) ~*|| < Cs[Tm 2| 7*(1 + [2]).

Once we have proven (5.1), we can use an abstract theorem from functional analysis
(see Lemma 3.1 in Chap. 3, where o can be an arbitrary negative number) to show

(logy)*p(H;)(logy)™> € B(H; H), Ve € Cg°(R),
which yields (A-1).
Let us prove (5.1). We have
(logy)*(H; — )~ (logy)~*
= (Hj —2)7" + (H; — 2)7'[H;, {log y)*](H; — )" (log y) ~*.

Since [Hj, (logy)®] is a 1st order differential operator with respect to D, D, with
bounded coeflicients, one can show

[, (log y)*|(H; — )~ || < Cultm 2|~ (1 + |2])

by using Theorem 1.3 (4) and the standard estimate of the resolvent. The inequality
(5.1) imediately follows from this.

Theorem 2.3 together with Lemma 1.2.7 justify (A-2). As above, by this choice
of L*** the strong continuity of R;(A £ i0)f with respect to X is guaranteed.

To prove (A-4) for a proper D., e = (a%,b?), 0 < a < b < oo, we first observe
that it is sufficient to show that, for 1 < s < 1+e€e and f € D,,

/ (He™ 50 fllx- + 32 1Dse 0 fll e + 37 1D; Die™ o f]] - Yt < o
J gl

— o0

Assuming that HyD, C D., and utilising Theorem 1.3 (6), we can confine to the
proof that

/ (e 0 f|[ - + [l Hof|| ) dt < 00, [ € D

Let

Do ={f: 6(k,€) = (R f)(k,€) € C((a,b) x R* ) |
Since then (o™ Hof)(k,€) = k2¢(k.€) € C5°((a,b) x R™1), we have HoD, C
D,, it suffices to show that

(5.2) / e~ itHo £, —odt < o0

— o0
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This is proved in the same way as in Theorem 1.5.5. In fact, letting u(¢,&,y) =
Fye Ho f wwe have

1/2
u(t,€,y) = / @’Csulh())('f') YD K (e gk, €)dk

™

(cf. Chap. 1, (5.2)). Then, similar to Chap. 1, (5.3), we show that, for any o > 0,

o0 d _
(5.3) /5 ) B oty o < Cn(L+1H) Y, YN >0

To consider the behavior of wu(t,-,y) for 0 < y < o, we, similar to the proof of
Theorem 1.5.5, use the decomposition

U(t,f, )_uO (t 57 )+u0 (t gay)+ul(t g? )7

which have the same representations as in Theorem 1.5.5 with, however, e
2
replaced by et Since, for k € (a,b) and bounded |¢|,y, we have

(k€L )l < Clély,  107ra(k, [l y)| < Clog(I€ly)IEly,
(see (3.1), (3.2)), we see that, for y < o,
Jur(,€, )| < Coy™D2(1+ Tog(y)|) (1 + [¢]) 2
This implies that

—ikt

(5.4) / (/ ||u1<t,-,y>||L2<R<n_1>yn) dt < .

Using (5.5), we see that, for t > M and t < %,

(5.5) Jugy (t, € y)| < Coy ™2 (1 + Jt) =2

which implies that
1/2

o0 oo B Sd
/ ( | )00 s (1 -+ o) yy) dt < oo
0

— 00

for s > 1. Here ©,(y,t) = 1, if t > M and t < %, and 0 otherwise.
As for the remaining part, we have, by the stationary phase method, that, for
I L
% < Toeto) < o
_ —1/2
g (£ & y)| < Coy™ D72 (18] + [ log(y) )~/

Taking into account that the domain of integration with respect to £ is bounded,
we obtain that

o o dy B
/0 [Tog ()| llugy (¢, -, )| 2 (rn-1) (1 = Oy (3, 1)) gn = Coll+12) ’

This estimate, together with (5.4), shows that

| lutt e = lldt < o

— 00

which, due to (5.3), implies (5.2).
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As for the spectral representation, we put

(2ﬁsinh(\f)\w))l/2

Uo(N)f) (x) = (2m)~ (=172

- mf('&') YOI (k) £ 1) .

R~ 1x(0,00)

and h = L2(R"1), p(\) = $A~1/2. Then the assumptions (A-5), (A-6) are fulfilled.
Taking

Usr(A) =Up(N)(1 = VR(A£10))
gives, due to Theorem 4.7, the spectral representation for H, where R(z) = (H —
z)"tand V = H — H,.

