
CHAPTER 2

Perturbation of the metric

We shall study in this chapter spectral properties of −∆g, where ∆g is the
Laplace-Beltrami operator associated with a Riemannian metric, which is a per-
turbation of the hyperbolic metric on Hn. We shall prove the limiting absorption
principle, construct the generalized Fourier transform and introduce the scattering
matrix. To study Hn in an invariant manner, it is better to employ the ball model
and geodesic polar coordinates centered at the origin. However, we use the upper-
half space model, since it is of independent interest, necessary in order to make
the arguments in Chapter 1 complete by the method adopted here, and also of a
preparatory character to deal with hyperbolic ends in Chapter 3.

1. Preliminaries from elliptic partial differential equations

1.1. Regularity theorem. In this section, for the notational convenience, we
denote points x ∈ Rn by x = (x1, · · · , xn). We consider the differential operator

A =
∑
|α|≤2

aα(x)(−i∂x)α

defined on Rn. The coefficients aα(x) are assumed to satisfy

aα(x) ∈ C∞(Rn), ∂β
xaα(x) ∈ L∞(Rn), ∀β,

∑
|α|=2

aα(x)ξα ≥ C|ξ|2, ∀x ∈ Rn, ∀ξ ∈ Rn,

C being a positive constant. A function u ∈ L2
loc(R

n) is said to be a weak solution
of Au = f if it satisfies

∫

Rn

u(x)A†ϕ(x)dx =
∫

Rn

f(x)ϕ(x)dx, ∀ϕ ∈ C∞
0 (Rn),

where A† is the formal adjoint of A.

Theorem 1.1. If u ∈ L2(Rn) is a weak solution of Au = f and f ∈ Hm(Rn)
for some m ≥ 0, then u ∈ Hm+2(Rn), and

‖u‖Hm+2(Rn) ≤ C(‖u‖L2(Rn) + ‖f‖Hm(Rn)).

For the proof see e.g. [101]. By using Theorem 1.1, one can prove the following
inequality. Let Ω be a bounded open set in Rn with smooth boundary, and Ω� an
�-neighborhood of Ω. Then

(1.1) ‖u‖Hm+2(Ω) ≤ C�(‖u‖L2(Ω�) + ‖f‖Hm(Ω�)).
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48 2. PERTURBATION OF THE METRIC

1.2. A-priori estimates in Hn. We next consider Rn
+. We put

Di = xn∂i, 1 ≤ i ≤ n, D = (D1, · · · , Dn),

and let ( , ), ‖ · ‖ be the following inner product and the norm:

(u, v) =
∫

Rn
+

u(x)v(x)
dx

(xn)n
, ‖u‖2 = (u, u).

For operators A and B, [A, B] denotes the commutator AB−BA. Straightforward
computations show the following lemma.

Lemma 1.2. (1) For j �= n, 1 ≤ i ≤ n,

[Di, Dj ] = δinDj .

(2) For u, v ∈ C∞
0 (Rn

+),

(Diu, v) = −(u,Div) + δin(n − 1)(u, v).

We use the following weight

(1.2) ρ(x) = log(1 + |x|2) +
√

1 + (log xn)2.

Comparing ρ with ρ0 in Lemma 1.1.6, there exists a constant C > 0 such that

(1.3) C−1(1 + dh(x)) ≤ ρ(x) ≤ C(1 + dh(x)),

where dh(x) is the geodesic distance between x and (0, 1) in the metric ds2 =
dx2/x2

n, cf. (1.2) of Ch.1. We put

(1.4) D̃i = ỹ(xn)∂xi , (i = 1, · · · , n − 1), D̃n = Dn,

where ỹ(xn) ∈ C∞(R), ỹ(xn) = 1 for xn < 1, ỹ(xn) = xn for xn > 2. Then we
have for s ∈ R and |α| ≥ 1

(1.5) |D̃αρ(x)s| + |Dαρ(x)s| ≤ Csρ(x)s−1.

We consider the differential operator A = A0 + A1 with

A0 = −D2
n + (n − 1)Dn −

n−1∑
i=1

D2
i ,

A1 =
n∑

i,j=1

aij(x)DiDj +
n∑

i=1

bi(x)Di + c(x).

We rewrite A as

A = P2(x,D) + P1(x, D), D = (D1, · · · , Dn),

where

P2(x, ξ) = |ξ|2 +
n∑

i,j=1

aij(x)ξiξj ,

P1(x, ξ) = (n − 1)ξn +
n∑

i=1

bi(x)ξi + c(x).

We assume that the coefficients aij(x), bi(x), c(x) are in C∞(Rn
+;R) and satisfy

(1.6) |D̃αa(x)| ≤ Cα ρ(x)−�, ∀α,
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1. PRELIMINARIES FROM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 49

for some � > 0, where a(x) represents any of aij(x), bi(x), c(x). Moreover, aij

is real and symmetric : aij = aji, and P2(x, ξ) is uniformly elliptic, namely, there
exists a constant C0 > 0 such that

(1.7) P2(x, ξ) ≥ C0|ξ|2, ∀ξ ∈ Cn, ∀x ∈ Rn
+.

Let B and B∗ be defined as in Chap. 1, §2, with h = L2(Rn−1). For s ∈ R, we
introduce the function space X s as follows

(1.8) X s � u ⇐⇒ ρ(x)su(x) ∈ L2(Hn) = L2
(
Rn

+;
dx

xn
n

)
,

equipped with the norm

(1.9) ‖u‖X s = ‖ρsu‖L2(Hn).

Theorem 1.3. (1) If u ∈ B∗ satisfies (A − z)u = f ∈ B∗ with z ∈ C, then

‖Diu‖B∗ ≤ C(1 + |z|)1/2(‖u‖B∗ + ‖f‖B∗), 1 ≤ i ≤ n.

(2) Furthermore, if

lim
R→∞

1
log R

∫ R

1/R

[
‖u(·, xn)‖2

L2(Rn−1) + ‖f(·, xn)‖2
L2(Rn−1)

] dxn

(xn)n
= 0

holds, then, for 1 ≤ i ≤ n, we have

lim
R→∞

1
log R

∫ R

1/R

‖Diu(·, xn)‖2
L2(Rn−1)

dxn

(xn)n
= 0.

(3) Assertion (2) also holds with lim replaced by lim inf.
(4) If u, f ∈ L2(Hn), then

(1.10) ‖Diu‖ ≤ C(1 + |z|)1/2(‖u‖ + ‖f‖), 1 ≤ i ≤ n,

(1.11) ‖DiDju‖ ≤ C(1 + |z|)(‖u‖ + ‖f‖), 1 ≤ i, j ≤ n.

(5) If u, f ∈ B∗,

(1.12) ‖DiDju‖X−s ≤ Cs(1 + |z|)(‖u‖B∗ + ‖f‖B∗), 1 ≤ i, j ≤ n,

for any s > 1/2.
(6) If u, f ∈ X s for some s ∈ R, then

(1.13) ‖Diu‖X s ≤ C(1 + |z|)1/2(‖u‖X s + ‖f‖X s), 1 ≤ i ≤ n,

(1.14) ‖DiDju‖X s ≤ C(1 + |z|)(‖u‖X s + ‖f‖X s), 1 ≤ i, j ≤ n.

In the above estimates in (1), (4), (5) and (6), the constants C and Cs are
independnet of z ∈ C.

We note that assertion (4) is a particular case of assertion (6) with s = 0, while
assertion (5) follows from (6), if we take into the account that B∗ ⊂ X−s, s > 1/2.

Proof. We take χ(t) ∈ C∞
0 (R) such that χ(t) = 1 (|t| < 1), χ(t) = 0 (|t| > 2),

and put

χR,r(x) = χ
( log xn

log R

)
χ
( |x�|

r

)
, χR(xn) = χ

( log xn

log R

)
,

where x� = (x1, · · · , xn−1). Since with gij = δij + aij ,

(gijDiDju, χ2
R,ru) = −(gijDiu, χ2

R,rDiu)

−(Dju,
(
Di(gijχ

2
R,r)

)
u) + δin(n − 1)(Dju, gijχ

2
R,ru).
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50 2. PERTURBATION OF THE METRIC

Thus, we have

−
n∑

i,j=1

(gijDiDju, χ2
R,ru) =

n∑
i,j=1

(gijχR,rDju, χR,rDiu)

+
n∑

i,j=1

(Dju,
(
Di(gijχ

2
R,r)

)
u)

−
n∑

j=1

δin(n − 1)(Dju, gnjχ
2
R,ru).

We split the 2nd term of the right-hand side into

−
∑

(χR,rDju, (Digij)χR,ru) − 2
∑

(χR,rDju, gij(DiχR,r)u)

and use the uniform ellipticity (1.7) to see that

C0‖χR,rDu‖2 ≤ Re (Au, χ2
R,ru) + �‖χR,rDu‖2

+ C�(‖ψRu‖2 + ‖(DχR,r)u‖2).

Here ψR is defined by

ψR(xn) = ψ
( log xn

log R

)
,

where ψ ∈ C∞
0 (R), ψ = 1 on the support of χ. For small � > 0, the term

�‖χR,rDu‖2 is absorbed by the left-hand side. Therefore, by using the equation
(A − z)u = f , we have

‖χR,rDu‖2 ≤ C(1 + |z|)(‖ψRu‖2 + ‖(DχR,r)u‖2 + ‖ψRf‖2).

We fix R and let r → ∞ to see that χR,r can be replaced by χR. Moreover

|(DχR)(xn)| ≤ C

log R
ψR(xn) ≤ CψR(xn)

for R > e. Therefore, we have

(1.15) ‖χRDu‖2 ≤ C(1 + |z|)(‖ψRu‖2 + ‖ψRf‖2).

Dividing this inequality by log R and taking the supremum with respect to R, we
obtain the assertion (1). Letting R → ∞, we obtain (2) and (3).

Letting R → ∞ in (1.15), we prove (1.10). To prove (1.11), we first observe
that the previous considerations do not require (1.6) in full generality, just that
a ∈ L∞(Rn

+). This makes it possible to consider only the case when u is compactly
supported. In fact, in the general case putting χR,ru = v we have

(A − z)v = χR,rf + [A,χR,r]u.

Since [A,χR,r] =
∑

i ci(x)Di + d(x) and ci(x), d(x) and ci, d ∈ L∞ independently
on R, r > e, we can apply (1.10) and (1.11) to see that the right-hand side is in
L2(Rn

+) uniformly with respect to R, r.
Now assuming that u is compactly supported, we split u as u = u1 + u2 + u3,

where ui = χi( log xn

log R )u so that suppu1 ⊂ {xn < 2/R}, suppu2 ⊂ {1/R < xn <

2R}, suppu3 ⊂ {xn > R}. Using

‖DiDju‖2 = (D2
j u,D2

i u) + (Dju, [Dj , Di]Dju),
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1. PRELIMINARIES FROM ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 51

we have ∑
i,j

‖DiDju‖2 ≤ C(‖
∑

i

D2
i u‖2 +

∑
i

‖Diu‖2).

We have

(1.16) A0ui = −A1ui + zui + fi, i = 1, 3,

where
‖fi‖ ≤ C(‖f‖ + ‖Dnu‖ + ‖u‖) ≤ C(1 + |z|)1/2(‖f‖ + ‖u‖),

with the last inequality following from (1.10). Since ‖A0ui‖2 =
∑

j,k(D2
j ui, D

2
kui),

taking the L2-norm of the both sides of (1.16), and using condition (1.6), we have,
for i = 1, 3,

∑
j,k

‖DjDkui‖ ≤ �
∑
j,k

‖DjDkui‖ + C�(1 + |z|)
( ∑

j

‖Djui‖ + ‖u‖ + ‖f‖
)
,

where � = �(R) → 0 as R → ∞. Therefore (1.11) holds for i = 1, 3 with sufficiently
large R. For i = 2, we have only to note that u2 satisfies the following 2nd order
elliptic equation with bounded coefficients:

∑
i,j

ãij(x)∂i∂ju2 +
∑

i

ãi(x)∂iu2 + c̃(x)u2 = f2

and use Theorem 1.1.
To prove (5), we put v = ρ(x)−su and g = (A − z)v. Then Lemma 1.2.7,

estimate (1.5) and assertion (1) imply that v, g ∈ L2(Hn). By assertion (4), we
then have Div,DiDjv ∈ L2(Hn), which, in turn, implies that DiDju ∈ X−s and
the inequality (1.12).

The proof of (1.13) is similar to the proof of (1.10) if w use ρ(x)sχR,r(x) instead
of χR,r(x).

To prove (1.14), we again consider v = ρ(x)−su, which, due to (1.13) satisfies
(A − z)v = g ∈ L2(Hn). Using (1.10) together with (1.13) and (1.5), we arrive at
(1.14). �

1.3. Essential self-adjointness. On the upper space Rn
+, we introduce the

Riemannian metric

(1.17) ds2 =
1
xn

n

n∑
i,j=1

gij(x)dxidxj ,

where gij = δij + aij . Assume that A is symmetric on C∞
0 (Rn

+).

Theorem 1.4. A
∣∣
C∞

0 (Rn
+)

is essentially self-adjoint.

Proof. We show that for u ∈ L2(Hn)

(u, (A − i)ϕ) = 0, ∀ϕ ∈ C∞
0 (Hn) =⇒ u = 0

and the same assertion holds with i replaced by −i. Applying (1.1), we see that
u ∈ H2

loc(R
n
+), and (A + i)u = 0 holds, moreover, by Theorem 1.3 (4),

Diu, DiDju ∈ L2(Hn).

Letting

Ωr,R = {|x�| < r, 1/R < xn < R}, ΩR = {1/R < xn < R},
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52 2. PERTURBATION OF THE METRIC

we then have ∫

Ωr,R

Auudµ = −i

∫

Ωr,R

|u|2dµ, dµ = dx/(xn)n.

Integrating by parts and taking the imaginary part,∫

Ωr,R

|u|2dµ ≤ C
∑

i

∫

∂Ωr,R

|u||Diu|dS,

where dS is the surface measure associated with hyperbolic metric. Noting that∫

1/R<xn<R

|uDiu|dµ < ∞,

there is a sequence rn → ∞ such that,
∑

i

∫

ΣR,n

|u||Diu|dS → 0 as n → ∞,

where ΣR,n = {(x�, xn) : |x�| = rn, R−1 < xn < R}. Using these r�ns, we see that

(1.18)
∫

ΩR

|u|2dµ ≤ C
n∑

i=1

(∫

xn=1/R

+
∫

xn=R

)
|u||Diu|

dx�

(xn)n−1
.

We next put

f(xn) =
n∑

i=1

∫

Rn−1
|uDiu(x�, xn)| dx�

(xn)n−1
.

Then, since u,Diu ∈ L2(Hn), we have
∫ ∞

0

f(xn)
dxn

xn
< ∞.

Hence, lim infxn→∞ f(xn) = 0 and lim infxn→0 f(xn) = 0. Using this fact, letting
Rn tend to infinity along a suitable sequence in (1.18), we have u = 0. �

1.4. Rellich’s theorem. It is well-known that, for a bounded open set Ω ⊂
Rn, the inclusion H1(Ω) ⊂ L2(Ω) is compact. This is often stated in the following
form and is called Rellich’s theorem.

Theorem 1.5. Let Ω be a bounded open set in Rn, and m ≥ 1. Then for any
bounded sequence {fk} in Hm(Ω), there exists a subsequence {fk′} convergent in
Hm−1(Ω).

For the proof, see e.g. [101].

1.5. Unique continuation theorem. Let us assume that on a connected
open set Ω ⊂ Rn, we are given a differential operator

A =
∑
|α|≤2

aα(x)∂α
x ,

where for |α| = 1, 2, aα(x) ∈ C∞, and for |α| = 0, aα(x) ∈ L∞, moreover for
|α| = 2, aα(x) is real-valued and satisfies

∑
|α|=2

aα(x)ξα ≥ C|ξ|2, ∀x ∈ Ω, ∀ξ ∈ Rn,
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2. BASIC SPECTRAL PROPERTIES FOR LAPLACE-BELRAMI OPERATORS ON Hn 53

for a constant C > 0. Then, if u satisfies Au = 0 on Ω, and vanishes on an open
subset of Ω, then u vanishes identically on Ω. For the proof, see e.g. [101] for a
C∞-coefficient case, and [6] for the general case.

