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Introduction

0.1. Fourier analysis on manifolds. The Fourier transform on L2(Rn) and
its inversion formula are well-known :

(0.1) f̂(ξ) = (2π)−n/2

∫

Rn

e−ix·ξf(x)dx,

(0.2) f(x) = (2π)−n/2

∫

Rn

eix·ξ f̂(ξ)dξ.

Since −∆eix·ξ = |ξ|2eix·ξ, eix·ξ is an eigenfunction of −∆. Therefore (0.1) and (0.2)
illustrate the expansion of arbitrary functions in terms of eigenfunctions (more
appropriately generalized eigenfunctions since they do not belong to L2(Rn)) of
the Laplacian.

There are two directions of development of the above fact. One is quantum
mechanics, where the Schrödinger operator H = −∆ + V (x) is the most basic tool
to decribe the physical system of atoms or molecules. If H has the continuous
spectrum, it is known that there exists a system of generalized eigenfunctions of H
which play the same role as eix·ξ. Moreover, by using these generalized eigenfunc-
tions one can define an operator called the scattering matrix or the S-matrix, which
is the fundamental object to study the physical properties of quantum mechanical
particles through the scattering experiment.

The other direction is the Fourier transform on manifolds, especially on homo-
geneous spaces of Lie groups, which is a central theme in the representation theory.
Hyperbolic manifolds, one of the deepest sources of classical mathematics, appear
also in this context. In particular, hyperbolic quotient manifolds by the action of
discrete subgroups of SL(2,R) and the associated S-matrix are important objects
in number theory.

0.2. Perturbation of the continuous spectrum. The aim of the perturba-
tion theory of continuous spectrum is, given an operator H0 whose spectral property
is rather easy to understand, to study the spectral properties of H0 + V , where V
is the perturbation deforming the operator H0. When H = H0 + V has the contin-
uous spectrum, an effective way of studying its spectral properties is to construct
a generalized Fourier tranform associated with H. To accomplish this idea, it is
necessary that the Fourier transform for H0 can be constructed easily. For example,
it is the case for the Laplacian −∆ on Rn. If the perturbation term V is an oper-
ator on the same Hilbert space as for H0 and is not so strong, one can construct
the Fourier transform associated with H0 + V by using the technique of functional
analysis and partial differential equations.

This is not so easy for operators on hyperbolic manifolds. Even the construction
of the Fourier transform associated with the Laplace-Beltrami operator on the
hyperbolic space is no longer a trivial work. To construct the Fourier transform on
hyperbolic spaces based on the upper half space model or the ball model, one needs
deep knowledge of Bessel functions. Under the action of discrete subgroups, the
properties of groups will reflect on the structure of manifolds or the construction
of generalized eigenfunctions.
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0.3. Spectral and scattering theory on hyperbolic manifolds. In the
present note, we deal with the spectral theory and the associated forward and
inverse problems for Laplace-Beltrami operators on hyperbolic manifolds. Since
we are mainly interested in its spectral properties, Selberg’s work [123] and its
developments are beyond our scope. As an approach to the hyperbolic manifolds
from the spectral theory, the first important paper is that of Faddeev [34]. Lang
[90] is a detailed exposition of Faddeev’s article. There are also works of Roelcke
[117], Venkov [130] and a recent article of Iwaniec [70]. The study of spectral
theory, in particular, that of continuous spectrum is drastically changed in these 30
years. The article of Lax-Phillips [92] has distinguished features, leaning over the
analysis of wave equation. The derivation of the analytic continuation of Eisenstein
series from that of the resolvent was done by Colin de Verdière [26]. Agmon [1] used
the modern spectral theory for this problem. Hislop [53] uses Mourre theoryiwhich
is a modern powerful technique to study the continuous spectrum of self-adjoint
operators, see e.g. [62]) to prove the resolvent estimates for the Laplacian on
hyperbolic spaces.