5.3. Absolutely continuous subspace. Let us recall the well-known clas-
sification of the spectra of self-adjoint operators. Let H = [~ AdEg()) be a
self-adjoint operator in a Hilbert space H. Then for any v € H, (Eg(I)u,u),
where I is any Borel set in R, defines a Borel measure on R. Then the absolutely
continuous subspace for H is defined by
(5.6)

Hoc(H) ={u € H; (Eu(-)u,u) is absolutely continuous with respect to dA}.

This is a closed subspace in H. The importance of this subspace is that it is usually
stable under the perturbation appearing in scattering phenomena (see e.g. [80]).

Let Ry(z) = (H — 2)7!, and I be an open interval in o(H). If the limiting
absorption principle holds on I, i.e. the condition (A-2) in §4 is guaranteed on I,
we have

(5.7) Eg(I)H C Hae(H).

In fact, for u in a dense subset of H, we have by Stone’s formula
1
(Eg(B)u,u) = 5 / (Ra(A+10) — Rg (A —i0))u, u) dA,
™ JB

for any Borel set B in I, which yields (5.7). Therefore, for our case of H =
—A, for the asymptotically Euclidean metric, or H = —A, — (n — 1)?/4 for the
asymptotically hyperbolic metric,

Er((0,00))H = Hqce(H).

In this case, we often say that the continuous spectrum of H is absolutely contin-
uous, or H has no singular continuos spectrum.

The spectral representation U(F) is then a unitary operator from Hae(H) to the
representation space L?((0,00)); h; p(A)dA), where h = L?(S™~1) for the Euclidean
metric, and h = L?(R"~!) for the hyperbolic metric.

6. Geometric S-matrix

In §4 and §5, we have constructed two Fourier transforms Uy for H = Hy+V,
however only one Fourier transform Uy is adopted for Hy. As a matter of fact, it is
natural to associate two kinds of Fourier transforms also with Hg. To see this let
us recall that the Green operator for —A — X on R? is written as

(“A—AFi0)Lf = = / T .
4 JRrs |x*y|
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Noting the asymptotic expansion |z —y| ~r —w -y (w =x/r) as r = |z| — oo, we
have for f € C5°(R?)
eiiﬁr

(—A=ATFi0) ' f~ / TNV F(y)dy,  (r — o0).
R3

This suggests that we have two Fourier transforms

(VP 0r) @) =@ [ e Renpyay
for Hy = —A in R". They are related as
gt ) = 105 (),
where J is the unitary operator on L?(S"~!) defined by

d7r

(6.1) J:p(w) — p(-w).
In the case of the hyperbolic space H", two Fourier transforms for Hy = —A,
are defined by
2ﬁsinh(ﬁw) 12
+ —(n—
(VP 0r) (@) = & ) <2w) =12
A déd
e (BT e e e .
R~ 1x(0,00)

They are related as

UP ) =TS0,
sz
J\) = Fy (g) Fo.

Let us return to the abstract theory in §4. Assume that we have two spectral

representatios .Féi) for Hy. Define

FEN) = FN)(1 - VR £i0)),

FO = 7O,

GHEMN) = FHN)( - VR +i0)).

Note that
g(+)(/\> = ]:(+)()\).

Then by Theorem 4.7, F(&) | G(+) give spectral representations for H. The S-matrix
in §4 is defined through F&)(\). Namely

S = F&) (;(—))*7
SA) = 1=2mi p\)F AV = VR(A +i0)V)FO(N)*,

= 1 =21 p(\)FDNVF (N

Here we introduce a new assumption.

(A-7) There exists a unitary operator J(X) on h satisftying
F5P0) = T0FT ).
We define a unitary operator J on L?(I;h;d\) by
(TF)X) = TN FN).
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Then we have
FON =JNGDW), FO =jg).
We define a new scattering operator by
Sgeo - g(+) (g(_))
and a new scattering matrix by
Sgeo(A) = S(A)J(A)
= J(\) = 2mi p VN FO WV ET (V)™

*
?

(6.2)

We call §geo()\) the geometric scattering matriz. Since F(H) = G(H) | we have
5"\geo = §J7
and the following theorem holds.

Theorem 6.1. §geo()\) is unitary on h, and
(Soeof )N = SgeoWF (), V€, Wrel.