2. Basic spectral properties for Laplace-Belrami operators on Hn

2.1. Assumption on the metric. In the sequel, we denote points in Hn =
Rn

+ as (x, y), where x ∈ Rn−1, y > 0, and put

(2.1) Dx = y∂x, D̃x = ỹ(y)∂x, D̃y = Dy = y∂y,

where ỹ(y) ∈ C∞((0,∞)) is a positive function such that ỹ(y) = 1 for y < 1,
ỹ(y) = y for y > 2. Recall that we put

ρ(x, y) = log
(
1 + |x|2 + y2

)
+

√
1 + | log y|2,

and have the following inequality

C−1(1 + ρ(x, y)) ≤ 1 + dh(x, y) ≤ C(1 + ρ(x, y)),

|D̃αρ(x, y)s| + |Dαρ(x, y)s| ≤ Csρ(x, y)s−1, |α| ≥ 1, s ∈ R,

where dh(x, y) is the distance between (x, y) and (0, 1) with respect to the standard
hyperbolic metric (Lemma 1.1.6).

To describe the space of metric, we introduce the following class of functions.

Definition 2.1. For s ∈ R, let Ws be the set of real-valued C∞-functions
f(x, y) defined on Rn−1 × (0,∞) such that for any (multi) index α, β, there exists
a constant Cαβ > 0 such that

(2.2) |(D̃x)α(Dy)β f(x, y)| ≤ Cαβ ρ(x, y)s−min(|α|+β,1).

On the upper half-space Rn
+, we consider the Riemannian metric

(2.3) ds2 = y−2
(
(dx)2 + (dy)2 + A(x, y, dx, dy)

)
,

where A(x, y, dx, dy) is a symmetric covariant tensor of the form

A(x, y, dx, dy) =
n−1∑
i,j=1

aij(x, y)dxidxj + 2
n−1∑
i=1

ain(x, y)dxidy + ann(x, y)(dy)2.

Here each aij(x, y) (1 ≤ i, j ≤ n) is assumed to satisfy the following condition:

(C) There exists a constant � > 0 such that aij ∈ W−1−� for y > 1.

Let us look at the Laplace-Beltrami operator associated with the above metric
ds2. Let P the set of differential operators P defined by

P � P ⇐⇒ P =
∑
α,β

(cαβ + aαβ)Dα
x Dβ

y ,

where cαβ are constants, aαβ ∈ W−1−� and the above sum is finite. Then by a
direct computation using Lemma 1.2 one can show that P is an algebra.

We rewrite (2.3) into ds2 = gij(X)dXidXj , X = (X1, · · · , Xn) = (x, y), where
gij(X) = y−2

(
δij + aij(x, y)

)
and we assume that aijξiξj > −|ξ|2. Letting

(
gij

)
=(

gij

)−1, we have
gij(x, y) = y2

(
δij + ĝij(x, y)

)
,

27600106 メモアール32巻.indd   59 2014/05/19   16:59:54



54 2. PERTURBATION OF THE METRIC

where ĝij(x, y) ∈ W−1−�. The associated Laplace-Beltrami operator ∆g is then
written as

−∆g = D2
y − (n − 1)Dy + D2

x +
n∑

i,j=1

aij(x, y)DiDj +
n∑

i=1

bi(x, y)Di,

where (D1, · · · , Dn) = (y∂x, y∂y) and aij(x, y), bi(x, y) ∈ W−1−�. Hence ∆g ∈ P.
The operator −∆g is symmetric in L2(Rn

+;
√

g dxdy), where g = det(gij).
In order to compare it with the Laplace-Beltrami operator for the standard hy-
perbolic metric, it is convenient to use the unitary gauge transformation from
L2(Rn

+;
√

gdxdy) onto L2(Rn
+; dxdy/yn):

u → (y2ng)1/4u,

so that

−∆g − (n − 1)2

4
→ −(y2ng)1/4∆g(y2ng)−1/4 − (n − 1)2

4
in L2(Rn

+; dxdy/yn).

2.2. Transformed Laplace-Beltrami operators. We are thus led to the
differential operators

H = −(y2ng)1/4∆g(y2ng)−1/4 − (n − 1)2

4
= H0 + V,

H0 = −D2
y + (n − 1)Dy − D2

x − (n − 1)2

4
, V =

∑
|α|≤2

aα(x, y)Dα

in L2(Rn
+; dxdy/yn), with the inner product denoted by (·, ·). H

∣∣
C∞

0 (Hn)
is sym-

metric,

(2.4) (Hf, g) = (f,Hg), ∀f, g ∈ C∞
0 (Hn),

and uniformly elliptic in the sense of §1. By our assumption aα satisfies the condi-
tion (C).

One should keep in mind that our operator −H is unitarily equivalent to the
Riemannian Laplacian ∆g associated with the metric ds2 of (2.3) which is shifted by
(n− 1)2/4. The arguments to be developed in Chapters 2 and 3 are also applicable
to the more general operators with perturbation of 1st order differential operators,
except for Theorem 2.10. Even in this case, however, Theorem 2.10 still holds except
for a discrete set of λ’s, which can be proved by the same way as in Theorems 3.3.5
and 3.3.6.

By Theorem 1.4, H
∣∣
C∞

0 (Hn)
is essentially self-adjoint. Let

R0(z) = (H0 − z)−1, R(z) = (H − z)−1.

Lemma 2.2. For z �∈ C \ R, R0(z)V R(z) is compact. Hence

σd(H) ⊂ (−∞, 0), σe(H) = [0,∞).

Proof. By Theorem 1.3 (4), V R(z) ∈ B(L2; L2), and R0(z)V = (V R0(z))∗ ∈
B(L2;L2). We take χ(t) ∈ C∞

0 (R) satisfying χ(t) = 1 (|t| < 1), χ(t) = 0 (|t| > 2),
and put

χR(x, y) = χ

(
|x|
R

)
χ

(
log y

log R

)
.
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Then χRR(z), and henceforth R0(z)V χRR(z) are compact and, due to the decay
assumption of the coefficients, ‖R0(z)V (1 − χR)R(z)‖ → 0 (R → ∞). Hence
R0(z)V R(z) is also compact. Since σ(H0) = σe(H0) = [0,∞), the lemma follows
from Weyl’s theorem ([62], p. 26). �

The main purpose of this section is to prove the following theorem.

Theorem 2.3. (1) σp(H) ∩ (0,∞) = ∅.
(2) For any λ > 0, lim�→0 R(λ± i�) =: R(λ± i0) exists in the weak-∗ sense, namely

∃ lim
�→0

(R(λ ± i�)f, g) =: (R(λ ± i0)f, g), ∀f, g ∈ B.

(3) For any compact interval I ⊂ (0,∞) there exists a constant C > 0 such that

(2.5) ‖R(λ ± i0)f‖B∗ ≤ C‖f‖B, ∀λ ∈ I.

(4) For any f, g ∈ B, (0,∞) � λ → (R(λ ± i0)f, g) is continuous.
(5) Let EH(·) be the resolution of the identity for H. Then EH((0,∞))L2(Hn) is
equal to the absolutely continuous subspace for H.

Note that the proof of the estimate (2.5) implies the following inequality

(2.6) ‖R(z)f‖B∗ ≤ C‖f‖B, ∀Re z ∈ I.

2.3. Resolvent estimates. We shall prove Theorem 2.3 by first establishing
some a-priori estimates for solutions to the equation (H − z)u = f , and then
passing to limiting procedures. Although our method seems to be tricky, the basic
idea consists in the following observation. Let us note that by virtue of Lemma
1.4.7, u0

± = R0(λ ± i0)f behaves like

û0
±(ξ, y) ∼ C±(ξ)y(n−1)/2∓i

√
λ (y → 0).

Therefore, we infer(
y∂y − (

n − 1
2

∓ i
√

λ)
)

u0
± = o(y(n−1)/2) (y → 0).

This suggests the importance of the term
(
y∂y − (n−1

2 ∓ i
√

λ)
)

u0
± to derive the

estimates for u0
±. We put

σ± =
n − 1

2
∓ i

√
z.

Here for z = reiθ, r > 0,−π < θ < π, we take the branch of
√

z as
√

reiθ/2.
We begin by estimating u0 = R0(λ + i0)f . Let ( , )h, ‖ · ‖h denote the inner

product and norm of L2(Rn−1), respectively.

Lemma 2.4. Suppose u satisfies (H0 − z)u = f , and let w± = (Dy − σ±)u.
Let ϕ(y) ∈ C1((0,∞);R) and 0 < a < b < ∞. Then we have

∫ b

a

(Dyϕ + 2ϕ)‖Dxu‖2
h

dy

yn
+

[
ϕ(‖w±‖2

h − ‖Dxu‖2
h)

yn−1

]y=b

y=a

= ∓2 Im
√

z

∫ b

a

ϕ
(
‖w±‖2

h + ‖Dxu‖2
h

) dy

yn

+
∫ b

a

(Dyϕ)‖w±‖2
h

dy

yn
− 2 Re

∫ b

a

ϕ(f, w±)h
dy

yn
.
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Proof. We rewrite the equation (H0 − z)u = f as

(2.7) Dy(Dy − σ±)u = σ∓(Dy − σ±)u − D2
xu − f.

Taking the inner product of (2.7) and ϕw±, we have
∫ b

a

ϕ(Dyw±, w±)h
dy

yn

= σ∓

∫ b

a

ϕ‖w±‖2
h

dy

yn
−

∫ b

a

ϕ(D2
xu,w±)h

dy

yn
−

∫ b

a

ϕ(f, w±)h
dy

yn
.

(2.8)

Take the real part. By integration by parts, the left-hand side is equal to

Re
∫ b

a

ϕ(Dyw±, w±)h
dy

yn

=
[
ϕ‖w±‖2

h

2yn−1

]y=b

y=a

− 1
2

∫ b

a

(Dyϕ)‖w±‖2
h

dy

yn
+

n − 1
2

∫ b

a

ϕ‖w±‖2
h

dy

yn
.

(2.9)

Let us note that using

(−D2
xu, Dyu)h = (v,Dyv)h − ‖v‖2

h, v =
√

D2
xu = y

√
−∆xu,

we have

−Re
∫ b

a

ϕ
(
D2

xu,w±
)
h

dy

yn

=
[
ϕ‖Dxu‖2

h

2yn−1

]y=b

y=a

− 1
2

∫ b

a

(Dyϕ)‖Dxu‖2
h

dy

yn
+

(
n − 3

2
− Re σ±

)∫ b

a

ϕ‖Dxu‖2
h

dy

yn
.

Apply this to the 2nd term of the right-hand side of (2.8). We then have
(2.10)

Re
∫ b

a

ϕ(Dyw±, w±)h
dy

yn

= (Re σ∓)
∫ b

a

ϕ‖w±‖2
h

dy

yn
− Re

∫ b

a

ϕ(y2∆hu,w±)h
dy

yn
− Re

∫ b

a

ϕ(f, w±)h
dy

yn

=
(

n − 1
2

∓ Im
√

z

)∫ b

a

ϕ‖w±‖2
h

dy

yn
+

[
ϕ‖Dxu‖2

h

2yn−1

]y=b

y=a

−1
2

∫ b

a

(Dyϕ)‖Dxu‖2
h

dy

yn
− (1 ± Im

√
z)

∫ b

a

ϕ‖Dxu‖2
h

dy

yn
− Re

∫ b

a

ϕ(f, w±)h
dy

yn
.

Equating (2.9) and (2.10), we obtain the lemma. �
We shall derive estimates of the resolvent R0(z) = (H0 − z)−1, when z ∈ C \R

approaches the real axis.

Lemma 2.5. Let u = R0(z)f . Let w± = (Dy − σ±)u, and put for C1 � ϕ ≥ 0
and constants 0 < a < b,

(2.11) L± =
∫ b

a

(
Dyϕ + 2ϕ

)
‖Dxu‖2

h

dy

yn
+

[
ϕ(‖w±‖2

h − ‖Dxu‖2
h)

yn−1

]y=b

y=a

,

(2.12) R± =
∫ b

a

(Dyϕ)‖w±‖2
h

dy

yn
− 2Re

∫ b

a

ϕ(f, w±)h
dy

yn
.
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Then we have the following inequality.

(2.13) L+ ≤ R+, L− ≥ R−, if Im
√

z ≥ 0,

(2.14) L+ ≥ R+, L− ≤ R−, if Im
√

z ≤ 0,

Proof. Using Lemma 2.4, ϕ ≥ 0, and the sign of Im
√

z, we obtain the lemma.
�

In the following, z varies over the region

(2.15) J± = {z ∈ C ; a ≤ Re z ≤ b, 0 < ±Im z < 1},
where 0 < a < b are arbitrarily chosen constants.

Lemma 2.6. Let u = R0(z)f with f ∈ B. Then, for any � > 0, there exists a
constant C� > 0 such that∫ ∞

0

‖Dxu‖2
h

dy

yn
≤ �‖u‖2

B∗ + C�‖f‖2
B, ∀z ∈ J±.

Proof. Assume that z ∈ J+. Letting ϕ = 1 and using (2.13), we have
∫ b

a

‖Dxu‖2
h

dy

yn
≤

[
‖Dxu‖2

h − ‖w+‖2
h

2yn−1

]y=b

y=a

+

∣∣∣∣∣
∫ b

a

(f, w+)h
dy

yn

∣∣∣∣∣ .

By Theorem 1.3 (4), w+, Dxu ∈ L2 for z �∈ R. Hence

(2.16) lim inf
y→0

‖w+‖2
h + ‖Dxu‖2

h

yn−1
= 0, lim inf

y→∞

‖w+‖2
h + ‖Dxu‖2

h

yn−1
= 0.

Therefore letting a → 0 and b → ∞ along suitable sequences, we have∫ ∞

0

‖Dxu‖2
h

dy

yn
≤

∣∣∣∣
∫ ∞

0

(f, w+)h
dy

yn

∣∣∣∣ ≤ �‖w+‖2
B∗ + C�‖f‖2

B.

Theorem 1.3 (1) yields ‖w+‖B∗ ≤ C(‖u‖B∗ +‖f‖B∗), which proves the lemma when
z ∈ J+. The case for z ∈ J− is proved similarly by using w−. �

Lemma 2.7. Let u, f be as in the previous lemma, and w± = (Dy − σ±)u.
Then for any � > 0, there exists a constant C� > 0 such that, for any y > 0,

‖w+‖2
h − ‖Dxu‖2

h

yn−1
≤ �‖u‖2

B∗ + C�‖f‖2
B, ∀z ∈ J+,

‖w−‖2
h − ‖Dxu‖2

h

yn−1
≤ �‖u‖2

B∗ + C�‖f‖2
B, ∀z ∈ J−.

Proof. As in the previous lemma, assume that z ∈ J+. Letting ϕ = 1 and using
(2.13), we have

‖w+‖2
h − ‖Dxu‖2

h

yn−1

∣∣∣
y=b

≤ ‖w+‖2
h − ‖Dxu‖2

h

yn−1

∣∣∣
y=a

+ C‖f‖B‖w+‖B∗ .

Using (2.16) and [letting a → 0 along a suitable sequence, we obtain the lemma by
Theorem 1.3 (1). �

Lemma 2.8. Let u, f , w± be as in the previous lemma. Then, for any � > 0,
there exists a constant C� > 0 such that

‖w+‖B∗ ≤ �‖u‖B∗ + C�‖f‖B, ∀z ∈ J+,

‖w−‖B∗ ≤ �‖u‖B∗ + C�‖f‖B, ∀z ∈ J−.
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Proof. We divide the inequality in Lemma 2.7 by y and integrate on (1/R,R).
We then use Lemma 2.6 to estimate the integral of ‖Dxu‖2

h, and obtain the lemma.
�

Lemma 2.9. There exists a constant C > 0 such that

‖R0(z)f‖B∗ ≤ C‖f‖B, ∀z ∈ J±.

Proof. We consider the case that z ∈ J+, and put
√

z = k + i� for z ∈ J+.
Then � > 0 and k > C for some constant C > 0. Letting w+ = (Dy − σ+)u, we
then have

(2.17) Im Dy(w+, u)h = Im (n − 1 + 2ik)(w+, u)h − Im (f, u)h.

This is a consequence of the formula

Dy(w+, u)h = (Dyw+, u)h + ‖w+‖2
h +

(
n − 1

2
+ � + ik

)
(w+, u)h

and (2.7). We integrate (2.17). Since

∫ b

a

Dy(w+, u)h
dy

yn
=

[
(w+, u)h

yn−1

]b

a

+ (n − 1)
∫ b

a

(w+, u)h
dy

yn
,

we then have

(2.18) Im
[
(w+, u)h

yn−1

]b

a

= 2k Re
∫ b

a

(w+, u)h
dy

yn
− Im

∫ b

a

(f, u)h
dy

yn
.