The scattering metric proposed by Melrose [99] aims at constructing a general
calculus on non-compact manifolds on which the scattering theory is developed.
Melrose’ theory includes the following model. Let M be a compact n-dimensional
Riemannian manifold with boundary. Assume that near the boundary, M is dif-
feomorphic to M × (0, 1), M being a compact n − 1-dimensional manifold, and
introduce the following metric

ds2 =
(dy)2 + A(x, y, dx, dy)

y2
, 0 < y < 1, x ∈ M,

where A(x, y, dx, dy) is a symmetirc covariant tensor such that as y → 0

(0.3) A(x, y, dx, dy) ∼ A0(x, dx) + yA1(x, dx, dy) + y2A2(x, dx, dy) + · · · ,

A0 being the Riemannian metric on M . This generalizes the upper half-space model
of the hyperbolic space. Spectral structures of the associated Laplace-Beltarmi op-
erator were studied by Mazzeo [95] and Mazzeo-Melrose [96]. Related inverse
problem was studied by Joshi-Sa Barreto [73]. In particular, Sa Barreto [120]
proved that the coincidence of the scattering operators gives rise to an isometry
of associated metrics. Here the essential role is played by the boundary control
method presented by Belishev [10], (see also [13], [11], [14]), which makes it pos-
sible to reconstruct a Riemannian manifold from the boundary spectral data of the
associated Laplace-Belrami operator.

A feature of Melrose theory is that it proves the analytic continuation of the
resolvent of Laplace-Beltrami operator for a broad class of metric so that it enables
us to study the resonance, another important subject in spectral and scattering
theory ([45], [134]). We do not deal with the resonance in this note. However, let
us mention the recent article of Borthwick [21] which studies the inverse problem
related to the resonance based on Melrose theory and includes a thorough list of
references.

In the case of the Schrödinger operator −∆ + V (x) on Rn, the behavior of
solutions to the Schrödinger equation has a clear difference depending on the decay
order of the potential at infinity. If we assume that V (x) = O(|x|−ρ), |x| → ∞,
the border line is the case ρ = 1. This is also true on hyperbolic spaces. The
difference occurs in the case ρ = 1 of the decay order d−ρ

h , where dh denotes the
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hyperbolic distance. In (0.3), y corresponds to e−dh . Hence from the view point of
perturbation theory, the theory of scattering metric deals with the case in which
the perturbation term is expanded as the power of e−dh .

0.4. Contents of this note. The purpose of this note is the exposition of the
basic knowledge of the generalized Fourier transform on asymptotically hyperbolic
manifolds and their applications to inverse scattering problem. We deal with the
general short-range perturbation of the metric, namely, we consider the metric
which differ from the standard hyperbolic metric with the term decaying like d−1−�

h ,
where dh is the hyperbolic distance.

More precisely we shall study an n-dimensional connected Riemannian manifold
M, which is written as a union of open sets:

M = K ∪M1 ∪ · · · ∪MN .

The basic assumptions are as follows:

(A-1) K is compact.

(A-2) Mi ∩Mj = ∅, i �= j.

(A-3) Each Mi, i = 1, · · · , N , is diffeomorphic either to M0 = M × (0, 1) or to
M∞ = M × (1,∞), M being a compact Riemannian manifold of dimension n− 1.
Here the manifold M is allowed to be different for each i.

(A-4) On each Mi, the Riemannian metric ds2 has the following form

(0.4) ds2 = y−2
(
(dy)2 + h(x, dx) + A(x, y, dx, dy)

)
,

A(x, y, dx, dy) =
n−1∑
i,j=1

aij(x, y)dxidxj + 2
n−1∑
i=1

ain(x, y)dxidy + ann(x, y)(dy)2,

where h(x, dx) =
∑n−1

i,j=1 hij(x)dxidxj is a positive definite metric on M , and
aij(x, y), 1 ≤ i, j ≤ n, satisfies the following condition

(0.5) |D̃α
x Dβ

y a(x, y)| ≤ Cαβ(1 + | log y|)−min(|α|+β,1)−1−�0 , ∀α, β

for some �0 > 0. Here D̃x = ỹ(y)∂x, ỹ(y) ∈ C∞((0,∞)) such that ỹ(y) = y for
y > 2 and ỹ(y) = 1 for 0 < y < 1.

Of course this metric ds2 depends on the end Mi, hence should be written as
ds2 = y−2

(
(dy)2 + hi(x, dx) + Ai(x, y, dx, dy)

)
.

Picking up the wave equation, we shall study the following scattering problem.
Consider the initial value problem for the wave equation{

∂2
t u = ∆gu on M,

u
∣∣
t=0

= f, ∂tu
∣∣
t=0

= −i
√

−∆gf,

where f is orthogonal to the point spectral subspace for −∆g. Then for any compact
set K on M, the solution u(t) behaves as∫

K

|u(t)|2dVg → 0, as t → ±∞.