The reason why §geo()\) is called the geometric S-matrix is as follows. Suppose
we are given a Schrodinger operator H on a Riemannian manifold M. In some cases,
we can associate a boundary at infinity 0., M for M, and construct the spectral
representation F*)(\) as above with h = L?(0, M), and prove the asymptotic
expansion

RO\ +10)f ~ C1(Na(p)e* PN FE (N f,  (p— o0)

at infinity in an appropriate topology. Here, R(2) = (H — 2)~! and p is a geodesic
distance from a fixed point 2y of M. Moreover the solutions of the equation (H —
A)u = 0 belonging to a certain class admit the following asymptotic expansion at
infinity

w= C-(Na(p)e SN+ Cy (Na(p)etSCV g,

P+ = S\geo()‘)cp—a

(see e.g. [99]). The geometric S-matrix is non-trivial even for the case V' = 0, since

).
Sgeo(A) = J(A). We shall discuss these facts in the next section for the case of R"
and H".

7. Helmholtz equation and geometric S-matrix

7.1. The case of H". We incoporate the results in Chap. 1 §4 and Chap. 2
§5. For k > 0 we define Féi)(k‘) by Chap. 1 (4.2) and put

FO(k) = 7o k),

(7.1) FE (k) = FOk) (1 — VR((k £1i0)?)),

and Hy = L>*° for s > 1/2. Note that we write (k=4 i0)? instead of k? +40. Later
this choice will turn out to be convenient. Then F°(k) € B(L?*; L>(R""!)), and
Theorem 4.7, together with the results of section 5.2, implies

k
E ([R(k2 + 20) - R(k2 - ZO)} f7 f) = ||f(i)(k)f||%2(R7171)7
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where R(z) = (H — z)~!. Therefore by Theorem 2.3, for any 0 < a < b < oo there
exists a constant C' > 0 such that

(7.2) IFE (k) fll 2 mn-1) < Cllflls- @ < ¥k <b,

By the argument in §4, we have the following theorem. Let F(\) be the resolution
of identity for H.

Theorem 7.1. (1) F&) defined by (FE f)(k) = FE(k)f is uniquely ex-
tended to a unitary operator from E((0,00))L?(H") to L?((0,00); L2(R"~1);dk).
Moreover,

(]—'(i)Hf) (k) = k2 (f<i>f) (k), Vk>0, YfeD(H).
(2) For f € E((0,00))L?(H"™), the inversion formula holds:
N
f=s—lim FE () (FE ) (k)dk.

N—oo 1/N

(8) FE (k)" € B(L*(R™1); B*) is an eigenoperator of H in the sense that
(H—E)FI (k)¢ =0, VYoe L2R").

(4) The wave operators
itH ,—itHo

Wi =s—lime

t—+oo
exist and Wy = (FH)*FO.
(5) The S-matriz is written as
(7.3) Stk)=1- %}'(+)(k)V}‘°(k)*,
and satisfies

(7.4) FO(k) = S(k)FO) (k).

We next consider the geometric scattering matrix for H. For k£ > 0 we define
(7.5) GH (k) = F& (k) (1 = VR((k +i0)?)).

As above, GF) (k) € B(B; L>(R™ 1)) and G*) give other spectral representations
for H. Note that, letting Fyy be the Fourier transform on R"~!, we have

Fy k) = Tk)FS (k).
_ (SR
(7.6) J(k) = F ( 5 ) F.
We extend Theorem 1.4.7 for H. For u,v € B*, we define

R
. dy
W lim // () — ()22 mn 1) L = 0.
1/R

R—o00 log R

"
Lemma 7.2. Let x(y) =1 (y < 1/2), x(y) =0 (y > 1), and wy (k) be as in
Chap. 1 (4.15). Then for any p € L*(R"™') and k > 0
* k n— —1
Fo (k) e = —wr(R)x(y)y™ D>
k

-~ ﬁwf(k)x(y)y(”‘1)/2“’“J(k)*<p,
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- * k n— —1
Fo (k) = —wr (k)x(y)y™ PRI (k)

k .
2o (K (n—1)/24ik )
gl (k)x(v)y @

Proof. In view of Chap. 1 (4.14), we have only to compute the behavior of the
left-hand side as y — 0 for » € C5°(R™"1). We use Chap.1 (3.6) in the expression
Chap.1 (4.10) and compute directly to prove the lemma. O

Lemma 7.3. Let x(y) and wy (k) be as in the previous lemma. Then, for f € B
and k > 0, '
R(K? £0)f = ws (k)x(y)y "~ 2FEGE (B f.