Using w+ = Dyu − σ+u and integrating by parts, we have

Re
∫ b

a

(w+, u)h
dy

yn
=

1
2

[
‖u‖2

h

yn−1

]b

a

− �

∫ b

a

‖u‖2
h

dy

yn
.

Therefore (2.18) is computed as

Im
[
(w+, u)h

yn−1

]b

a

= k

[
‖u‖2

h

yn−1

]b

a

− 2�k

∫ b

a

‖u‖2
h

dy

yn
− Im

∫ b

a

(f, u)h
dy

yn
,

which implies

Im
[
(w+, u)h

yn−1

]b

a

≤ k

[
‖u‖2

h

yn−1

]b

a

+ C‖f‖B‖u‖B∗ .

Note that for z �∈ R, w+ and u are in L2((0,∞);L2(Rn−1); dy/yn). Hence, there
exists a sequence b1 < b2 < · · · → ∞ such that

|(w+, u)h(bm)| + ‖u(bm)‖2
h

bn−1
m

→ 0.

For w+, we take a = y < b = bm to have

‖u(y)‖2
h

yn−1
≤ Ck

(
‖w+(y)‖2

h

yn−1
+

|(w+, u)h(bm)| + ‖u(bm)‖2
h

bn−1
m

+ ‖f‖B‖u‖B∗

)
.

Letting m → ∞, we see that

‖u(y)‖2
h

yn−1
≤ C

(
‖w+(y)‖2

h

yn−1
+ ‖f‖B‖u‖B∗

)
.
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Dividing by y and integrating from 1/R to R, we have

1
log R

∫ R

1/R

‖u(y)‖2
h

dy

yn
≤ C

log R

∫ R

1/R

‖w+(y)‖2
h

dy

yn
+ C‖f‖B‖u‖B∗ ,

which implies
‖u‖2

B∗ ≤ C‖w+‖2
B∗ + C‖f‖B‖u‖B∗ .

This, together with Lemma 2.8, yields

‖u‖B∗ ≤ C‖f‖B, ∀z ∈ J+.

Similarly, we can prove the lemma for z ∈ J−. �

Lemma 2.9 completes the proof of Theorem 1.4.2.

2.4. Radiation conditions and uniqueness theorem. The following the-
orem specifies the fastest decay order of non-trivial solutions to the Helmholtz
equation (H − λ)u = 0.

Theorem 2.10. Let λ > 0. If u ∈ B∗ satisfies (H − λ)u = 0 for 0 < y < y0

with some y0 > 0, and

lim inf
R→∞

1
log R

∫ 1

1/R

‖u(y)‖2
L2(Rn−1)

dy

yn
= 0,

then u = 0 for 0 < y < y0.

We should stress that we have only to assume the equation (H −λ)u = 0 to be
satisfied near y = 0. The proof is given in the next section.

Corollary 2.11. σp(H) ∩
(
0,∞

)
= ∅.

We say that u ∈ B∗ satisfies the outgoing radiation condition (for σ+), or
incoming radiation condition (for σ−), if the following two conditions (2.19) and
(2.20) are fulfilled:

(2.19) lim
R→∞

1
log R

∫ 1

1/R

‖(Dy − σ±(λ))u(y)‖2
L2(Rn−1)

dy

yn
= 0,

σ±(λ) =
n − 1

2
∓ i

√
λ.

(2.20) lim
R→∞

1
log R

∫ R

1

‖u(y)‖2
L2(Rn−1)

dy

yn
= 0.

Lemma 2.12. Assume that λ > 0 and u ∈ B∗ satisfies the equation (H−λ)u =
0, and the outgoing or incoming radiation condition. Then u = 0.

Proof. We assume that u satisfies the outgoing radiation condition. We take
0 ≤ ρ(t) ∈ C∞

0 (R) satisfying supp ρ ⊂ (−1, 1),
∫ 1

−1
ρ(t)dt = 1, and put

ϕR(y) = χ
( log y

log R

)
, χ(t) =

∫ t

−∞
ρ(s)ds.
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60 2. PERTURBATION OF THE METRIC

Let ( , )h and ‖ · ‖h denote the inner product and the norm of L2(Rn−1), re-
spectively. We multiply the equation (H − λ)u = 0 by ϕR(y)u and integrate over
Rn−1 × (0, R) to obtain

0 = Im
∫ R

0

(
(−D2

y + (n − 1)Dy + V )u, ϕRu
)
h

dy

yn

= −Im
(Dyu, u)h

yn−1

∣∣∣
y=R

+ Im
1

log R

∫ R

0

ρ
( log y

log R

)
(Dyu, u)h

dy

yn

+ Im
∫ R

0

(V u, ϕRu)h
dy

yn
.

(2.21)

Observe that (2.20) implies, due to Theorem 1.3 (2), that

(2.22) lim
R→∞

1
log R

∫ R

1

||Dyu||2L2(Rn−1)

dy

yn
= 0.

Indeed, let ψ(y) ∈ C∞(R+), ψ = 1 for y > 1 and ψ = 0 for y < 1/2. Then, with
v = ψu,

(H − λ)v = f := [H,ψ] u ∈ B,

due to Theorem 1.3 (1) and the fact, that supp(f) ⊂ {1/2 < y < 1}. Thus, v
satisfies conditions of Theorem 1.3 (2), which implies (2.22).

Conditions (2.20), (2.22) yield that

(2.23) lim
R→∞

1
log R

∫ R

1/R

||(Dy − σ±)u(y)||L2(Rn−1)
dy

yn
= 0.

Also (2.20), (2.22) imply that

lim inf
y→∞

|(Dyu, u)y=a|
yn−1

= 0.

We also see that

Im
∫ R

0

(V u, ϕRu)h
dy

yn
→ Im

∫ ∞

0

(V u, u)h
dy

yn
= 0.

Indeed,
∫ ∞
0

∣∣(V u, u)hd
∣∣y/yn < ∞, since V u ∈ X s, 1/2 < s < (1+ �)/2 due to (2.4)

and Theorem 1.3 (5). As V is symmetric, this gives the result.
Hence, by (2.21), there is a subsequence R1 < R2 < · · · → ∞ such that

Im
1

log Rj

∫ ∞

0

ρ
( log y

log Rj

)
(Dyu, u)h

dy

yn
→ 0.

Combining this equation with (2.23), we have

lim
j→∞

√
λ

log Rj

∫ ∞

0

(
ρ(

log y

log Rj
)u, u

)
h

dy

yn
= 0, ∀ρ ∈ C∞

0 (R).

This implies that

lim
j→∞

1
log R�

j

∫ R′
j

1/R′
j

‖u(y)‖2
h

dy

yn
= 0

along a suitable sequence R�
1 < R�

2 < · · · → ∞. The lemma then follows from
Theorem 2.10. �
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2.5. Proof of Theorem 2.3. The assertion (1) has been proved in Corollary
2.11. Let � be as in the condition (C) in Subsection 2.1, and take s such that

1
2

< s <
1 + �

2
.

Take a compact interval I ⊂ (0,∞) arbitrarily, and put

J = {λ ± i� ; λ ∈ I, 0 < � < 1}.

Lemma 2.13. (1) There exists a constant C > 0 such that

(2.24) sup
z∈J

‖R(z)f‖X−s ≤ C‖f‖B,

(2.25) sup
z∈J

‖R(z)f‖B∗ ≤ C‖f‖B.

(2) For any λ > 0 and f ∈ B, the strong limit lim�→0 R(λ±i�)f =: R(λ±i0)f exists
in X−s. Moreover, R(λ ± i0)f ∈ B∗, and lim�→0(R(λ ± i�)f, g) = (R(λ ± i0)f, g)
for any g ∈ B.
(3) For any f, g ∈ B, R(λ ± i0)f is an X−s-valued strongly continuous function of
λ > 0, and (R(λ ± i0)f, g) is a continuous function of λ > 0.

Proof. If (2.24) does not hold, there exist zn ∈ J and fn ∈ B satisfying

‖fn‖B → 0, ‖un‖X−s = 1, un = R(zn)fn.

These imply that

(2.26) (H0 − zn)un = fn − V un,

and we can assume without loss of generality that zn → λ ∈ I. By Theorem 1.3
(6),

||Dαun||χ−s ≤ C, |α| ≤ 2.

Therefore, by the condition (C), V un ∈ B and

||V un||B ≤ C.

Returning to (2.26), this implies, due to Lemma 2.9, that

(2.27) ||un||B∗ ≤ C.

Therefore, there exists a subsequence, which we continue to denote by un, such
that un → u weakly in X−s.

On the other hand, applying Theorem 1.3 (4), we see that, with |α| ≤ 2 and
1/2 < t, t� < s,

(2.28) ||Dαun||χ−t ≤ C
(
||un||χ−t + ||fn||χ−t

)
≤ C;

(2.29) ||Dα(un − um)||χ−t′ ≤ C
(
||un − um||χ−t′ + ||fn − fm||χ−t′ + |zn − zm|

)
.

These imply, using Rellich’s theorem, that there exists a subsequence such that
Dαun → Dαu in χ−s, |α| ≤ 2 and, in particular, ||u||χ−s = 1. Then

u = −R0(λ ± i0)V u, V u ∈ B,

and, by Corollary 1.4.8 (2) and Lemma 1.4.9, u satisfies the radiation condition.
Thus, by Lemma 2.12, u = 0, contradicting ||u||χ−s = 1. This completes the proof
of (2.24).

To prove (2.25), we have only to use the resolvent equation R(z) = R0(z) −
R0(z)V R(z), (2.24) and Lemma 2.9.
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The assertion (2), (3) can be proved by the similar manner. �

The assertions (2), (3), (4) of Theorem 2.3 are now easily derived from Lemma
2.13 and the resolvent equation R(z) = R0(z) − R0(z)V R(z). To this end, we use
Theorem 1.3 (6) with s < (1 + �)/2, (C) in the decay assumption of the metric in
subsection 2.1 and Theorem 1.4.2 (3).

For the proof of (5), see [58] or [62], p. 49. �

The following lemma is a consequence of the above proof.

Lemma 2.14. For any f ∈ B and λ > 0, u = R(λ± i0)f satisfies the equation
(H − λ)u = f , and the radiation condition. Conversely, any solution u ∈ B∗

of the above equation satisfying the radiation condition is unique and is given by
u = R(λ ± i0)f .

3. Growth order of solutions to reduced wave equations

3.1. Abstract differential equations. Let X be a Hilbert space and con-
sider the following differential equation for an X-valued function u(t):

(3.1) −u��(t) + B(t)u(t) + V (t)u(t) − Eu(t) = P (t)u(t), t > 0,

E > 0 being a constant. The following assumptions are imposed.

(A-1) B(t) is a non-negative self-adjoint operator valued function with domain
D(B(t)) = D ⊂ X independent of t > 0. For each x ∈ D, the map (0,∞) �
t → B(t)x ∈ X is C1, and there exist constants t0 > 0 and δ > 0 such that

(3.2) t
dB(t)

dt
+ (1 + δ)B(t) ≤ 0, ∀t > t0.

(A-2) For any fixed t, V (t) is bounded self-adjoint on X and satisfies

(3.3) V (t) ∈ C1((0,∞);B(X)),

(3.4)
1
t
‖V (t)‖ +

∥∥dV (t)
dt

∥∥ ≤ C(1 + t)−1−�, ∀t ≥ 1,

for some constants C, � > 0.
(A-3) For any fixed t, P (t) is a closed (not necessarily self-adjoint) operator on X
with domain D(P (t)) ⊃ D satisfying

(3.5) P (t)∗P (t) ≤ C(1 + t)−2−2�
(
B(t) + 1

)
.

Moreover,

Re P (t) :=
1
2

(P (t) + P (t)∗)

is a bounded operator on X and satsifies

(3.6) ‖Re P (t)‖ ≤ C(1 + t)−1−�, ∀t > 0.

Theorem 3.1. Under the above assumptions (A-1), (A-2), (A-3), if

lim inf
t→∞

(‖u�(t)‖X + ‖u(t)‖X) = 0

holds, there exists t1 > 0 such that u(t) = 0, ∀t > t1.
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3. GROWTH ORDER OF SOLUTIONS TO REDUCED WAVE EQUATIONS 63

The proof below is a modification of the method in [118] p. 29. In the following,
‖ · ‖X is simply written as ‖ · ‖. We put

(Ku)(t) = ‖u�(t)‖2 + E‖u(t)‖2 − (B(t)u(t), u(t)) − (V (t)u(t), u(t)).

Lemma 3.2. There exist constants C1, T1 > 0 such that
d

dt
(Ku)(t) ≥ −C1(1 + t)−1−�(Ku)(t), ∀t > T1.

Proof. By choosing � small enough, we can assume that, in addition to (A-2)
and (A-3),

(3.7) ‖V �(t)‖ ≤ C(1 + t)−1−2�.

By the equation (3.1)

d

dt
(Ku)(t) = 2Re

[
(u��, u�) + E(u, u�) − (Bu, u�) − (V u, u�)

]
− ((B� + V �)u, u)

= −2Re (Pu, u�) − ((B� + V �)u, u).

By (3.5)

(3.8) ‖Pu‖ ≤ C
(
1 + t)−1−�(

√
(Bu, u) + ‖u‖

)
.

By (3.7), there exists t0 = t0(�) > 0 such that for t > t0

|(V �(t)u, u)| ≤ �

2
(1 + t)−1−�‖u‖2.

By (3.2)

−(B�u, u) ≥ 1 + δ

t
(Bu, u).

Putting the above estimates together we have that there is C� > 0 such that for
t > t0

d

dt
(Ku)(t) ≥ −Ct−1−�(‖u�‖2 + ‖u‖‖u�‖ +

�

2
‖u‖2) +

1
t
(Bu, u)

≥ −C�t
−1−�‖u�‖2 − C�t−1−�‖u‖2 +

1
t
(Bu, u).

We rewrite the right-hand side as

−C�t
−1−�(‖u�‖2 + E‖u‖2) + (C�E − C�)t−1−�‖u‖2 +

1
t
(Bu, u)

= −C�t
−1−�(Ku)(t)

+(C�E − C�)t−1−�‖u‖2 − C�t
−1−�(V u, u) +

(1
t
− C�

t1+�

)
(Bu, u).

Choose C� large enough so that C�E−C� ≥ 1
2C�E. Using (3.4), choose t0 = t0(�, C�)

such that, for t > t0, E
2 ‖u‖

2 − (V u, u) ≥ 0, and 1−Ct−� > 0. Thus, the 3rd line is
non-negative for t > t0. Hence the lemma is proved. �

Let m > 0 be an integer and put

(Nu)(t) = t

[
K(ed(t)u) +

m2 − log t

t2α
‖ed(t)u‖2

]
,

1
3

< α <
1
2
, d(t) =

m

1 − α
t1−α.
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64 2. PERTURBATION OF THE METRIC

Lemma 3.3. If suppu(t) is unbounded, there exist constants m1 ≥ 1, T2 ≥ T1

such that
(Nu)(t) ≥ 0, ∀t ≥ T2, ∀m ≥ m1.

Proof. Letting w(t) = ed(t)u(t), we have

d

dt
(Nu) = Kw + t

d

dt
(Kw) + (1 − 2α)

m2 − log t

t2α
‖w‖2

− t−2α‖w‖2 + 2(m2 − log t)t1−2αRe (w�, w)

= ‖w�‖2 +
(
E + (1 − 2α)

m2 − log t

t2α
− t−2α

)
‖w‖2

− (Bw,w) − (V w,w) + t
d

dt
(Kw)

+ 2t1−2α(m2 − log t)Re (w�, w).

(3.9)

By direct computation,

w� = edu� + mt−αw,

w�� = edu�� + mt−αedu� + mt−αw� − αmt−α−1w

= Bw + V w − Ew + 2mt−αw�

−
[
P + (αmt−α−1 + m2t−2α)

]
w.

Hence,

d

dt
(Kw) = 2Re (w�� + Ew − V w − Bw,w�) − (

(
B� + V �)w,w)

= 4mt−α‖w�‖2 − 2(αmt−α−1 + m2t−2α)Re (w,w�)

− (
(
B� + V �)w,w) − 2Re (Pw,w�).