Namely, the wave disappears from any compact set in M. On each end Mj , it will
behave like

‖u(t) − u
(±)
j (t)‖ → 0, as t → ±∞,
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where u
(±)
j (t) is the solution to the free wave equation




∂2
t u

(±)
j = ∆g0

j
u

(±)
j , on Mj ,

u
(±)
j

∣∣
t=0

= f
(±)
j , ∂tu

(±)
j

∣∣
t=0

= −i
√
−∆g0

j
f

(±)
j ,

∆g0
j

being the Laplace-Beltrami operator associated with the metric y−2
(
(dy)2 +

hj(x, dx)
)
. The scattering operator S assigns to the asymptotic data in the remote

past that in the remote future:

S :
(
f

(−)
1 , · · · , f

(−)
N

)
→

(
f

(+)
1 , · · · , f

(+)
N

)
.

The inverse scattering is an attempt to recover the metric of M from the scattering
operator S. To study this problem, we first investigate the spectral properties of
the associated Laplace-Beltrami operator −∆g. Namely

• Location of the essential spectrum.
• Absence of eigenvalues embedded in the continuous spectrum when one

of the ends is regular, i.e. one Mi is diffeomorphic to M × (0, 1).
• Discreteness of embedded eigenvalues in the continuous spectrum when

all the ends are cusps, i.e. all Mi are diffeomorphic to Mi × (1,∞).
• Limiting absorption principle for the resolvent and the absolute continuity

of the continuous spectrum.
Our next issue is the forward problem. Namely

• Construction of the generalized Fourier transform associated with −∆g.
• Asymptotic completeness of time-dependent wave operators.
• Characterization of the space of scattering solutions to the Helmhotz equa-

tion in terms of the generalized Fourier transform.
• Asymptotic expansion of scattering solutions to the Helmholtz equation

and the S-matrix.
As a byproduct, we also study

• Representation of the fundamental solution to the wave equation in the
upper-half space model.

• Radon transform and the propagation of singularities for the wave equa-
tion.

Finally, we shall discuss the inverse problem. Namely
• Identification of the Riemannian metric from the scattering matrix.

We show that two asymptotically hyperbolic manifolds satisfying the above as-
sumptions are isometric, if the metrics coincide on one regular end, and also the
S-matrices coincide on that end.

The ingredient of each chapter is as follows.

Chapter 1 Fourier transforms on hyperbolic spaces
We discuss the construction of the Fourier transform associated with the Laplace-

Beltrami operator of Hn as well as its spectral properties. Moreover, we characterize
the solution space of the Helmholtz equation in terms of the Fourier transform. We
also study the fundamental solution to the wave equation and the Radon transform.
We mainly use the estimates of Bessel functions. This chapter is the basis of whole
arguments in this note. Main results are Theorems 3.13, 4.2, 4.3, 6.5 and 6.6.

Chapter 2 Perturbation of the metric
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This is an exposition of spectral and scattering theory for Laplace-Beltrami
operators associated with asympotically hyperbolic metrics on Rn

+ and their scat-
tering matrices. As in Chapter 1, we will discuss the generalized Fourier transform,
the asymptotoic expansion of the resolvent, the Helmholtz equation and the Radon
transform. This is also an introduction to the classical spectral theory. Main results
are Theorems 2.3, 7.1, 7.8, 7.9, 7.10 and 8.9.

Chapter 3 Manifolds with hyperbolic ends
The general hyperbolic manifolds are constructed by the action of discrete

groups on Hn. We shall consider simple cases and study the spectral properties
of the resulting quotient manifolds. We also discuss the action of SL(2,Z). Main
results are Theorems 3.8, 3.12, 3.13 and 3.14.

Chapter 4 Radon transform and propagation of singularities in Hn

The Radon transform describes singularities of solutions to the wave equation.
We shall discuss this classical matter in this chapter for the hyperbolic space. The
goal is Theorem 5.2 which is a generalization of Theorem 6.6 in Chapter 1.

Chapter 5 Introduction to inverse scattering
Local perturbations of the metric of hyperbolic manifolds are identified from

the scattering matrix. We shall prove this fact by using spectral theory. Our goal
is Theorem 4.8, which asserts that if the metrics coincide on one regular end of the
asymptoticaly hyperbolic manifolds, and also the S-matrices coincide on that end,
then two manifolds are isometric.

The method we have given here works not only for asymptotically hyperbolic
ends but also for the manifolds on which the spectral representation is established.
In particlular, Theorem 4.8 holds for manifolds with asymptotically Euclidean ends,
or the mixture of Euclidean and hyperbolic ends.