Proof. The lemma follows from the resolvent equation
R(k?* £i0) = Ro(k* +140) — Ro(k? £ i0)V R(k? £ i0),
Lemmas 4.7, 4.9 of Chap.1 and (7.5). O

By (6.2), the geometric scattering matrix is defined to be
~ T ) s
Saeolk) = J(k) = = FH RV (k).

Lemma 7.4. For p € L?>(R" 1)

k L
G (k) ~ Ew+(k')x(y)y(”‘l)/Q‘“kSgeo(k)so

k

ko (n—1)/2+ik
el (k)x(v)y ©

Proof. By (7.5)
GO k) =3 (k) — RO +10)VF (k)"0
Since F(H) (k) = G(+)(k), we obtain, by Lemmas 7.2 and 7.3, that
k

G (k) ~ Ew"‘(k)X(y)y(nil)/QiikJ(k‘)gp
k o - )

= —w- (Wx(y "R — o (R)x @)y T (R) = Speo(R)] ¢
i n— —ikQ k . .

~ Ew(k)x(y)y( N/2=ikg (k) — gwf(k)x(y)y( D/2+ik, [

Lemma 7.5. There exists a constant C = C(k) > 0 such that for any ¢ €
LZ(Rnfl)

" 2 dy 2
dim oo | IO ey = Ol

Proof. Weputa, = ggeo(k)cp, a_ = ¢. Then by Lemma 7.4 \|Q(7)(/€)*<P||%2(Rn—1)
behaves like

CL(B) Py Hlay R + 1C- () Py~ Ha-|E

+C4 (k)C_(k)y™ 1 (ay,a)n + C—(k)Cy (k)y" 2% (a_, at ),
where Cy (k) are constants. Simple computation shows that the 3rd and 4th terms

tend to 0. As §geo()\) is unitary, the lemma follows. O
Together with (7.2), this implies
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Corollary 7.6. There is a constant C > 0 such that
CMlell 2 mn-1y < G (k) ¢lls- < Cllellr2mn-1)-

Lemma 7.7. If u € B*, (H — k%)u =0, f € B, and cither G (k)f = 0 or
G () f = 0 holds, then (u, f) = 0.

Proof. The same as Lemma 1.4.10. O

These preparations are sufficient to extend Theorem 1.4.3 to H.

Theorem 7.8. Fork >0
{ueB*; (H—-k)u=0}=GH (k) (L*R")).
Theorem 7.9. If u € B* satisfies (H — k*)u = 0 for k > 0, there exist o1 €
L?(R"Y) such that
k n— —1 k n— 7
u o —wy (k)x(y)y™ 2o — —w_ (k)x(y)y" R
i i
Moreover,

~

O+ = Sgeo(k)p—.

Proof. By Theorem 7.8, u can be written as u = g<—>(k)*¢. Using Lemma 7.4,
we prove the theorem. O

Theorem 7.10. For any ¢_ € L?>(R" 1), there ewist unique u € B* and
o4 € L>(R™1) such that the equation (H—k*)u = 0 and the exzpansion in Theorem
7.9 hold.

Proof. The existence of such ¢, and u follows from Theorem 7.9. We prove
the uniqueness. If p_ = 0, we have u ~ C'(k)x(y)y"~Y/2=*_  hence u satisfies
the radiation conditions (2.19), (2.20). Then u = 0 by Lemma 2.12, which also
proves ¢4 = 0. O

7.2. The case of R™. It is worthwhile to give a brief look at the case of R".
We define the weighted L? space L?* and the Besov type space B by

L%% 5 u<— ||u||§ = / (1 4 |z)% |u(z)|Pdx < oo,
Rn

[ulls = ZQj/QHUHL?(Qj) < 00,
§=0
Qj = {$ S Rn;T’j_l < |l‘| < T’j},
where r; = 27 (j > 0), r_1 = 0. The dual space of B has the following equivalent
norm

1
Jullg- = sup Ju(@)|2dz.
R>1 |z|<R

Let H be as in subsection 5.1, h = L?(S"~ 1), and put for k > 0

(F2007) @) = @ [ e s,

FO(k) = 77 (k).
}—(i)(kj) _ .7:0<k>(1 _ VR((]{: + i0)2>)7
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GH (k) = FF (k) (1 = VR((k £i0)?)).
Then the results in §5 and §6 can be applied to H. Let E()\) be the resolution of
identity for H.