(3.10)

By (3.9) and (3.10) we have

d

dt
(Nu)

= (4mt1−α + 1)‖w�‖2 + {E + (1 − 2α)t−2α(m2 − log t) − t−2α}‖w‖2

− 2(αmt−α + t1−2α log t) Re (w,w�) − ((V + tV �)w,w)

− ((tB� + B)w,w) − 2tRe (Pw,w�)
=: I1 + I2 + I3.

For large t > 0, I1 is estimated from below as

I1 ≥ (4mt1−α + 1)‖w�‖2 +
(E

2
+ (1 − 2α)t−2αm2

)
‖w‖2.

By (3.4), I2 is estimated from below as

I2 ≥ −2(αmt−α + t1−2α log t)‖w‖‖w�‖ − Ct−�‖w‖2

≥ −�m2t−2α‖w‖2 − C�‖w�‖2

−2t1−2α log t‖w‖‖w�‖ − Ct−�‖w‖2.

By (3.2), I3 is stimated from below as

I3 ≥ δ(Bw,w) − 2t‖Pw‖ · ‖w�‖.
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Using (3.8), we estimate the 2nd term as

2t‖Pw‖ · ‖w�‖ ≤ 1
2
‖w�‖2 + Ct−�((Bw,w) + ‖w‖2).

Therefore for large t, we have

I3 ≥ −1
2
‖w�‖2 − Ct−�‖w‖2.

Putting the above estimates together, we then have
d

dt
(Nu) ≥ 7

2
mt1−α‖w�‖2 +

E

3
‖w‖2 − 2t1−2α log t ‖w‖‖w�‖.

Finally, we use the inequality

t1−2α log t‖w‖‖w�‖ ≤ �t1−α‖w�‖2 + C�t
1−3α(log t)2‖w‖2

and 1 − 3α < 0. Then there is t0 > 0 independent of m such that

(3.11)
d

dt
(Nu)(t) ≥ 3mt1−α‖w�‖2 +

E

4
‖w‖2 ≥ 0

for t > t0.
On the other hand, Nu(t) can be rewritten as

(Nu)(t) = te2d
[
‖mt−αu + u�‖2 + E‖u‖2

− (Bu, u) − (V u, u) + t−2α(m2 − log t)
]
‖u‖2

= te2d
[
2t−2α‖u‖2m2 + 2t−αRe (u, u�)m

+ (Ku − t−2α‖u‖2 log t)
]
.

(3.12)

By the assumption of the lemma, suppu(t) is unbounded. Therefore, there is
T2 > t0 such that ‖u(T2)‖ > 0. By choosing m1 large enough, we then have

(3.13) (Nu)(T2) > 0, ∀m > m1.

The inequalities (3.11) and (3.13) prove the lemma. �

Proof of Theorem 3.1. We show that if suppu(t) is unbounded,

(3.14) lim inf
t→∞

(‖u�(t)‖2 + ‖u(t)‖2) > 0

holds. We first consider the case in which there exists a sequence tn → ∞ such that
(Ku)(tn) > 0 (n = 1, 2, · · · ). Let T1 be as in Lemma 3.2. Then for some T > T1,
(Ku)(T ) > 0. We show that (Ku)(t) ≥ 0, ∀t > T . In fact Lemma 3.2 implies

d

dt

{
exp

(
C1

∫ t

T

(1 + s)−1−�ds

)
(Ku)(t)

}
≥ 0, ∀t > T.

Hence,

(Ku)(t) ≥ exp
(
−C1

∫ t

T

(1 + s)−1−�ds

)
(Ku)(T ), ∀t > T.

This then implies that, for t > t(E),

‖u�(t)‖2 + E‖u(t)‖2 = Ku(t) + (B(t)u(t), u(t)) + (V (t)u(t), u(t))

≥ exp
(
−C1

∫ t

T

(1 + s)−1−�ds

)
(Ku)(T )

− CEt−�‖u(t)‖2.
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66 2. PERTURBATION OF THE METRIC

Therefore, we arrive at

lim inf
t→∞

(‖u�(t)‖2 + ‖u(t)‖2) ≥ 1
2

exp
(
−C1

∫ ∞

T

(1 + s)−1−�ds

)
(Ku)(T ) > 0.

We next consider the case in which (Ku)(t) ≤ 0 for all t large enough. Lemma
3.3 and (3.12) show that, for large t,

2t−2α‖u(t)‖2m2 + 2t−αRe (u(t), u�(t))m − t−2α‖u(t)‖2 log t ≥ 0,

which together with
d

dt
‖u(t)‖2 = 2Re (u(t), u�(t)),

yields, for large t > 0, that

(3.15)
d

dt
‖u(t)‖2 ≥ t−α

(
1
m

log t − 2m

)
‖u(t)‖2 ≥ 0.

Since the support of u(t) is unbounded, by choosing T large enough so that ‖u(T )‖ >
0. In view of (3.15), we then have

‖u(t)‖ ≥ ‖u(T )‖ > 0, ∀t > T,

which proves (3.14). �

3.2. Canonical form. In order to apply Theorem 3.1 to the operator H in
the previous section, we transform the metric ds2 into the following canonical form.

Theorem 3.4. Let ds2 be the Riemannian metric satisfying the condition (C).
Choose a sufficiently small y0 > 0. Then there exists a diffeomorphism (x, y) →
(x, y) in the region 0 < y < y0 such that

|∂α
x Dβ

y (x − x)| ≤ Cαβ(1 + dh(x, y))−min(|α|+β,1)−1−�/2, ∀α, β,

|∂α
x Dβ

y

(y − y

y

)
| ≤ Cαβ(1 + dh(x, y))−min(|α|+β,1)−1−�/2, ∀α, β,

and in the (x, y) coordinate system, the Riemannian metric takes the form

ds2 = (y)−2


(dx)2 + (dy)2 +

n−1∑
i,j=1

bij(x, y)dxidxj


 .

Here bij(xi, xj) satisfies the condition (C) with � replaced by �/2.

The point is that there is no cross term dxidy. The proof is a slight modification
of the one given in Chap. 4, §2. This theorem also holds for the asymptotically
hyperbolic ends with regular infinity to be discussed in Chap. 3, §2.

Let us prove Theorem 2.10. In the coordinate system of Theorem 3.4, (denoting
(x, y) by (x, y)), the equation (−∆g − (n−1)2

4 − λ)u = 0 becomes

(
− 1

√
g
∂y

(√
ggnn∂y

)
−

n−1∑
i,j=1

1
√

g
∂xi

(√
ggij∂xj

)
− (n − 1)2

4
− λ

)
u = 0.

This is rewritten as
(
− D2

y + hDy −
n−1∑
i,j=1

Dxih
ijDxj −

(n − 1)2

4
+ Q − λ

)
u = 0,
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3. GROWTH ORDER OF SOLUTIONS TO REDUCED WAVE EQUATIONS 67

where Q =
∑n−1

i=1 bi(x, y)Di + c(x, y). Here h − (n − 1), hij − δij and Q satisfy the
condition (C), since for y close to 0, dh(x, y) and ρ(x, y) are equivalent. Putting
t = − log y and u = v exp(− 1

2

∫ t

t0
h(x, es)ds), we have

(−∂2
t + B(t) − λ)v = P (t)v,

where

B(t) = −e−2t
n−1∑
i,j=1

∂xi(δij + aij(t, x))∂xj ,

P (t) = −e−t
n−1∑
i=1

bi(t, x)∂xi + c(t, x),

and, for large t > 0, aij , bi, c satisfy

|∂α
x ∂β

t m(t, x)| ≤ Cαβ(1 + t)−β−1−�, ∀α, β.

We have, therefore, for large t > 0

tB�(t) + 2B(t) = −
∑

i, j = 1n−1∂xi
e−2t{(−2t + 2)(δij + aij) + ∂taij)}∂xj

≤ 0,

Hence, with X = L2(Rn−1), the assumption (3.2) is satisfied. Rewriting P (t)∗P (t)
as

P (t)∗P (t) =
∑
|α|≤2

aα(t, x)(Dx)α, Dx = e−t∂x,

we have, for any ϕ ∈ C∞
0 (Rn−1),

(P (t)∗P (t)ϕ,ϕ) ≤ C(1 + t)−2−2�
(
e−2t‖∂xϕ‖2 + ‖ϕ‖2

)

≤ C(1 + t)−2−2�
(
(B(t)ϕ,ϕ) + (ϕ,ϕ)

)
,

which proves (3.5). Note that as t → ∞, y → 0 and

(3.16) exp(−1
2

∫ t

t0

h(x, es)ds) = y(n−1)/2
(
1 + O(| log y|−1)

)
.

Our next goal is to show that the condition in Theorem 3.1 is satisfied. To
this end, we return to the proof of Theorem 1.3 (2). Take χ(t) ∈ C∞

0 (R) such
that χ(t) = 1 for −1 < t < −1/2, and χ(t) = 0 for t < −2 or t > −1/4. Take
ψ ∈ C∞

0 (R) such that ψ = 1 on suppχ, and ψ(t) = 0 for t > 0 or t < −3. Then the
estimate (1.15) is valid for this choice of χ and ψ. Following the arguments after
this inequality, we obtain

lim inf
R→∞

1
log R

∫ R−1/2

R−1
‖Diu(y)‖2 dy

yn
= 0

if the condition of Theorem 2.10 is satisfied. This implies that

lim inf
y→0

‖Dyu(y)‖2 + ‖u(y)|2

yn−1
= 0.

Since t = − log y, it follows from this formula together with (3.16) that

lim inf
t→∞

(‖v�(t)‖ + ‖v(t)‖) = 0.

Therefore, by Theorem 3.1, v(t) = 0 for large t, i.e. u(y) = 0 for small y. By the
unique continuation theorem, this in turn imples that u(y) = 0 for y < y0. �
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68 2. PERTURBATION OF THE METRIC

3.3. Asymptotically Euclidean metric. Let us remark that Theorem 3.1
also applies to asymptotically Euclidean metrics on Rn. In fact, given a metric
gij(x) satisfying

|∂α
x (gij(x) − δij)| ≤ Cα(1 + |x|)−|α|−1−�0 , ∀α,

one can construct a diffeomorphism near infinity such that this metric is trans-
formed into

(dr)2 + r2h(r, ω, dω), r > r0, ω ∈ Sn−1,

where h(r, ω, dω) is a positive definite metric on Sn−1, and behaves like h0(ω, dω)
at infinity, where h0(ω, dω) is the standard metric on Sn−1 (see Appendix A, §2).

4. Abstract theory for spectral representations

4.1. Basic ideas. Let H =
∫ ∞
−∞ λdE(λ) be a self-adjoint operator on a Hilbert

space H, and I an open interval contained in σac(H). Let h be an auxiliary Hilbert
space and Ĥ = L2(I;h; ρ(λ)dλ) the Hilbert space of all h-valued L2-functions on
I with respect to the measure ρ(λ)dλ. By a spectral representation of H on I, we
mean a unitary operator U : E(I)H → Ĥ such that

(UHf)(λ) = λ(Uf)(λ), ∀f ∈ D(H), ∀λ ∈ I.

We mainly consider the following situation. There exist Banach spaces H+,H−
such that H+ ⊂ H ⊂ H− and for λ ∈ I, lim�↓0(H − λ ∓ i�)−1 exists as a bounded
operator in B(H+;H−). For the limits (H − (λ ± i0))−1 one can associate the
operators U±(λ) ∈ B(H+;h) and the spectral representations U± satisfying

(U±f)(λ) = U±(λ)f, ∀λ ∈ I, ∀f ∈ H+.

Then there is a unitary operator Ŝ(λ) on h such that

U+(λ) = Ŝ(λ)U−(λ), ∀λ ∈ I.

This Ŝ(λ) is called the scattering matrix or S-matrix. The two limits lim�↓0(H−λ∓
i�)−1 appear naturally in computing the limit limt→±∞ e−itH . Hence, the S-marix
is closely related with the asymptotic behavior of solutions to the time-dependent
Schrödinger equation i∂tu = Hu. However, the scattering matrix depends on the
spectral representations U± so that there exist apparently different S-matrices for
the same operator H. In this and the next sections, we shall introduce three kinds
of S-matrices and study their relationships in the case of Rn and Hn. We begin
with an abstract framework.

4.2. Stationary wave operators. Assume that we are given a Hilbert space
H and Banach spaces H± with norms ‖ · ‖, and ‖ · ‖± satisfying

H+ ⊂ H ⊂ H−, ‖f‖− ≤ ‖f‖ ≤ ‖f‖+, ∀f ∈ H+.

We also assume that the above inclusions are dense, and that the inner product
( , ) of H is naturally identified with the coupling of H+ and H−. This means that
there exists an isometry T : H− → (H+)∗ such that

〈f, Tu〉 = (f, u), ∀f ∈ H+, ∀u ∈ H,

where 〈f, v〉 denotes the value v(f) of v ∈ (H+)∗ for f ∈ H+. In this case we simply
write H− = (H+)∗.
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Let Hj , j = 1, 2, be self-adjoint operators on H such that D(H1) = D(H2). For
j = 1, 2, we put Rj(z) = (Hj − z)−1. Since D(H1) = D(H2), we have

(4.1) (H2 − H1)Rj(z) ∈ B(H;H), z �∈ R.

Now for j = 1, 2, we assume the following:

(A-1) For any ϕ(λ) ∈ C∞
0 (R), ϕ(Hj)H+ ⊂ H+.

(A-2) There exists an open set I ⊂ R such that σp(Hj) ∩ I = ∅, and the following
strong limit exists

lim
�→0

Rj(λ ± i�) =: Rj(λ ± i0) ∈ B(H+;H−), ∀λ ∈ I.

Moreover for any f ∈ H+, I � λ → Rj(λ ± i0)f ∈ H− is strongly continuous.

(A-3) We put Gjk(z) = (Hj − z)Rk(z) for z �∈ R, and assume that for λ ∈ I, � > 0
there exists a strong limit

lim
�→0

Gjk(λ ± i�) =: Gjk(λ ± i0) ∈ B(H+;H+).

Furthermore for any f ∈ H+, I � λ → Gjk(λ ± i0)f ∈ H+ is strongly continuous.

We first introduce an operator which shows the similarity of H1 and H2. Let
Ej(λ) be the spectral measure for Hj , and for λ ∈ I, put

E�
j(λ) =

1
2πi

(Rj(λ + i0) − Rj(λ − i0)) .

By the assumption (A-2), E�
j(λ) ∈ B(H+;H−). Now for any compact interval e ⊂ I

and f ∈ H+, we define

Ω(±)
jk (e)f =

∫

e

E�
j(λ)Gjk(λ ± i0)fdλ.

This is called the stationary wave operator. By the above assumptions, Ω(±)
jk (e) ∈

B(H+;H−). However, we have the following stronger results. Let us recall one
terminology. For two Hilbert spaces H1 and H2, closed subspaces S1 ⊂ H1 and
S2 ⊂ H2 and U ∈ B(H1;H2), we say that U is a partial isometry from H1 to H2

with initial set S1 and final set S2 if U : S1 → S2 is unitary and U : S⊥
1 → 0. U is

a partial isometry if and only if U∗U and UU∗ are orthogonal projections onto its
initial set S1 and final set S2, respectively.

Theorem 4.1. Let e be any compact interval in I.
(1) Ω(±)

jk (e) is uniquely extended to a bounded operator on H, and is a partial
isometry with initial set Ek(e)H and final set Ej(e)H.
(2) (Ω(±)

jk (e))∗ = Ω(±)
kj (e), where ∗ means the adjoint in H.

(3) Ω(±)
jk (e) intertwines Hj and Hk. That is, for any bounded Borel function ϕ(λ),

ϕ(Hj)Ω
(±)
jk (e) = Ω(±)

jk (e)ϕ(Hk).

Theorem 4.1 is proved through a series of Lemmas.

Lemma 4.2. Let f(λ), g(λ) be H+-valued bounded measurable functions on I,
and e, e� compact intervals in I. We put

ϕ =
∫

e

E�
j(λ)f(λ)dλ, ψ =

∫

e′
E�

j(λ)g(λ)dλ.
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Then ϕ,ψ ∈ H and

(ϕ,ψ) =
∫

e∩e′
(E�

j(λ)f(λ), g(λ))dλ.

Proof. If f(λ), g(λ) are constant functions f and g, by Stone’s formula, ϕ =
Ej(e)f, ψ = Ej(e�)g. Hence,

(ϕ,ψ) = (Ej(e ∩ e�)f, g) =
∫

e∩e′
(E�

j(λ)f, g)dλ.