Chapter 6 Boundary control method
To identify the metric, we reduce the problem to that of the inverse spectral

problem on non-compact manifolds with compact boundaries. The crucial role
is played by the boundary control method developed by Belishev and Kurylev.
This section is devoted to a comprehensive and self-contained exposition of this
approach. We shall give a complete proof of the BC-method except for Tataru’s
theorem on the uniqueness of solutions to non-characteristic Cauchy problem for
the wave equation.

Appendix A Radon transform and propagation of singularities in Rn

The relation between the propagation of singularities and the Radon transform
is not obvious even for the case of perturbed Euclidean metric. We shall give
detailed proof for this subject for the case of general short-range perturbation of
the Euclidean metric. Main results are Theorem 1.14, Lemma 1.17 and Theorems
6.7 and 6.10.

Let us remark here that our inverse scattering procedure can be made purely
stationary. Namely, in this stationary approach, we first define the scattering matrix
by observing the asymptotic behavior of solutions to the Helmholtz equation at
infinity (see Theorem 3.15 in Chap. 3), from which we derive all informations
necessary for the inverse problem. Therefore, the readers who have basic knowledge
about the forward scattering, and are interested only in the inverse scattering can
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skip Sections 5 and 6 of Chapter 1, whole Chapter 4 and Appendix, since they are
of independent interest and not used in the arguments for the inverse problem.

Spectral representations, Radon transforms, S-matrices are mutually related
as follows. In the time-dependent picture of scattering, the S-matrix assigns the
asymptotic profile in the remote future of the solutions to the wave equation to
that in the remote past. The Radon transform describes the asymptotic expansion
at infinity of the fundamental solution to the wave equation (see Theorem 8.9 of
Chap. 3). Using the Fourier slice theorem, one can define the Radon transform in
terms of spectral representations (see Definition 5.3 of Chap. 1). In the study of the
symmetric spaces, one is intereted in the characterization of the range of the Radon
transform by differential operators. In the perturabation thory of the continuous
spectrum, the S-matrix describes the range of the Radon transform. Support theo-
rem of the Radon tranform is also an important subject. Here we are interested in
its micro-local properties, in particular, the propagation of singularities. Although
this is basically known, it is worthwhile to give the precise statements in the general
short-range perturbation regime. These issues are discussed in Chap. 4 and the
Appendix.

The main part of our results will be proved under a weaker decay assumption
on the metric. More precisely, if we assume instead of (A-4) that in the region
0 < y < y0

(0.6) ds2 = y−2
(
(dy)2 + h(x, dx) + B(x, y, dx)

)
,

B(x, y, dx) =
n−1∑
i,j=1

bij(x, y)dxidxj ,

where each bij(x, y) satisfies

(0.7) |D̃α
x Dβ

y b(x, y)| ≤ Cαβ(1 + ρ(x, y))−1−�, � > 0,

ρ(x, y) being the distance of (x, y) ∈ M from some fixed point, we can derive the
same results as those presented below. In fact, we shall prove that the metric of the
form (0.4) satisfying (0.5) is transformed to the metric of the form (0.6) satisfying
(0.5) (see Theorem 1.6 in Chapter 4), and once we adopt (0.6), we only use the
decay assumption (0.7).

Even if we start from the metric of the form (0.4) satisfying (0.7), the results
below, except for Theorem 2.10, Corollary 2.11 in Chapter 2 and Theorems in Chap-
ter 4, also hold. The difference is that the non-existence of eigenvalues embedded
in the continuous spectrum may not be true. However, even in this case, one can
show that the embedded eigenvalues are discrete with possible accumulation points
0 and ∞ just like Chapter 3, Theorem 3.5.

We have tried to make Chapters 1, 2 and 6 as elementary as possible so that one
needs little knowledge to understand the spectral theory and inverse problems. The
readers interested in only the inverse problems can skip Chapter 4 and Appendix. If
one wants to know the essential step of the limiting absorption principle (resolvent
estimates), one should skip Chapter 1 and read subsections 2.3, 2.4 and 2.5 of
Chapter 2 first. Although it is written for the upper-half space model, the same
idea works for the analysis of ends. We employed the method of integration by
parts to prove the limiting absorption principle, which is essentially due to Eidus
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[31]. This approach is simple and needs no preparatory tool, moreover it is flexible
and applicable to various situation. For the other approaches, see e.g. [33], [35],
[85], [104], [105].

To construct the generalized Fourier transform, we compute the asymptotic ex-
pansion at infinity of the resolvent. This is a classical idea, and has been frequently
used (see e.g. [118], or [44]). We also utilize the Besov type space introduced
by Agmon-Hörmander [2] to construct eigenoperators, which, as has been done by
Yafaev [132], makes it possible to characterize the solution space of the Helmholtz
equation by the generalized Fourier transform and to derive the S-matrix from the
asymptotic expansion of solutions to the Helmholtz equation.