Theorem 7.11. (1) F&) defined by (FE f)(k) = FE (k) f is uniquely ez-
tended to a unitary operator from E((0,00))L*(R™) to L?((0,00); L2(S™~1); k"~ 1dk).
Moreover

(]—"(i)H f) (k) = k2 (ﬂi) f) (k), Vk>0, VfeD(H).
(2) For f € E((0,00))L?(R™), the inversion formula holds:

N
f=s—1lim FE ) (FH) £)(k)E"Ldk.
N—oo J1/N

(8) FE (k)" € B(L?(S™1); B*) is an eigenoperator of H in the sense that
(H— ) FHP (k)¢ =0, VYoe L2(S").
8. Modified Radon transform

8.1. Extension of the Fourier transform. In order to construct the mod-
ified Radon transform associated with H in §2, we extend the definition of the
generalized Fourier transform for all £ € R. Let us repeat the definitions of the
Fourier transforms introduced so far:

(féi) \/> /smh k)
ik ~
x Fg (('g'f /y(”_”/gKik(lﬁly)f(ﬁ,y);lz,f) ,

0
FO(k) = F§P (k),

(8.1) 1
fo(k)—ﬁ (k)F"(k),

—1 km
(1 —ik) sinh(/mr)’

J(k) = Fj§ <g|) Iy,

Fy being the Fourier transformation on R"~!. We have also defined
FO k) = F k)1 — VR((k £i0)?)).

Note that the operators ]—'éi) (k), F&) (k) can be extended using the above formulae
for 0 # k € R and, by (3.26) of Chap. 1,

FO k) = —F (k) = J(&)FS (&

) =
FO k) = =J (k) F ) (k).
We now define a new Fourier transformation Fy (k) by

Qk) =

—J(k)F k),

(8.2) Fi(k)= EQ(ik)yﬂﬂt)(k:), 0+#keR,
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and put (Fyf)(k) = Fi(k)f. Let S(k) be the S-matrix defined by (7.3). Then by
(7.4), we have

T(1 + ik)

- T Z_k)g’(k)]-l(k), k> 0.

Fi(k)

By definition we also have

The following Theorem can be proved easily from the above formulas.

Theorem 8.1. (1) Fy : L>(H") — L?*(R; L>(R"1);dk) is a partial isometry
with initial set E((0,00))L?(H"), E()\) being the resolution of identity for H, and

(FHf)(k) = K*(F=f)(k), keR, feD(H).

(2) For k > 0, we have

Consequently, the range of F1 has the following characterization:

B (14 ik) 5
B (1 +ik) 4
Note that the above relation is rewritten as
B (1 +ik) 5
g € RanF, <= g(k) = T(L—ik) geo(K)g(=Fk), k>0.

We put
(8:3)  Hso = L*((0,00); L (R 1);dk), Heo = L*((—00,0); L2(R"™1); dk),
and let v and r_ be the projections onto H~g and Hq, respectively.

Lemma 8.2.

(84) Wy =2(F1) " reFo, Wo =2(Fy4)"r_Fo,
(8.5) Wy = 2(F)Gr_Fo, W_ =2(F_)GryFo,
(1 — ik)

where G is the operator of multiplication by m

Proof. Recall that [Q(k)| = 1 and J(k) is unitary on L?(R""!). By Theorem
7.1(4), using FO(—k) = —J(=k)FO(k) and F)(=k) = —J(—k)FH)(k), we have,
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for f,g € B,
(W_f,9) = (F°f,7yg)
- / (FOR) £, 7O (k) g) b
0

- / ’ (J(=K)F (k) f, J(—k)F ) (k)g)dk

— 00

- / ’ (k) FO (k) f, k) FH (k) g)dk

— 00

= / (Fok) . Fy (k)g)dh

= 2F)r-Fof,9),

which proves (8.4) for W_. By the similar and simpler manner, one can prove (8.4)
for W,.. Using FO(—k) = —J(—k)FO(k) and FH)(—k) = —J(—k)F ) (k), we have
for f,ge B

(Wifg) = (FOf.FHg)
- / (FOR) £, FP (k) g)dh
0

— / ’ (J(=k)FO (k) f, J(—k)F ) (k) g)dk

- / | ek (QUK)FO (k) f, k) F ) (k) g)dk

= 2 S Ems g

= (2(F)Gr-Fof,9),

which proves (8.5) for W_.. Similarly, we can prove (8.5) for W_. O
We define operators I and U on L?(R; L2(R"~'; dk) by

(If)(k) = f(—k),

- 2ik
W =t @ (5 rnm.