If f(λ), g(λ) are step functions, i.e. f(λ) =
∑

n χn(λ)fn, g(λ) =
∑

n χn(λ)gn, χn(λ)
being a characteristic function of the interval en, ϕ and ψ are written as

ϕ =
∑

n

Ej(e ∩ en)fn, ψ =
∑

n

Ej(e� ∩ en)gn.

Therefore,

(ϕ,ψ) =
∑
m,n

(Ej(e ∩ e� ∩ em ∩ en)fm, gn)

=
∑
m,n

∫

e∩e′∩em∩en

(E�
j(λ)fm, gn)dλ

=
∫

e∩e′
(E�

j(λ)f(λ), g(λ))dλ.

Hence, the lemma holds for step functions.
Let f(λ), g(λ) be bounded measurable functions, i.e. we can approximate them

by step functions fm(λ), gn(λ) such that

(4.2) lim
m→∞

‖f(λ) − fm(λ)‖+ = 0 a.e.

and similarly for g. We put

ϕm =
∫

e

E�
j(λ)fm(λ)dλ, ψn =

∫

e′
E�

j(λ)gn(λ)dλ.

Then we have

‖ϕm − ϕm′‖2 =
∫

e

(E�
j(λ)(fm(λ) − fm′(λ), fm(λ) − fm′(λ))dλ → 0,

when m,m� → ∞. Indeed, assumption (A-2) and boundedness of f imply that the
integrand is uniformly bounded with respect to m,m�. Also (4.2) implies that this
integrand tends to 0 a.e. By Lebesgue’s theorem, the result follows.

Thus, the sequence {ϕm} converges to ϕ in H and similaly, {ψn} converges to
ψ. Moreover, letting m,n → ∞ in the formula

(ϕm, ψn) =
∫

e∩e′
(E�

j(λ)fm(λ), gn(λ))dλ,

we complete the proof of the lemma. �

Lemma 4.3. If f, g ∈ H+ and e, e� are compact intervals in I, we have

Ω(±)
jk (e)f, Ω(±)

jk (e�)g ∈ H,

(Ω(±)
jk (e)f, Ω(±)

jk (e�)g) = (Ek(e ∩ e�)f, g).
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Proof. By Lemma 4.2

(Ω(±)
jk (e)f, Ω(±)

jk (e�)g) =
∫

e∩e′
(E�

j(λ)Gjk(λ ± i0)f,Gjk(λ ± i0)g)dλ.

Using the resolvent equation, we have

G∗
jk(λ ± i�)

1
2πi

[Rj(λ + i�) − Rj(λ − i�)]Gjk(λ ± i�)

=
1

2πi
[Rk(λ + i�) − Rk(λ − i�)].

(4.3)

Hence, (
1

2πi
[Rj(λ + i�) − Rj(λ − i�)]Gjk(λ ± i�)f,Gjk(λ ± i�)g

)

=
(

1
2πi

[Rk(λ + i�) − Rk(λ − i�)]f, g

)
.

Letting � → 0, we finally obtain

(4.4) (E�
j(λ)Gjk(λ ± i0)f,Gjk(λ ± i0)g) = (E�

k(λ)f, g),

which proves the lemma. �

By Lemma 4.3, Ω(±)
jk (e) is a partial isometry on H with initial set Ek(e)H.

Lemma 4.4. For any compact interval e ⊂ I, we have (Ω(±)
jk (e))∗ = Ω(±)

kj (e).

Proof. Since G∗
kj(z)G∗

jk(z) = 1, by multiplying (4.3) by G∗
kj(λ ± i�), we have

1
2πi

[Rj(λ + i�) − Rj(λ − i�)]Gjk(λ ± i�)

= G∗
kj(λ ± i�)

1
2πi

[Rk(λ + i�) − Rk(λ − i�)]

Letting � → 0, we have for f, g ∈ H+

(4.5) (f,E�
j(λ)Gjk(λ ± i0)g) = (E�

k(λ)Gkj(λ ± i0)f, g),

which proves the lemma. �

This lemma implies that the final set of Ω(±)
jk (e) is the initial set of Ω(±)

kj (e), i.e.

Ω(±)
jk (e) is a partial isometry with initial set Ek(e)H and final set Ej(e)H.

Lemma 4.5. For any compact intervals e, e� ⊂ I, we have Ej(e�)Ω
(±)
jk (e) =

Ω(±)
jk (e)Ek(e�).

Proof. Lemma 4.2 yields for f, g ∈ H+

(Ej(e�)Ω
(±)
jk (e)f, g) = (Ω(±)

jk (e)f,Ej(e�)g)

=
∫

e∩e′
(E�

j(λ)Gjk(λ ± i0)f, g)dλ.

By (4.5) the right-hand side is equal to∫

e∩e′
(f,E�

k(λ)Gkj(λ ± i0)g)dλ = (f,Ek(e�)Ω(±)
kj (e)g)

= (Ω(±)
jk (e)Ek(e�)f, g),
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which proves the lemma. �

The assertion (3) of Theorem 4.1 is a direct consequence of the above lemma.
Approximating I by compact intervals, we define Ω(±)

jk (I).

4.3. Time-dependent wave operators. We consider the relation between
stationary and time-dependent wave operators. We impose a new assumption.

(A-4) For any open set e ⊂ I, there is a set De ⊂ H+ ∩ E1(e)H, which is assumed
to be dense in E1(e)H, such that for any f ∈ De∫ ∞

−∞
‖(H2 − H1)e−itH1f‖dt < ∞.

Theorem 4.6. Under the assumptions (A-1) ∼ (A-4), for any open set e ⊂ I,
the strong limit

s − lim
t→±∞

eitH2e−itH1E1(e) =: W
(±)
21 (e)

in H exists and Ω(±)
21 (e) = W

(±)
21 (e).

Proof. The assumption (A-4) implies that, for f ∈ De,∫ ∞

−∞
‖ d

dt

(
eitH2e−itH1f

)
‖dt < ∞

holds. Hence there exist the limits s − limt→±∞ eitH2e−itH1E1(e)f and, therefore,
by the density of De the existence of W

(±)
21 (e).

To prove Ω(±)
21 (e) = W

(±)
21 (e) for any open set e ⊂ I, it suffices, due to Lemma

4.3, to consider relatively compact sets e.
Let V21 = H2 − H1. For f ∈ De we have

W
(+)
21 (e)f = f + i

∫ ∞

0

eitH2V21e
−itH1fdt.

Hence, for f ∈ De, g ∈ H,

(4.6) (W (+)
21 (e)f, g) = (f, g) + lim

�→0
i

∫ ∞

0

(eitH2V21e
−itH1f, e−2�tg)dt.

Using the following relations

R(λ + i�) = i

∫ ∞

0

eit(λ+i�−H)dt, R(λ − i�) = −i

∫ 0

−∞
eit(λ−i�−H)dt

and Plancherel’s formula for the Fourier transform, we have for f ∈ De and g ∈ H

i

∫ ∞

0

(eitH2V21e
−itH1f, e−2�tg)dt

= − 1
2πi

∫ ∞

−∞
(V21R1(λ + i�)f,R2(λ + i�)g)dλ.

(4.7)

Here we should note that ‖V21R(· + i�)f‖H, ‖R2(· + i�)g‖H ∈ L2(R), hence the
integral of the right-hand side is absolutely convergent. To see this, we have only
to note that

‖Rj(λ + i�)h‖2 =
∫ ∞

−∞

1
(µ − λ)2 + �2

dµ(Ej(µ)h, h),

V21R1(λ + i�)f = V21(H1 + i)−1R1(λ + i�)(H1 + i)f,
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and (H1 + i)f ∈ E1(e)H, also V21(H1 + i)−1 ∈ B(H;H) by (4.1).
We now let

δ2(λ, �) =
1

2πi

(
R2(λ + i�) − R2(λ − i�)

)
,

and prove that, if f ∈ De and g is such that dµ(E2(µ)g, g) is compactly supported,

(4.8) i

∫ ∞

0

(eitH2V21e
−itH1f, e−2�tg)dt = lim

N→∞

∫ N

−N

(δ2(λ, �)V21R1(λ + i�)f, g)dλ.

Indeed, by using the identity R2(z) − R1(z) = −R2(z)V21R1(z), we have

− 1
2πi

∫ N

−N

(V21R1(λ + i�)f,R2(λ + i�)g)dλ

=
∫ N

−N

(δ2(λ, �)V21R1(λ + i�)f, g)dλ

+
1

2πi

∫ N

−N

((R2(λ + i�) − R1(λ + i�))f, g)dλ.

However,
1

2πi

∫ N

−N

(Rj(λ + i�)f, g)dλ → 1
2
(f, g) when N → ∞. In fact,

(Rj(z)f, g) =
∫ ∞

−∞

1
µ − z

dµ(Ej(µ)f,Ej(µ)g),

where the domain of integration is bounded by our assumptions on f and g. There-
fore

1
2π

∫ N

−N

(Rj(λ + i�)f, g)dλ =
1
2π

∫ ∞

−∞
ln

(
−N − µ + i�

N − µ + i�

)
dµ(Ej(µ)f,Ej(µ)g).

Since ln
(
−N − µ + i�

N − µ + i�

)
→ πi for any µ, the result follows by Lebesgue’s dominated

convergence theorem.
Let us take bounded open intervals J, J1 such that

(4.9) e ⊂ e ⊂ J ⊂ J ⊂ J1 ⊂ J1 ⊂ I,

and g = ϕ(H2)h for some ϕ(λ) ∈ C∞
0 (J) and h ∈ H+. Such g’s are dense in

E2(I)H. Then we have

(4.10) (δ2(·, �)V21R1(· + i�)f, g) ∈ L1(R), � > 0,

(4.11) lim
�→0

∫ ∞

−∞
(δ2(λ, �)V21R1(λ + i�)f, g)dλ = (Ω(+)

21 (e)f, g) − (f, g).

In fact, since V21R1(λ + i�) = G21(λ + i�) − 1, we have

(δ2(λ, �)V21R1(λ + i�)f, g) = (δ2(λ, �)G21(λ + i�)f, g) − (f, δ2(λ, �)g).

Then the 2nd term of the right-hand side is written as

(4.12) (f, δ2(λ, �)g) =
�

π

∫ ∞

−∞

1
(µ − λ)2 + �2

dµ(f,E2(µ)g).

If λ �∈ J1, the right-hand side is dominated from above by C�(1 + |λ|2)−1. On the
other hand, assumptions (A-1), (A-2) imply that the left-hand side is bounded for
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λ ∈ J1 uniformly with respect to �. Therefore (f, δ2(·, �)g) ∈ L1(R), and by Stone’s
theorem

(4.13) lim
�→0

∫ ∞

−∞
(f, δ2(λ, �)g)dλ = (f, g).

By the resolvent equation, R1(z) = R1(i)(1 + (z − i)R1(z)). Then we have

G21(z) = (H2 − H1)R1(i) (1 + (z − i)R1(z)) + 1.

Since f ∈ E1(e)H, we have ‖(λ + i� − i)R1(λ + i�)f‖ ≤ Cf uniformly for λ �∈ J1

and � > 0. Hence so is ‖G21(λ + i�)f‖. Then formula (4.12) implies that if λ �∈ J1,

|(G21(λ + i�)f, δ2(λ, �)g)| ≤ C�(1 + |λ|2)−1,

which implies

(4.14)
∫

R\J1

(δ2(λ, �)G21(λ + i�)f, g)dλ → 0, � → 0.

Since f ∈ E1(e)H, ∫

J1

E�
2(λ)G21(λ + i�)fdλ → Ω(+)

21 (e)f.

Together with (4.14), this implies that

(4.15)
∫

R

(δ2(λ, �)G21(λ + i�)f, g) dλ →
(
Ω(+)

21 (e)f, g
)

Equations (4.13) and (4.15) prove (4.11). By (4.6), (4.8) and (4.11) we get W
(+)
21 (e) =

Ω(+)
21 when e is a relatively compact interval in I.

For an open subset e ⊂ I, we have only to appriximate e by a finite number of
relatively compact intervals. The proof for W

(−)
21 (e) = Ω(−)

21 (e) is similar. �

4.4. Spectral representation. Let us recall that for a self-adjoint operator
H =

∫ ∞
−∞ λdE(λ), we take an open interval I in σac(H). We take an auxiliary

Hilbert space h and a measure ρ(λ)dλ on I, ρ(λ) ∈ L1(I; dλ), and put

Ĥ(I) = L2(I;h; ρ(λ)dλ).

A unitary operator U from E(I)H onto Ĥ(I) satisfying

(UHf)(λ) = λ(Uf)(λ), λ ∈ I, f ∈ D(H)

is called a spectral representaion of H on I. By the functional calculus,

(4.16) (Uϕ(H)f)(λ) = ϕ(λ)(Uf)(λ)

holds for any bounded Borel function ϕ and f ∈ E(I)H. In fact, (4.16) is first
proven for the resolvent ϕ(H) = (H − z)−1, next for the spectral measure E(µ) by
using Stone’s formula, and then for any bounded Borel function.

Let H+,H− be Banach spaces satisfying the assumptions in subsection 4.2. We
assume that, for λ ∈ I, there exists a bounded operator U(λ) ∈ B(H+;h), which
is stronlgy continuous in λ, such that

(Uf)(λ) = U(λ)f, λ ∈ I, f ∈ H+.

Then U(λ)∗ ∈ B(h;H−). Let us show that for Φ ∈ Ĥ(I)

(4.17) U∗Φ =
∫

I

U(λ)∗Φ(λ)ρ(λ)dλ ∈ E(I)H.
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Indeed, let us first assume that supp Φ ⊂ J , where J is a compact set in I. Then,
for f ∈ H+, we have
( ∫

I

U(λ)∗Φ(λ)ρ(λ)dλ, f
)

=
∫

I

(Φ(λ), U(λ)f)hρ(λ)dλ = (Φ, Uf)
bH = (U∗Φ, f).

As U∗ is partial isometry, the right-hand side can be extended to f ∈ H, which
together with Riesz’ theorem implies (4.17) for Φ with suppΦ ⊂ J . Since J is
arbitrary, and I ⊂ σac(H), (4.17) is exteded onto Ĥ(I).

As a consequence, we have the inversion formula for f ∈ E(I)H

(4.18) f =
∫

I

U(λ)∗(Uf)(λ)ρ(λ)dλ.

In fact, for g ∈ H+,

(f, g)H = (Uf,Ug)
bH =

∫

I

((Uf)(λ), U(λ)g)hρ(λ)dλ.

Hence we have

(f, g)H =
∫

I

(U(λ)∗(Uf)(λ), g)ρ(λ)dλ,

which proves (4.18) by virtue of (4.17).
We need a new assumption:

(A-5) There exists a subspace D ⊂ D(H)∩H+ such that D as well as HD are dense
in H+ and D(H).

Then, for ψ ∈ h, f ∈ D,

(U(λ)∗ψ, (H − λ)f) = 0

holds, since U(λ)Hf = λU(λ)f . Therefore, U(λ)∗ ∈ B(h;H−) satisfies the equa-
tion

(H − λ)U(λ)∗ = 0,

and is called the eigenoperator of H. Here the self-adjoint operator H in H is
extended to H− via the relation

(4.19) (Hu, f) = (u,Hf), u ∈ H−, f ∈ D.

We now discuss the perturbation theory for spectral representations. For H1

we assume that

(A-6) For any λ ∈ I there exists U1(λ) ∈ B(H+;h) such that for f, g ∈ H+

(E�
1(λ)f, g) = ρ(λ)(U1(λ)f, U1(λ)g)h.

Moreover, U1 defined by (U1f)(λ) = U1(λ)f is uniquely extended to a unitary op-
erator from E1(I)H to Ĥ(I).

By this assumption, we have for f ∈ D(H1)

(4.20) (U1H1f)(λ) = λ(U1f)(λ)a.e..
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In fact, let f ∈ D. Since R1(z)H1 = 1 + zR1(z), we have E�
1(λ)H1f = λE�

1(λ)f .
The assumption (A-6) then implies

(E1(I)H1f, g) =
∫

I

λ ((U1f)(λ), (U1g)(λ))h ρ(λ)dλ

=
∫

I

((U1H1f)(λ), (U1g)(λ))hρ(λ) dλ,

which proves (4.20) for f ∈ D. Since D is dense in D(H1) we obtain (4.20).
Therefore, U1(λ)∗ ∈ B(h;H−) is an eigenoperator of H1:

(H1 − λ)U1(λ)∗ = 0.