One can deal with other types of metric by the methods employed here. For
example, the asymptotically Euclidean ends can be treated in the same way by
utilizing results in Chap. 2, §5, §6 and Appendix A. The inverse scattering from
asymptotically (Euclidean) cylindrical ends has been studied in [67]. In practical
situation, this problem includes that of wave guides. In [68] and [69], inverse
scattering from cusp of asymptotically hyperbolic manifolds or orbifolds is studied.
The idea consists in generalizing the notion of S-matrix, which makes it possible
to determine all geometrically finite hyperbolic surfaces. One can also consider a
mixture of these different types of ends.

There are many unknown problems on spectral properties and inverse scattering
for a big variety of other types of ends. We hope that the methods in this paper
will be helpful for the future study of these fields.

0.5. Remarks on notation.

• For two Banach spaces X, Y , B(X; Y ) denotes the totality of bounded
linear operators from X to Y .

• For a self-adjoint operator A

σ(A) = the spectrum of A,

σp(A) = the set of all eigenvalues of A,

σac(A) = the absolutely continuous spectrum of A,

σd(A) = the dscrete spectrum of A,

σe(A) = the essential spectrum of A.

• For an open set Ω in a manifold, C∞
0 (Ω) is the set of all infinitely differ-

entiable functions with compact support in Ω.
• For a measure dµ on Ω, L2(Ω; dµ) denotes all functions f such that

‖f‖ =
(∫

Ω

|f |2dµ

)1/2

< ∞.

• For an open set Ω, Hm(Ω) is the Sobolev space of order m on Ω, namely
the set of all functions f on Ω whose all weak derivatives of order up to
m belong to L2(Ω; dµ).

• Hm
loc(Ω) denotes the set of all u such that u ∈ Hm(ω) for all relatively

compact open set ω in Ω.
• In the inequalities, C’s denote various constants. Although these con-

stants may vary from line to line, they are denoted by the same letter
C.
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• Theorems, Lemmas, etc. are quoted as follows. In each chapter, Theorem
m.n means Theorem m.n of §m of that chapter. Theorem p.m.n means
Theorem m.n of Chapter p.

Throughout this note, we have assumed the standard knowledge of functional analy-
sis. We have also given a brief explanation for the basic knowledge of the spectrum
of self-adjoint operators and partial differential equations when it appears. The
reader should consult Kato [80], Reed-Simon [115], Isozaki [62] for details.

0.6. Very short perspective. Let us explain the basic strategy of construct-
ing the Fourier transform in this paper taking R1 as an example. We regard
H = −d2/dx2 as the Laplacian on the 1-dimensional manifold R1. The resolvent
R(z) = (H − z)−1 of H has the following expession:

R(z)f(x) =
i

2
√

z

∫ ∞

−∞
ei

√
z|x−y|f(y)dy, Im

√
z > 0.

Therefore assuming that f ∈ L1(R1) and z → λ > 0, and letting x → ±∞, we have

R(λ + i0)f(x) ∼ i

√
π

2λ
e±i

√
λxf̂(±

√
λ).

Let EH(λ) be the spectral measure for H. Then by Stone’s formula, we have for
0 < a < b < ∞

(EH((a, b))f, f) = lim
�→0

1
2πi

∫ b

a

([R(λ + i�) − R(λ − i�)]f, f)dλ.

Letting u = R(λ + i0)f , we have by integration by parts

([R(λ + i0) − R(λ − i0)]f, f) = (u, f) − (f, u)

= lim
R→∞

∫ R

−R

(
u��u − uu��

)
dx

= lim
R→∞

[u�u − uu�]R−R

=
πi√
λ

(
|f̂(

√
λ)|2 + |f̂(−

√
λ)|2

)
,

which implies

‖f‖2 = lim
a→0,b→∞

(EH((a, b))f, f) =
∫ ∞

−∞
|f̂(k)|2dk.

These calculations suggest that
• The Fourier transform is obtained from the asymptotic expansion at in-

finity of the Green operator of the Laplacian.
• Parseval’s formula is a consequence of Stone’s formula and integration by

parts.
We should stress that

• The limit R(λ± i0) of the resolvent R(λ± i�) as � ↓ 0 plays an important
role.

The procedure of taking the limit as � ↓ 0 of R(λ±i�) is called the limiting absorption
principle.

We shall explain these matters on asymptotically hyperbolic spaces.
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