Direct computation shows the following relations:

fr+ =r_I,
(8.6) wi=uv",
Ury =ry U
Lemma 8.3.
(8.7) Fo(Fo)* = %(I+ Iv).

Proof. Let IT = (I + IU)/2. Then by (8.6), one can show IT* = I1> = II.
Moreover, g = IIf satisfies Ig = Ug. Therefore by Lemma 1.5.2 (3), II is the
projection onto the range of Fy. ]
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Lemma 8.4.

(88) Fy=riFo(Wi)" +r_Fo(W-)",
(8.9) Fo = GryFo(W_)* + Gr_Fo(W,)".
Proof. By (8.4) and (8.7),
Fo(Wy)" = 2Fo(Fo)r4+Fy

= T+F++jUT+f+.
Since IUr, = r_IU by (8.6), multiplying both sides by ., we obtain
ryFo(Wa)" =ry 7y
Similarly, we have
r_Fo(W_)" =r_Fi.
Adding these two equalities, we obtain (8.8). The formula (8.9) is proved in a
similar manner. O

8.2. Modified Radon transform. We now define the modified Radon trans-
form for H.

Definition 8.5. For s € R, we define
1 o
R = — s (Fyf) (k)dE.
Reh) @)= == [ ™ Fn®

Theorem 8.6. R is a partial isometry from L?(H") to L?>(R; L?>(R"1); dk)
with initial set E((0,00))L*(H™). The Fourier transform of the final set of R is
characterized by Theorem 8.1 (2). Moreover

RiH = —0°R.
The scattering operator can also be defined by the Radon transform.
Definition 8.7. We define the scattering operator Si by
Sr=R4+(R_)".

Lemma 8.8. The scattering operator Sg is a partial isometry with initial set
RanR_ and final set Ran R . The relation between S = (W, )*W_ and Sg is given
by the following formula. Let F; be the 1-dimensional Fourier transformation. Then

1-
FiSr(F1)" = ry FoS(Fo) reG" +r_FoS*(Fo)'r_G* + ilUG*

Proof. The first half of the lemma follows from the definition. Since F1Sr(F1)* =
F(F-)*, the second half follows from Lemma 8.4 and direct computation. O

8.3. Asymptotic profiles of solutions to the wave equation. We com-
pute the asymptotic profile of the solution

u(t) = cos(tVH)f + sin(t\/ﬁ)\/ﬁilg
to the wave equation
{ 0?u+ Hu =0,

u’t:o =/ atu’t:() =9
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Theorem 8.9. For any f € E((0,00))L*(H"), we have as t — 0o

(n—1)/2
cos(tVH)f = —m— (R f)(~logy —t,0)|| =0,
2 L2(Hn)
. iy(n—l)/Q .
sin(tvVH)f — ——=—(Risgn(—ids) f)(—logy — t, ) — 0,
\/i L2(Hn)

where sgn is defined in Theorem 1.5.5.
Proof. Using the relations
FO (k)™ = F (k)" = R((k — i0))VFE (k)"

we have by the spectral representation theorem

e H = / it ) (- (FO 1) (kyan
0
(8.10) = / h e MR FO (k) (;E<+> f) (k)dk
0

- / e R(K2 — i0)V FO(k)* (f<+> f) (k)dk.
0
By the same computation as in the proof of Theorem 1.5.5, the first term of the

right-hand side of (8.10) tends to
yn=1/2 oo

T [ T E) (R
0

as t — o0.
We need the following lemma to deal with the 2nd term of the right-hand side
of (8.10).