We construct the spectral representation of H2 by using that of H1. Start-
ing from U1, we will construct two operators U

(+)
2 , U

(−)
2 corresponding to wave

operators W
(+)
21 ,W

(−)
21 . For λ ∈ I, we define

U
(±)
2 (λ) = U1(λ)G12(λ ± i0).

For f ∈ H+, we put (U (±)
2 f)(λ) = U

(±)
2 (λ)f . Then we have the following theorem.

Theorem 4.7. Under the assumptions (A-1) ∼ (A-6), we have

(E�
2(λ)f, g) = ρ(λ)(U (±)

2 (λ)f, U
(±)
2 (λ)g)h, f, g ∈ H+.

Moreover U
(±)
2 = U1

(
W

(±)
21 (I)

)∗
, and U

(±)
2 is a spectral representation for H2.

Proof. The first half of the theorem follows from (4.4) and (A-6). By virtue of (4.5)
and (A-6) we have

(E�
2(λ)G21(λ ± i0)f, g) = (f,E�

1(λ)G12(λ ± i0)g)

= ρ(λ)(U1(λ)f, U
(±)
2 (λ)g)h.

Integration with respect to λ then yields, in view of Theorem 4.6, that

(W (±)
21 (I)f, g) = (U1f, U

(±)
2 g)

bH,

hence W
(±)
21 (I) = (U (±)

2 )∗U1. We have, therefore, U
(±)
2 = U1

(
W

(±)
21 (I)

)∗
. Since

RanW
(±)
21 (I) = E2(I)H and W

(±)
21 ϕ(H1) = ϕ(H2)W

(±)
21 for any bounded Borel

function ϕ(λ), U
(±)
2 is a partial isometry with initial set E2(I)H and final set Ĥ(I).

Moreover U
(±)
2 ϕ(H2) = ϕ(λ)U (±)

2 for any bounded Borel function. Therefore, U
(±)
2

is a spectral representation for H2. �

By the relation U
(±)
2 (λ)∗ = (1 − R2(λ ∓ i0)V )U1(λ)∗, V = H2 − H1, we have

(H2 − λ)U (±)
2 (λ)∗ = 0.

Hence U
(±)
2 (λ)∗ is an eigenoperator of H2. Let us summarize the results obtained

so far. Let E2(λ) be the resolution of identity for H2.

Theorem 4.8. (1) Let V21 = H2 − H1 and put

U
(±)
2 (λ) = U1(λ)(1 − V21R(λ ± i0)) = U1(λ)G12(λ ± i0).
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Then U
(±)
2 (λ) ∈ B(H+;h) for λ ∈ I.

(2) U
(±)
2 (λ)∗ ∈ B(h;H−) is an eigenoperator of H with eigenvalue λ ∈ I in the

following sense
((H2 − λ)f, U

(±)
2 (λ)∗ϕ) = 0

for any f ∈ H+ such that H2f ∈ H+ and ϕ ∈ h. Moreover,

(U (±)
2 H2f)(λ) = λ(U (±)

2 f)(λ), f ∈ D(H2), λ ∈ I.

(3) The operator U
(±)
2 defined by (U (±)

2 f)(λ) = U
(±)
2 (λ)f for f ∈ H+ is uniquely

extended to a partial isometry with the initial set E2(I)H and the final set Ĥ(I).
(4) For any Φ ∈ Ĥ(I) and any compact interval e ⊂ I,∫

e

U
(±)
2 (λ)∗Φ(λ)ρ(λ)dλ ∈ H.

(5) For any f ∈ E2(I)H, the following inversion formula holds:

f = s − lim
n→∞

∫

In

U
(±)
2 (λ)∗(U (±)

2 f)(λ)ρ(λ)dλ,

where In = [an, bn], a < an < bn < b, an → a, bn → b and I = (a, b).

Proof. We have only to show the assertions (4) and (5). Let Ie(Φ) be the
integral in (4). We first assume that supp Φ(λ) is a compact set e in I. We take
f ∈ E2(I)H such that U

(±)
2 f = Φ. Then for any g ∈ H+ , we have

(f, g) = (U (±)
2 f, U

(±)
2 g)

=
∫

e

((U (±)
2 f)(λ), (U (±)

2 g)(λ))ρ(λ)dλ =
∫

e

(
Φ(λ), (U (±)

2 g)(λ)
)

ρ(λ)dλ

=
∫

e

(U (±)
2 (λ)∗Φ(λ), g)ρ(λ)dλ = (Ie(Φ), g).

We have, therefore, Ie(Φ) = f ∈ H. This implies also that, for any f ∈ E2(I)H
and a compact interval e ⊂ I,

E2(e)f =
∫

e

U
(±)
2 (λ)∗(U (±)

2 f)(λ)ρ(λ)dλ,

since (U (±)
2 E2(e)f)(λ) = χe(λ)(U (±)

2 f)(λ), where χe(λ) is the characteristic func-
tion of e. Therefore ∥∥∥∥

∫

e

U
(±)
2 (λ)∗(U (±)

2 f)(λ)ρ(λ)dλ

∥∥∥∥ → 0

if the measure of e tends to 0. This proves (5). �
4.5. S-matrix. The scattering operator for H1,H2 (on I) is defined by

S = (W (+)
21 (I))∗W (−)

21 (I).

This is unitary on E1(I)H. Let us rewrite it by using the spectral representation.
We define

Ŝ = U1SU∗
1 .

Letting V21 = H2 − H1, we also put

Ŝ(λ) = 1 − 2πiρ2(λ)A(λ),

A(λ) = U1(λ)V21U1(λ)∗ − U1(λ)V21R2(λ + i0)V21U1(λ)∗.
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Then Ŝ(λ) ∈ B(h;h) and is called the S-matrix or the scattering matrix.

Theorem 4.9. Ŝ(λ) is unitary on h, and for any f̂ ∈ Ĥ

(Ŝf̂)(λ) = Ŝ(λ)f̂(λ)

holds. Here the right-hand side means that we fix λ arbitrarily, regard f̂(λ) as an
element of h and apply Ŝ(λ).

Proof. Noting that

W
(±)
21 (I) = E1(I) + i

∫ ±∞

0

eisH2V21e
−isH1E1(I)ds,

we have

W
(+)
21 (I) − W

(−)
21 (I) = i

∫ ∞

−∞
eitH2V21e

−itH1E1(I)dt.

By the definition of S, we have

(S − 1)E1(I) = (W (+)
21 )∗(W (−)

21 (I) − W
(+)
21 (I)).

Letting f = E1(I)f, g = E1(I)g, we then have

(Sf, g) − (f, g)

= −i

∫ ∞

−∞
(eitH2V21e

−itH1f,W
(+)
21 (I)g)dt

= −i

∫ ∞

−∞
(V21e

−itH1f, e−itH1g)dt

−
∫ ∞

0

ds

∫ ∞

−∞
(V21e

−itH1f, eisH2V21e
−i(s+t)H1g)dt,

(4.21)

where we have used e−itH2W
(+)
21 (I) = W

(+)
21 (I)e−itH1 . Letting f̂(λ) = U1(λ)f, ĝ(λ) =

U1(λ)g, we obtain
∫ ∞

−∞
(V21e

−isH2V21e
−itH1f, e−i(s+t)H1g)dt

=
∫ ∞

−∞
dt

∫

I

(U1(λ)V21e
−isH2V21e

−itH1f, e−i(s+t)λĝ(λ))hρ(λ)dλ.

Inserting e−�|t| and letting � → 0, this converges to

2π

∫

I

(U1(λ)V21e
−is(H2−λ)V21E

�
1(λ)f, ĝ(λ))hρ(λ)dλ

= 2π

∫

I

(U1(λ)V21e
−is(H2−λ)V21U1(λ)∗f̂(λ), ĝ(λ))hρ(λ)2dλ,

where we have used E�
1(λ) = ρ(λ)U1(λ)∗U1(λ). Therefore, the last term of the most

right-hand side of (4.21) is equal to

−2π

∫ ∞

0

ds

∫

I

(U1(λ)V21e
−is(H2−λ)V21U1(λ)∗f̂(λ), ĝ(λ))hρ(λ)2dλ.

Inserting e−�s and letting � → 0, this converges to

2πi

∫

I

(U1(λ)V21R2(λ + i0)V21U1(λ)∗f̂(λ), ĝ(λ))hρ(λ)2dλ.
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Similarly the first term of the most right-hand side of (4.21) is rewritten as

−2πi

∫

I

(U1(λ)V21U1(λ)∗f̂(λ), ĝ(λ))hρ(λ)2dλ.

This proves the representation of Ŝ. Since Ŝ is unitary on Ĥ, so is Ŝ(λ) on h. �

Lemma 4.10. For any λ ∈ I, we have

U
(+)
2 (λ) = Ŝ(λ)U (−)

2 (λ).

Proof. By Theorem 4.7, we have
(
W

(+)
12 (I)

)∗
= (U1)

∗
U

(+)
2 , W

(−)
12 =

(
U

(−)
2

)∗
U1.

Therefore by the definition of Ŝ, we have

ŜU
(−)
2 = U

(+)
2 ,

which proves the lemma. �

5. Examples of spectral representations

5.1. Spectral representation on Rn. Let us apply the results in the previ-
ous section to Schrödinger operators H0 = −∆ and

H = −
n∑

i,j=1

aij(x)∂i∂j +
n∑

i=1

ai(x)∂i + a0(x)

on Rn, where ∂i = ∂/∂xi. Let H = L2(Rn; dx) and assume that H is formally
self-adjoint and uniformly elliptic on Rn, i.e. there exists a constant C0 > 0 such
that

C−1|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ C|ξ|2, ∀x, ξ ∈ Rn.

The coefficients aij(x) − δij and ai(x) of H are assumed to be smooth and satisfy

|∂αa(x)| ≤ Cα(1 + |x|)−1−�−|α|, ∀α, ∀x ∈ Rn

for a constant � > 0. For s ∈ R we define the space L2,s by

L2,s � f ⇐⇒ ‖f‖2
s =

∫

Rn

(1 + |x|2)s|f(x)|2dx < ∞.

Let s > 1/2 be arbitraily fixed. Then, by choosing H± = L2,±s, the assumptions
(A-1) ∼ (A-3) are satisfied for H1 = H0, H2 = H and I = (0,∞). We should
remark that by this choice of H±, the boundary value of the resolvent Rj(λ± i0)f
is strongly continuous in L2,−s as a function of λ > 0. These facts are well-known
and are proved in e.g. [62], where they are proved for the potential perturbation of
−∆, however, the proof also works for the case of the 2nd order variable coefficients.
Let us also note that Theorem 3.1 can also be applied in this case.

As a spectral representation for H0, we employ the usual Fourier transforma-
tion:

(U0(λ)f) (ω) = (2π)−1/2

∫

Rn

e−i
√

λω·xf(x)dx,
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and h = L2(Sn−1) and ρ(λ) = 1
2λ(n−2)/2. Then the assumption (A-4) is also

satisfied. Let R(z) = (H − z)−1 and V = H − H0. Then

U±(λ) = U0(λ)(1 − V R(λ ± i0))

gives the spectral representation for H.

5.2. Spectral representations on Hn. Let H = L2(Rn
+; dxdy/yn) and con-

sider the operators H0 and H introduced in §2. Let L2,s be defined by Definition
2.6 of Chap. 1. Let H± = L2,±s with 1/2 < s < (1 + �)/2 and H1 = H0, H2 = H
and I = (0,∞). First we check (A-1). Let 〈log y〉s = (1 + | log y|2)s/2. We show
that there exists a constant Cs independent of z �∈ R such that

(5.1) ‖〈log y〉s(Hj − z)−1〈log y〉−s‖ ≤ Cs|Im z|−2(1 + |z|).

Once we have proven (5.1), we can use an abstract theorem from functional analysis
(see Lemma 3.1 in Chap. 3, where σ can be an arbitrary negative number) to show

〈log y〉sϕ(Hj)〈log y〉−s ∈ B(H;H), ∀ϕ ∈ C∞
0 (R),

which yields (A-1).
Let us prove (5.1). We have

〈log y〉s(Hj − z)−1〈log y〉−s

= (Hj − z)−1 + (Hj − z)−1[Hj , 〈log y〉s](Hj − z)−1〈log y〉−s.

Since [Hj , 〈log y〉s] is a 1st order differential operator with respect to Dx, Dy with
bounded coefficients, one can show

‖[Hj , 〈log y〉s](Hj − z)−1‖ ≤ Cs|Im z|−1(1 + |z|)

by using Theorem 1.3 (4) and the standard estimate of the resolvent. The inequality
(5.1) imediately follows from this.

Theorem 2.3 together with Lemma 1.2.7 justify (A-2). As above, by this choice
of L2,±s the strong continuity of Rj(λ ± i0)f with respect to λ is guaranteed.

To prove (A-4) for a proper De, e = (a2, b2), 0 < a < b < ∞, we first observe
that it is sufficient to show that, for 1 < s < 1 + � and f ∈ De,∫ ∞

−∞

(
||e−itH0f ||χ−s +

∑
j

||Dje
−itH0f ||χ−s +

∑
j,l

||DjDle
−itH0f ||χ−s

)
dt < ∞.

Assuming that H0De ⊂ De, and utilising Theorem 1.3 (6), we can confine to the
proof that

∫ ∞

−∞

(
||e−itH0f ||χ−s + ||e−itH0H0f ||χ−s

)
dt < ∞, f ∈ De.

Let
De =

{
f : φ(k, ξ) = (F0F (+)

0 f)(k, ξ) ∈ C∞
0 ((a, b) × Rn−1)

}
.

Since then (F0F (+)
0 H0f)(k, ξ) = k2φ(k, ξ) ∈ C∞

0 ((a, b) × Rn−1), we have H0De ⊂
De, it suffices to show that

(5.2)
∫ ∞

−∞
||e−itH0f ||χ−sdt < ∞
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This is proved in the same way as in Theorem 1.5.5. In fact, letting u(t, ξ, y) =
F0e

−itH0f , we have

u(t, ξ, y) =
∫ ∞

0

(2ksinh(kπ))1/2

π

(
|ξ|
2

)ik

y(n−1)/2Kik(|ξ|y)e−itk2
φ(k, ξ)dk,

(cf. Chap. 1, (5.2)). Then, similar to Chap. 1, (5.3), we show that, for any σ > 0,

(5.3)
∫ ∞

δ

‖u(t, ·, y)‖2
L2(Rn−1)

dy

yn
≤ CN (1 + |t|)−N , ∀N > 0

To consider the behavior of u(t, ·, y) for 0 < y < σ, we, similar to the proof of
Theorem 1.5.5, use the decomposition

u(t, ξ, y) = u
(+)
0 (t, ξ, y) + u

(−)
0 (t, ξ, y) + u1(t, ξ, y),

which have the same representations as in Theorem 1.5.5 with, however, e−ikt

replaced by e−ik2t. Since, for k ∈ (a, b) and bounded |ξ|, y, we have

|r1(k, |ξ|, y)| ≤ C|ξ|y, |∂2
kr1(k, |ξ|, y)| ≤ C log(|ξ|y)|ξ|y,

(see (3.1), (3.2)), we see that, for y < σ,

|u1(t, ξ, y)| ≤ Cφy(n+1)/2(1 + | log(y)|)(1 + |t|)−2.

This implies that

(5.4)
∫ ∞

−∞

(∫ σ

0

||u1(t, ·, y)||L2(R(n−1)

dy

yn

)1/2

dt < ∞.

Using (5.5), we see that, for t > 2| log(y)|
a and t < | log(y)|

2b ,

(5.5) |u±
0 (t, ξ, y)| ≤ Cφy(n−1)/2(1 + |t|)−2,

which implies that
∫ ∞

−∞

(∫ ∞

0

||u±
0 (t, ·, y)Θa,b(y, t)||L2(Rn−1)(1 + | log(y)|)−2s dy

yn

)1/2

dt < ∞

for s > 1. Here Θa,b(y, t) = 1, if t > 2| log(y)|
a and t < | log(y)|

2b , and 0 otherwise.
As for the remaining part, we have, by the stationary phase method, that, for
1
2b < |t|

| log(y)| < 2
a ,

|u±
0 (t, ξ, y)| ≤ Cφy(n−1)/2 (|t| + | log(y)|)−1/2

Taking into account that the domain of integration with respect to ξ is bounded,
we obtain that∫ σ

0

| log(y)|−2s||u±
0 (t, ·, y)||L2(Rn−1) (1 − Θa,b(y, t))

dy

yn
≤ Cφ(1 + |t|)−2s.

This estimate, together with (5.4), shows that
∫ ∞

−∞
||u(t, ·, y)H(σ − y)||χ−sdt < ∞,

which, due to (5.3), implies (5.2).
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As for the spectral representation, we put

(U0(λ)f) (x) =

(
2
√

λ sinh(
√

λπ)
)1/2

π
(2π)−(n−1)/2

×
∫∫

Rn−1×(0,∞)

eix·ξ
( |ξ|

2

)−i
√

λ

y(n−1)/2Ki
√

λ(|ξ|y)f̂(ξ, y)
dξdy

yn
.

and h = L2(Rn−1), ρ(λ) = 1
2λ−1/2. Then the assumptions (A-5), (A-6) are fulfilled.

Taking
U±(λ) = U0(λ)(1 − V R(λ ± i0))

gives, due to Theorem 4.7, the spectral representation for H, where R(z) = (H −
z)−1 and V = H − H0.

5.3. Absolutely continuous subspace. Let us recall the well-known clas-
sification of the spectra of self-adjoint operators. Let H =

∫ ∞
−∞ λdEH(λ) be a

self-adjoint operator in a Hilbert space H. Then for any u ∈ H, (EH(I)u, u),
where I is any Borel set in R, defines a Borel measure on R. Then the absolutely
continuous subspace for H is defined by
(5.6)

Hac(H) = {u ∈ H ; (EH(·)u, u) is absolutely continuous with respect to dλ}.
This is a closed subspace in H. The importance of this subspace is that it is usually
stable under the perturbation appearing in scattering phenomena (see e.g. [80]).

Let RH(z) = (H − z)−1, and I be an open interval in σ(H). If the limiting
absorption principle holds on I, i.e. the condition (A-2) in §4 is guaranteed on I,
we have

(5.7) EH(I)H ⊂ Hac(H).

In fact, for u in a dense subset of H, we have by Stone’s formula

(EH(B)u, u) =
1

2πi

∫

B

((RH(λ + i0) − RH(λ − i0))u, u) dλ,

for any Borel set B in I, which yields (5.7). Therefore, for our case of H =
−∆g for the asymptotically Euclidean metric, or H = −∆g − (n − 1)2/4 for the
asymptotically hyperbolic metric,

EH((0,∞))H = Hac(H).

In this case, we often say that the continuous spectrum of H is absolutely contin-
uous, or H has no singular continuos spectrum.

The spectral representation U (±) is then a unitary operator from Hac(H) to the
representation space L2((0,∞));h; ρ(λ)dλ), where h = L2(Sn−1) for the Euclidean
metric, and h = L2(Rn−1) for the hyperbolic metric.

6. Geometric S-matrix

In §4 and §5, we have constructed two Fourier transforms U± for H = H0 + V ,
however only one Fourier transform U0 is adopted for H0. As a matter of fact, it is
natural to associate two kinds of Fourier transforms also with H0. To see this let
us recall that the Green operator for −∆ − λ on R3 is written as

(−∆ − λ ∓ i0)−1f =
1
4π

∫

R3

e±i
√

λ|x−y|

|x − y|
f(y)dy.
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Noting the asymptotic expansion |x − y| ∼ r − ω · y (ω = x/r) as r = |x| → ∞, we
have for f ∈ C∞

0 (R3)

(−∆ − λ ∓ i0)−1f ∼ e±i
√

λr

4πr

∫

R3
e∓i

√
λω·yf(y)dy, (r → ∞).

This suggests that we have two Fourier transforms
(
U

(±)
0 (λ)f

)
(ω) = (2π)−n/2

∫

Rn

e∓i
√

λω·yf(y)dy

for H0 = −∆ in Rn. They are related as

U
(+)
0 (λ) = JU

(−)
0 (λ),

where J is the unitary operator on L2(Sn−1) defined by

(6.1) J : ϕ(ω) → ϕ(−ω).

In the case of the hyperbolic space Hn, two Fourier transforms for H0 = −∆g

are defined by
(
U

(±)
0 (λ)f

)
(x) =

(
2
√

λ sinh(
√

λπ)
)1/2

π
(2π)−(n−1)/2

×
∫∫

Rn−1×(0,∞)

eix·ξ
( |ξ|

2

)∓i
√

λ

y(n−1)/2Ki
√

λ(|ξ|y)f̂(ξ, y)
dξdy

yn
.

They are related as
U

(+)
0 (λ) = J(λ)U (−)

0 (λ),

J(λ) = F ∗
0

( |ξ|
2

)−2i
√

λ

F0.

Let us return to the abstract theory in §4. Assume that we have two spectral
representatios F (±)

0 for H0. Define

F (±)(λ) = F0(λ)(1 − V R(λ ± i0)),

F0(λ) = F (+)
0 (λ),

G(±)(λ) = F (±)
0 (λ)(1 − V R(λ ± i0)).

Note that
G(+)(λ) = F (+)(λ).

Then by Theorem 4.7, F (±), G(±) give spectral representations for H. The S-matrix
in §4 is defined through F (±)(λ). Namely

Ŝ = F (+)
(
F (−)

)∗
,

Ŝ(λ) = 1 − 2πi ρ(λ)F0(λ)(V − V R(λ + i0)V )F0(λ)∗,

= 1 − 2πi ρ(λ)F (+)(λ)V F0(λ)∗.

Here we introduce a new assumption.

(A-7) There exists a unitary operator J(λ) on h satisftying

F (+)
0 (λ) = J(λ)F (−)

0 (λ).

We define a unitary operator J on L2(I;h; dλ) by(
Jf

)
(λ) = J(λ)f(λ).
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Then we have
F (−)(λ) = J(λ)G(−)(λ), F (−) = JG(−).

We define a new scattering operator by

Ŝgeo = G(+)
(
G(−)

)∗
,

and a new scattering matrix by

Ŝgeo(λ) = Ŝ(λ)J(λ)

= J(λ) − 2πi ρ(λ)F (+)(λ)V F (−)
0 (λ)∗.

(6.2)

We call Ŝgeo(λ) the geometric scattering matrix. Since F (+) = G(+), we have

Ŝgeo = ŜJ,

and the following theorem holds.

Theorem 6.1. Ŝgeo(λ) is unitary on h, and
(
Ŝgeof̂

)
(λ) = Ŝgeo(λ)f̂(λ), ∀f̂ ∈ Ĥ, ∀λ ∈ I.

The reason why Ŝgeo(λ) is called the geometric S-matrix is as follows. Suppose
we are given a Schrödinger operator H on a Riemannian manifold M. In some cases,
we can associate a boundary at infinity ∂∞M for M, and construct the spectral
representation F (±)(λ) as above with h = L2(∂∞M), and prove the asymptotic
expansion

R(λ ± i0)f � C±(λ)a(ρ)e±iS(ρ,λ)F (±)(λ)f, (ρ → ∞)

at infinity in an appropriate topology. Here, R(z) = (H − z)−1 and ρ is a geodesic
distance from a fixed point x0 of M. Moreover the solutions of the equation (H −
λ)u = 0 belonging to a certain class admit the following asymptotic expansion at
infinity

u � C−(λ)a(ρ)e−iS(ρ,λ)ϕ− + C+(λ)a(ρ)e+iS(ρ,λ)ϕ+,

ϕ+ = Ŝgeo(λ)ϕ−,

(see e.g. [99]). The geometric S-matrix is non-trivial even for the case V = 0, since
Ŝgeo(λ) = J(λ). We shall discuss these facts in the next section for the case of Rn

and Hn.

7. Helmholtz equation and geometric S-matrix

7.1. The case of Hn. We incoporate the results in Chap. 1 §4 and Chap. 2
§5. For k > 0 we define F (±)

0 (k) by Chap. 1 (4.2) and put

F0(k) = F (+)
0 (k),

(7.1) F (±)(k) = F0(k)
(
1 − V R((k ± i0)2)

)
,

and H± = L2,±s for s > 1/2. Note that we write (k± i0)2 instead of k2 ± i0. Later
this choice will turn out to be convenient. Then F0(k) ∈ B(L2,s; L2(Rn−1)), and
Theorem 4.7, together with the results of section 5.2, implies

k

πi

([
R(k2 + i0) − R(k2 − i0)

]
f, f

)
= ‖F (±)(k)f‖2

L2(Rn−1),
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where R(z) = (H − z)−1. Therefore by Theorem 2.3, for any 0 < a < b < ∞ there
exists a constant C > 0 such that

(7.2) ‖F (±)(k)f‖L2(Rn−1) ≤ C‖f‖B. a < ∀k < b,

By the argument in §4, we have the following theorem. Let E(λ) be the resolution
of identity for H.

Theorem 7.1. (1) F (±) defined by
(
F (±)f

)
(k) = F (±)(k)f is uniquely ex-

tended to a unitary operator from E((0,∞))L2(Hn) to L2((0,∞);L2(Rn−1); dk).
Moreover, (

F (±)Hf
)

(k) = k2
(
F (±)f

)
(k), ∀k > 0, ∀f ∈ D(H).

(2) For f ∈ E((0,∞))L2(Hn), the inversion formula holds:

f = s − lim
N→∞

∫ N

1/N

F (±)(k)∗(F (±)f)(k)dk.

(3) F (±)(k)∗ ∈ B(L2(Rn−1);B∗) is an eigenoperator of H in the sense that

(H − k2)F (±)(k)∗φ = 0, ∀φ ∈ L2(Rn−1).

(4) The wave operators
W± = s − lim

t→±∞
eitHe−itH0

exist and W± = (F (±))∗F0.
(5) The S-matrix is written as

(7.3) Ŝ(k) = 1 − πi

k
F (+)(k)V F0(k)∗,

and satisfies

(7.4) F (+)(k) = Ŝ(k)F (−)(k).

We next consider the geometric scattering matrix for H. For k > 0 we define

(7.5) G(±)(k) = F (±)
0 (k)

(
1 − V R((k ± i0)2)

)
.

As above, G(±)(k) ∈ B(B; L2(Rn−1)) and G(±) give other spectral representations
for H. Note that, letting F0 be the Fourier transform on Rn−1, we have

F (+)
0 (k) = J(k)F (−)

0 (k),

(7.6) J(k) = F ∗
0

( |ξ|
2

)−2ik

F0.

We extend Theorem 1.4.7 for H. For u, v ∈ B∗, we define

u � v ⇐⇒ lim
R→∞

1
log R

∫ R

1/R

‖u(y) − v(y)‖2
L2(Rn−1)

dy

yn
= 0.

Lemma 7.2. Let χ(y) = 1 (y < 1/2), χ(y) = 0 (y > 1), and ω±(k) be as in
Chap. 1 (4.15). Then for any ϕ ∈ L2(Rn−1) and k > 0

F (+)
0 (k)∗ϕ � k

πi
ω+(k)χ(y)y(n−1)/2−ikϕ

− k

πi
ω−(k)χ(y)y(n−1)/2+ikJ(k)∗ϕ,
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F (−)
0 (k)∗ϕ � k

πi
ω+(k)χ(y)y(n−1)/2−ikJ(k)ϕ

− k

πi
ω−(k)χ(y)y(n−1)/2+ikϕ.

Proof. In view of Chap. 1 (4.14), we have only to compute the behavior of the
left-hand side as y → 0 for ϕ̂ ∈ C∞

0 (Rn−1). We use Chap.1 (3.6) in the expression
Chap.1 (4.10) and compute directly to prove the lemma. �

Lemma 7.3. Let χ(y) and ω±(k) be as in the previous lemma. Then, for f ∈ B
and k > 0,

R(k2 ± i0)f � ω±(k)χ(y)y(n−1)/2∓ikG(±)(k)f.

Proof. The lemma follows from the resolvent equation

R(k2 ± i0) = R0(k2 ± i0) − R0(k2 ± i0)V R(k2 ± i0),

Lemmas 4.7, 4.9 of Chap.1 and (7.5). �

By (6.2), the geometric scattering matrix is defined to be

Ŝgeo(k) = J(k) − πi

k
F (+)(k)V F (−)

0 (k)∗.

Lemma 7.4. For ϕ ∈ L2(Rn−1)

G(−)(k)∗ϕ � k

πi
ω+(k)χ(y)y(n−1)/2−ikŜgeo(k)ϕ

− k

πi
ω−(k)χ(y)y(n−1)/2+ikϕ.

Proof. By (7.5)

G(−)(k)∗ϕ = F (−)
0 (k)∗ϕ − R(k2 + i0)V F (−)

0 (k)∗ϕ.

Since F (+)(k) = G(+)(k), we obtain, by Lemmas 7.2 and 7.3, that

G(−)(k)∗ϕ � k

πi
ω+(k)χ(y)y(n−1)/2−ikJ(k)ϕ

− k

πi
ω−(k)χ(y)y(n−1)/2+ikϕ − ω+(k)χ(y)y(n−1)/2−ik

[
J(k) − Ŝgeo(k)

]
ϕ

� k

πi
ω+(k)χ(y)y(n−1)/2−ikŜgeo(k)ϕ − k

πi
ω−(k)χ(y)y(n−1)/2+ikϕ. �

Lemma 7.5. There exists a constant C = C(k) > 0 such that for any ϕ ∈
L2(Rn−1)

lim
R→∞

1
log R

∫ R

1/R

‖G(−)(k)∗ϕ‖2
L2(Rn−1)

dy

yn
= C‖ϕ‖2

L2(Rn−1).

Proof. We put a+ = Ŝgeo(k)ϕ, a− = ϕ. Then by Lemma 7.4 ‖G(−)(k)∗ϕ‖2
L2(Rn−1)

behaves like

|C+(k)|2yn−1‖a+‖2
h + |C−(k)|2yn−1‖a−‖2

h

+C+(k)C−(k)yn−1−2ik(a+, a−)h + C−(k)C+(k)yn−1+2ik(a−, a+)h,

where C±(k) are constants. Simple computation shows that the 3rd and 4th terms
tend to 0. As Ŝgeo(λ) is unitary, the lemma follows. �

Together with (7.2), this implies
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Corollary 7.6. There is a constant C > 0 such that

C−1‖ϕ‖L2(Rn−1) ≤ ‖G(±)(k)∗ϕ‖B∗ ≤ C‖ϕ‖L2(Rn−1).

Lemma 7.7. If u ∈ B∗, (H − k2)u = 0, f ∈ B, and either G(+)(k)f = 0 or
G(−)(k)f = 0 holds, then (u, f) = 0.

Proof. The same as Lemma 1.4.10. �

These preparations are sufficient to extend Theorem 1.4.3 to H.

Theorem 7.8. For k > 0

{u ∈ B∗ ; (H − k2)u = 0} = G(±)(k)∗
(
L2(Rn−1)

)
.

Theorem 7.9. If u ∈ B∗ satisfies (H − k2)u = 0 for k > 0, there exist ϕ± ∈
L2(Rn−1) such that

u � k

πi
ω+(k)χ(y)y(n−1)/2−ikϕ+ − k

πi
ω−(k)χ(y)y(n−1)/2+ikϕ−.

Moreover,
ϕ+ = Ŝgeo(k)ϕ−.

Proof. By Theorem 7.8, u can be written as u = G(−)(k)∗ψ. Using Lemma 7.4,
we prove the theorem. �

Theorem 7.10. For any ϕ− ∈ L2(Rn−1), there exist unique u ∈ B∗ and
ϕ+ ∈ L2(Rn−1) such that the equation (H−k2)u = 0 and the expansion in Theorem
7.9 hold.

Proof. The existence of such ϕ+ and u follows from Theorem 7.9. We prove
the uniqueness. If ϕ− = 0, we have u � C(k)χ(y)y(n−1)/2−ikϕ+, hence u satisfies
the radiation conditions (2.19), (2.20). Then u = 0 by Lemma 2.12, which also
proves ϕ+ = 0. �

7.2. The case of Rn. It is worthwhile to give a brief look at the case of Rn.
We define the weighted L2 space L2,s and the Besov type space B by

L2,s � u ⇐⇒ ‖u‖2
s =

∫

Rn

(1 + |x|)2s|u(x)|2dx < ∞,

‖u‖B =
∞∑

j=0

2j/2‖u‖L2(Ωj) < ∞,

Ωj = {x ∈ Rn; rj−1 < |x| < rj},
where rj = 2j (j ≥ 0), r−1 = 0. The dual space of B has the following equivalent
norm

‖u‖2
B∗ = sup

R>1

1
R

∫

|x|<R

|u(x)|2dx.