Lemma 8.10. Let A be a self-adjoint operator on a Hilbert space H. For
¥(k) € Co((0,00); H) we put

U (t) = / e Ry (k) dk.
0
Then for any € > 0

o0

/(A-kq:ie)—leiikw(mdkHg/ 10 ()| ds
0 t

holds. Similarly letting

OL(t) = / 0 e (k) dk

— 00

for (k) € Cy((—00,0); H), we have for any € > 0

‘/OOO(A +k+ z’e)—lemtw(/{)dkH < /

t

1G=(s)l|ds.

Proof. By virtue of the identity
(A—k i)™ ==+i / eTis(A=kTFie) gq
0
we have

/ (A — kT ie) teF*y(k)dk = iz’/ eFsAFIOY (5 4+ t)ds,
0 0
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which proves the first half of the lemma. We also have

0
(A+kF z’e)_l = :l:i/ etis(AtkFie) go

which proves the second half. O
Proof of Theorem 8.9 (continued). Letting vVH = A, we have
(H-—k*Fi0) ' =A—-kTi0)" 1 (A+ k)L

Therefore, to show that the 2nd term of the right-hand side of (8.10) tends to 0,
letting

(k) = (A+R) TV FR(R) (FOF) k),

W) = [ e,
we have only to prove '
/00 |W(t)||dt < 0.
Take g € L2(H"), and consider i

(¥the) = [ VR (FDL)E), A+ g)dk.
0
Arguing in the same way as the proof of (A-4) in Subsection 5.2. we have
[(T(1), 9)l < CA+) | gll,
implying that |[¥(¢)|| < C(1 +¢)"17¢. We have thus derived that
y(n—1/2 oo

e—it\/ﬁ .
R .

etk(=logy=t) (. ) (l-c)dkH -0
as t — o0.
By using the relation
FO kY F (k) = FO (k) FH (<k),
we have as above

e tVHf = /0 T emith 7)) (ﬁ*) f) (k)dk
_ / ’ e FE () (FO ) (k)dk
- / Dy (F&F) ()ak

- / ’ e R(K? +i0)V FO (k)" (f<+> f) (k)dk.

Arguing as above, we can derive

y(n=1/2 0
VT )

as t — —oo. Theorem 8.9 then follows from (8.11) and (8.12). O

(8.12) He_it\/ﬁ f— etk(=logy+t) (1 1) (k)dk:H —0
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8.4. Invariance principle. Suppose for two self-adjoint operators A and B,
the wave operator A A
Wi =s —limee B P, (B),

t—+oo
exists, where P,.(B) denotes the projection onto the absolutely continuous subspace
for B. Then, for a suitable Borel function ¢(s) on R, the wave operator
Wi = s —lim W= t9(B) p, (B),
t—=+oo

exists and Wy = i‘b). This fact is called invariance principle, and is proved in a

general setting (see e.g. pp. 545, 579 of [80]). We are interested in the case where
¢(s) = v/s. Then Wy is the wave operator for the Schrodinger equation, and Wg)
is the wave operator for the wave equation.

Under the assumptions in the present chapter, we can prove this invariance
principle directly for the above operators H and Hy on H”. In fact, letting

H, = Eg((0,00))H,
where Ep () is the spectral resolution for H, the existence of the strong limit
(8.13) s — lime""VH+ e~V Hop (Hy)
t—+oo
can be proven by the same argument as that for the wave operator
Wi =s—1lim e'tH g—itHo

t—too

Observing the proof of Theorem 8.9 (see the arguments after (8.10)), we see that
for f € Hao(H) = Ex((0,00))L2(H™) (see Chap. 2, Subsection 5.3)

He—it\/ﬁf _ /OOO e—itk]_-o(k)*(]_-(j:)f)(k)dkH -0,

as t — oo, which implies that

S _ihm eit H+e—z‘t\/H7pac(H0) — (f(+))*.7-‘0 =W,.
t—o0o
Note that, since Eg((0,00)) = P,.(H), we have
(8.14) s —lime™ H+efit\/H7°Pac(H0) =s—lim PaC(H)eit‘/ﬁefit‘/HiOPac(Ho).
t—+oo t—too

We have thus proven the following theorem.

Theorem 8.11. Let H and Hy be as in Subsection 2.2. Then the wave operator
for the wave equation
s — lim e H*e_it‘/HiOPac(Ho)
t—doo

exists and is equal to the wave operator for the Schrodinger equation

s — lim e”HeﬂtHOPac(Ho).

t—+too

In particular, this theorem implies that the scattering matrix for the Schrédinger
equation and that for the wave equation coincide.