Let H be as in subsection 5.1, h = L2(Sn−1), and put for k > 0
(
F (±)

0 (k)f
)

(ω) = (2π)−n/2

∫

Rn

e∓ikω·xf(x)dx,

F0(k) = F (+)
0 (k),

F (±)(k) = F0(k)
(
1 − V R((k ± i0)2)

)
,
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G(±)(k) = F (±)
0 (k)

(
1 − V R((k ± i0)2)

)
.

Then the results in §5 and §6 can be applied to H. Let E(λ) be the resolution of
identity for H.

Theorem 7.11. (1) F (±) defined by
(
F (±)f

)
(k) = F (±)(k)f is uniquely ex-

tended to a unitary operator from E((0,∞))L2(Rn) to L2((0,∞);L2(Sn−1); kn−1dk).
Moreover (

F (±)Hf
)

(k) = k2
(
F (±)f

)
(k), ∀k > 0, ∀f ∈ D(H).

(2) For f ∈ E((0,∞))L2(Rn), the inversion formula holds:

f = s − lim
N→∞

∫ N

1/N

F (±)(k)∗(F (±)f)(k)kn−1dk.

(3) F (±)(k)∗ ∈ B(L2(Sn−1);B∗) is an eigenoperator of H in the sense that

(H − k2)F (±)(k)∗φ = 0, ∀φ ∈ L2(Sn−1).

8. Modified Radon transform

8.1. Extension of the Fourier transform. In order to construct the mod-
ified Radon transform associated with H in §2, we extend the definition of the
generalized Fourier transform for all k ∈ R. Let us repeat the definitions of the
Fourier transforms introduced so far:

(
F (±)

0 (k)f
)

(x) =

√
2
π

k

√
sinh(kπ)

kπ

× F ∗
0


( |ξ|

2

)∓ik
∞∫

0

y(n−1)/2Kik(|ξ|y)f̂(ξ, y)
dy

yn


 ,

F0(k) = F (+)
0 (k),

F0(k) =
1√
2
Ω(k)F0(k),

Ω(k) =
−i

Γ(1 − ik)

√
kπ

sinh(kπ)
,

J(k) = F ∗
0

(
|ξ|
2

)−2ik

F0,

(8.1)

F0 being the Fourier transformation on Rn−1. We have also defined

F (±)(k) = F (+)
0 (k)(1 − V R((k ± i0)2)).

Note that the operators F (±)
0 (k), F (±)(k) can be extended using the above formulae

for 0 �= k ∈ R and, by (3.26) of Chap. 1,

F (+)
0 (k) = −F (−)

0 (−k) = J(k)F (−)
0 (k) = −J(k)F (+)

0 (−k),

F (+)(k) = −J(k)F (−)(−k).
We now define a new Fourier transformation F±(k) by

(8.2) F±(k) =
1√
2
Ω(±k)F (±)(k), 0 �= k ∈ R,
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and put (F±f)(k) = F±(k)f . Let Ŝ(k) be the S-matrix defined by (7.3). Then by
(7.4), we have

F+(k) =
Γ(1 + ik)
Γ(1 − ik)

Ŝ(k)F−(k), k > 0.

By definition we also have

F+(−k) = −J(−k)F−(k).

The following Theorem can be proved easily from the above formulas.

Theorem 8.1. (1) F± : L2(Hn) → L2(R; L2(Rn−1); dk) is a partial isometry
with initial set E((0,∞))L2(Hn), E(λ) being the resolution of identity for H, and

(F±Hf)(k) = k2(F±f)(k), k ∈ R, f ∈ D(H).

(2) For k > 0, we have

F+(k) = −Γ(1 + ik)
Γ(1 − ik)

Ŝ(k)J(k)F+(−k).

Consequently, the range of F± has the following characterization:

g ∈ RanF+ ⇐⇒ g(k) = −Γ(1 + ik)
Γ(1 − ik)

Ŝ(k)J(k)g(−k), k > 0,

g ∈ RanF− ⇐⇒ J(k)g(−k) = −Γ(1 + ik)
Γ(1 − ik)

Ŝ(k)g(k), k > 0.

Note that the above relation is rewritten as

g ∈ RanF+ ⇐⇒ g(k) = −Γ(1 + ik)
Γ(1 − ik)

Ŝgeo(k)g(−k), k > 0.

We put

(8.3) H>0 = L2((0,∞); L2(Rn−1); dk), H<0 = L2((−∞, 0);L2(Rn−1); dk),

and let r+ and r− be the projections onto H>0 and H<0, respectively.

Lemma 8.2.

(8.4) W+ = 2(F+)∗r+F0, W− = 2(F+)∗r−F0,

(8.5) W+ = 2(F−)∗Gr−F0, W− = 2(F−)∗Gr+F0,

where G is the operator of multiplication by
Γ(1 − ik)
Γ(1 + ik)

.

Proof. Recall that |Ω(k)| = 1 and J(k) is unitary on L2(Rn−1). By Theorem
7.1(4), using F0(−k) = −J(−k)F0(k) and F (−)(−k) = −J(−k)F (+)(k), we have,
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for f, g ∈ B,

(W−f, g) = (F0f,F (−)g)

=
∫ ∞

0

(F0(k)f,F (−)(k)g)dk

=
∫ 0

−∞
(J(−k)F0(k)f, J(−k)F (+)(k)g)dk

=
∫ 0

−∞
(Ω(k)F0(k)f, Ω(k)F (+)(k)g)dk

= 2
∫ 0

−∞
(F0(k)f,F+(k)g)dk

= (2(F+)∗r−F0f, g),

which proves (8.4) for W−. By the similar and simpler manner, one can prove (8.4)
for W+. Using F0(−k) = −J(−k)F0(k) and F (+)(−k) = −J(−k)F (−)(k), we have
for f, g ∈ B

(W+f, g) = (F0f,F (+)g)

=
∫ ∞

0

(F0(k)f,F (+)(k)g)dk

=
∫ 0

−∞
(J(−k)F0(k)f, J(−k)F (−)(k)g)dk

=
∫ 0

−∞

Ω(−k)
Ω(k)

(Ω(k)F0(k)f, Ω(−k)F (−)(k)g)dk

= 2
∫ 0

−∞

Ω(−k)
Ω(k)

(F0(k)f,F−(k)g)dk

= (2(F−)∗Gr−F0f, g),

which proves (8.5) for W+. Similarly, we can prove (8.5) for W−. �
We define operators Î and U on L2(R; L2(Rn−1; dk) by

(Îf)(k) = f(−k),

(Uf)(k) =
Γ(1 − ik)
Γ(1 + ik)

(
F ∗

0

(
|ξ|
2

)2ik

F0f
)
(k).

Direct computation shows the following relations:

Îr+ = r−Î ,

ÎU Î = U−1,

Ur± = r±U.

(8.6)

Lemma 8.3.

(8.7) F0(F0)∗ =
1
2
(I + ÎU).

Proof. Let Π = (I + ÎU)/2. Then by (8.6), one can show Π∗ = Π2 = Π.
Moreover, g = Πf satisfies Îg = Ug. Therefore by Lemma 1.5.2 (3), Π is the
projection onto the range of F0. �
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Lemma 8.4.

(8.8) F+ = r+F0(W+)∗ + r−F0(W−)∗,

(8.9) F− = Gr+F0(W−)∗ + Gr−F0(W+)∗.

Proof. By (8.4) and (8.7),

F0(W+)∗ = 2F0(F0)∗r+F+

= r+F+ + ÎUr+F+.

Since ÎUr+ = r−ÎU by (8.6), multiplying both sides by r+, we obtain

r+F0(W+)∗ = r+F+.

Similarly, we have
r−F0(W−)∗ = r−F+.

Adding these two equalities, we obtain (8.8). The formula (8.9) is proved in a
similar manner. �

8.2. Modified Radon transform. We now define the modified Radon trans-
form for H.

Definition 8.5. For s ∈ R, we define

(R±f) (s) =
1√
2π

∫ ∞

−∞
eiks (F±f) (k)dk.

Theorem 8.6. R± is a partial isometry from L2(Hn) to L2(R; L2(Rn−1); dk)
with initial set E((0,∞))L2(Hn). The Fourier transform of the final set of R± is
characterized by Theorem 8.1 (2). Moreover

R±H = −∂2
sR±.

The scattering operator can also be defined by the Radon transform.

Definition 8.7. We define the scattering operator SR by

SR = R+(R−)∗.

Lemma 8.8. The scattering operator SR is a partial isometry with initial set
RanR− and final set RanR+. The relation between S = (W+)∗W− and SR is given
by the following formula. Let F1 be the 1-dimensional Fourier transformation. Then

F1SR(F1)∗ = r+F0S(F0)∗r+G∗ + r−F0S
∗(F0)∗r−G∗ +

1
2
ÎUG∗.

Proof. The first half of the lemma follows from the definition. Since F1SR(F1)∗ =
F+(F−)∗, the second half follows from Lemma 8.4 and direct computation. �

8.3. Asymptotic profiles of solutions to the wave equation. We com-
pute the asymptotic profile of the solution

u(t) = cos(t
√

H)f + sin(t
√

H)
√

H
−1

g

to the wave equation {
∂2

t u + Hu = 0,

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= g.
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Theorem 8.9. For any f ∈ E((0,∞))L2(Hn), we have as t → ∞∥∥∥∥cos(t
√

H)f − y(n−1)/2

√
2

(R+f)(− log y − t, x)
∥∥∥∥

L2(Hn)

→ 0,

∥∥∥∥sin(t
√

H)f − iy(n−1)/2

√
2

(R+sgn(−i∂s)f)(− log y − t, x)
∥∥∥∥

L2(Hn)

→ 0,

where sgn is defined in Theorem 1.5.5.

Proof. Using the relations

F (+)(k)∗ = F0(k)∗ − R((k − i0)2)V F (+)(k)∗,

we have by the spectral representation theorem

e−it
√

Hf =
∫ ∞

0

e−itkF (+)(k)∗
(
F (+)f

)
(k)dk

=
∫ ∞

0

e−itkF0(k)∗
(
F (+)f

)
(k)dk

−
∫ ∞

0

e−itkR(k2 − i0)V F0(k)∗
(
F (+)f

)
(k)dk.

(8.10)

By the same computation as in the proof of Theorem 1.5.5, the first term of the
right-hand side of (8.10) tends to

y(n−1)/2

√
π

∫ ∞

0

eik(− log y−t) (F+f) (k)dk

as t → ∞.
We need the following lemma to deal with the 2nd term of the right-hand side

of (8.10).

Lemma 8.10. Let A be a self-adjoint operator on a Hilbert space H. For
ψ(k) ∈ C0((0,∞);H) we put

Ψ±(t) =
∫ ∞

0

e±iktψ(k)dk.

Then for any � > 0∥∥∥∥
∫ ∞

0

(A − k ∓ i�)−1e±iktψ(k)dk

∥∥∥∥ ≤
∫ ∞

t

‖Ψ±(s)‖ds

holds. Similarly letting

Φ±(t) =
∫ 0

−∞
e∓iktψ(k)dk

for ψ(k) ∈ C0((−∞, 0);H), we have for any � > 0∥∥∥∥
∫ 0

−∞
(A + k ± i�)−1e∓iktψ(k)dk

∥∥∥∥ ≤
∫ t

−∞
‖G∓(s)‖ds.

Proof. By virtue of the identity

(A − k ∓ i�)−1 = ±i

∫ ∞

0

e∓is(A−k∓i�)ds,

we have ∫ ∞

0

(A − k ∓ i�)−1e±iktψ(k)dk = ±i

∫ ∞

0

e∓is(A∓i�)Ψ±(s + t)ds,
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which proves the first half of the lemma. We also have

(A + k ∓ i�)−1 = ±i

∫ 0

−∞
e±is(A+k∓i�)ds

which proves the second half. �

Proof of Theorem 8.9 (continued). Letting
√

H = A, we have

(H − k2 ∓ i0)−1 = (A − k ∓ i0)−1(A + k)−1.

Therefore, to show that the 2nd term of the right-hand side of (8.10) tends to 0,
letting

ψ(k) = (A + k)−1V F0(k)∗
(
F (+)f

)
(k),

Ψ(t) =
∫ ∞

0

e−iktψ(k)dk,

we have only to prove ∫ ∞

0

‖Ψ(t)‖dt < ∞.

Take g ∈ L2(Hn), and consider

(Ψ(t), g) =
∫ ∞

0

e−ikt(V F0(k)∗
(
F (+)f

)
(k), (A + k)−1g)dk.

Arguing in the same way as the proof of (A-4) in Subsection 5.2. we have

|(Ψ(t), g)| ≤ C(1 + t)−1−�‖g‖,

implying that ‖Ψ(t)‖ ≤ C(1 + t)−1−�. We have thus derived that

(8.11)
∥∥∥∥e−it

√
Hf − y(n−1)/2

√
π

∫ ∞

0

eik(− log y−t) (F+f) (k)dk

∥∥∥∥ → 0

as t → ∞.
By using the relation

F (−)(k)∗F (−)(k) = F (+)(−k)∗F (+)(−k),

we have as above

e−it
√

Hf =
∫ ∞

0

e−itkF (−)(k)∗
(
F (−)f

)
(k)dk

=
∫ 0

−∞
eitkF (+)(k)∗

(
F (+)f

)
(k)dk

=
∫ 0

−∞
eitkF0(k)∗

(
F (+)f

)
(k)dk

−
∫ 0

−∞
eitkR(k2 + i0)V F0(k)∗

(
F (+)f

)
(k)dk.

Arguing as above, we can derive

(8.12)
∥∥∥∥e−it

√
Hf − y(n−1)/2

√
π

∫ 0

−∞
eik(− log y+t) (F+f) (k)dk

∥∥∥∥ → 0

as t → −∞. Theorem 8.9 then follows from (8.11) and (8.12). �
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8.4. Invariance principle. Suppose for two self-adjoint operators A and B,
the wave operator

W± = s − lim
t→±∞

eitAe−itBPac(B),

exists, where Pac(B) denotes the projection onto the absolutely continuous subspace
for B. Then, for a suitable Borel function φ(s) on R, the wave operator

W
(φ)
± = s − lim

t→±∞
eitφ(A)e−itφ(B)Pac(B),

exists and W± = W
(φ)
± . This fact is called invariance principle, and is proved in a

general setting (see e.g. pp. 545, 579 of [80]). We are interested in the case where
φ(s) =

√
s. Then W± is the wave operator for the Schrödinger equation, and W

(φ)
±

is the wave operator for the wave equation.
Under the assumptions in the present chapter, we can prove this invariance

principle directly for the above operators H and H0 on Hn. In fact, letting

H+ = EH((0,∞))H,

where EH(λ) is the spectral resolution for H, the existence of the strong limit

(8.13) s − lim
t→±∞

eit
√

H+e−it
√

H0Pac(H0)

can be proven by the same argument as that for the wave operator

W± = s − lim
t→±∞

eitHe−itH0 .

Observing the proof of Theorem 8.9 (see the arguments after (8.10)), we see that
for f ∈ Hac(H) = EH((0,∞))L2(Hn) (see Chap. 2, Subsection 5.3)

∥∥∥e−it
√

Hf −
∫ ∞

0

e−itkF0(k)∗(F (±)f)(k)dk
∥∥∥ → 0,

as t → ∞, which implies that

s − lim
t→±∞

eit
√

H+e−it
√

H0Pac(H0) =
(
F (+)

)∗F0 = W+.

Note that, since EH((0,∞)) = Pac(H), we have

(8.14) s − lim
t→±∞

eit
√

H+e−it
√

H0Pac(H0) = s − lim
t→±∞

Pac(H)eit
√

He−it
√

H0Pac(H0).

We have thus proven the following theorem.

Theorem 8.11. Let H and H0 be as in Subsection 2.2. Then the wave operator
for the wave equation

s − lim
t→±∞

eit
√

H+e−it
√

H0Pac(H0)

exists and is equal to the wave operator for the Schrödinger equation

s − lim
t→±∞

eitHe−itH0Pac(H0).

In particular, this theorem implies that the scattering matrix for the Schrödinger
equation and that for the wave equation coincide.
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